THE STRUCTURES AND CRYSTAL CHEMISTRY OF BUSTAMITE AND RHODONITE

BI

DONALD RALPH PEACOR
S.B., Tufts University
(1958)

S.M., Maserchugetts Ingtitute of Technology
(1960)

SUBMITMED IN PARTIAL FULFTLLMENE
OF THE REQUIREMENE FOR THE
DEGRE OR DOCTOR OR
PHILOSOPHY
at the
MASSACHUSETES INSTITUTE OF TECHNOLOGY
Augist, 1962

Slgnature of Author.
Department of Geology, August $2 \dot{0}, 196 \dot{2}$
Certified by

THE STRUCTURES AND CRYSTAL CHEMESTRY OF BUSTAMITE AND RHODOLTTE
$3 y$
Donald R. Peacox
Submitted to the Department of Ceology and Geophysics on August 20,1962 , in partial fulfillment of the requirements for the degree of Doctor of Philooophy.

ABCIRACT

Bustanite (CaMnSt. 0_{6}) has epace group $F 1$ and unit ce11 parameter $a=15.412 A^{2} \% \%=7.157 \AA, c=13.824 \AA, \alpha=$ $89^{\circ} 29^{\circ}, \beta=94^{\circ} 51^{\prime}, \gamma=102^{\circ} 56^{\circ}$, with $z=12$. Three-dimensional intensity data were gathered with the single-crystal, Gelger-counter diffractometer. Application of the minimum function to $P(x z)$ and comparison of the unit cells of buscam mite and wollastonite (CaSiOn) yielded a trial structure which was refined with leas-squares.

Rhodonite ($\mathrm{Mn}_{4} \mathrm{CaSl}_{5} \mathrm{O}_{25}$) has space group P1 and unit cell parameter $a 47.682 \mathrm{~A}, \quad \mathrm{~b}=11.818 \mathrm{~A}, \quad$ c $=6.707 \mathrm{~A}^{\circ}$. $\alpha=92^{\circ} 21^{\prime}, \beta=93^{\circ} 57^{\prime}, \gamma=105^{\circ} 40^{\prime}$, with $2=2$. Interpretation of the three-dimensional patceraon function led to the identification of (Mn, Ca) inversion peaks which were used to form the minimm function. Interpretation of chis function resulted in tulal structure which was reflned by meane of least-squares.

The structures of bustamice and rhodonite are finilar to those of other metasilicates having chains of silica tetrahedra. Oxygen atoras are arranged approximately in close-packing. planes of min and ca ions occupying octahedral interstices alternate with planes of tetrahedrally coordinated Si ions, between oxygen sheets. Silica tetrahedra each share two vertices to form chains with a repeat unit of three cetrahedra in bustamite and five in rhodonite.

TABLE OF CONTENTS
Page
vi
List of Figures
viii
List of Tables
PART I 1
A. Determination and refinement of the crystal 2structure of bustamite, $\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$
Abstract 2
Introduction 4
Unit cell and space group 4
Intensity data 7
Structure determination 8
Determination of $\%$ and z^{2} coordinates 8
Determination of y coordinates 16
Refinement 20
Description of the bustamite structure 24
Acknowledgements 38
References 39
B. Comparison of the crystal structures of 41
bustamite and wollastonite
Abstract 41
Introduction 42
Description of structures 44
Arrangement of SiO_{3} chains 51
Substructure relations 61
Cation ordering 61
Interatomic distances 63
Pseudomonoelinic cells 67
Acknowledgemants 68
References 69

TABLE OF CONTENTS cont.

PART IL

1. Review of literature on phase relationa and crystal 72
structures in the system $\mathrm{CaSiO}_{3} \mathrm{MnSiO}_{3}$
Phase relation 72
X-ray cryetallography 79
2. The determinatiox and sefinement of the crystal 8 8.
seructure of shodonite
Introduction 84
Unit cell and space group 86
Preliminaxy considerations 88
Comparison of wollastonite and rhodonite 92
Interpretation of the Pattexson function 93 P(xyz)
Refinement 103
Description of the rhodonite atructure 128
Sheet of octahedrally coordinated cations 135
Coordination polyhedra and cacion ordering 135
Interatomic diatances 143
Conformity of rbodonite to Pauling rules 14.3
Temperature factors 145
3. Crystal chemical relations among some pyroxenes 148 and pyroxemoids
Other pyroxenes and pyroxenoids 158
Classification of pyroxenes and pyroxenolds 162
Phase sranisformation 161
APPENDIX I DCELLE: LBM 709/7090 154Program for the transformation of unit cell para-metari and coordingted

TABLE OF CONTENTS cont.

Directions for operation of DCELL 165
FORTRAN Listing of DCELL. 168
FORIRAM 1isting of subroutine 170 SMMTRY Eor PI space group
APPENDIX II Comperison of obsexyed and calcu- 171.
lated structure factors of bustamite
APPENDIX IIX Comparison of observed and calcu $\quad 195$
lated structure factors of rhodonite

Acknowledgementis 237
BLography $\quad 239$
References 242

LIST Of FIGURES

Part :		Eage
A1	Projection along b of the structure of wollastontte	10
A ${ }^{2}$	Bugtardtic, $M_{4}\left(x x^{4}\right)$	12
A3	Bugsamite, $\rho(x \mathrm{~m})$	14
A4	Comparison of unic celle of bustamite and wollasconite	17
AS	Projection along of cina peats on $\rho(x y m)$	26
A6	Interpretacion of ρ (xys)	28
A 7	Structure of bustamite Erom $x=\frac{1}{4}$ to $-\frac{1}{4}$ projected onto a plane dasined by the ames b and sin β	31
A8	Projection aloag of the structure of bustamite	33
E 1A	Projection along b of the structure of wollastcmite	47
(18	Projection along b of the structure of bastanite	49
3 2A	Projaction along of the staucture of mollastonite	52
B 28	Projection along of of the structure of bustamite	54
B 3 A	projection along of the atructure of wollastonite	56

LIST O FIGURES cont.

I 38	Projection along c of the structure of bustamite	58
Past IL		
1.1	Phese welation in the subsolidus ragion of the byates $\mathrm{CaSIO}_{3}-\mathrm{MnSIO}_{3}$ as a function of temperature and composition	7%
2.1	Selected peaks of $P(x y z)$ projected onto (001)	94
2.2	Peaks of M_{4} (xyz) projected onco (001)	93
2.3	Coordination polyhedra projected onto (001)	101
2.4	Peaks of ρ (xys) projected onto (001)	129
2.5	projection on (001) of the structure of rhodonite	131
2.6	Projection along a of the structure of rhodenice	133
3.1	Projection along a of the structure of clinoenstatite	150
3.2	Projection along [TOL] of the atructure of Mollastonte	152
3.3	Projection along [101 7 of the atructure of rhodanite	154

LIST OF TABLES

Part 1

A1 Symetry and unit cell data for bustamite
and wollastonite
A2 Interatomio distances sas sation peak heighte after cycle 3 of refinement

A3 Coordinates and isotropic temperature 25 factors for atom of bugtamite

A4 Interatomis distancea in bustamite 36
31 Symatry and unit call data for bustamite 43
and wollastonite
B2 Coordinated and ibotropic temperature factors of atoms ia wollastonite and bustamite

B3 Cationoorygen fakeratomie distances
64

Part II

1.1	Unit cells and apace groups of Ca , Mn metasilicates	80
2.1	Lattice constants of rhodonite	85
2.2	Coxparison of unit cells of sone pyroxenes nuc pyrowenoid	90
2.3	Aton cordinate from the minimam function and after refinement	104
2.4	Outine of least-squares refinement	110

LIST OF TABLES cone.

2.5	Peak heights at catios positions of $\Delta \rho(x y y)$ and Mn-0 interatomic distances after cycle 32	122
2.6	Comparison of coordinates of Liebau et al. and this refinement	125
2.7	Cation-oxygen interatomic distances	136
2.8	Oxygen-cation interatomie distances	138
2.9	Oxygen-arygen interstonde distances	149

Part 1

Papers which have been prepared for publication.

Pare I $-A$

Determination and sefinement of the crystal structure of bustamite, $\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$

By Donald R. Peacor and M.J. Buerger
Massachusetts Institute of Technology
Cambridge, Massachuaetts

Abstract

Bustamite is triclinic, space group EI, with cell dimensions $a=15.412 \AA, \quad b=7.157{ }^{\circ} \mathrm{A}^{\circ}, \quad c=13.824{ }^{\circ} \mathrm{A}$, $\alpha=89^{\circ} 29^{\prime}, \quad \beta=94^{\circ} 51^{\prime}, \gamma=102^{\circ} 56^{\prime}$. The unit cell ideally contains $12\left(\mathrm{CaMnSi}_{2} \mathrm{O}_{6}\right)$. Three-dimensional inten sity data were gathered with the single-crystal Geigexcounter diffractoneter. Application of the minimum function to $\underline{(x}$ (x), and comparison of the unit cells of bustamite and wollastonite yielded trial structure which was refined with least-\$quaree.

Planes of approximately close-packed oxygen atome are oriented parallel to (101). Planes containing Ca and Mn atoms in octahedral coordination alternate with planes of $\$ 1$

atoms in tetrahedral coordination between oxygen planes. Ca and Mar are ordered. Si tetrahedra are linked to form chains parallel to b with repeat unit of three tetrahedra.

Introduction

Several authors have noted the similarity of the properties of bustamite, $\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$, to that of wollastonite, CaSiO_{3}. On the basis of a similarity of optical properties of the two minerals, Sundius ${ }^{1}$ and Schaller ${ }^{2,3}$ proposed that bustamite is Mn-rich woolase conite. Berman and Gonyer ${ }^{4}$ accepted this view when they determined the unit cell of bustamite and noted its correspondence to that of wollastonite (Table Al). Buerger ${ }^{5}$ and Liebau et al. ${ }^{6}$ Found, however, that the unit cells are different although closely related (Table Al).

Because of the recent interest in the structures of the minerals of the wollastonite family, it is importe ant to understand the relation of bustamite to other triclinic metasilicates. In this paper the results of an investigation of the structure axe given.

Unit cell and space group

Specimens of bustamite from Franklin, N.J. were kindly provided by Professor C. Frondel of Harvard University. The unit cell obtained by Buerger was confirmed with zero, first, second, and thirdolevel b axhs Weissenberg photographs.

 IV atqei

Final cell parameters (Tabie Al) were obtained by least squares refinement of data from $\underline{a}, \underline{b}$, and $\underset{c}{ }$ axis zero level back-reflection precision Welsaaberg photographs. Refinement was earried out using an IBM 709 program written by C : W. Burnham. ${ }^{\text {y }}$ Although it $i s$ usual to choose a reduced, primitive triciinic unit cell, the facecentered cell was retained because of its close correspondence to that of wollastonite. 5

Using the refined cell parameters and an analysis of Frankin, N.J., bustamite, ${ }^{8}$ the unit-cell contents were found to correspond to the following formula:

$\mathrm{Ca}_{13.37}$		
$\mathrm{Ma}_{10.57}$		
$\mathrm{Mg}_{\mathrm{g}} 0.48$	$\mathrm{Si}_{24.00}$	$0_{72.68}$
Zn	0.20	
$\mathrm{Fe}^{0.11}$		
${ }_{24.73}$		

Since a precise value for the specific gravity was not available, this distcibution was obtained by normalizing the formala to 24.00 si atoms per cell. The excess of $\mathrm{Ca}_{\text {. }}$ Mn_{3} etc. relative to $\mathrm{Si}(24.73: 24.00)$ is attributed to a slight exror in the analysis.

The above formula corresponds ideally to
$12\left(\mathrm{CaMnSi}_{2} \mathrm{O}_{6}\right)$ per face-centered cell, or $3\left(\mathrm{CaMnSi}_{2} \mathrm{O}_{6}\right)$ per
primitive cell. Spaca group pi containe only equipoints of rank 1 and 2. Three $C a$ and three Mn atons can all occupy general equipoints of rank 2 only if there is disorder between at least one Ca and one Mn. Complete order of Ca and Mn requires that at least one Ca and one Mn be on Inversion centers of rank 1. The grouping of analyses of natural material about the ideal composition suggested the latter. Since no Ca atons occupy inversion centers in wollastonite, there was a strong possibility that this constituted a mejor difference betwean the structures.

Intensity data

The specimen used for the intensity measurement was a prism bounded by (100) and (001) cleavages, 0.233 mm long and 0.030×0.048 in cross section. The crystal was mounted on the single-crystal diffractometer with the b-axis as rotation axis. Intensities of the reflections with CuK K radiation were measured with an argon-filled Geiger counter. Care was taken not to exceed the linearity range of the Geiger counter; counting rates were maintained below

500 c.p.s. by using alumirum absorption foils. Intensities were measured by direct counting, Background was massured on each side of a peak and the average background subtracted from the value of background plus integrated intensity obtained by scaming through the peak. Of approximately 1650 non-equivalent reflections in the $C u$ sphere, 1212 were recorded. These wers coxrected for the Lorentz and polarization factors using an IBM 709 program written by C. T. Prewitt, ${ }^{9}$ and for absorption using an LBM 709 prograw written by C. W. Burnham. 10

Structure determination

petermination of x and z coordinates. Comparison of ho1 reflections of bustamite and wollastonite showed that the distribution and intensities of each wexe similar. This suggested that the projections of the structures along b are the same. The Ratterson projection $\mathrm{P}\left(\mathrm{x}_{\mathrm{g}}\right)$ of bustamite was therefore prepared. Its similarity to that of $\underline{P}(x=)$ of wollastonite confirmed that the structures are very probably the same in projection.

The structure of the wollastonite ${ }^{11}$ projected along \underline{b} is shown in Fig. A1. Ca_{1} and Ca_{2} are superimposed in projection. On the assumption that Ca and Mn atoms in bustac mite have a similar arrangement, a minimum function $\underline{M}_{2}(x)$ was prepared for bustamite using the equivalent of the superimposed $\mathrm{Ca}_{1}+\mathrm{Ca}_{2}$ inversion peaks of wollastonite. In wollastonite, the Patterson projection $\underline{P}(x z)$ contains an image of the structure as seen from Ca_{3}. The Patterson projection and \underline{M}_{2} (xz) were therefore superimposed to obtain the minimum function M_{4} (xz) shown in Fig. A2.

Note that for each atom of $\rho(x z)$ there is a corresponding peak of the correct relative weight in $M_{4}(x z)$ of bustamite. There are four extra peaks, labelled $A, \underline{B}, \underline{C}$, and \underline{D}, in $\underline{M}_{4}(\underline{x z})$. Three of these, A, \underline{B} and \underline{C}, are near the peaks corresponding to $\mathrm{O}_{7}, \mathrm{O}_{3}$ and Si_{3} of wollastonite. Structure factors $\underline{\underline{k}} \mathbf{0 1}$ " calculated onitting these atoms, gave a discrepaney factor $R=31 \%$. Using these structure factors the electron-density projections $\rho(x z)$, Fig. A3, and $\Delta \rho(x z)$ were then calculated. As can be seen from a comparison of Figs. A1 and A3, these confirmed that the profections ρ (\underline{x}) of bustamite and wollastonite are essentially the same. None of the false peaks, $A, \underline{B}, \underline{C}$ and \underline{D} of \underline{M}_{4} (xa) appeared in $\rho(x z)$, while peaks corresponding to $0_{7}, 0_{8}$ and Si_{3} do occur. A second structure factor calculation based on coordinates from $\rho(\underline{x z})$ and $\Delta_{\rho}(x z)$ yielded an R of 21% for $a l l \underline{\underline{F}}_{\underline{\mathrm{h}}}{ }^{-}$.

Figure 1, Part LA

Projection along b of the structure of wollastonite. Oxygen atoms are represented by large
circles, Ca atoms by circles of intermediate size, and Si atoms by small circles.

Figura 2, Part IA

Bustamite, $M_{4}(x)$. The high (Cm + Mn) peak 13 shaded in. Peaks which do not cormespond to atoras are labe11ed A, B, C and D.

Tigure 3, Part IA

Bustamits, $\rho\left(x_{2}, 2\right)$. (Cat Mn) peaks axe shaded in.

Determination of y coordinates. The lower part of Fig. A4 shows the primitive triclinic unit cell of wollastonite and the upper part show the face-centered bustamite cell in corresponding orientation. Inversion centers coinciding with lattice points are shown as solid cixcles and all other inversion centers as open circles. All inversion centers 1ie on (101) planes which intersect a and c at 0 and $\frac{1}{2}$ in wollastonite and at $0, \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$ in bustamite. The distri. bution of inversion centers is the same in both structures, except that those centers on planes parallel to (101) in bustamite intersecting a and c at $\frac{1}{4}$ and a and c at $\frac{3}{4}$ are shifted by $\frac{b}{4}$ relative to those in wollastonite.

Figures A1 and A3 show that Si and (Ca, Mn) atoms lie approximately on planes parallel to (101) which contain the inversion centers in both structures. Planes containing Si atoms alternate with those containing (Ca, Mn).

Figure Al shows that in wollastonite there are inversion centers in the (101) planes at $y=0$ and $\frac{1}{2}$. Because the sub-structure has period $\frac{b}{2}$, there are also pseudocenters for the Ca atoms and their coordinating oxygen atoms, which project at the same $x=$ coordinate, at $y=\frac{1}{4}$ and $\frac{3}{4}$. Since the Si atoms are not in the substructure these pseudocenters do not apply to them.

Figure 4, Part IA

Comparison of unit cells of bustamite (above) and wollastonite (below). Lattice points (which are coincident with inversion center; are shown as solid circles. other inyersion centex: axe shown as open circies.

A reasonable model for the structure of bustamite resulte from combining the above information with the fact that wollastonite and bustamite are similiar in projection. Coordinates of Ca and Mn atoms and their coordinating oxygen atoms in bustamite differ from those in wollastonite in the following ways:

1. The pseudoinversion centers in wollastonite at $y=\frac{1}{4}, \frac{3}{4}$ in (101) planes containing Ca become true inversion centers in bustamite.
2. The inversion centers at $y=0, \frac{x}{2}$ in wollastonite become pseudoinversion centers in bustamite. The relative arrangement of silica tetrahedra is the same in both structures except that tetrahedra in alternating sheets are displaced by $\frac{b}{2}$ by the face-centecing translation in bustamite.

The above arrangement of inversion centers requires that the (Ca, Mr) of bustamite, equivalent to Ca_{3} of wollastomite, be located on inversion centers; that is, four (Ca, Mn) atoms are still in two general positions of rank 2, and two (Ca, Mn) atoms are on centers with rank 1. This is just the distribution required for ordering of Ca and Mn atoms which was noted in the saction on unit cell and space group.

Structure fsctors were calculated for all 1212 observed reflactions using X and 2 parameters derived from the projection, and I paramater of wollastonite adjusted as required above. Ca and Mn stons were assumed to be completely disordered, aince at this point there was still no direct erlance fur oxdering. Tha diacrepancy factor, E. wan only 31.\%, suggesting that the propowed structuxe was probably correct.

Refinement

Refinement was carried out using SFLSQ2, a leastsquares IEM 709 program using the full matrix ${ }^{12}$. For the initial refinement, form-factor curves were used for ca and Nn assuming complete disorder, and a correction made for the average real coaponent of anomalous dispersion. All atoms were assumed to be half ionized. Al1 1212 reflections were used a input to each cycle of rifinement, but those reflections with $\left(F_{0}-F_{c}\right) / F_{c}>0.5$ were rejected by the program. The waighting acheme recommended by Hughes ${ }^{13}$ was used throughout. Isotropic temparature factors for all atom were initieliy
set at 0.5 , y viue consistent with temperature factor of other silicate structures refined in thim laboratory. The discrepancy factor 8 decreased to 12.3% aftex only three cycles, confirming the correctness of the proposed structure. For these cycles, only the scale factor and cos ordinates were allowed to vary. Using structure factors calculated from coordinates of cycle 3, a three-dimensional difference Fourier synthesis Δ_{ρ} (xyz) was computed. (All three-dimensiona 1 Fouriex syntheses were computed using the IBM 709/7090 program ERFR2. ${ }^{14}$) The only major discontinuities in the synthesis were negative or positive peaks at the positions of (Ca +Mn) atoms. The peak heights are listed in Table A2. Intexatomic distances, also shown in Table A2, were calculated using ORXFE, an IBM 704 program. ${ }^{15}$

Mn has five more electrons than $C a$, assuming equal ionization of Mand Ca. Thus the positive peaks at the positions of cations 1 and 3 cleavly indicate that mn atome are located there, whila the negative peaks of cations 2 and 4 suggest that Ca occupies those positiong. The radius of Mn^{+2} (0.91 A) is less than that of $\mathrm{Ca}^{+2}(1.06 \mathrm{~A})$. The smaller average cation-oxygen distances of cations 1 and 3 and the larger distances of cation 2 and 4 therefore confirm the ordering indicated by the peaks of $\Delta p(x y z)$.

Table A2
Interatomic distances and cation peak heights after cycle
3 of rafinement.

Cation number	Equipoint rank	Average cationw oxygen interatomic distance	Peak height in $A p$ (xyE)	Interpre* tation of ordering
1.	2	2.25 A	377	Mn, excess
2	2	2.38	-1170	Ca
3	1	2.21	642	Mr
4	1	2.39	-1250	Ca

Ic was noted above that there is an excess of Ca over Mn in the matarial usad for this study. The peak at the position of cation 1 in $\Delta \rho$ (for cation 3. In addition, the average cation-oxygen distance ia slightly larger for cation 1 than for cation 3. This indicates that the axcess Ca subscitute for Mn preferentially in the site labelied cation 2 .

Three structure-factor computations were made (taking account of both the real and imaginary components of anomalous dispersion of Mn and Ca) for the following distributions of the excess Ca :

1. all excess Ca assigned to cation 1;
2. $\frac{1}{3}$ excess ca assigned to cation $1, \frac{2}{3}$ to cation 3;
3. all excess ca assigned to cation 3.

The R value was essentially equal for all three distributions ($N 9.5 \%$) but the comparison of $\mathrm{F}_{\mathrm{obs}}$ and $\mathrm{F}_{\mathrm{cal}}$ was slightly better with the excess Ca substituting for the Mn of cation 1. Since this confirmed the conclusion reached on the basis of the peake of $\Delta \rho$ (xyz) and the interatomic distances, this distribution of the excess Ca was accepted as being correct.

Refinement was continued with the Ca and Mn distribution determined above, taking full account of anomalous dispersion. The Zn, Fe and Mg reported in the analysis were considered to
substitute for Mn, since these atoms are smaller than Mn.
Two nore cycles (4 and 5) were executed varying only coordinates and the scale factor. The coordinates were essentially unchanged in cycle 5. Individual isotropic temperature factors were varied 1 : cycles 5 and 7. Refinement was concluded with two cycles in the first of which the coordinates and the scale factor were permitted to vary, and another cycle in which isotropic temperature factors were refined. Final parameters and their error are listed in Table 3.

Description of the bustamite structure

The electron density $\rho(x y z)$ was computed using the signs of the structure factors of the final cycle of refinement. The peaks of this three-dimensional function are shown projected parallel to \underline{b} in Fig. A5. Figure A6 is an interpretation of the same projection. The similarity of the structures of bustamite and wollastonite (Fig. Al) has been noted above several times. The relations between these structures is discussed in another place.
able As
Coordinates and isotropic temperature factors for atoms of bustamite.

	沓	$\sigma(x)$	\underline{L}	$\sigma(y)$	$\underline{2}$	$\sigma(z)$	B	$\sigma(B)$
mn_{1}	. 1009	.0001	. 6725	. 0005	. 3733	. 0001	. 56	.03
Ca_{1}	. 0994	. 0001	.1583	. 0004	. 3785	. 0001	.69	.03
Mn_{2}	$\frac{1}{4}$	0	0	0	$\frac{1}{4}$	0	. 56	. 04
Ca_{2}	$\frac{1}{4}$	0	$\frac{1}{2}$	0	$\frac{1}{4}$	0	. 73	. 05
81	. 0884	. 0002	. 2003	. 0005	.1343	. 0002	.34	. 04
Si_{2}	. 0888	.0002	. 6454	.0005	.1325	. 0002	. 32	. 04
SH_{3}	. 1975	.0002	. 9805	.8005	. 0218	. 0002	. 16	. 04
O_{1}	. 2158	. 0005	. 9758	. 0014	. 4027	. 0005	. 68	.12
O_{2}	. 2018	. 0005	. 4840	. 0014	. 4069	. 0005	.57	. 12
0_{3}	. 1563	. 0005	.1838	. 0014	.2293	. 0005	. 48	. 12
$0{ }_{4}$.1509	. 0005	.7206	. 0014	. 2315	. 0005	. 50	. 12
O_{5}	.0131	. 0005	. 3964	. 0014	.3549	. 0005	. 64	.12
06	. 0140	. 0005	.8513	. 0014	.3717	. 0005	.66	. 12
0_{7}	.1287	.0005	.1240	. 0014	. 0393	. 0005	. 57	. 12
0_{8}	. 1364	. 0005	. 7625	. 0013	. 0411	. 0005	.29	. 11
0_{9}	. 0926	. 0006	. 4250	. 0016	.1147	. 0005	1.34	. 14

Elgure 5, Fart IA

Projection along b of the peaks of $\rho(x y z)$.

Figure 6; Part IA

Interpretstion of $\rho(x y z)$. Inversion conters at y, 0 , $\frac{1}{2}$ hom as solid circles and inversion centers at $y=\frac{1}{4}, \frac{3}{4}$ as open circles.

In Fig. A6 the arrangement of oxygen atoms crudely approximates close packing, all oxygen atoms except $\mathrm{O}_{\mathbf{9}}$ lying in sheete which are parallel to (101). Ca and Ma atoms and Si. atoms altarnate in layers between sheets of oxygen atoms, with Ca and Mn in octahedral coordination and Si in tetrahedral coordination. SiO_{4} tetrahedra all share two oxygen atoms with other tetrabedra to form a chain whose repeat unit is three tetrahedra and which is oriented paralle1 to the b axis. The nature of the arrangement of tetrahedra is best shown in Figs. A7 and A8. Fig. A7 is a projection of the structure parallel to A while Fig. A8 is a projection along c .

The sheet of Ca and Mn octahedra can be compared to the sheet of Mg octahedra in brucite. Octahedra share edges to form a continuous two-dimensional sheet in brucite. The wollastonite arrangement: may be interpreted in terms of ideal close packing of the oxygen atoms in sheete coordinating Ca atoms. As shown in Figs. A7 and A8, octahedra share edges to form a band three octahedre wide, extending infinitely parallel to \mathbf{b}. Individual bands are separated by columa of unoceupied octahedrally coordinated voids. There i.s actually considerable distortion of the close-packed oxygen layers, however, particularly around the colum of vacant octahedra.

Figure 7, part IA

Structure of bustamite from $x=\frac{1}{4}$ to $\frac{1}{4}$ projected onto a plane defined by the axes
b and $c \sin \beta$.

Figure 8, Part la

Projection along c of the structure of bustamite.

Interatomic distances are 1isted in Table A4. These are discussed in detail elewhere. ${ }^{16}$ A11 distances are close to accepted values. The average si-0 distance is 1.623 A. Smith and Bailey ${ }^{17}$ state that the average 3i-0 distance of a sillcate is a function of the extent of tetrahedral linkm age. The distance 1.623 A falls exactly at the value predicted by them for metasilicates.

There are three non-equivalent Si-0-Si angles in bustamite, which are:

$$
\begin{array}{llll}
S I_{1} & -0_{9} & -S i_{2}, & 161^{\circ} \\
S I_{1} & -0_{7} & -S I_{4}, & 135^{\circ} \\
S I_{2} & -0_{8} & -S i_{4}, & 137^{\circ} .
\end{array}
$$

Corresponding angles in wollastonite are $149^{\circ}, 139^{\circ}$ and 140° respectively. ${ }^{18}$ In a survey of SL-0-Si angles, Liebau ${ }^{19}$ found that the average for well-determined structures is about 140°. Angles greater than 150° are uncommon and, under normal conditions, represent a relatively unstable condition. The angle $\mathrm{Si}_{1}-\mathrm{O}_{9}-\mathrm{Si}_{2}$ is large in both bustamite and wollastonite, but unusually so in bustamite. In addition, the isotropic temperature factor for O_{9} of bustamite is con siderably larger (1.34) than all other temperature factora of the structure (see Table A3). In wollastonite, this temperature factor (0.68) is only $1 i g h t l y$ above the average for the entire structure.

Table A4
Interatomic distances in bustamite

$$
\begin{aligned}
& \mathrm{Si}_{1}-0_{3} 1.628 \AA \\
& 0_{5} 1.587 \\
& 071.645 \\
& 0_{9} 1.616 \\
& \mathrm{Ca}_{1}-\mathrm{O}_{1} 2.437 \mathrm{~A} \\
& 0_{2} 2.531 \\
& 0_{3} 2.298 \\
& 0_{5} 2.382 \\
& \text { Av. } 1.619 \\
& 0_{6} 2.302 \\
& 0_{8} 2.358 \\
& \mathrm{Si}_{2}-0_{4} 1.626 \\
& 0_{6} 1.585 \\
& 092.899 \\
& \text { Av.2.384 (excluding } 0_{9} \text {) } \\
& { }^{0} 81.647 \\
& 0_{9} 1.613 \\
& \text { Av. } 1.618 \\
& \begin{array}{r}
\mathrm{Mn}_{2}-2 \mathrm{O}_{1} 2.215 \\
2 \mathrm{O}_{3} \\
2.154 \\
20_{4}
\end{array} \\
& \mathrm{Si}_{3}-\mathrm{o}_{1} 1.600 \\
& 0_{2} 1.595 \\
& 071.660 \\
& 0_{8} 1.671 \\
& \text { Av. } 1.632 \\
& C a_{2}-20_{2} 2.344 \\
& 20_{3} 2.412 \\
& 2042.421 \\
& 20_{9} 2.891 \\
& \text { Av. } 2.392 \text { (excluding } 0_{9} \text {) }
\end{aligned}
$$

Table A4 (Conti.)

Interatomic distances in bustamite
$\mathrm{Mn}_{1}-\mathrm{O}_{1} \quad 2.499$
$\mathrm{O}_{2} 2.286$
$0_{4} 2.163$
$0_{5} \quad 2.144$
$0_{6} \quad 2.041$
$0_{7} \quad 2.335$
Av. 2.245

Acknowledgements

This work was supported by a grant from the National Science Foundation. Calculations were performed in part on the IBM 7090 computer at the M.I.T. Computation Center.

References

1
N. Sundius. On the triclinic manganiferous pyroxenes. Am. Mineral., 16(1931) 4.11-429, 488-518.

2
Waldemar T. Schaller. Johannsenite, a new manganese pyroxene. Am. Mineral. $23(1938)$ 575-582.

3
Waldemar T. Schaller. The pectolite-schizolite-serandite series. Am. Mineral., 40 (1955) 1022-1031.

4 H. Berman and F. A. Gonyer. The structural lattice and classification of bustamite. Am. Mineral., 22 (1937) 215-216.

5
M. J. Buerger. The arrangement of atoms in cryatals of the wollastonite group of metasilicates. Proc. Nat. Acad. Sci. 42 (1956) 113-116.

6
F. Liebau, M. Sprung and E. Thilo. Uber das system MaSiO $3^{-C a M n}\left(\mathrm{SiO}_{3}\right)_{2}$. Z.Anorg. Allg. Chem. 297 (1958) 213-225.

7
Charles W. Burnham. LCLSQ, crystallographic lattice constant least-squares refinement program. (unpublished)

8
Esper S. Larsen and Earl V. Shannon. Bustamite from Franklin Furnace, New Jersey. Am. Mineral., 7 (1922) 95-100.

9 c. T. Prewitt. The parameters Y and φ for equi-inclination, with application to the single-crystal counter diffractometer. Z. Krist., 114 (1961) 355-360.

10 C. W. Burnham. The structures and crystal chemistry of the aluminum-silicate minerals. Ph.D. Thesis, 1961, M.I.T.
M. J. Buerger and C. T. Prewitt. The erystal structures of wollastonite and pectolite. Proc. Nat. Acad. Sci., 47 (1961) 1884-1888.

12
C. T. Prewitt. SFLSQ2, an IBM 7090 program for leastsquares refinement. (unpublished)

13 E. W. Hughes. The crystal structure of melamine. J. Amer. Chem. Soc., 63 (1941) 1737-1752.

14
W. G. Sly, D. P. Shoemaker and J. H. Van der Hende. ERFR2, IBM 709/7090 Fourier program. (unpublished)

15 W. R. Busing and H. A. Levy. A crystallographtc function and error program for the IBM 704. Oak Ridge National Laboratory Report No. 59-12-3, 1959.
${ }^{16}$ D. R. Peacor. Comparison of the crystal structures of bustamite and wollastonite. (in press)

17 J. V. Smith and S. W. Bailey. Second review of A1-0 and Si-O tetrahedral distances. (in press)

18 C. T. Prewitt and M. J. Buerger. A coaparison of the crystal structures of wollastonite and pectolite. (in press)

19 Friedrich Liebau. Untersuchungen uber die Grosse des Si-O-Si Valenzwinkels. Acta Cryst., 14 (1961) 1103-1109.

Part I-B
 Comparison of the crystal structures of bustamite and wollastonite

Donald R. Peacor
Massachusetts Institute of Technology
Cambridge 39, Massachusetts, U.S.A.

Abstract

The structures of bustamite and wollastonite differ principally only in arrangement of the chains of tetrahedra. Chains in alternating sheets may be described by the sequence AAA.... in wollastonite and ABAB.... in bustamite. Both structures have pseudomonoclinic cell, this unit having space group $\mathrm{P}_{1} /$ m in wollastonite and A2/m in bustamite.

Introduction

On the basis of a comparison of optical properties, Sundius (1931) postulated that bustamite ($\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$) is Mn rich wollastonite $\left(\mathrm{CaSiO}_{3}\right)$. Schaller $(1938,1955)$ also concluded that bustamite had the wollastonite structure because of a close relationship between the optical properties of the two minerals. Berman and Gonyer (1937), using rotatingcrystal photographe, found that their unit cells were similar (Table 1B) and concluded that they were related only by solid solution. Buerger, however (1956) found that the unit cell of bustamite (Table 18) is closely related to, but different from the cell of wollastonite. He noted that there Is a sort of superstructure relation between the two minerals. Liebau at al. (1958) confirmed Buerger's unit cell and guessed that the difference in structures is based only on a different ordering of chains and cations.

The structure of bustamite has recentiy been dee termined and refined (D.R. Peacor and M.J. Buerger, 1962). The structure of wollastonite was determined by Mamedov and Belov (1956) and refined by Buerger and Prewitt (1961). These structures are different but bear a very close relation ship to one another.

Table 1B
Symmatry and unit-cell data for bustanite and wollastonite

	wollagtonite Ruerger	bustanice Berman and Gonye:	bustamete Buerger	$\begin{gathered} \beta^{-\mathrm{Ma}} 0.8^{\mathrm{Ca}} 0.2^{\mathrm{SiO}_{3}} \\ \text { Liebau et al. } \end{gathered}$	bustanite Peacor and Buerger	bustamite Peacor:
a	7.94 A	7.64 A	2×7.73 A	$2 \times 8.03{ }^{\circ}$	15.412 A	7.736 A
b	7.32	7.15	7.18	7.11	7.15	7.157
c	7.07	6.87	2 ± 6.92	2*6.34	13.824	23.824
α	$90^{\circ} 02^{*}$	$92^{\circ} 08^{\prime}$	$89^{\circ} 34^{\prime \prime}$	\cdots	$89^{\circ} 29^{\prime \prime}$	$90^{\circ} 31^{\prime}$
β	$95^{\circ} 22^{*}$	$94^{\circ} 54 \frac{1}{2}$	$94^{\circ} 53^{*}$	\cdots	$94^{\circ} 51{ }^{\circ}$	$94^{\circ} 35^{\prime}$
γ	$103^{\circ} 26^{\text {\% }}$	$101^{*} 35^{\prime}$	$102^{\circ} 47^{3}$	\cdots	$102^{\circ} 56^{\circ}$	$103^{\circ} 52^{\circ}$
	E1	P) or $\mathrm{p} \overline{1}$	n		F1	A \bar{L}

Description of structures

The faceocentered unit cell of bustamite may be transformed to Ancentered cell with the following transformation matrix:

$-\frac{1}{2}$	$-\frac{1}{2}$	0
0	1	0
0	0	-1

The A-centered cell bears a close relationship to the wollastonite cell, as does the facencentered cell (Table 1B). Since the relation between the structures of wollastonite and bustamite is clearer if bustamite is described in terms of the A-centered cell, all description of bustamite is re ferred to it in this paper.

Atomic coordinates for both bustamite and wollastonite are listed in Table 2B. The similarity shows that the ssymetric units of each structure are essentially the same. The structures are shown projected long bin Figs. IA and IB . Four wollastonite unit cells and two bustamite unit cells are shown. Ca or Mn atoms are shown as large open circles, inversion centers a t y $=\frac{1}{4}, \frac{3}{4}$ as small open circles, and inversion centers at $y=0, \frac{1}{2}$ as small solid circles. The structures are the same in projection except for minor coordinates shifts. The arrangement of the oxygen

Table 2B
Coordinates and isotropic temperature factors of atoms in wollastonite (upper values) and bustamite (lower values). For comparison sustamite coordinates are multiplied by 2. Coordinates of atoms in bustamite are given relative to the A-centered unit cell.

Atom	x	y	\%	B
Ca_{1}	. 1985	. 4228	. 7608	. 41
Mn_{1}	. 2018	. 4284	. 7466	. 56
Ca_{2}	. 2027	. 9293	. 7640	.45
Ca_{1}	. 1988	. 9411	.7570	.69
Ca_{3}	.4966	. 2495	.4720	.37
Mn_{2}	1/2	1/4	1/2	. 56
Ca_{3}	. 5034	.7505	. 5280	. 37
Ca_{2}	1/2	3/4	1/2	. 73
$\mathbf{s i} \mathbf{i}_{1}$.1852	.3870	. 2687	. 24
	.1768	.3881	. 2686	.34
$\mathbf{S I}_{2}$. 1849	. 9545	.2692	. 24
	.1775	. 9434	. 2650	.32
SL_{3}	.3970	. 7235	. 0560	. 22
	.3950	. 7171	. 0436	. 16
0_{1}	.4291	.2314	.8019	. 48
	.4316	. 2400	. 8054	.68

Atom	x	Y	\pm	B
0_{2}	. 4008	. 7259	. 8302	.37
	.4036	. 7178	. 8138	. 57
O_{3}	.3037	. 4635	. 4641	. 60
	.3126	. 4725	. 4586	. 48
0_{4}	. 3017	. 9374	. 4655	. 64
	. 3017	. 9302	.4630	. 50
0_{5}	. 0154	. 5254	.7343	.63
	. 0261	. 6167	.7098	. 64
0_{6}	. 0175	. 1319	. 7353	. 71
	. 0280	.1627	.7434	.66
07	. 2732	. 5118	. 0919	. 37
	. 2574	. 5047	. 0786	. 57
${ }^{0} 8$. 2723	. 8717	. 0940	. 51
	.2729	.8739	. 0822	.29
0_{9}	. 2188	. 1784	. 2228	. 63
	. 1851	. 1676	. 2294	1.34

Figure LA, Part IB

Projection along b of the tructure of wollastonite (space group Pi). Four unit cells are shown.

Figure 18, Part IB

Projection along b of the structure of bustamite (apace group Ai) Two unit cells are shown.

atoms of both structures approximates close packing in a crude way with an obvious layering parallel to (101). Layers consisting of Ca (wollastonite) or Ca and Mn (bustamite) atoms in octahedral coordination alternate with layers composed of SI atoms between the sheets of oxygen atous. The SiO 4 tetrahedra are arranged in chains whose repeat unit is three tetrahedra and which are oxiented paxallel to the b axis (Figs. 2 and 3).

Arrangement of SIO_{3} chaine

The primary difference in the structures of busta* mite and wollastomite lies in the arrangement of the SLO_{3} chains. Note fixst that the arxangement of Mn and Ca atoms is approximately the same in both structures over all space. This is most easily seen in Figs. $2 A$ and $2 B$. This relation also holds true for all oxygen atome which coordinate Ca or Mn atoms. (This relation will be discussed in more detail in the section on subetructure.) The difference in the structures then lies principally in the location of 0_{9} and the silicon atoms. In successive layers in wollastonite these atoms are related by the cranslation 001 , and in bustamite by the

Figure 2A, Part 1B

Projection along af the structuxe of wollastonite. Only Ca atoms and translationrelated chains are shown.

FLgure 2B, Rart 1B

Projection along of the structure of bustamite. Only Ca and Mo atoms and translationrelated chaine are show.

Figure 3n, Part IS

Projection along c of the gtructure of wollastonite. The primitive tricilnte cell is outIned with a light line. The peudomonoclinic cell (space group $\mathrm{P2}_{1} / \mathrm{m}$) is partially outlined with a dotted Line, and mirror planes are indicated with a heavy line.

Figure 38, gart IB

Projection along of the gtructure of bustamice. The A-centered triclinic cell is out* Lined with light line. The pseudomonoclinic cell (apace group $A 2 / \mathrm{m}$) is paxtialiy outilned with a dotted 1ine, and mirror planes are indicated with a beavy line.

translation $0 \frac{1}{2} \frac{2}{2}$. This merely meane that SiO_{3} chains in successive layers are shifted by $y / 2$ in bustamite but not in wollastonite. The arrangement is illuserated in Figs. 2 A and $2 B$, wher the related structures are shown projected along a. Only translation-related chains and Ca and Mn atoms are shown. The arrangement of the SiO_{3} chains may be represented by the notation AAA...., in wollastonite, and by ABAB.... in bustamite. Here A yabolizes a shift of 0 and B shift of $\frac{1}{2}$ in the b direction for SiO_{3} chains of successive layera.

It is interesting to compare this with the poly" morphism of MgSLO_{3} described by Brown et a1. (1961). Here the layers of Mg and Si atoms also alternate between layers of oxygen atons arranged approximately in close packing. SiO_{3} chains in successive layers may be displaced by c/2 (the axis c is parallel to the chafn of tetrahadra) giving rise to stacking relations analogous to those between bustamite and wollastonite. In the polymorphs of MgSiO_{3}, however, the relative positions of the Mg polyhedra may differ from level to level.

Substructura relations

Both bustamite and wollastonite ace characteximed by prominent substructure with period b/2 (Fig. B1). A11 atoms except SL_{3} and O_{9} are related to a second aton by a shift of about $b / 2$. Note, for axample, in Fig. B1A, that $C a_{1}$ and $C a_{2}$ fall alnost exactly over each othex, and differ in y by 0.51 . The relation is Luperfect in sone cases, as with O_{1} and O_{2} of wollastonite, where the shift ($\Delta x, \Delta y$, Δ is $0.03,-0.49,-0.03$. Nevertheless, it is approxi= mately true. The coordinates of the substructure atom are vexy similax in the two structures. Thus, with the exception of Si_{3} and O_{9}, the structures of wollastontic and bustanite are approximately the sams.

Cation ordering

Schaller (1938) states that minerals in this group hay been found with "Mno ranging from few per cant...to a maximu of 33 per cant." No Mn was reported in the wollas tonite refined by Buexger and Prewitt (1961). The bustamite (ideally CaNnsi ${ }_{2} O_{6}$) whose structure was refined by Peacor and Buerger contained a siight excess of Ca relativa to Mo.

In wollastonite the Ca atoms are discributed over three general positions. The Ca and Mn are ordered in bustamite, with one Ca and ona Mn inversiom centers and two Ca and two Ma in general positions. In addition, evidence strongly suggested that the "excess" Ca of bustanite replaces ik at the poaition Mn_{1} rather than the special position Mn_{2}. Although all Ca or Mn atoms of each structure bave approximately the same coordinates, there is not complete equivalence of positions. The Ca_{2} and Mn_{2} atoms of bustamite on inversion centers are equivalent to the Ca_{3} atom in a general position in wollastonite. The Mn_{1} and Ca_{1} atoms in genexal positions of bustamite, however, are not equivalent to Ca_{1} and Ca_{2} of wollastonite. Half of the Mn_{1} atons of bustarite occupy positions in the structure similar to those of Ca_{1} of wollastonite, and half occupy positions similar to Ca_{2}. The same is true of Ca_{1} of bustanite. This is reflected in the difference in distribution of inversion centers in (101) layers containing Ca and Mn atome, as can be saen in Figa. BlA and B1B. Compounds whose compositions are intermediate between bustamite and wollastonite at 111 must be investigated to determine the limits and mechanism of solld solution in each. It is possible, if not probably, that metastable intermediate compounds exist which have partial or complete
disorder both in Ca and M and in SiO_{3} chain distributions.

Interatomic distances

All average Ca-0 distances are remarkably similar $\left(2.388 \pm .004{ }^{\circ} \mathrm{A}\right)$ in both structures as shown in Table $3 \mathrm{~B}_{\text {, }}$ except for that of $C a_{1}$ of wollastonite. The comparison of Si-O distances is particularly interesting. The average of al1 Si-0 distances is 1.623 A in bustamite and 1.626 A in wollastonite, the difference being well within the standard deviation. A11 average SL-0 distances for SI_{1} and Si_{2} are almost exactly equal, and $\mathrm{Si}_{3}-0$ distances are uniformly larger than $S L_{1}-0$ and $\mathrm{Si}_{2}-0$ distances in both structures.

There is an excellent correlation of individual Si-0 distances with coordination of oxygen. For instance, all $\mathrm{Si}=\mathrm{O}_{7}$ and $\mathrm{Si}-\mathrm{O}_{8}$ distances are greatex than $1.64 \mathrm{~A}_{\mathrm{A}}, 1.673 \mathrm{~A}$ being the largest. Both O_{7} and O_{8} are coordinated to two S1. atoms, from which they receive total bond strength of 2, and to one Ca or Mn atom, from which they receive a bond strength of $\frac{1}{3}$, The excess of bond strength $\left(\frac{1}{3}\right)$ is thus come pensated by unusually large $\mathrm{Si}-0$ distances. All $\mathrm{Si}-\mathrm{O}_{5}$ and Si=0 ${ }_{6}$ distances are less than $1.59{ }^{\circ} \mathrm{A}_{3} 1.572{ }^{\circ}$ A being the

Table 38

Cation-oxygen interatomic distances

Bustamite		Wollastonite	
$M n_{1}-O_{1}$	2.499	$\mathrm{Ca} \mathrm{I}_{1}-\mathrm{O}_{1}$	$2.302{ }^{\circ}{ }^{\circ}$
O_{2}	2.286	O_{2}	2.272
0_{4}	2.163	O_{3}	2.324
O_{5}	2.144	0_{5}	2.302
0_{6}	2.041	0_{6}	2.272
0_{7}	2.335	07	2.412
Av.	2.245	$A v$.	2.314
$\mathrm{ca}_{1}-\mathrm{o}_{1}$	2.437	$C \mathrm{a}_{2}-\mathrm{o}_{1}$	2.316
O_{2}	2.531	O_{2}	2.369
O_{3}	2.298	O_{4}	2.421
0_{5}	2,382	0_{5}	2.501
06	2.302	${ }^{0} 6$	2.316
O_{8}	2.358	0_{8}	2.406
O_{9}	2.899	Av.	2.388
Av.	2.384 (ex		

Bustamite		Wollastonite	
$\mathrm{Mn}_{2}-2 \mathrm{O}_{1}$	2.215	$\mathrm{Ca}_{3}-\mathrm{O}_{1}$	2.439
20_{3}	2.154	0_{2}	2.349
20_{4}	2.241	O_{3}	2.429
Av.	2.203	$\mathrm{O}_{3}{ }^{\prime}$	2.335
		0_{4}	2.441
		$0_{4}{ }^{\circ}$	2.349
		0_{9}	2.642
		Av.	2.390(excluding O_{9})
$\mathrm{Ca}_{2}-2 \mathrm{O}_{2}$	2.344	$C a_{3}-O_{1}$	2.439
$2 \mathrm{O}_{3}$	2.412	O_{2}	2.349
20_{4}	2.421	0_{3}	2.429
20_{9}	2.891	$0_{3}{ }^{\prime}$	2.335
Av.	2.392 (excluding O_{9})	0	2.441
		$0_{4}{ }^{\text {B }}$	2.349
		O_{9}	2.642
		Av.	2.390
$s i_{1}-o_{3}$	1.628	$\mathrm{Si}_{1}-\mathrm{O}_{3}$	1.618
0_{5}	1.587	0_{5}	1.572
O_{7}	1.645	0_{7}	1.659
0_{9}	1.616	0_{9}	1.647
Av.	1.619	Av.	1.624

Bustamite		Wollastonite	
$\mathrm{Si}_{2}-\mathrm{O}_{4}$	1.626	$\mathrm{Si}_{2}-\mathrm{O}_{4}$	1.617
0_{6}	1.585	0_{6}	1.581
O_{2}	1.647	O_{8}	1.650
O_{9}	1.613	0_{9}	1.637
Av.	1.618	Av.	1.621
Si ${ }_{3}-\mathrm{O}_{1}$	1.600	$\mathrm{SI}_{3}-\mathrm{O}_{1}$	1.599
O_{2}	1.595	O_{2}	4.599
O_{7}	1.660	0_{7}	1.665
O_{3}	1.571	0_{8}	1.673
Av.	1.638	Av.	634

smallest. These oxygen atoms are coordinated to one Si atom from which they receive a bond of strength 1 and to two ea or Mn atoms from which they receive a bond of strength $\frac{2}{3}$, Thus there is a bond deficiency $\frac{1}{3}$, which results in unusually short Si-0 distances.

The only major differences in coordination between the two structures involve O_{9}. This is coordinated to Si_{1} and Si_{2} in both structures, but $\mathrm{Si}=0$ distances are larger in wollastonite. In addition, O_{9} is coordinated to both Ce atoms in bustamite, but with very large Ca-0 distances, and to only one Ca in wollastonite, at a shorter distance.

Pseudomonoclinic cells

Ito (1950) noted that the angle α of the wollastonite unit cell is very nearly 90° and that (140), which is normal to (100), approximates a nirror plane. From these data he suggested that the triclinic wollastonite cell is made up of "twinned or otherwise juxtaposed" monoclinic cells. Individual monocilinic units are related by the glide $\mathrm{b} / 4$ or $-\mathrm{b} / 4$. He nated that the monoclinic unit, which be called protowollastonite, must have either of the space groups $\mathrm{P} 2 / \mathrm{m}$ or $\mathrm{P}_{1} / \mathrm{m}$.

Figures 3A and 3B are projections along of the structures of wollastonite and bustamite respectively. prewitt and Buerger (in press) noted that wollastonite has a pseudo. monoclinic cell with space group P2 1 m. This cell is partially outlined on the right side of fig. B3A with a dotted line, while the mirror planes are indicated by doubly heavy lines. The triclinic cell is outlined on the left with a lighter line. Fig. B32 is an equivalent diagram of bustamite. The basic re* peat unit is the same in bugtamite as in wollastonite; i.e., two chains related by a 2_{1} axis. The bustamite pseudomonocinic cell is A-centered however, with space group A2/w. In wollasm conite 2_{1} axes are aligned along c. In bustamite there is a similar relation except that 2_{2} and 2 -fold axes alternate along c.

Acknowledgements

1 would like to express ay appreciacion to C. T. Prewitt for many halpful discussions and Eor kindly making available unpublished data on wollastonite, and to Professor M.J. Buerger for suggesting this problea. This work was aponsored by a
grant from the National Science Foundation. Computations were performed in part on the IBM 7090 computer at the M.I.T. Computation Center.

References

Berman, Harry and Forest A. Gonyer (1937), The structural lattice and classification of bustamite. An. Mineral., 22, 215-216.

Brown, W.L., N. Morimoto and J.V. Smith (1961), A structural explanation of the polymorphism and transitions of MgSiO_{3}. J. Geol., 69, 609-616.
Buerger, M.J. (1956), The arrangement of atoms in crystals of the wollastonite group of matasilicates. Proc. Nat. Acad. Sci., 42, 113-116.

Buerger, M.J. and C.T. Prewitt (1961), The crystal structures of wollastomite and pectolize. Proc. Nat. Acad. Sci., 4% 1884~1888.

Ito, x. (1950), x-zay studies on polymorphim. (Maruzen, Tokyo)

Lieban, F., M. Saximg and E. Thilo (1958), Uber das System $\mathrm{MnSiO}_{3}-\mathrm{CaMn}\left(\mathrm{SiO}_{3}\right)_{2}$. 2. Anorg. A11g. Chex. 297, 213-225.

Mamadov, Kh. S. and N.V. Belov (1956), Crystal structures of wollastonite. Doklady Akad. Nauk SSSR, 107, $463-466$.

Peacor, Donald R. and M.J. Buerger (1962), Determination and refinement of the crystal structure of bustamite, $\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$. Z. Krist.
prewitt, C.T. and M.J. Buarger (in press), A comparison of the crystal structures of wollastonite and pecto1ite. Am. Mineral.

Schaller, Waldemar T. (1938), Johemsenite, a new manganese pyroxene. Am. Mineral., 23, 575-582.

Schaller, Waldemex T. (1955), The pectolite-schisoliteserandite series. An, Mineral., 40, 1022-103i.

Sundius, N. (1931), On the triclinic manganiferous pyroxenes.
Am. Mineral. $16,411-429,488-518$.

Part II

Thesis content not specifically prepared for publication.

Chapter 1

Review of Literature on Phase Relations and Crystal Structures in the System $\mathrm{CaSiO}_{3}-\mathrm{MnSiO}_{3}$

Phase-relations. The following naturally occurring and gynthetic compounds have been described in that part of the system $\mathrm{CaSiO}_{3}-\mathrm{MnSiO}_{3}$ which may be considered to be binary: wollastonite $\left(\mathrm{CaSiO}_{3}\right)$, parawollastonite $\left(\mathrm{CaSiO}_{3}\right)$, pseudowollastonite $\left(\mathrm{CaSiO}_{3}\right)_{s}$ johannsenite (CaMnSi O_{6}), bustamite $\left(\mathrm{CaMnSi}_{2} \mathrm{O}_{6}\right)$, rhodonite $\left(\mathrm{MnSiO}_{3}\right), \quad \kappa-\mathrm{MnSiO}_{3}, \quad \beta-\mathrm{MnSiO}_{3}$. Solid solution limits are not given in the above formalas aince they are imperfectly known. These relations are discussed in detall in the following sections.

Wollastonite is the stable low temperature polymorph of CaSiO_{3} and is the form comonly found in contact metamorphosed, Ca-rich rocks. Wollastonite inverta at approximately $1125^{\circ} \mathrm{C}$. (Glasser and Glassex, 1960) to paeudowollastonite, which is the form usually found in slags, but rarely In nature. Parawollastonite is known only from natural occurrences. Its stabllity range, if any, relative to those of pseudowollastonite and wollastonite is unknown.

Bustamite is the high-temperature form of CaMnSL $2^{\circ} 6^{\circ}$ Johannsenite, the low-temperature form, inverts to bustamite
at approximately $830^{\circ} \mathrm{C}$. (Schallfer, 1938 and Schiavinato, 1953).

The relations between the polymorphs of MnSiO_{3} are less well known. Liebau et al. (1958), in an investigation of the syster $\mathrm{CalnSi}_{2} \mathrm{O}_{6} \mathrm{MnSiO}_{3}$, found three forms, which they named $k \cdots, \beta$ - and $\gamma-\mathrm{MnSiO}_{3} . \quad \gamma-\mathrm{MaSiO}_{3}$ is equivalent to rhodonite and is stable at low temperatures. It inverts at approximately $650^{\circ} \mathrm{C}$. to $\beta-\mathrm{MnSiO}_{3}$, which has the bustamite structure. The third form, $\alpha-\mathrm{MnSiO}_{3}$ us metastable at all temperatures and is produced only as an intermadiate form.

Phase relations in the subsolidus region of the system $\mathrm{CaSLO}_{3}-\mathrm{MnSiO}_{3}$ are poorly known. The most reliable information is derived in many cases from surveys of mineralogical compositions and relations. Sundius (1931) surveyed pyroxenoid analyses for those minerals in the ternary system $\mathrm{Fe}(\mathrm{Mg}) \mathrm{SiO}_{3}-\mathrm{CaSiO}_{3}-\mathrm{MnSiO}_{3} \cdot$ Wollastonite, bustamite and rhodonite were included in this survey. The compositions of the natural wollastonites are all very close to CaSiO_{3}, with no more than 8 mol. per cent ($\mathrm{Fe}, \mathrm{Mg}_{\mathrm{g}} \mathrm{SiO}_{3}$ and less than about 3 mol. per cent MaSiO_{3} in solid solution. Bustamite compositions range from 32 to 57 mol . per cent CaSiO_{3} and rhodonite compositions 0 to 22 mol. per cent
CaSiO_{3}. There is thas no mineral representative in the range 22-32 mol. per cent CaSiO_{3} between bugtamite and wollastonite. Thiz indicater that the formulas for these minersis should be written as follows:
wollatenite CaSIO_{3}

Thodonite $\quad \mathrm{Km}_{4+\mathrm{t}} \mathrm{Cs}_{1-x}\left(\mathrm{SiO}_{3}\right)_{5}, x=0.0$ to 1.0
One maple inveatigated by Sundus cataiaed coexisting bustanita with 33 nal. per cent CaSiO_{3} and rhodonite with 20 mol. per cent, trosghy supporting ocher evidence for an twaiscibitity gap between rhodonite and bustamite. Because of the similartty in the optics and physical properties of bustamite and rhodonite, Sundius concluded that there is a complete series of solld solutions betweea then at $2 \times \mathrm{m}$ temperatures, desplte the wide range in intermediate compositions not represented.

Schaller (1938) reportad that he had examined samples of bustavita or wollastonite "with percmeage of Mno ranging from finn per cent to it maximuin of 33 per cent MnO, or 61 pece cone of $\operatorname{MnO} \cdot \mathrm{SiO}_{2}{ }^{\text {n }}$. He concluded from this, and aivaluxity of optical properties of the two minerale, that they "nte bomogeneons achic nolution of $\mathrm{CaO} \mathrm{SiO}_{2}$ (wollastontta) with $\mathrm{MnO}^{\circ} \mathrm{SIO}_{2}$ ".

Voos (1935) investigated the system $\mathrm{CaSiO}_{3} \mathrm{-}_{\mathrm{MnSiO}}^{3}$ at temperatures above $1200^{\circ} \mathrm{C}$. He recognized only two phases, peudowollastonite and a material he called β-solid solution. The latter material ha the wollastonite structure and is represented by a complate series of solid solution between CaSiO_{3} and KnSiO_{3}. Paeudowollastonite was found to be stable oniy at vary high temperatures in the Ca-rich portion of the system. The results of Voos are aeemingly at variance with those of Sundius, but on closer examination they are seen to be compatible. Voos used the powder x-ray photographic technique to identify phases. Buerger (1956) has shown that the diffraction pattern of bustamite and wollastonite are vary similax, except in the case of weak super structure reflections. The powder technique would therefore not be adequate to show the minor differences in the diffraction patterns of these two minerals.

Liebau, Sprung and Thilo (1958) investigated phase relation in the system $\mathrm{CaMni} \mathrm{O}_{2} \mathrm{O}_{6}-\mathrm{MnSiO}_{3}$. As noted above they found, three MnSiO_{3} poiyworphs: $\gamma-\mathrm{MnSiO}_{3}$ (rhodonite), $\beta-\mathrm{MnSiO}_{3}$ (bustamite structure), $\alpha-\mathrm{MnSiO}_{3}$ (pseudowollastonite structare, metastable). They agreed with Sundius that: rhodonite may contain only up to 20 mol . per cent CaSiO_{3}. They found, further, that the temperature
of the rhodonite bustamite invarsion decreases with rising Ca content. The occurrence of the bustamite structure at high temperatures throughout this system confirms the work of Voos.

Glaser (1926) noted single transition in MnSiO_{3} and Jaeger and van Klooster (1916) noted two transitions at 1120° and $1208^{\circ} \mathrm{C}$. This confirms the work of Liebau with respect to the rhodonite $-\beta-\mathrm{MnSiO}_{3}$ transition. One of the three forms found by Jaeger and van Klooster may actually be the metastable $\alpha \mathrm{MnSiO}_{3}{ }^{\circ}$

Glassex and Glassex (1960) and Glasser (1958) con" cluded that rhodonite is the only stable form of MnSiO_{3} at all temperatures up to the melting point, in a study of synthetic phases in the system $\mathrm{MnO}-\mathrm{SiO}_{2}$. Glasser noted that MnSiO_{3} synthesised at high temperatures and quenched
 heated natural rhodonite. He suggested that there may be some diaorder at high temperatures and/or a rapid unquenchable inversion.

Fig. 11 is a disgrammatic representation of the probable subsolldus phase relations, taken in part from several of the above references. It is intended to show only relative featurea.

Figure 1.1

Phase relations in the subsolidus region of the system $\mathrm{CaSiO}_{3}-\mathrm{MnSiO}_{3}$ as a function of temperature and composition.

$\begin{array}{llc}\text { JSS }=\text { Johannsenite } & \text { solid } & \text { solution } \\ \text { BSS }=\text { Bustamite } & " & " \\ \text { WSS }=\text { Wollastonite } & " & " \\ \text { RSS }=\text { Rhodonite } & " & " \\ \text { PSS }=\text { Pseudowollastonite " } & "\end{array}$

X-ray cryatallography. Wollastonite is tricilnic, with space group PT, and unit cell parameters (Buerger, 1956) as listed in table 1.1. Paravollastonite is monoclinic, with anit cell (table 1.1) very closely related to that of wollastonite (Tolliday, 1958). Barnick (1935) proposed a structure for parawollastonite which contains three-membered rings of silica tetrahedra similar to those found in benitoite. Ito (1950) seeingly confixmed a similar structure for wollastonite. Buerger (1956) showed, however, that the structures of pectolite, bustamite and wollastonite are closely related, and that the tructure of pectolite is based on a chain of silica tetrahedra with a repeat unit of three tetrahedra. Mamedov and Belov (1956) solved the structure of wollastonite and confirmed that it contains a chain of tetrahedra similar to that found in pectolite, $\mathrm{Ca}_{2} \mathrm{NaH}\left(\mathrm{SiO}_{3}\right)_{3}$. Buerger and Prewitt (1961) subsequently refined the structure of wollastonite. Tolliday (1958) has shown that the structure of parawollastonite is based on a similar chain, and is closely related to the structure of wollastonite. A structure containing three-membered rings of silica tetrahedra has been proposed by Boll-Dornberger (1961) for pseudowollastonite. Lactice constants are shown

Table 1.1
Unit cells and space groups of Ca, Mn metasilicates

Mineral	Author	Space group	$(\underset{A}{\mathbf{A}})$	(A)	$(\underset{\text { A }}{\mathrm{E}})$	α	β	γ
Wollastonite	Buerger (1956)	P:T	7.94	7.32	7.07	$90^{\circ} 02^{\prime}$	$95^{\circ} 22^{\prime}$	$103^{\circ} 26^{\prime \prime}$
Parawollastonite	$\begin{aligned} & \text { Tolliday } \\ & (1958) \end{aligned}$	$\mathbf{P 2}_{1}$	15.42	7.32	7.07	-	$95^{\circ} 24^{\text {b }}$	-
Paeudowollastonite	Jeifney and Hellex (1953)	PI or PT	6.82	6.82	19.65	$90^{\circ} 24^{3}$	$90^{\circ} 24^{\prime \prime}$	$119^{\circ} 18^{8}$
Bustamite	Bergman and Gonyer (1937)	Pl or $\mathrm{P}^{\text {T }}$	7.64	7.16	6.87	$92^{\circ} 08^{\prime}$	$94.54{ }^{\circ}$	$101^{\circ} 35^{\prime}$
Bustamite	Buergex (1956)	F^{T}	15.46	7.18	13.84	$89^{\circ} 34^{\circ}$	$94^{\circ} 53^{\circ}$	$102^{\circ} 47^{\prime}$
$\beta^{-\mathrm{Mn}} 0.8 \mathrm{Ca}_{0.2} \mathrm{SI}_{2} \mathrm{O}_{6}$	$\begin{aligned} & \text { Liebau et al. } \\ & (1958) \end{aligned}$	FI ox FT	16.06	7.11	13.68	-	\cdots	-
Johanneenite	Schiavinato (1953)	C $\frac{2}{c}$	9.81	9.02	5.26	-	105*	-
Rhodonite	Hilmer et al. (1456)	PT	6.68	7.66	12.20	111.1°	86.0°	93.2*

in table 1.1. The relations between the structures of the polymorphs of CeSiO_{3} bave been discusged in detail by Prewitt (1962).

Berman and Gonyer (1937) investigated the unit cell of bustamite by means of rotating erystal photographs, and found it to be similar to that of wollantonite (table 1.1). Buerger (1956) found, however, that the and c axes of bustanite are doubled relative to those of wollastonite (table 1.1). The unit cell, in an orientation sinilax to that of wollastonite, is face-centered. Buerger suggested that "Bustamite evidently bears and of superstructure relation to wollastonite, and it may be regarded as double salt, CaSiO_{3} MnSio $_{3}{ }^{\prime \prime}$. Liebau et al. (1958) confirmed Buerger ${ }^{\text {b }}$ unit cell determination with synthetic material with the composition $\mathrm{Ca}_{0.2^{\mathrm{Mn}} 0.8^{\mathrm{Si}_{2} \mathrm{O}_{6}} \text { (table 1.1). Liebau }{ }^{\text {(ta }} \text {. }}$ et al. also concluded that the structuras of bustamite and wollastonitc are different, but closely related. They proposed that the difference is based on a mutual oxdering of chains and/or cations. Layarev and Tenisheva (1960), in a study of the infiared absorption spectra of the pyroxenoids, concluded that the tructure of bustamite is based on chains of silica tetrabedra with a repeat unit of three tetrabedra, as in wollastonite. They concluded, however, that there are
"oubstatial differences between the crystal structures of wellastenite and bustantes.

Schisvinate (1953) determined the unit cell and space group of johannsenite (table 1.1) and found that they tare equivaleat to thase of dioninis. CaMgSL ${ }^{\circ} 6^{\circ}$ He con* cluded that J ohamspente is leotyple with diopsida.

Two schools have proposed differeat, but very
 and Dormberger-Schiff (1956) and Theban. Hilanz and Lindemana (1958) proponed a etructure based on chains of eillea tetrahodxa with s repeat wait of fivesetrahedra. This etructure is very sinilax to those of other known pyroxenes and pyraxwnoide Orysean atoms are arranged approxinately in close packing, planes of cations in octabedral soardimaction altarnat wich plane of SI atoms in tetrabedral coordination. silhea tetrahedra 11 share two vertices with othex tetrahedrn to form infinite chaine. This atructure my be incorrect y y determined, or at: best acous cocrdinates arz only very approximacely known, as can be tean in the Eollowing: L. The. discrepancy factor. f, was reportax fox only one of the two projections, (h01), for which data was avaliable. Tha F -factor is extremely high, being 37 far the 58 strongest reflections, and 51% for all observed reflections. 2 . No y coordinatee are
reported for the axygen atoms. 3. The atructure wes molved only with two projections. The final Fourier projections show the undulating contour expected of data with a high R-factor. Some oxygen coordinates appear to have been completely guessed. 4. The ordering of the Ca relative to Mn wa guessed merely by anslogy with the structure of MaAsO 3^{*} Although the R-factor was higher with Ca in fte assigned poaition, this position was still accepted being corract.

Marnedov (1958) proposed second structure for rbodonite. It may be described in the same genersi terms as the "Liebau-type". Only two projections wera used for this structure alfo despite the fact that the structure solution is one of at least moderate difficulty. The following points show that this structure is also subject to question. 1. Coordinates of Mnistom ware determined fron two Patterson projections. Attempts to locate St and 0 atoms with Harker Xasper in equalities and Zachartarsen statistical methods failed. 2. All Si sud 0 coordinaten were guessed on the basis of the predetarmined Mn positions. 3. No refinement was attemped. 4. No. Ru-factor is given. Manedov merely states that there is "good" agreement betwam observed and calculated structure factors.

Chapter 2

The Determination and Refinement of the Crystal Structure of Rhodonite

Introduction. Preparations were made to solve the crystal otructure of rhodonite in the crystallographic laboratory several years ago. Specimens of rhodonite from Pajsberg, Sweden were kindly provided by Professor C. Frondel of Harvard University. Buerger determined that rhodonite is triclinic with the reduced unit cell whose dimensions axe 1isted in table 2.1. Intensities were measured by Dr. N. Niizeki using a cleavage fragment mounted on the gingle. crystal, Geiger-councer diffractometer. The diffractometer settings Υ and φ were graphically determined. Inten sities were obtained by integrating recorded peaks with : planimeter. All reflections were corrected for the Lorentz, and polaxisation factors. The corrected values of F^{2} wer* then used to compute the three-dimensional Patterson function, P (xyz), in sections norms to c, and the Patterson projection $P(x, y)$. These functions were couputed using the Whirlwind computer in intervals of $1 / 50$ along and b, and $1 / 20$ along c for the three-dimensional function.

All of the data described above, including all preliminary notes, were turned over to the author by M.J.Buerger.

Table 2.1
Latefer constants af sodonit

Author	Spectmert source	a (A)	\% (${ }^{\text {A }}$)	$c(\dot{A})$	α	β	γ
$\begin{gathered} \text { Mamedo } \\ (1958 \end{gathered}$	Swiczer land	7.17	12.20	6.70	$85^{\circ} 15^{\circ}$	$94^{6} 00^{3}$	$211^{\circ} 29^{\circ}$
$\begin{aligned} & \text { Hilmex st } 1 . \\ & (1956) \end{aligned}$	Fravklin, N.J.	6.68	7.6	12.20	111.1°	86.0	$93.2{ }^{\circ}$
This thesie "Buerger call"	Pajeberg, Sweden	7.682	11.818	6.70%	92.355	53.948°	305.665°
This thesis "Hilmer cel1"	iajsbers, Sweden	6.707	7.682	12.234	111.538 ${ }^{\circ}$	83.247°	93.948°
Buerger persomi 1 communication	Sajsberg, swecin	7. 38	16.6:	6.60	$92^{\circ} 25^{\prime}$	9.50	$\therefore .02^{\circ} 54^{\prime}$

Unit cell and space group. The unit cell obtained by Buerger (Table 2.1) was confirued with sexies of c-axis Weissenberg, photographs, except that minor changes were found in the mag nitudes of the translations. This unit cell is the reduced cell, but is different from the cell obtained by Hilmer et al. (1956) and Mamedov (1958) (Table 2.1). The cells differ only in the choice of axis of length $\sim 12 \AA$. Buerger chose this axis in ondar to obtain the raduced cell. The other axis was probably chosen because the two most prominent cleavages axe parallel to it. Since it had been proposed that rhodonite contains chains of silice tetrahedra, and since cleavages usually parallel the tetrahedral "unit", this was natural choice. The matrix of the transformation from the Hilmer cell to the Buerger cell itg

0	-1	0
0	1	1
-1	0	0

A specimen bounded by 100,010 , and 001 cleavages (relative to the Hilmer cell) was selected since it could be easily oriented with three principal axes as rotation axe with the optical goniometer. Back-reflection, o-level precision-Weissenberg photographs were obtained with each of the three principal axes as rotation axes. Data obtained
from these filmas was used in conjunction with the IBM 709/7090 program LCLSQ3 (Burnham, unpublished) to obtain refined lattice parameters (Table 2.1). An IBM 709/7090 program (described in Appendix 2) was then used to obtain lattice parameters corresponding to the Buerger cell (Table 2.1).

Five analyses of Pajsberg rhodonite are tabulated by Doelter (1897). An average of these five analyses follows.

SiO_{2}	46.34%
MnO	43.97
FeO	1.61
CaO	7.03
MgO	1.00
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.11
Total	100.06%

This data was used to compate the unit cell content: in the following way. Since a precise value of the specific gravity was not available, the cell contents ware normalized to $10.00 \mathrm{~S}_{\mathrm{i}}+\mathrm{Al}$ atoms per unit cell. From this a specific gravity of $3.84 \mathrm{~g} / \mathrm{cc}$ was calculated. This value was used to compute the unit cell formula, which follows.

In Chapes I it was noted that Sundius (1931) con* cluded that the formala of rhodonite should be written $\mathrm{Mn}_{4+\mathrm{x}} \mathrm{Ca}_{1-\mathrm{x}} \mathrm{Si}_{5} \mathrm{O}_{15} \mathrm{x}=0$. L . Liebau et al. (1958) came to a similax conclusion in another review of rhodonite analyses.

It is inceresting to compare the unit cell contents listed above with the result of Sundius and Liebau et al. Assuming that the space group is P1 (and not P1) and that all cations occupy general positions, there are five cation positions of rank 2. The analysis is \ln good agreement with this, indicating that 8.01 Mn atoms may occupy four positions, and that $\mathrm{Ca}+\mathrm{Mg}+\mathrm{Fe}$ (2.23 per cell) occupy one position. The departure of the total cation content (10.24) from 10.00 is due to errors in cheaical analyses or to an incorrect assumption in calculation of the specific gravity. This distribution assumes substitution of Mg and Fe for Ca. Since Mg and Fe iong are smaller than Mn lons, which axe in turn smaller than Ca ions, this conclusion is questionable. The only conclusion that can be reached is that Ca may occupy only one position of the five positions which the large cations may occupy. The distri. bution of $M g$ and Fe cannot be ascertalned.

Preliminary considerations. Liebas (1956) hae shown that the unit cells of those metasilicates having structures
shown or proposed to be based on chains of silica tetrahedra are related. The chaing have repeat units of two, three, five or seven tetrahedra (zwier"; drier-, funfer- and siebenketten). The translation parallel to the chains in pyroxenes (zwiyferketten) is about $5.2 \AA$ and in bustamite (drierketten) 7.16 A. Rhodonite has a translation of 12.23 A and pyroxmangite translation of 17.45 A (Liebau, 1957). Thus, fif period of approximately $5 \AA$ is assumed to be associated with two linked tetrahedra, as indicated by pyroxenes, rhodonlte and pyroxmagite may be assumed to have five and seven tetranedra respectively a repeat units. Structures supposedly confirming this have been proposed by Hilmer et al. (1956) and Liebau et a1. (1958). nad Mamedov (1958) for xhodonite and Liebau (1957, 1959) for pyroxmangite. There is further relation among the unit-cell parameters of the metasilicates, however. All pyrowenes and pyroxenoids have two perfect cleavages parallel to the chains, as noted above. If two axes are chosen similarly wiik respect to these cleavages (other than the axes parallel to them) a close correspondence in theix magnitudes is found. These relations are shown in Table 2.2, the two translations being chosen so that they are approximately nornal to the cieavages. In those minerals whose structures are well known the cause of

Table 2.2
Comparison of unit cells of some pyrosenea and pyroxenoids

the similarity is easily aen. Each structure contains sheets of approximately close-packed oxygen atoms with Si atoms and octahedrally coordinated cations alternating in planes between them. The two axes described above intersect the close-packed geets at anglew of about 45°.

Fron the above discussion it can be inferred that the structure of rhodonite mey be described as follows: 1. It contalne sheets of approximately closempacked oxygen atoms. 2. Silica tetrahedra are axranged in chain parallel to II10 . The chain has a repeat unit of five tetrahedra. 3. Ma atoms are arranged in sheets of edgesharing octahedra.

Further evidence pointing to the above conclusiong is found in comparison of optical properties of rhodonite and bustamite. At the time of thie investigation the structure of bustamite was not determined. As discussed in Chapter 1, Buerger (1956) and Liebau et al. (1958) had shown that it was closely related to that of wollastonite, and that it very probably wag based on drier ketten. Hey (1929) ghowed that the optical properties of rhodonite and bustamite are very similar. On the basis of optical properties of in termediate solid solution members, he incorrectly concluded that there is an isomorphous series between rhodonite and bustamite. This indicates that the structuras may be very closely related.

The structures proposed by Hilmer et al. (1956) and Liebau et al. (1958) and Mamedov (1958) are both consism tent with the above description. Since these are different, and both very poorly deterained. it must be concluded that 1ittle moxe is definitely known about the structure of rhodonite than can be tentatively inferred from an elementary consideration of physical properties and unit cell relations. Comparison of wolfiastonite and rhodonite. The discussion of the last section was based only on comparison of the unit cell and physical properties of rhodonite with those of other pyroxenes and pyroxenoids. The conclusions reached can therefore ba considered to be tentative at best. There are relations between the intensities of reflections of xhodonite and wollastonite which confirm these results, however.

Comprison of c-axis, onlevel Neissenbarg photom graphe of wollastonite and rhodonite shows that both have a substructure of approximately equal dimensions. This correspondence is of course also apparent in comparison of the Patterson projections, $\mathrm{P}(\mathrm{x}, \mathrm{y})$, of each. This sublattice, in projection at least, has the following translations relative to the rbodonite unit cell given above:

$$
\begin{aligned}
& A^{*}=\frac{1}{5} a+\frac{2}{5} b \\
& B^{*}=\frac{1}{5} a+\frac{3}{10} b
\end{aligned}
$$

There are many subscructure relations in wollas tonite. The most important involves paire of atoms relatad by the subperiod b/2. This is chiefly caused by chains of octahedra paxallel to b sharing edges, the subperiod $b / 2$ corresponding to an octahedron edge. The magnitude of $b / 2$ in wollastonite is approximately equal to the magnitude of ix rhodonice. Thue there may also be a chain of edgemaring octahedra in thodonite, orionter parallel to B. Interpretation of the Patterson function, $P(x y z)$. Fig. $2 . \%$ Ls a projection on (001) of some of the highest peak of $P(x y t)$. It is clear that thin resenbleg a diagram of a chain of octahedra in which each octahadion shares an edge with each of two adjacent octahedra. For simplicity, peaics corm responding to the upper and lowar vertices of each octahedra are not shown athough they are present. In each octahedron the relative peak helghta correspond to meighting expected fox an octahedron coxpoaed of oxygen atoms coordinating Mr: that is, the central peak is much higher than the four cocre dinating peaks. That these peaks correspond to chatia of Mn octahedre is further shown by distances between peaks. whech correspond closaly to valuss predicted from Mn and 0 sadil. When all wach peaks in the full cell are considered 1\% clear that the octahedra define plane parallel to (II1).

Figure 2.1

Selected peaks of $P(x y z)$ projected onto (001).
Each peak is labelled with its approximate height and the level, in 20ths, on which it appears.

This is further evidence for the conclusions reached in the two preceeding sections.

The structures of other pyroxenes and pyroxenoids have a similar "octahedral sheet": as discussed above. In each of these the sheets are parallel to planes of Inversion centers. The plane of central cations, in fact: coincides with the plane of inversion centers. If a brucite-like octahedral sheet is oriented similarly in rhodonite, such that chains of edge-sharing octahedra are oridinted as in $P(x y z)$, it is seen that the period between inversion centers is approximately the same as the period between centers in the "ideal" sheet. It was therefore absumed that such an arrangement exists in rhodonite.

Examination of a brucite-like sheet of edge-sharing octahedra shows that there are only two kinds of positions in the Mn plane where centers may be placed. These correspond to the center of a shared edge and to the center of an octahedron at a cation position. Examination of the structures proposed by Hilmer et al. and Liebau et al., and Manedov shows that these structures differ principally in having each of these two arrangements respectively.

The Mamedov structure was thought most likely to be incorrect, since this required two Mn atoms to be on inversion centers. The structure is based on a chain of nine
edge-sharing octahedra with the central Mn atom on an inversion center at 000. The remaining Mn atom is on the center at $00 \frac{1}{2}$. Peaks supposedly corresponding to $\mathrm{Mn}-\mathrm{Mn}$ inversion peaks were easily located in the Patterson function. Peaks corresponding to nine of the ten Mn atoms in the unit cell were found in each minimum function formed. A suitable peak was not found at $00 \frac{1}{2}$; or at any other center, which might correspond to the remaining Mn atom, however. This indicated that the structure was incorrect.

A second attempt was later made to verify this structure. Structure factors were calculated for all reflections, using only the Mn atoms in general positions and one Mn at 000 (after correcting two Mn coordinates for incorrectly published values) the R -factor was bigh (60\%) but there was fair agreement between F_{o} and F_{c} for substructure reflections. An electron density function $P(x y z)$ was then computed using only those reflections showing reasonable agreement between F_{Q} and F_{c} and having large valuea of F. (The LBM 709/7090 program ERFR2 (Sly, Shoemaker and Van der Hende, 1962) was used to compute all Fourier syntheses in this investigation). Although peaks apparentiy corresponding to Si and 0 atoms were present, there was no peak representing the remaining Mnstom at $00 \frac{1}{2}$, or on any other center. This was conclusive proof that the structure is incorrect.

The second possible arrangement of Mn octahedra was investigated in the following way. Inversion peaks corresponding to each of four Mn atom were located in the Patterson function, $P(x y z)$, and the minimu functions M_{2} (xyz) contoured. Two of these wera combined to form the function $M_{4}(x y z)$, the peaks of which are shown prow jected onto (001) in Fig. 2.2. Each peak is labelled with the level, in 20ths, on which it appeared, Fig. 2.3 is an interpretation of this figure, showing coordination poly hedra. The peak heights and positions of the remaining two mintwura functions closely resemble those shown in Fig. 2.2. Six peaks labelled as Mn atons axe ahow? in Eig. 2.2. This nomenclature is used merely bectuse six peaks appeared In the M chain, although there are only five Mn atons in the orructure, One of these is obviously a false peak, caused by superposition in $P(x y z)$ of substructurs vectors. Since the peak labelled Mn_{6} was the smallest of the in in all minimu functions, this was conaidered to be false peak.

From a consideration of interpeak distancea and peak beights, peaks of M_{4} (xyz) were correlated with all oxygen atoms with the exception of $0_{9}, 0_{13}, 0_{14} ; 0_{15}$. The resulting Mn coordination octahedra are shom in Fig. 2.3.

Figure 2.2

Peaks of $\mathrm{H}_{4}(\mathrm{xyz})$ projected onto (001). Each peak is labelled with the name of the atom which it represents and with the heights, in 20ths, on which it appears. Peaks conresponding to $0_{9}, O_{13}, 0_{14}$ and 0_{15} are not present.

Figure 2.3

Coordination polybedra (octabedra and tetrahedra) projected onto (001), obtained from an interpretation of Fig. 2.2. The positions of atoms $\mathrm{O}_{9}, \mathrm{O}_{13}, \mathrm{O}_{14}$ and O_{15} were predicted from an interpretation of the minimam function. They are labelled with the level, in 20ths, on which they occux.

Note that the coordination of Mn_{5} is not completely octahedral. Peaks corresponding to Si_{2-5} were easily identified. The location of Si_{1} was uncertain, however. Thare are two peaks, labelled Si_{1} and $S 1_{1^{1}}{ }^{1}$ one of which corresponde to Si_{1}. The positions of four oxygen atoms remained un* determined. Assuming that Si is cetrabedrally coordinated, and that these tetrahedra are linked in a chain, these positions (Fig. 2.3) were easily predicted. The validity of this proposed structure was checked by a considaration of Pauling bond strengths, all of which mere reasonable. Coordinates are tabulated in Table 2.3. The peak labeiled $\mathrm{Si}_{1}{ }^{1}$ wes initially assigned to Si_{1}.

Refinement. The intenaity data were first corrected for absorption in the following way. The crystal used in the measurement of intensities was triangular prism approximately 0.1 mm long with triangular face edges of lengths $0.12,0.13$ and 0.10 mm . The mass absorption coefficient, μ, is $489 \mathrm{~cm}^{-1}$ and the average value of μr 2.5. All reflections were corrected for absorption using an IBM 709/7090 program written by C.W. Burnham (1962).

Structure factors calculated for hko reflections were in reasonable agreement with observed atructure factors. Those reflections showing the best agreenent were used in

Table 2.3
Aton coordinates obtained from the minim function above, coordinates and isotropic temperature factors, and standard deviations after refinement below.

Table 2.3 coar.

$\mathrm{O}_{9}{ }^{*}$	$\begin{aligned} & .320 \\ & .2560 \end{aligned}$.0010	$\begin{aligned} & .980 \\ & .9962 \end{aligned}$. 0006	$\begin{aligned} & .500 \\ & .4439 \end{aligned}$.0013	.17	.17
0_{10}	$\begin{aligned} & .737 \\ & .7457 \end{aligned}$. 0012	$\begin{aligned} & .572 \\ & .5871 \end{aligned}$. 0008	$\begin{aligned} & .625 \\ & .5846 \end{aligned}$. 0016	1.16	.21
0_{11}	$\begin{aligned} & .820 \\ & .8430 \end{aligned}$.0011	$\begin{aligned} & .026 \\ & .0414 \end{aligned}$.0007	$\begin{aligned} & .930 \\ & .9433 \end{aligned}$.0015	. 55	. 27
0_{12}	$\begin{aligned} & .550 \\ & .4182 \end{aligned}$.0010	$\begin{aligned} & .185 \\ & .2210 \end{aligned}$.0006	$\begin{aligned} & .550 \\ & .4846 \end{aligned}$. 0014	.23	. 18
0_{13}^{*}	$\begin{aligned} & .320 \\ & .3191 \end{aligned}$. 0010	$\begin{aligned} & .600 \\ & .6142 \end{aligned}$. 0006	$\begin{aligned} & .650 \\ & .6500 \end{aligned}$. 0014	.37	.18
0_{14}^{*}	$\begin{aligned} & .020 \\ & .0546 \end{aligned}$. 0011	$\begin{aligned} & .380 \\ & .4360 \end{aligned}$.0007	$\begin{aligned} & .750 \\ & .7006 \end{aligned}$. 0014	. 45	. 13
0_{15}^{*}	$\begin{aligned} & .810 \\ & .8607 \end{aligned}$.0010	$\begin{aligned} & .190 \\ & .2225 \end{aligned}$.0007	$\begin{aligned} & .750 \\ & .7024 \end{aligned}$. 0014	.33	. 18
$\mathbf{S i}{ }_{1}$	$\begin{aligned} & .200 \\ & .2191 \end{aligned}$. 0004	$\begin{aligned} & .117 \\ & .1246 \end{aligned}$. 0003	$\begin{aligned} & .500 \\ & .4956 \end{aligned}$. 0006	. 24	. 07
Si,	$\begin{aligned} & .248 \\ & .2687 \end{aligned}$. 0004	$\begin{aligned} & .453 \\ & .4701 \end{aligned}$.0003	$\begin{aligned} & .625 \\ & .6575 \end{aligned}$. 0006	. 29	. 07

Table 2.3 cont.

Table 2.3 cont.
$M_{6} * * * .855$
.405 .600

Coordinates predicted from crystal chemical evidence following cyclo 4 .
** $z^{\text {se }}$ l-s where was obtained from the minimum function.
*
False ambiguous peaks in the minimum sunction.
the computation of the Fourier syntheses $\rho(x y)$ and $\Delta_{\rho}(x y)$. These indicated that the structure was essentially correct; i.e. that the five Min atoms had been correctly placed with respect to the six observed substructure peaks in the mini uam functions.

Two cycles of three-dimensiond refinement were therefore carried out. (The IBM 709/7090 program SFLSQ2 (Prewitt, 1962) was used for all structure factor calculations and least-bquares refinement in this investigation.) Form factors were wed assuming half-ionization of all atoms. Complete disorder of $\mathrm{Mn}, \mathrm{Ca}, \mathrm{Mg}$ and Fe was assumed and the average cation scattering function corrected for the average real component of snomions dispersion. All reflections having $\left(F_{0}{ }_{0} \mathrm{~F}_{\mathrm{c}}\right) / F_{0}>0.5$ were rejected in the refinement. A weighting scheme recommended by Hughes (1941) was used in a slightly revised version. This weighted reflections in the following way.

$$
\begin{gathered}
F_{0} \leq 4 F_{\min }, \quad \sigma=4 F_{\min } \\
F_{0}>4 F_{\min }, \quad \sigma=F_{\min } \\
F_{0}-0=0 \\
4 F_{\min }=15.0 \\
\omega=(1 / \sigma) \frac{1}{2}
\end{gathered}
$$

where

The scale factor was varied in cycla in and the scale factor and all coordinates in cycle 2. Table 2.4 is an oucline of the least-squares refinement procedure.

The value of the discrepancy factor, R, wss ax. cremely bigh (76\%). It was suapected that this was parthally caused by wrongly guessed coordinates for the oxygen atoms $0_{9}, O_{13}, 0_{14}$ and 0_{15}. Thereror two cycles (oycles in and 4) were executed with these acous owitted. The value of f decreased to only 69% nowever. It was then noted that. agreement between Y_{0} and F_{c} was good for hko reflections but bad for all ochers. Comparison was good batween F_{0} (hkl) and $\mathrm{F}_{\mathrm{c}}(\overline{\mathrm{k}} \overline{\mathrm{I})}$, however. This indicated that the axes and b , or c, had somenow become reversed in the calculation of $P(x y$) . Therafore reflnement wat corntinued with all * coordinates replaced by $1-\%$.

Structure factors were computed for all reflections with $\mathrm{F}_{0} \notin 0$, for which a was only 51%. Approximately 500 reflections having good agreement between F_{o} and F_{c} were used to compute the Fouriex synthesis ρ (xyz). The atoms $0_{9}, O_{13}, O_{14}$ and 0_{15} were not included in this computation. The electron density function indicated that moat atom positions wera correct although no peaks correaponding to the atoms O_{9}, O_{13}, O_{14} and O_{15}, could be identified. since

Table 2.4
Outline of least-squares refinement

Cycle number	Number: of reflections	8	$\begin{aligned} & \text { Para- } \\ & \text { meters } \\ & \text { varied } \\ & \hline \end{aligned}$	Weight- ing scheme	Rejection test	Comments
1	2016	77\%	Scale fac tor, K	Hughes	$\frac{\left(F_{o}{ }^{-F_{c}}\right)}{F_{0}}>\cdot 5$	Sign of all
2	"	76	$\begin{aligned} & \mathrm{K}, \text { all } \\ & \text { coord. } \end{aligned}$	8	"	indices in
3	17	73	"	"	\because	correct in
4	"	69	\because	\%	"	cycles 1-4
5	"	62	\%	\cdots	${ }^{\prime}$	
6	"	49	"	8	4	
7	920	55	Si and Mn coord.	"	"	K constant increased to. 67
8	"	59	17	"	"	"
						Mn_{6} replaced Mn_{5}

Table 2.4 cont.

9	920	54	Si and Mn coord.	Hughes	$\frac{\left(F_{0}-F_{c}\right)}{F_{0}}>\cdot 5$	ma_{5} replaced Mn_{6}
10	*	49	5 and 0 coord.	*	v	K decreased to .63
$1 i$;	44	All iso cropic	"	\%	
12	"	56	K and Si are Mn coord.	"	"	All coord. changed $\pm .02$
13	"	44	"	"	\%	Coord. returned to cycle 11 values
14	!	44	"	"	"	
15	1620	47	All coord. and K		$\left.\frac{\left\|F_{0}-F^{c}\right\|}{F_{0}}\right\rangle .6$	Rejection test corrected
16	"	46	" $\quad \sigma^{=}$	$=1.0$	none rejected	Change reject and weight
17	920	42	Si and Mn coord. and k .		"	

Table 2.4 cont.

Table 2.4 cont.

28	920	20.9	K and 0 Hughes coord.	$\frac{\left\|F_{0}-F_{d}\right\|}{F_{0}}>.6$	
29	8	18.8	K and Si and Mn coord.	"	
30	$;$	16.4	K_{3}, and 0 coord.	"	
31	\because	15.2	Fi and 81 and Mn conrd.	\%	
32	*	14,4	K and 0 coord.	"	
33	n	12.3	50 and $S 1$ 9 coord, and k	${ }^{\text {\% }}$	Cations ordexed
34	"	12.1	K_{3} and SI " and Min coord.	"	
35	\because	11.9	```K and 0```	"	
36	"	11.7	$\begin{aligned} & \text { Isotropic } \\ & \text { temp. factors. } \end{aligned}$	\%	
37	18	10.8	" ${ }^{\prime \prime}$	\because	

Table 2.4 coord.

38	1620	11.0	All coordin Hu ates and K	ghes	$\frac{\left\|F_{o} F_{e}\right\|}{F_{0}}>\cdot 6$	
39	\%	10.5	"	\because	"	Al1 coordinate variatimas $<.0006$
40	920	11.0	Isotropic texp. factor:	\cdots	"	

most of the reflections used in the calculation of $\rho(x y z)$ were substructure reflections, and since these oxygen atoms are in the complement structure, this was not unexpected. In addition, peaks of $\rho(x y z)$ indicated that si was located at the peak labelled S_{1} in Fig. 2.2, not at $S_{1}{ }^{1}$ as pre* viously concluded.

Cycles 5 and 6 were executed with coordinates derived from the minimam function. Coordinates of Si_{1} were substituted for those of Si_{1}^{1} and new coordinates for $0_{9}, O_{13}, 0_{14}$ and 0_{15} (Table 3.1) ware obtained from a rem interpretation of the minimum function. The value of R decreased only to 49\%. The scale factor, K, attained a value of .5. The value of x should adjust such that $\sum F_{0}=\sum F_{c}$. The magnitude of K calculated by equating these terms was 0.67 , which is considerably largex than the value obtained from least-squares refinement. The scale factor was therefore set at 0.67 and not varied in cycles 7-9.

The program SFLSQ2 required more than five minutes running time on the IBM 7090 computer at the M.I.T. Computa tion Center when all reflections were used and all coordinates varied. Such problems are assigned low priority and may require as much as one week for execution. Problems requiring
less than five minutes computation time are quickly expedited however. The number of reflections was therefore reduced to about 920 for some cycles, to reduce computation time to less than five minutes. Cycles in which the limited number of reflections were used are designated with subscript n. For these cycles only Mn and Si coordinates or all oxygen coordinates were varied in order to maintain an acceptable zatio of the number of reflections to the number of variables.

Cycle 7_{a} was executed varying only Si and Mn coordinates. The value of \mathbb{R} increased to 55% probably because of the increase in K noted above. Since the decrease in R predicted for this cycle was negligible, the Bunn synthesis $\Delta \rho$ ($x y z$) was computed using all reflections with $F_{0}=0$. This function showed considerable variation, but little significance could be attributed to it. A peak at the Mn substructure position labelled Na_{6} in Fig. 2.2 indicated that it may be occupied by Mn. Since peaks in the minimum functions corresponding to Mn_{5} were the smallest of the remaining five, it was assumed that this position was vacant. The value of R for cycle 8_{n} increased to 59\%, however, indicating that this Mn distribution was incorrect. Since no other reasonable distribution of Mn atoms could be formulated through interpretation of the Bunn arrox synthesis or the minimam functions, the original Mn distribution was assumed to be correct.

Only Si and Mn coordinates were varied in cycle 9_{n}, the scale factor being held constant at 0.67 . The values of $\sum^{\prime} F_{0}$ and $\sum F_{c}$ from this cycie indicated that R should be decreased to 0.63 . The least-squares value of X had formerly bean thought to be too low. There was then a possibility chat refinement had been hindered by using an incorrect value of K, and holding it constant. In cycle 10_{n} it was allowed to vary, as ware all oxygen coordinates. The discrepancy factor, R, decreased to 49%.

Refinement was not progressing satisfactorily. The following teats were therefore made of the validity of the structure. If an atow is in an incorrect position, the value of ita temperature factor may refine to an unusually large value. All isotropic temerature factors were therefore varied in cycle 11_{n}. Although temperature factors varied in an unpredictable way, some attaining negative values, none refined to exceptionally large values. Cycle $\mathrm{I}_{\mathbf{n}}$ was executed with all coordinatew aitered by $\pm .02$ from their refined values of cycle 10 . Onily Si and Mn coordinates were varied. If coordinatee were refining into substructure positions such ahifte might aiter thie trend. All coordinates shifted toward their originai vaiues, however, so the results were inconclusive.

ALL evidence indicated that che proposed structuxe was correct. Refinement was therefore continued. Cycles 13 (R-44\%) and 14 ($\mathrm{m}=44 \%$) were executed with only the scale factor, K_{F} and Si and Mn coordinates varying. Examination of chese results showed that che rejection scheme was not operating corzectly, Only those reflecthons with $\left(F_{o} F_{c}\right)$ ${ }_{0} \geq 0.5$ were being rejected while those with $1{ }_{0}{ }_{c}{ }_{c}^{1 / T} \geq 0.5$ should be mejected. The rejection test was there fore corw rected, and the critical rejection value changed to 0.6 so that more reflections might be included in the refinement. A11 coordinaces were vailed In cycle 15. The koEnctar ino creased ilghtly to 47\%. Refinement may not converge properly if inappropxiate weighting or rejection schemes mre used. Therefore, in subsequent cycles the weighting, ard the rejection rouchne changed so that all weflectione were included in the zefinement except those with $F_{0}=0$. (Only a very few of these reflections were being included as input to ach cycle in order to decrease computation time.) SI and Mn coordinates and the scale factor were varied in cycles 16_{n} and $17 n$ in which R decreased to 42\% In wo mox cycles in which all coordinates were varied was 44\% and 42\%. The slight increase in R from cycle 17 n co cycle 18 is caused by the frelusion of about 700 more reflections in cycle 18. Thetel were chlefly
reflections of high $\sin \theta$, for which discrepancies between F_{0} and F_{c} are usually greater than for reflections with low $\sin \theta$.

Since the refinement still was converging very slowly, an attexpt was made to ascertain if there was a basic arror in the structure. All evidence indicated that the atoms M_{1-4} ware correctly located. There was some evidence (see above) that Mn_{5} might be in an incorrect position. The relatively heavy Mn atoms control many phases. Structure factors were therefore computed using only Mrin4* Those atructure factors of medium or large magnitude baving good agreement between F_{0} and F_{c} werce used to compute the Fourler synthesis ρ (xyz). This contained the same ambiguities as the minimum function however. This was probably caused by the use only of reflections of at least moderate intensity. These are chiafly substructure intensities and reproduce only the substructure in $\rho(x y z)$. Reflections with small magnitudes very probably have incorrect signs, if R is large as in this case, and should not be used in Fourter calculations. This problem is, of course, inherent in substructure problems.

Examination of the aton coordinates showed that: 0_{11} was not correctly located. In cycle 20 , therefore, it
was shifted to a position consistent with the minimam function. In addition, the use of the Hughes weighting routine was reintroduced. This schame given a higher weight to small F^{\prime} and a lower weight to large $F^{\prime}{ }^{\prime}$. This is particularly valuable in a substructure problem since it may prevent refinement into substructure. Pollowing cycle 20 reexamination of the set of coordinates showed that 0_{12} bad refined into a position inconsistent with accepted values of interatome distancee and coordination. This was corrected in cycl. 21, in which all coordinates and the scale factor were varied.

Structure factors for all $\mathrm{F}_{\mathrm{hkl}}$ with $\mathrm{F}_{\mathrm{o}}=0$ were calculated using the refined coordinate of cycle 21 . These were used to compute the Bum error synthesis $\Delta \rho$ (xyz). This indicated that the z coordinates of Mn_{4} and Mn_{5} should be changed by .03 and -.07 respectively. This was confirmed with a difference Fourier synthesis, $\Delta \rho(x y z)$, calculatad using all reflections except those with $F_{0}=0$.

The discrepancy factor, R, decreased to 35% after cycles 22_{n} and 23_{n}, in which only K, and $S 1$ and Mn coordinates were varied. After cycle 24 , in which 11 coordinates vere varied, R was still 35%. This wat expected, however, since the number of reflections was much larger in cycle 24 (see above).

The refinement converged rapidly with further cycling, in which oxygen coordinates, and Si and Mn coordinates were varied in alternating cycles (see table 2.4 for details). Convergence was almost complete after cycle 32 , for whish R was 14.4%, so an attempt was made to determine the ordering, if any, present among the Ca , Mn, Fe and Mg atoms. Form factors computed assuming complete disorder of these atom had been used throughout the refinement. Structure factors were computed for 1620 reflections for which F_{0} was non-zero, and these were used in the computation of the difference Fourier synthesis, $\Delta \rho$ (xym). The only major features in this synthesis were peaks at the positions of $\mathrm{Mn}_{1}-\mathrm{Nn}_{5}$. The heights of these peaks are listed in table 2.5. The peak heights of $\mathrm{Mn}_{1}, \mathrm{Mn}_{2}$ and Mn_{3} are all positive and approximately equal. Since Mn ions have more electrons than the average atom used in the refinement, this suggests that only Mn , and not Mg, Fe or Ca , occupies these positions. The negative peaks at Mn_{4} and Mn_{5} suggest that M_{5} and Ca occupy these positions, since they contain fewer electrons than the average atom. It is also very likely that Fe occupies the same positions as Mg since their ionic radil are very similar, and smaller than either Ca or Mn , and they are known to substitute commonly for each other.

Table 2.5
Peak beights at cation positions of $\Delta \rho(x y z)$ and
$\mathrm{Mn}=0$ interatomic distances aftex cycle 32

Cation position	Average cation oxygen distance	Peak height in Δp (xyz)	Interpretation of ordering
1	2.27 A	175	Mn
2	2.18	145	Mn
3	2.24	193	Mn
4	2.32	-65	$\mathrm{Fe}+\mathrm{Mg}+\mathrm{Mn}$
5	2.43	0.418	$\mathrm{Ca}+\mathrm{Mn}$

Assuming that M cccuples the positione $\mathrm{Mn}_{1}, \mathrm{Mn}_{2}$ and Mn_{3}, s11 Mg and Fe the position Mr_{4}, all Ca the position $\mathrm{Mn}_{5}{ }^{3}$ and the remaining Mn the positions $\mathrm{Mn} / 4$ and Nn_{5}, peak heights for $\Delta_{\rho}(x y z)$ of -100 and -400 were predicted for Mn_{4} and Mn_{5} respectively. This is in good agrement with the peaks actually observed and thus indicates that this ordering schame is corract.

Interatonic distances were cheir calculated between Mr.-5 and oxygen atoms. The average for each polyhedron is shown in table 2.5. Average distances for Mn_{1}, Kn_{2} and Mn_{3} are between 2.18 and $2.27{ }^{\circ}$, in good agreement with known Mno distances. Average distances for Mn_{4} and Mn_{5} are greater than those for Mn_{1-3}, that of Mn_{5} baing the largest (2.43 A). Since Ca is the largest cation of Ca, Mrs and Mg, this indicates that wost, iff not all, of the Ca occuples the position Mn_{5}. The avercge distance for Mn_{4} is lavge only because one of the six distances for which the average was computed is very large. Two $\mathrm{Mn}_{4}{ }^{\circ} \mathrm{O}$ distances are awong the smallest of all Mroo distances. This Indicates that Fe and Mg oceapy this position. Thus the interatomis distances verify the conclusione on ordering reached on a basis of the paaks in $\Delta p(x y z)$. Mn occuples the positions $M_{1}, \operatorname{Mn}_{2}$ and Mn_{3}, Mg and Fe the position Mn_{4}, Ca the position Mn_{5}, with the remaining Mn at Mn_{4} and Mn_{5}.

Refinement was continued with form factors computed for Mn_{2-5} asbuming the ordering decermined above, and taking account of anomaious diaperaion ui bis, fo, and Ca. Oxygen, and 31 and Mr coordinates were varied Lia cycles $33_{\mathrm{n}}-3 \mathbf{n}_{\mathbf{n}}$. Since rafinoment of coordinates hai aimost completely con verged at this point, Lsotroplc cemperacure factors were refined in cyeles 36_{n} and 37_{n}. Refinewant wà completed with cyciat 38 and 39 , in which $a 11$ coordinates and the scale factor were varied, and cycle 40 , in which all isotropic cemperature lactors were varied; The ininal paraweter variations were all less than tas standard deviations. Final courdinates and temperature factors, and their standard deviations, are 11sted in table 2.3 fua \boldsymbol{C} warison with valuas obtained from the minimum function. Final coordinatec are also ligtad in table 2.6 where they are compared wth coordinatea obtained by wiebau ot al (1958). The valuas obcained by Liebau at al. are reasonably close to the values of this invastigation, axcept in the following inctances: $\mathrm{Mn}_{1}, \Delta x=.08 ; \mathrm{Mn}_{3}, \Delta x=.08 ; \mathrm{Mn}_{4}, \Delta z=.10 ;$ $0_{3}, \Delta z=.26 ; 0_{14}, \Delta y=.08 ; 0_{14}, \Delta z=.10 ; 0_{15}, \Delta z=.09$. The coordinates given by Liebau et al. have baen transformed, of course, co a unlt cellpf the Buarger type. In oxder to

Table 2.6
Comparison of atom coordinates of Liebau et al. (1959) (below) and this refinement (above). Liebau coordinates transformed to the Buerger cell and values of replaced by 1 -

Atom	\%	Y	z
Mn 1	. 8819	. 8517	.9697
Rat. 3	. 963	. 889	. 998
Mn 2	. 6827	. 5548	.8748
Kat. 1	. 710	. 567	. 875
Mn 3	. 4916	. 2700	.8109
Rat. 2	. 505	. 309	. 734
Mn 4	. 3018	.9767	.7967
Rat. 4	. 273	. 998	.700
Mn 5	. 0457	. 6938	.6389
Rat. 5	. 107	. 691	.615
S1 1	.2191	. 1246	.4956
Si 3	. 145	. 105	. 533
S1 2	. 2687	. 4702	. 6375
SL 1.	. 281	. 462	. 611
S1 3	. 4610	. 7393	.7092
Si 2	. 541	. 778	. 743
Si 4_{4}	.7446	. 0891	.7538
S14	. 728	. 059	. 794
Si 5	. 9263	.3466	.8450
Si.	.943	. 338	. 864
$\begin{array}{ll}01 \\ 0 & 15\end{array}$.9544	.6772 .643	$\begin{aligned} & .9628 \\ & .971 \end{aligned}$

Table 2.6 cont.

0	2	.6011	. 7312	. 895
0	7		. 734	.912
0	3	. 7485	.3895	. 8858
0	3		+398	.626
0	4	. 3981	. 4375	. 8074
0	1		. 453	. 802
0	5	.5485	. 0975	. 8053
0	12		. 129	.828
0	6	.1970	.1318	. 7374
0	8		. 141	. 766
0	7	. 3216	. 8149	. 7438
0	6		. 874	. 749
0	8	.9337	.8524	.6591
0	9		. 882	. 627
0	9	. 2560	.9962	. 4459
0	11		. 998	. 451
4	10	.7457	. 5871	.5846
0	2		.576	. 590
0	12	${ }_{.} 8430$	${ }^{\text {. } 0414}$.9433
0	10		.000	. 942
0	12	. 5819	. 7790	. 5154
0			. 739	. 530
0	13	. 3192	. 6142	. 6300
04			. 641	. 665
0	14	. 054%	. 4360	. 7006
0	14		. 364	. 599
0	1\%	. 860%	. 2222	. 7024
03			:209	. 790

obtain satisfactory comparison it was necessary to change all coordinates of Liebau et al. to 1 -z.

Liebau has noted that all z coordinates of Mn and Si atoms as published (Liebau et al. 1958) should be changed to l-w, and of oxygen atoms to $\frac{1}{2}-y_{6}$. This transo formation was accordingly applied before transforming coo ordinates to the Buerger cell. A satisfactory correlation of coordinates of Liebau et al. and this investigation could not be found, howaver. This indicates that the change recommanded by Liebas must also involve a change in the choice of unit cell axes, since a reasomable correlation of coordin ates was found, as noted above. Such a change in the unit cell would result in a change in the matrix of the transformation of coordinates.

The seleisfactory correlation of coordinates may be obtained if all x coordinates of liebau et al, are replaced by values of l-x, retaining the unit cell. The change recomended by Liebau is obviously incorrect, however, although the structure determined by him is basically correct.

Structure factors were calculated following cycle 40, for which the discrepancy factor, R, was 10.5% for all reflections with $F_{0} \neq 0$, and 15.4% for all reflections. Struce ture factors are listed in Appendix 4.

Description of the Rhodonite Structure

Peaks of $\rho(x y z)$, computed with structure factors from cycle 37, are hown in Fig. 2.4 projected along conto (001). Only those peaks from z $0-0.5$ axe shown. Wn atoms are represented by shaded rather than contoured peaks. Fig. 2.5 is an interpretation of the corresponding projection $\rho(x y)$, and Fig. 2.6 is an interpretation of the projection ρ (xz) (relative to the Hilmer unit cell). The unusual Latter projection has been chosen since it is parallel to the chains of silice tetrahedra.

The structure, at least in major features, is similar to the structure proposed by Hilmer et al. (1956) and Liebau et al. (1958), as can be seen from the comparison of coordinates in table 2.6. Planes of approximately closew packed oxygen atoms are arranged parallel to (1il). Planes of $\mathrm{Mn}_{\mathrm{y}} \mathrm{Ca}, \mathrm{Mg}$ and Fe ions in octahedral coordination alternate between planes of oxygen atoms with planes of SI ions in tetrahedral coordination. The silica tetrahedra each share two vertices with other tetrahedra to form a chain extending parallel to $[1017$. This chain has a repeat unit of five cetrahedra.

Figure 2.4

Peaks of $\rho(x y z)$, calculated after cycle 38 of refinement, projected onto (001). Only peaks of the asymmetric unit, froan $Z=0$ to $\frac{1}{2}$, are shown. Peaks are labelled with the level, in 100ths, on which they appear.

Figure 2.5

Projection on (001) of the structure of rhodonite. Mn and Ca atoms, and Si coordination tetrahedra are shown.

Figure 2.6

Projection along of the structure of rhodonite. Mn And Ca atoms, and 81 coordination tetrahedrs are shown.

Shaet of octahedrally coordinated cations. Fig. 3.3. Chapter 3, is projection of part of the structure of rhow donite onto the plane parallel to sheets of oxygen atoms described shove. One octahedral layer is shown below, with section of tho silica chains in the overlying sheet. The coordination polyhedra of $\mathrm{Mn}_{2 \times 5}$ approximate octahedra. These octabedra each share two edges with adjacent tetrae hedra to form chain ten octahedra long. The shared edge at the midpoint of this chain lies on an invergion center so that the two halves of the chain are centrosymmetrically rem lated. These chain are bonded to similar chains through further edge sharing in staggered manner to form a band of octahedr' extending parallel to 101 . One complete band is shown in Fig. 3.3 , with the outer edge of a transe lation related band m the left. Note that these bonds axe saparated by rift of unoccupied octahedrally coordinated sitea. These relations ar treated in more detail in Chapter 3.

Coordination polybedra and cation ordering. A11 silica tetram hedra are reguler, as can be seen from the $S i=0$ and $0-0$ distances of tables 2.7 and 2.9 respectively. The avarage oz all such 0 ow distances is 2.65 A. Individual distances vary fron this average by no more than 0.20 A. All $\mathrm{Si}-0$

Table 2.7
Cation-oxygen interatomic distances

$$
\begin{aligned}
& 2 n_{1} \omega_{1} 2.27_{6} \AA \\
& 0_{2} 2.24_{g} \\
& 0_{6} 2.11_{2} \\
& 0_{8} 2.14_{8} \\
& 0_{11} 2.35_{3} \\
& o_{11} 2.17_{5} \\
& \text { Ave. } 2.219
\end{aligned}
$$

Ave. 2.228

$$
\begin{aligned}
\mathrm{Mn}_{2}-\mathrm{O}_{1} & 2.21_{9} \AA \\
\mathrm{o}_{2} & 2.33_{5} \\
0_{3} & 2.14_{9} \\
0_{4} & 2.25_{3} \\
0_{4} & 2.26_{6} \\
0_{10} & 2.06_{5}
\end{aligned}
$$

Ave. 2.215

$$
\begin{array}{rr}
\mathrm{Mn}_{4}{ }^{-0_{5}} & 2.03_{7} \\
0_{6} & 2.23_{1} \\
0_{7} & 1.978 \\
0_{8} & 2.87_{8} \\
0_{9} & 2.38_{6} \\
0_{11} & 2.12_{0}
\end{array}
$$

$$
\text { Ave. } 2.272
$$

Table 2.7 cont.

$$
\begin{array}{rr}
\mathrm{Mn}_{5}-0_{1} & 2.32_{9} \\
0_{7} & 2.26_{0} \\
0_{8} & 2.26_{7} \\
0_{10} & 2.30_{4} \\
0_{13} & 2.52_{6} \\
0_{14} & 2.63_{5} \\
0_{15} & 2.60_{5} \\
\text { Ave. } 2.418 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
5 i_{2}-0_{4} \\
1.58_{9} \\
0_{10} \\
1.59_{3} \\
0_{13} \\
1.64_{6} \\
0_{14} \\
1.67_{3}
\end{array}
$$

Ave. 1.625

$$
\begin{array}{rr}
\mathrm{Si}_{4}-\mathrm{o}_{5} & 1.596 \\
\mathrm{o}_{9} & 1.64_{0} \\
\mathrm{o}_{11} & 1.63_{3} \\
\mathrm{o}_{15} & 1.64_{9}
\end{array}
$$

Ave. 1.630

Ave. excluding
O_{g}. 2.150

$$
\begin{aligned}
\mathrm{Si}_{1}-\mathrm{O}_{6} & 1.64_{4} \\
\mathrm{o}_{8} & 1.59_{9} \\
\mathrm{o}_{9} & 1.64_{1} \\
\mathrm{o}_{12} & 1.65_{0} \\
\text { Ave. } & 1.634
\end{aligned}
$$

$$
\begin{array}{rr}
\mathrm{Si}_{3}-\mathrm{O}_{2} & 1.61_{6} \\
\mathrm{o}_{7} & 1.59_{0} \\
0_{12} & 1.66_{0} \\
0_{13} & 1.62_{4} \\
\text { Ave. } & 1.62
\end{array}
$$

$$
\begin{array}{rr}
\mathrm{Si}_{5}-\mathrm{o}_{1} & 1.60_{8} \\
\mathrm{o}_{3} & 1.61_{6} \\
\mathrm{o}_{14} & 1.63_{8} \\
\mathrm{o}_{15} & 1.65_{6}
\end{array}
$$

$$
\text { Ave. } 1.628
$$

Table 2.8
Oxygen-cation interatomic distances

$$
\begin{aligned}
& 0_{2} \mathrm{Sa}_{5} \quad 1.60_{8} \\
& \mathrm{Mn}_{1} \quad 2.27_{6} \\
& \mathrm{Mn}_{2} \quad \mathbf{2 . 2 1}_{8} \\
& \mathrm{Mn}_{5} \quad 2.329 \\
& 0_{3}-S_{5} \quad 1.61_{4} \\
& \mathrm{Mn}_{2} \quad 2.149 \\
& \mathrm{Mn}_{3} \quad 2.107 \\
& 0_{5} \mathrm{~S}_{4} \quad 2.596 \\
& \mathrm{Mn}_{3} 2.199_{6} \\
& \mathrm{Mn}_{4} 2.03{ }_{7} \\
& 0_{7}-\mathrm{Si}_{3} \quad 1.590 \\
& \mathrm{Mn}_{4} \quad 1.97_{8} \\
& \mathrm{Mn}_{5} \quad 2.26_{0} \\
& 0_{8} \mathrm{SI}_{1} \quad 1.599 \\
& M_{1} 2.148 \\
& \mathrm{Mn}_{4} \quad 2.87_{8} \\
& \mathrm{Mn}_{5} \mathrm{Z}^{2.26_{7}}
\end{aligned}
$$

Table 2.8 cont.

$$
\begin{array}{rr}
\mathrm{O}_{9}-\mathrm{Si}_{1} & 1.64_{1} \\
\mathrm{Si}_{4} & 1.64_{0} \\
\mathrm{Mn}_{4} & 2.38_{6}
\end{array}
$$

$$
\begin{array}{r}
0_{11}-81_{4} \\
\mathrm{Mn}_{1} \\
\mathrm{Mn}_{1} \\
2.353 \\
2.175
\end{array}
$$

$$
\mathrm{Mn}_{4} 2.120
$$

$$
\begin{array}{r}
\mathrm{o}_{13}-\mathrm{Si}_{2} \mathrm{~L}^{1.64} 6 \\
\mathrm{Si}_{3} 1.62_{4} \\
\mathrm{Mn}_{5}{ }^{2.52_{6}}
\end{array}
$$

$$
\begin{array}{r}
0_{15}-81_{4} \\
\mathrm{Si}_{5} \\
\mathrm{Mn}_{5} \\
\\
\\
2.64_{5} \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\mathrm{O}_{10}-\mathrm{Si}_{2} \\
\mathrm{Mn}_{2} \mathrm{I}_{3} .59_{5} \\
\mathrm{Mn}_{5} \\
2.30_{4}
\end{array}
$$

$$
\begin{array}{r}
0_{12} \mathrm{SH}_{1} \\
\mathrm{Si}_{3} \\
\mathrm{Nn}_{3} \\
2.65_{0} \\
2.23
\end{array}
$$

$$
0_{14}-s 1_{i_{2}} 1.67_{3}
$$

$$
\mathrm{Si}_{5} 1.63_{8}
$$

$$
\mathrm{Mn}_{5} 2.63_{5}
$$

Table 2.9
Oxygen-axygen interatomic distencea of sillea tetrahedra (in Angstroms). Distances of shared edges are undere 1uned.

31		${ }_{8} 8$	09	0_{12}
	06	2.81	2.61	2.54
	${ }^{0} 8$		2.68	2.70
	0_{9}			8, 61
s_{2}		0_{10}	0_{13}	014
	0	2.75	2.64	2.68
	0_{10}		2.63	2.58
	0_{13}			2.59
Si_{3}		07	0_{12}	0_{13}
	o_{2}	2.75	2.64	2.72
	07		2.71	2.45
	O_{12}			2.59

Table 2.9 cont.

Si_{4}		0_{9}	0_{2}	0_{15}
	0_{5}	2.72	2.65	2.61
	0_{9}		2.65	2.62
	0_{11}			2.71
		0_{3}	0_{14}	0_{15}
	0_{1}	2.75	2.67	2.63
	0_{3}		2.67	2.65
	0_{14}			2.57

diatances are also very close to values found in other silicate structures. The average of all St-0 distances (1.628 i) is close to the valua predicted by Smith and Bailey (in press) for metasilicates (1.623 A) and to those in bustamite (1.623 A) and wollastonite (1.626 A. Prewtet; 1962).

The coordination polybedra about $\mathrm{Mn}_{3} \mathrm{Ca}, \mathrm{Mg}$ and Fe display some interesting features, however. First, note in table 2.7 that the Mn 0 O distances of $\mathrm{Mn}_{1}, \mathrm{Mn}_{2}$ and Mn_{3} (Mn occupiae these positions) are all close to the average values for these cations, with no large deviations. This is an indication that these polybedra are reasonably regulat octahedra.

Distances for Mn_{4} (Mg and Fe occupy this position with Mn) are irregaisw however. Three of the six distances are short ($\sim 2.13^{\circ} \mathrm{A}$), indicsting of course that Mg and Fe are distributed there. The $\mathrm{Mn}_{4} \mathrm{OO}_{8}$ distance (2.88 A) is exceptionally long though. This indicates that the coordinam tion of this cation actually approacher only five oxygen ions. The average $\mathrm{Ma}_{4}=0$ distancea for these five oxygen ions is only $2.150 \AA$, at least $0.07 \AA$ lees than that for any of the Mn ions $\left(\mathrm{Mran}_{1-3}\right)$.

The coordination polyhedron of Mn_{5} (Ca occuples this position with some Mn) lies at the ends of the chain of
ten adge-sharing octahedra. This coordination polynedron is irregular, aud consists of seven oxygen ions. The arrangemanc is unusual in that $0_{1}, 0_{7}, 0_{8}$ and 0_{10} (which are each coordinated to one Si lion and one or two other Mn ions) form four vertices approximating one sida of an octahedron. However, $O_{1.3} O_{14}$ and O_{15} (which are each also coordinated to two Si. ions) form the other, irregular, side of the polyhedron. In Fig. 3.3 it can be seen that this polybedron has vertices in two adjacent ciose-pacied planes, of oxygen atoms, with four vertices in one plane and three in the other.

Interatomic distances. As noted above, the cation-oxygen interatomic distances (table 2.7) of the full reinmentat substantiate the ordering assuned at an eariler stage. The average cation-oxygen distances of $\mathrm{Mn}_{1}, \mathrm{Mn}_{2}$ and Mn_{3} axe very similar, lying between 2.215 and 2.228 A . Since thase discances are almost equal, and since they agree well with other published average Mn-0 distances (a.g. 2.203 and $2.245^{\circ} \mathrm{A}$ in buctamite) it is very probable that Mn occupies these positions.

Although the average discance (2.27 A) for $\mathrm{Mn}_{4}-0$ is bigher than those of Mn_{1-3}, indicating that $\mathrm{Ca}(x=1.06 \AA$) rather than ig $\left(x=0.78 A^{\circ}\right)$ or $\mathrm{Fe}\left(x=0.78 \mathrm{~A}^{\circ}\right)$ is distributed there, one distance of the aix is extremely large. The average $\mathrm{Mn}_{4}-\mathrm{O}$
distance excluding this is $2.150{ }^{\circ}$, in good agreement with the assumption that Mg and Fe occupy this position.

The average distance for $\mathrm{Mn}_{5}-0(2.42 \mathrm{~A})$ is greater than for $\mathrm{Mn}_{1-4}{ }^{\circ}$, indicating that Ca is distributed there. Note that the three distances involving $0_{13}, 0_{14} ; 0_{15}$ (each coordinated to two Si ions) are all much larger than distances involving O_{1}, O_{7}, O_{8} and 0_{10} (each coordinated to only one $S I$ ion and one or twh other Mn ions). The long $\mathrm{Mn}_{5}-0$ bond lengths and the unusual coordination of this cation clearly shows why Ca occupies this position, and explains why rhodow nite may contain up to, but no more than 20 mol. per cent $\mathrm{CaSiO}_{3}{ }^{\circ}$

The analyses of Pajsberg rhodonite used in this investigation was actually an average of five analyses in which FeO , for instance, variad from 0.36 to 3.31\%. There is cherefore no guarantee that the specimen used actually contained cations in the ratios of the average analysis. Despite this, the conclusions on cation ordering are still valid and within the accuracy permitted by the data. Al. though this ordering is certainly not as complete or ideal as assumed from the peaks of the difference synthesis or interatomic distances, it is accurate in principle.

Conformity of rhodonite to Pauling's rules. Several of the Pauling's valency bonds show deviation from ideal values. A11 oxygenacation diatances are 1isted in table 2.8. The oxygen ions are of three types: A. Those coordinated by two Si ions and one "ndin ion. B. Those coordinated by one Sil ion and three "kn" ions. C. Those coordinated by one $\$$ ion and two "Mn" ions. If all Mn long are considered to be octabedrally coordinated each Mn-0 bond has strength $\frac{1}{3}$. while each Si.0 bond has strength 1 . Thus all type A oxygen atoms have an excess bond strength of $\frac{1}{3}$, those of type B are neutral. and those of type C have a deficiency of $\frac{1}{3}$. This ie compensated, in general, by a lengthening of cation oxygen bonds of type A and a contraction of bonds of type C. For instance, the average $52-0$ distances for bonds of typa A_{8} B and C respectively are $1.648 \mathrm{~A}_{\mathrm{A}}, 1.615 \mathrm{~A}$ and 1.599 A . A similar situation exists with $\mathrm{Mn}-0$ bond lengtbs, for which the averages are $2.477,2.280$ and 2.137 A raspectively.

A feature of structures of pyroxenes and pyroxem noids is edge sharing between tetrahedra and octahedra. (Chapter 3). Tn rhodonite there are five such edgee shared. In table 2.9 the distances along the tatrahedra adges are underlined. The cation polyhedra and the shared oxygen oxygen edges axe as follows:

$$
\begin{aligned}
& \mathrm{Si}_{2} \mathrm{Ma}_{4} ; \mathrm{O}_{6} \quad \mathrm{O}_{9} \\
& S_{1} \mathrm{Mn}_{3}: 0_{6} * 0_{12} \\
& \mathrm{si}_{2} \mathrm{Mn}_{5}: 0_{10} 0_{14} \\
& \mathrm{SI}_{3} \quad \mathrm{Mr}_{5} \quad i \quad \mathrm{O}_{7} \quad 0_{13} \\
& \mathrm{Si}_{5} \mathrm{Mn}_{5}: 0_{14} \cdot 0_{15}
\end{aligned}
$$

This dge sharing results in contraction of the length of the edge involved. The average lexgth of all tetrahedra
 $2.61{ }^{\circ}$.

Temperature factoxs. Th temperatux factors in general (table 2.3) have values wich axe consistent with those of other silicata structuref refined in the cryptallographic laboratory. That in, those of Si, art mallest (NO. 2): the average of 0 are intermediate (NO. 5) and those of the octahadrally coordinated cation largess (~ 0.7). Rellance canot be placs or the absolute valuas of tomperature face tors since they sow a wide variation in erructares refined in different Laborstories mith date gatbared in different manners: but the relativa vilueg of this rafinement seen to bave scmeaning. For instance the temparature festor of M_{5} (Ca) is 0.93 . This is the largent of the M terperature factors, as expected from the unusual coordination of this cation.

The tempersture factors of those four oxygen atoms with deficiency of bond strength $\left(O_{3}, O_{5}, O_{7}\right.$, and O_{8}; type C above) are the four largest oxygen temperature factors. Those for oxygen atonw with an excess of bond strength (O_{g}, $0_{12}, O_{13}, O_{14}$ and o_{15}, type above) are all smaller than the average, and lnclude the smallest oxygen temperature factors. As noted above, bond distances may also be correlated with valueg of Pauling's walency bonds. Thus there is goad correlation between deficiences in bond strength, suati bond leagthe and large tempexature factore on one hand, and an excess of boud strength, laxge bond lengths and small terqeratura factors ons the other.

Chapter 3

Crystal Chemical Ralations Among Some Pyroxenes and Pyroxenoids

Mineralogists have long recognized the close relationship of the minerals of the pyroxene and pyroxenoid groups. Structure determinations have shown that these minerals all contain chains of silica tetrahedra. Liebau has recently systematized these relations (see Chapter 2) and shown that all pyroxenes contain zwierketten, and pyroxenoids drierketten (e.g. wollastonite), funferketten (e.g. rhodonite) or siebenketten (pyroxmangite). Several of these structures have now been refined in detail and it is possible to find further relations among them.

It was noted in Chapter 2 that anit cell with two axes of related magnitudes, and a third of length prow portional to the tetrahedral chain, may be chosen for pyroxenes and pyroxenoids. This is an expression of the structural similarity of these minerals. All are based on an approximately close-packed array of oxygen atoms. Planes of octahedrally coordinated cations alternate with planes of tetrahedrally coordinated Si ions, between sheets of oxygen atoms. The tetrahedra each share two vertices to form a chain.

Figs. 3.1, 3.2, and 3.3 are interpretations of the structures of clinoenstatite (zwierketten) (Morimoto et al., 1960) wollastonite (drierketten) (Buerger and Prewitt, 1961) and xhodonite (funferketen) respectively. Each is a projection onto the planes of oxygen atoms. Oxygen atoms are represented by vertices of polyhedra, all of which occur In only three planes parallel to the plane of the diagram. Tetrahedra are drawn with heavy lines, and two chains in one sheet are show above the underlying sheet of octahedra. In each chain $n+1$ cetrahedra are ghow, where is is the number of tetrahedra in the repat unit. In addition, the chains are not shown in the upper halves of the diagrams, in order to show the nature of the underlying sheet of octahedra more clearly. The magnitudes and directions of the unit translations are shown in the lower left of each figure.

The structures obviously differ in the number of tetrahedra in the repeat unit of the chain. In addition, the arrangement of cations in the octahedral layer is different in each, although there are basic similarities. Each octahedral sheat is defined by two layers of close" packed oxygen atoms. The cation occupancy of the octahedral sites is different in each. In the clinoenstatite atructure,

Yagare 3.1

Yrojection along a of the structure of
clinoenstatite. Coordination polyhedra
are shown for one octahedral layer (below)
and for part of the tetrahedral layer (above, heavy lines). Unit translations are shown in the lower left corner of the diagram.

Figure 3.2

Projection along $/ \overline{\overline{1}} 0 \overline{1} /$ of the structure of wollastonite. Coordination polyhedra are shown for one octahedral layer (below) and for part of the tetrahedral layer (above, heavy lines). Unit translations are shown In the lower left corner of the diagram.

Figure 3.3

Projection along $\sqrt{10} \overline{\mathcal{L}}$ of the structure
of rhodonite. Coordinstion polyhedra
are shown for one octahedral layer (below)
and for part of the cetrahedral layer (above,
heavy lines). Unit translations are shom
in the lower left corner of the diagram.

$\frac{1}{3}$ of the octahedrally coordinated sitea are occupied, while in wollastonite and rbodonite, the fractions are $\frac{1}{4}$ and $\frac{2}{7}$ respectively. In clinoenstatite octahedra share edges to form a chain four octahedra long, Such chains are bound together through octahedral edge sharing in a staggered manner to form a band whose axis parallels the chain of tetrahedra. Similar bands of octahedra are found in wollastonite and rhodonite. In wollastonice they are formed of three infinitely long chains of edge sharing octahedra which are bound together through Eurther edge sharing. The chains of̃ octahedra in rbodonite are ten octahedra long and they are bound together in a staggered manner to form the band.

All three structures are sizilar, then, in having a band of edge-sharing octabedra arranged parallel to the chain of tetrahedra, and separated from other bands by a rift of unoccupied octahedrally coordinated sites. In each diagram a single band is shown separated on the left from a portion of another band by the rifit. These structures differ, bowever, in the arrangement of filled and vacant octahedrally coordinated sites.

Two chains are shown in each of Figs. 3.1, 3.2, and 3.3. In each, the chain on the right has vertices pointing
down, bonded to the octahedral sheet. The chain on the left has vertices pointing up, with the triangular bases of the tetrahedra in the upper plane of oxygen atoms coordinating the cations. This chain lies above the rift in the octabedral sheet. Tbere is, in fact, in all three structures, a second chain of tetrahedra arranged along the lowar side of the rift. Tetrahadral chains are thus arranged "back-to-back" in each, separated by a column of vacant octahedral sttes. The bands of octahedra are knit together by the chains of tetrahedra in this way.

As can be seen in the righthand chain of each figure, each chain fits over the octahedral sheet in a similar manner. That is, lower vertices of paired tetrahedra are bound to the octahedral sheet at either and of an octahedral edge. Thus, in each structure, the vertices of the tetrabedra follow, in zig-zag fasion, a continuous line of octahedral edges. Liebau (1956) proposed that the length of the repeat unit in the tetrahedral chain depends only on the size of the cations in the octahedral sheet. Thus clinoenstatite with a small cation ($\mathrm{r}_{\mathrm{Mg}}=.78 \mathrm{~A}$) contains zwierketten and wollastonice with a large cation ($x_{C a}=1.06 \AA$) contains drierketten. Rhodonite, with an average cation size leas than that of wollastonite, contains
funferketten and pyroxmangite with still smaller cations (but still larger than the average of pyroxenes) contains siebenketten. It therefore appears that clinoenstatite and wollastonite represent two wtreme cases. If the average cation size is intermediate, the chain tends to hove a longer length the sualler the cation. Belov's observations (1960) support this. He noted that in Mg metasilicates paired tetrahedra can "fit over" the smaller octahedron edges. (Pig. 3.1) In wollastontue three tetrahedra (Fig. 3.2) may correspond to a single edge. Rhodontte and pyroxmangite have chains which are combinatione of these cases.

The three structures pictured in Figs. $1-3$ have other features in common. None have Paulingis valency bonds exactly satisfied. This in cauzed principally by another unusual feature, the sharing of adges between octahedra and tecrahedra, shown in the lefthand chain of each figure. In clinoenstatite each tetxahedron shares one edge with an octahedron. In wollastonite, the tetrahedron projecting out from the chalin shares two edgec. Five edges are shared in rhodonitc. Note that the top tetrahedron of the chain on the left shares two edges with Mn octahedra. The three tetrahedra immediately be-
low each shar one edge with the polybedron at the and of the chain of octahedra. This coordination polyhedron is unusual, however, in being an irregular polyhedron of seven oxygen atoma.

In each example of edge-sbaring above, one of the two oxygen atome is coordinated to two Si atoms and one other cation. It thus receives bonds of total atrength two from the SL atoms, and $N \frac{1}{3}$ from the other cation. This results in an excess of $N \frac{1}{3}$ in each case. This is asually compensated by Si-0 interatomic diatances which are larger than average. Each structure alse contains other examples of deviations of bond strengthe from ideal values. These relations show that Pauling's rulas should never be applied too rigidly, for considerable deviation from ideal cases is to be expected.
other pyroxenes and pyroxenoids. The relations described above are generally applicable to $a 11$ minerals of these groups. Protoenstatite and enstatite-type structures merely represent different stacking of units approximately similar to that shown in Fig. 3.1 (Morinoto et al., 1960). The diopside structure is merely a discortion of the clinoenstatite structure (Morimoto et 1. 1960). The distortion causea coordinating of the cationa (Ca) on the edge of the band to change
from 6 to 8. The rift of vacant sites is much less well defined. This structure is unrefined, however, and detailed refinement may altex this interpretation.

Other pyroxenoids with drierketten include bustamite ($\mathrm{CaMnSi}_{2} \mathrm{O}_{6}$) and pectolite $\left(\mathrm{Ca}_{2} \mathrm{NaHSi}_{3} \mathrm{O}_{9}\right)$, schizolite $\left((\mathrm{Ca}, \mathrm{Mn})_{2} \mathrm{NaHSI}_{3} \mathrm{O}_{9}\right)$ and serandite $\left((\mathrm{Mm}, \mathrm{Ca})_{2} \mathrm{NaHSI}_{3} \mathrm{O}_{9}\right)$, the latter three forming an isomorphous series. Bustamite is very similar to wollastonite as pictured in Fig. 3.2. except that chaing of tetrahedra are displaced in alternating layers. Pectolite, etc., (Buerger and Prewitt, 1961) differ principally in the arrangement of cations in the octahedral layer.

Babingtonite ($\mathrm{Ca}_{2} \mathrm{Fe}^{\mathrm{Bl}} \mathrm{Fe}^{\mathrm{BH}} \mathrm{HSi}_{5} \mathrm{O}_{15}$) is probably the only other known pyroxenoid with funferketten. Richnond (1937) found that the unit cell of babingtonite is similar to that of rhodonite. Llebau (1956) proposed that babingtonite contains double-chains of terrahedra since it conm tains (OH), as opposed to the single chains in rhodonite. Weissenberg c-axis photographs of each show an identical arrangement of reflections and similarity in intensities. It is thus highly likely that babingtonite contains funferketten. The presence of hydrogen probably results in a different distribution of cations in the octahedral sheet
as is the case in the wollastonite pectolite relation. Classification of pyroxenes and pyroxenoids. It is obvious from the relations discussed above that the clasaification of these minerals into pyroxena and pyroxenoid groups is an artificial arrangement. ixebau has circuavented this Whth his elassification of structurea according to the repeat unit of the tacrahedral chain (zinezo, drier, funfer* and siebenketten). Such a classification is perfectiy natural, as opposed to the olu systen which divided the minerals inco groups with zwierketcen and those with cbains with a longer repent unit. The terms used by Ilebau have disadvantages, but are the best proposed until this time, and should be retalned.

Phase transformations. Glasser and Glasser (1961) postum lated atructural mechanism for the rhodonite-wollastonite transformation. They used crystals of Franklin, N. W. rhodonite, which upon heating transformed to "wollastonite". Using oscillating-crystal and optical gonioneter studies of cleavage fragmenta Eefore and aftex heating they noted that:

1. The external morpiology of the crygtals are preserved.
2. The two unit call axes approximately normal to the gillea chains (see Chapter 2) are retained. 3. There is about a 9 * difference in the orientation of the axis parallel to the
chains. They concluded that this proves that Si-0 bonds are broken and reformed while (Ca,Mn) oo bonds remain intact. They further show that the planes of octahedra In both wollastonite and rhodonite are very similax and that one transforms into the other through simple distortion,

Both structures involved in the transformation have now been well refined and it is possible to review these conclusions in detail. First, it is obvious from the literature on the system $\mathrm{CaSiO}_{3}-\mathrm{MnSlO}_{3}$ of Chapter 1 that rhodonite transforms to bustamite, noc wollastonite. Since b-axie photographs of both are very similar, and since the transformed crystals were imperfect, this error is easily explained. Since bustamite and wollastonite are very similar this should not alter their conclusions however. Glasser and Glasser postulate two possible mechanisms for the transformation: 1. Reorientation of silica chains and reconstruction of the (Mn,Ca) layers. 2. Reconstruction of the chains with simple distortion of the (Mn,Ca) layers. They conclude that the latter mechanism is correct. The silica chains almost certainly undergo reconstruction, based on the evidence presented. However, it was noted above that the arrangement of filled
and vacant octahedrally coordinated sites is entirely different in these structures. A simple distortion is far from sufficient as a transformation mechanisn. At least some of the $\left(\mathrm{Mn}_{8} \mathrm{Ca}\right)-0$ bonds must be broken and reformed, with migration of ($\mathrm{Mn}_{\mathrm{y}} \mathrm{Ca}$) ions. Glasser and Glasser present a detailed mechanism involving migration of only 7 of 15 Si Lons and 40 ions. It can only be concluded that although theix conclusion on the recons struction of the chains is probsbly correct that the mechaniam for the transformation is extremely complex and camot be deduced from aimple comparison of the structure involved.

A similax situation exists in the fohanngeniter bustamite tranformstion. Hexe, too, the axes approximately normal to the chains are probably retained while the chain erientation changes. The arrangement of cations in the octahedral sheet is also different in each, as noted mbove. This transformation, then, mat also involve reconstruction of both the sheets of octabedra and the gilica chaing.

Appendix I
DCELL: TBM 709/7090 program fox the transformation of unit cell parameters and coordinates

When direct and reciprocal cell parameters and atom coordinates are known for one unit cell setting but desired for another, hand calculation or graphical detexmination may be time consuming under the following conditions: 2. The unit ceil is triciinic. 2. Transformations of coordinates are requixed for maxy symuetry related atons. An IBM 709/7090 program bas therefore been written in FORTRAN to perform these caleulations.

Calculations are performed in the following way. Transformed unit cell vectors $a^{\prime \prime} b^{\prime} c^{\prime}$ are derived where

$$
\left(\begin{array}{l}
a^{3} \\
b^{2} \\
c^{7}
\end{array}\right)=(s)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

and a, b, c are unit vectors of the original cell and (S) is the tranaformation matrix. The magnitudes of $a^{\prime}, b^{\prime}, c^{\prime}$ are computed from ralations of the type

$$
a^{\prime}=\left(a^{\prime} \cdot a^{\prime}\right)^{\frac{1}{2}}
$$

and interaxial angles from relations of the type

$$
\alpha^{\prime}=\cos ^{-1} \frac{b^{\prime} \cdot c^{\prime}}{b \times c}
$$

Reciprocal tramsformed cell constante are then computed with relations of the type

$$
\begin{aligned}
& \left.\cos \alpha^{* 1}=(\cos \beta \cos \gamma-\cos) / \cos \beta \cos \gamma\right) \\
& a^{* 1}=\frac{1}{a \sin \beta^{*} \sin \gamma}
\end{aligned}
$$

The program then calls the subroutine SYMTRY which calculates the set of coordinates of all atons in the original cell symetry related to some atom I whose coordinates are aupplied to the program. Transformed coordinates for this set of atoms are obtained with the relation

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=s^{-1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

where $\tilde{\mathrm{S}}^{-1}$ is the reciprocal of the transform of the matrix (S). This calculation is repeated for each atom, I, supplied as input data.

Directions for operation of DCELL
The following data cards mast be supplied:

1. Title card. Format (12 A6) Cols. 1-72; Any 1dentification information may be included.
2. Cell card. Format (3(T7.4, 34), $3(77.3,3 x))$

cols.	parameter
$1-7$	a A
$11-17$	
$21-27$	α
$31-37$	β
$41-47$	γ

3. Transformation matrix card. Format (9(F7.4))
(S) is the matrix of the cell tiansformation
cols.
1-7
8-14
15-21
22-28 29-35

36-42
43-49
50-56
57-63
4. Coordinate cardis. Format (3 (F6.4, 4X), I1)

One card per aton

cols.	parameter
$1-6$	z
$21-16$	z

FORTRAN LISTING OF MAIN PROGRAM DCELL

COMMON K
DIMFNSION TITLE(12),DX(3),DY(3),DZ(3),AXNU(3),ZI(3,3),X(200),Y(200 1), Z(200)

READ InPUT TAPE 4,9,(TITLE(I), I=1,12)
FORMAT(12A6)
WRITE OUTPUT TAPE $2,9,(T I T L E(I), I=1,12)$
READ INPUT TAPE $4,10, A, B, C, A L P H A, B E T A, G A M M A$
FORMAT(3(F7.4,3X),3(F7.3,3X))
WRITE OUTPUT TAPE $2,10, A, B, C, A L P H A, B E T A, G A M M A$
READ INPUT TAPE $4,12, D X(1), D Y(1), D Z(1), D X(2), D Y(2), D Z(2), D \times(3), 0$
IY(3),DZ(3)
FORMAT(9(F7.4))
WRITE OUTPUT TAPE 2,121
121 FORMAT (24HOCOORDINATES OF NEW AXES)
WRITE OUTPUT TAPE 2,12,DX(1),DY(1),DZ(1),DX(2),DY(2),DZ(2),DX(3),D
IY(3),DZ(3)
WRITE OUTPUT TAPE 2,122
122 FORMAT (24HONEW CELL A B C AL BE GA)
$A S Q=A * * 2$
$B S Q=B * * 2$
$C S Q=C * * 2$
PI =.017453
ALPHA $=A L P H A * P I$
$B E T A=B E T A * P I$
GAMMA $=$ GAMMA*PI
$A B=A * B * \operatorname{COSF}(G A M M A)$
$A C=A * C * \cos F(B E T A)$
$B C=B * C \div \operatorname{COSF}(A L P H A)$
DO $14 \mathrm{~K}=1,3$
$\triangle X N \cup(K)=S Q R T F(D X(K) * * 2 * A S Q+D Y(K) * 2 * B S Q+D Z(K) * * 2 * C S Q+2.0 * D X(K) * D Y($
$1 K) * A B+2 \cdot 0 * D Z(K) * D X(K) * A C+2 \cdot 0 * D Y(K) * D Z(K) * B C)$
14 CONTINUE
DO $22 \mathrm{~K}=1,2$
DO $21 \mathrm{~J}=2,3$
IF(K-J)19,21,19
$19 Z I(K, J)=D X(K) * D X(J) * A S Q+D Y(K) * D Y(J) * B S Q+D Z(K) * D Z(J) * C S Q+(D X(K) * D Y($
' J) $+D Y(K) * D X(J)) * A B+(D Z(K) * D X(J)+D X(K) * D Z(J)) * A C+(D Y(K) * D Z(J)+D Z(K)$
$2 * D Y(J)) * B C$
$Z I(K, J)=\operatorname{ACOSF}(Z I(K, J) /(\operatorname{AXNU}(K) * \operatorname{AXNU}(J)))$
$Z I(K, J)=Z I(K, J) / P I$
21 CONTINUE
22 CONTINUE
WRITE OUTPUT TAPE 2,23, $\operatorname{AXNU}(1), \operatorname{AXNU}(2), \operatorname{AXNU}(3), 21(2,3), 21(1,3), Z I($
11,21
23 FORMAT(4X,6(F7.3,2X))
c ROUTINE TO TRANSFORM CELL AXES AND COORDINATES WRITE OUTPUT TAPE 2,25
25

```
    ZI(1,2)=2I(1,2)*PI
    ZI(1,3)=ZI(1,3)*PI
    ZI(2,3)=2I(2,3)*PI
    CoSA=\operatorname{COSF}(ZI(2,3))
    COSB=\operatorname{COSF}(ZI(1,3))
    COSC=COSF(ZI(1,2))
    SINA=SINF(ZI(2,3))
    SINB=SINF(ZI(1,3))
    SINC=SINF(ZI(1,2))
    ALS=ACOSF((COSB*COSC-COSA)/SINB*SINC)
    BES =ACOSF((COSA*COSC-COSB)/SINA*SINC)
    GAS=ACOSF((COSA*COSB-COSC)/SINA*SINB)
    AS=1.0/(AXNU(1)*SINF(BES)*SINC)
    BS=1.0/(AXNU(2)*SINF(ALS)*SINC)
    CS=1.0/(AXNU(3)*SINF(ALS)*SINB)
    ALS=ALS/PI
    BES=BES/PI
    GAS=GAS/PI
    WRITE OUTPUT TAPE 2,26,AS,BS,CS,ALS,BFS,GAS
    FORMAT(4X,3(F8.5,2X),3(F7.3,3X))
    T11=DY(2)*DZ(3)-DY(3)*DZ(2)
    T12=DX(2)*DZ(3)-DX(3)*DZ(2)
    T13=DX(2)*DY(3)-DX(3)*DY(2)
    T21=DY(1)*DZ(3)-DY(3)*DZ(1)
    T22=DX(1)*DZ(3)-DX(3)*DZ(1)
    T31=DY(1)*DZ(2)-DY(2)*DZ(1)
    T32=DX(1)*DZ(2)-DX(2)*DZ(1)
    T33=DX(1)*DY(2)-DX(2)*DY(1)
    DELTA=DX(1)*DY(2)*DZ(3)+DY(1)*DZ(2)*DX(3)+DZ(1)*DX(2)*DY(3)-DX(3)*
1DY(2)*DZ(1)-DY(3)*DZ(2)*DX(1)-DZ(3)*DX(2)*DY(I)
    WRITE OUTPUT TAPE 2,261
261 FORMAT(41HONEW COORDINATES FRACTIONAL AND ANGSTROMS)
27 READ INPUT TAPE 4,28,X(1),Y(1),Z(I),IEND
28 FORMAT(3(Fó.4,4X),I1)
    CALL SYMTRY(X,Y,Z)
    WRITE OUTPUT TAPE 2,28,X(1),Y(1),Z(1),IEND
    DO 31 I=1,K
    XX=T11*X(I)-T12*Y(I)+T13*Z(I)
    YY=-T21*X(I)+T22*Y(I)-T23*Z(I)
    ZZ=T31*X(I)-T32*Y(I)+T33*2(I)
    XX=XX/DELTA
    YY=YY/DELTA
    ZZ=ZZ/DELTA
    XXX=XX*AXNU(1)
    YYY=YY*AXNU(2)
    ZZZ=ZZ*AXNU(3)
    WRITE OUTPUT TAPE 2,30,XX,YY,ZZ,XXX,YYY,ZZZ
    FORMAT(5X,3(F8.4,2X),10X,3(F8.3,2X))
    CONTINUE
    IF(IEND)32,27,32
    CALL EXIT
    END
```

FORTRAN LISTING OF SUBROUTINE SYMTRY
THIS EXAMPLE IS FOR SPACE GROUP P IBAR

```
SUBROUTINE SYMTRY(X,Y,Z)
COMMON K
DIMFNSION X(200),Y(200),Z(200)
K=2
x(2)=1.0-x(1)
Y(Z)=1.0-Y(1)
Z(2)=1.0-Z(1)
RETURN
END
```


Appendix II

Comparison of observed and calcu.
lated structure faccors of bustamita.

H	K	L	FOBS	FCAL	$A O B S$	BOBS
0	0	4	76.18	77.46	-76.09	-3.76
0	0	6	40.49	37.30	40.24	4.48
0	0	8	122.99	137.03	122.54	10.48
0	0	10	42.47	38.78	42.26	4. 24
0	0	12	51.18	50.09	-51.06	-3.43
0	0	14	17.05	14.11	16.48	$4 \cdot 38$
0	0	16	38.05	37.12	36.68	10.12
2	0	2	28.56	31.41	26.44	10.81
2	0	-4	97.99	106.45	27.80	6.09
2	0	4	92.35	111.63	92.19	5.44
2	0	-6	115.40	120.83	114.87	11.05
2	0	6	16.09	-13.56	-15.58	-4.01
2	0	-8	37.13	35.21	-37.09	1.75
2	0	8	20.09	19.73	20.02	1.73
2	0	-10	14.10	14.47	13.76	-3.06
2	0	10	15.73	17.07	-12.09	10.06
2	0	-12	61.80	63.65	61.53	5.78
2	0	-12	61.80	63.65	61.53	5.78
2	0	12	33.88	32.68	33.33	6.10
2	0	-14	53.89	53.35	52.92	10.17
2	0	14	12.76	12.26	12.41	-2.98
2	0	-16	21.11	20.58	-21.06	1.52
2	0	16	7.58	7.23	-7.42	1.54
4	0	0	36.19	60.16	$-36 \cdot 16$	-1.42
4	0	2	30.78	32.17	30.78	-0.45
4	0	-2	33.16	33.24	31.97	8.80
4	0	-4	67.25	68.41	66.44	10.40
4	0	4	56.37	59.10	55.46	10.08
4	0	-6	48.19	46.17	48.19	-0.47
4	0	6	8.03	9.33	-3.23	7.35
4	0	-8	41.81	37.69	-41.74	-2.42
4	0	8	12.00	9.32	-11.65	-2.86
4	0	-10	36.28	33.79	35.21	8.76
4	0	10	26.75	24.80	-26.75	-0.42
4	0	-12	58.71	$58 \cdot 36$	57.93	9.55
4	0	12	75.96	74.61	75.35	9.61
4	0	-14	20.66	19.57	20.66	$=0.34$
4	0	14	12.19	10.57	8.69	$8 \cdot 55$

4	0	-16	6.05	7.37	-5.87	-1.46
4	0	16	20.28	18.52	-20.18	-1.97
6	0	0	74.60	78.07	73.93	10.00
6	0	2	38.33	35.42	28.32	-0.68
6	0	-2	16.77	15.73	13.86	9.44
6	0	-4	58.81	56.42	-58.77	-2.27
6	0	4	72.33	76.06	-72.30	-2.07
6	0	-6	6.61	1.26	6.33	-1.90
6	0	6	39.66	36.75	38.56	9.27
6	0	-8	66.29	63.27	65.46	10.43
6	0	8	86.81	85.52	86.23	10.00
6	0	-10	42.49	38.86	41.54	8.93
6	0	10	0.	0.92	0.	-0.
6	0	-12	39.04	39.62	-39.00	-1.86
6	0	12	12.66	11.24	-12.48	-2.13
6	0	-14	3.63	2.74	-3.59	-0.56
6	0	14	16.99	15.26	14.83	8.30
6	0	-16	40.79	39.96	39.87	8.62
8	0	0	49.41	45.10	48.88	7.22
8	0	2	55.84	52.03	54.50	12.17
8	0	-2	17.58	16.52	17.23	-3.50
8	0	-4	22.45	19.64	22.38	1.73
8	0	4	0.	1.94	-0.	0.
8	0	-6	32.10	27.36	29.35	13.01
8	0	6	27.46	26.31	27.26	-3.32
8	0	-8	12.01	12.33	-10.34	6.10
8	0	8	57.78	55.01	57.41	6.54
8	0	-10	25.89	26.42	25.73	-2.91
8	0	10	40.42	38.73	38.95	10.82
8	0	-12	6.93	5.88	6.73	1.67
8	0	12	9.23	7.75	-9.10	1.57
8	0	-14	23.64	20.64	20.87	11.10
8	0	14	14.63	12.93	14.31	-3.06
10	0	0	67.74	67.28	-67.64	-3.66
10	0	2	77.27	79.70	77.17	3.99
10	0	-2	11.84	12.41	11.28	3.60
10	0	-4	97.11	98.43	96.46	11.26
10	0	4	105.44	115.05	104.93	10.39
10	0	-6	76.84	75.24	76.73	4.12
10	0	6	5.43	3.81	1.76	5.14
10	0	-8	52.78	50.64	-52.66	-3.54
10	0	8	45.41	42.45	- 4.5 .26	-3.65
10	0	-10	7.04	5.53	5.42	4.50
10	0	10	39.41	37.17	39.21	4.01
10	0	-12	50.46	48.18	$49 \cdot 30$	10.75
10	0	-12	60.51	59.98	59.65	10.16
10	0	-14	24.26	23.92	23.99	3.64
12	0	\bigcirc	45.79	44.69	45.39	6.05
12	0	2	13.60	14.44	13.26	-3.04
12	0	-2	82.43	84.63	81.75	10.60
12	0	-4	19.95	20.84	-19.88	1.68
12	0	4	30.23	29.65	-30.18	1.77
12	0	-6	14.46	12.24	-13.99	-3.67
12	0	6	39.51	37.72	37.95	11.00
12	0	-8	64.44	63.68	64.19	5.72

12	0	8	41.30	40.16	40.91	5.68
12	0	-10	58.72	53.98	57.69	10.97
12	0	10	7.75	7.00	7.04	-3.25
12	0	-12	0.	3.24		0.
14	0	0	26.97	24.85	24.88	10.40
14	\bigcirc	2	22.80	21.05	21.25	8. 26
14	0	-2	17.06	18.18	17.06	-0.26
14	0	-4	4.36	5.16	3.97	-1.81
14	0	4	25.06	24.75	-24.96	-2.20
14	0	-6	5.63	7.64	-1.06	5.53
14	0	6	20.97	21.88	20.97	-0.26
14	0	-8	54.34	53.84	53.55	9.23
14	0	8	19.14	17.99	16.58	9.57
14	0	-10	1.28	0.89	1.25	-0.27
14	0	10	20.53	19.22	19.14	7.42
14	0	-12	13.39	15.73	13.30	-1.58
16	0	0	30.14	27.59	-30.07	-1.98
16	0	2	22.79	21.56	21.27	8.17
16	0	-2	23.05	25.44	-23.04	-0.60
16	0	-4	65.94	66.36	65.35	8.78
16	0	4	54.27	53.80	53.55	8.81
16	0	-6	16.13	14.66	13.79	8.36
16	0	6	4.10	1.15	-3.32	-2.40
16	0	-8	13.06	12.73	-12.95	-1.71
18	0	0	34.79	34.33	34.77	1.11
18	0	2	0.	8.69	-0.	-0.
18	0	-2	15.83	13.36	11.15	11.24
18	0	-4	6.63	6.93	3.85	5.40
1	1	-3	28.55	25.70	28.42	-2.70
1	1	3	30.75	32.10	-30.58	-3.24
-1	1	-5	18.07	16.09	-17.99	-1.67
1	1	-5	56.44	55.55	-56.30	-4.01
-1	1	5	43.91	43.09	-43.90	0.83
1	1	5	4.35	3.12	0.13	-4.35
-1	1	-7	12.76	10.00	11.65	-5.21
1	1	-7	14.43	11.60	14.40	-0.01
-1	1	7	25.32	22.91	25.32	-0.05
$\stackrel{1}{-1}$	1	7 -9	25.64 32.66	24.65 30.84	25.64 -32.61	0.26 -1.77
${ }_{-1}$	1	-9	3.48	4.68	6.19	1.90
-1	1	9	13.98	14.62	-13.60	-3.23
1	1		27.06	24.52	-27.05	0.71
-1	1	-11	20.74	20.36	20.69	1.44
1	1	-11	12.12	11.25	12.05	-1.82
-1	1	11	9.40	8.48	8.78	-3.36
1	1	11	9.75	7.30	9.07	-3.57
-1	1	-13	5.03	3.89	-4.95	-0.88
1	1	-13	27.32	27.08	-26.99	-4.21
-1	1	13	20.22	20.25	-20.21	0.49
-1	1	13	15.20	15.97	-14.82	-3.37
-1	1	-15	5.33	4.63	2.64	-4.63
1	1	-15	3.07	2.05	-2.50	-1.78
-1	1	15	9.32	4.95	9.23	1.27
1	1	15	18.06	18.80	18.06	-0.21
3	1	1	21.69	19.88	21.69	0.25

3	1	-1	54.30	53.59	-54.20	-3.24
-3	1	-3	25.59	25.70	-25.52	-1.84
3	1	-3	27.27	21.87	26.93	-4.30
-3	1	3	52.10	48.32	52.09	1.15
3	1	3	5.54	2.53	-5.38	1.34
-3	1	-5	26.51	23.82	26.48	1.25
3	1	-5	8.01	4.27	8.01	0.23
-3	1	5	17.68	15.39	-17.65	-1.05
3	1	5	17.66	15.74	17.41	-2.97
-3	1	-7	11.76	10.40	11.75	-0.59
3	1	-7	0.	1.08	-0.	0.
-3	1	7	15.70	14.29	-15.13	-4.19
3	1	7	29.73	29.79	-29.51	-3.61
-3	1	-9	21.17	19.75	-20.76	-4.13
3	1	-9	20.32	19.87	-20.14	-2.70
-3	1	9	24.41	24.79	-24.31	-2.24
3	1	9	0.	2.02	-0.	-0.
-3	1	-11	2.61	3.00	-1.36	-2.23
3	1	-11	7.51	4.00	1.02	-7.44
-3	1	11	11.57	12.11	11.53	0.94
3	1	11	20.37	20.57	20.34	1.04
-3	1	-13	9.65	8.92	-9.57	1.21
3	1	-13	5.86	1.95	5.80	-0.81
-3	1	13	2.54	1.40	2.54	-0.10
3	1	13	8.00	7.98	-7.80	-1.80
-3	1	-15	20.46	19.88	20.46	0.24
3	1	-15	4.69	4.07	4.36	1.74
-3	1	15	7.99	8.01	-7.20	-3.47
3	1	15	5.25	3.77	-0.87	-5.18
-5	1	1	35.73	33.25	-35.71	1.06
5	1	1	22.61	19.95	22.22	-4.18
-5	1	-1	36.95	36.14	36.95	-0.54
5	1	-1	20.92	19.67	-20.73	-2.85
-5	1	-3	4.73	4.09	-2.05	-4.26
5	1	-3	11.91	10.23	-11.88	0.88
-5	1	3	9.24	7.49	8.95	-2.28
5	1	3	15.16	13.17	-15.15	-0.67
-5	1	-5	3.95	2.80	-1.00	-3.82
5	1	-5	5.34	0.67	-4.79	2.36
-5	1	5	6.71	4.80	-3.94	-5.43
5	1	5	10.72	9.00	10.66	1.17
-5	1	-7	29.61	26.43	- 29.60	0.85
5	1	-7	6.85	7.42	6.09	-3.14
-5	1	7	1.12	1.89	-0.76	-0.82
5	1	7	21.45	19.81	-21.37	-1.89
-5	1	-2	18.97	18.54	18.97	0.34
5	1	-9	8.06	9.29	-7.50	-2.95
-5	1	9	2.83	3.92	-2.70	0.86
5	1	9	14.30	13.83	13.76	-3.90
-5	1	-11	0.	5.86	0.	-0.
5	1	-11	8.79	5.68	-8.75	0.84
-5	1	11	5.24	3.52	5.05	-1.41
5	1	11	14.20	14.17	-14.14	-1.35
-5	1	-13	13.38	13.02	-12.96	-3.34
5	1	-13	2.22	1.64	1.75	1.37

-5	1	13	6.25	6.94	-5.20	-3.46
5	1	13	2.88	2.50	2.56	1.32
-5	1	-15	4.59	0.55	0.53	4.56
5	1	-15	7.64	3.56	-4.21	-6.38
-5	1	15	9.77	10.44	-9.60	-1.84
5	1	15	3.93	4.84	3.86	-0.72
-7	1	1	0.	2.80	0.	-0.
7	1	1	14.19	12.90	-14.06	-1.93
-7	1	-1	18.87	16.39	18.86	0.67
7	1	-1	7.33	8.01	7.26	0.99
-7	1	-3	23.70	22.22	-23.70	0.30
7	1	-3	21.28	20.63	21.27	-0.60
-7	1	3	5.92	4.03	-2.62	-5.31
7	1	3	24.75	24.25	-24.44	-3.91
-7	1	-5	7.60	6.64	6.72	-3.55
7	1	-5	24.33	22.92	-23.98	-4.10
-7	1	5	14.18	14.26	-14.17	-0.48
7	1	5	7.96	8.54	7.84	-1.36
-7	1	-7	16.81	13.48	-16.28	-4.19
7	1	-7	17.62	17.41	-17.43	-2.61
-7	1	7	14.07	13.08	14.02	1.13
7	1	7	6.62	1.61	-5.11	4.21
-7	1	-9	16.73	15.34	16.73	0.13
7	1	-9	11.82	7.85	11.70	1.68
-7	1	9	15.60	15.63	15.49	-1.88
7	1	9	12.79	12.28	12.76	-0.86
-7	1	-11	15.51	15.53	-15.48	0.95
7	1	-11	7.02	2.28	6.98	0.73
-7	1	11	18.01	16.48	-17.50	-4.25
7	1	11	23.57	22.81	-23.28	-3.69
-7	1	-13	0 .	2.49	0 .	-0.
7	1	-13	1.58	3.82	0.43	-1.52
-7	1	13	6.74	6.76	-6.65	-1.09
7	1	13	5.48	2.85	3.66	-4.08
-7	1	-15	6.36	4.69	-3.98	-4.96
7	1	-15	16.29	17.55	-16.04	-2.82
-7	1	15	7.36	4.34	6.98	2.34
-9	1	1	14.64	12.07	-14.18	-3.66
9	1	1	6.47	1.75	-5.12	3.96
-9	1	-1	23.34	21.23	-23.05	-3.66
9	1	-1	11.52	11.04	-11.41	-1.57
-9	1	-3	8.72	5.72	-8.72	-0.13
9	1	-3	6.40	4.77	3.55	-5.33
-9	1	3	20.71	18.65	20.71	0.31
9	1	3	3.09	1.72	2.72	-1.47
-9	1	-5	21.05	20.84	21.03	0.85
9	1	-5	7.68	7.94	-7.52	-1.57
-9	1	5	0.	0.60	0.	0.
9	1	5	8.60	10.21	8.05	-3.04
-9	1	-7	26.36	24.36	-26.24	-2.47
9	1	-7	11.81	7.74	-11.62	2.09
-9	1	7	25.11	23.00	-24.93	-2.97
9	1	7	22.07	20.80	-21.94	-2.40
-9	1	-9	0.	4.88	-0.	-0.
9	1	-9	23.94	21.58	23.93	-0.78

-9	1	9	10.81	8.51	9.81	-4.54
9	1	9	7.27	1.73	-6.57	3.12
-9	1	-11	10.94	9.71	-10.91	-0.75
9	1	-11	19.99	21.21	-19.62	-3.83
-9	1	11	1.09	2.11	-1.08	-0.12
9	1	11	3.37	0.76	3.37	-0.06
-. 9	1	-13	14.92	16.04	14.87	1.18
9	1	-13	2.31	2.20	0.38	-2.28
-9	1	13	17.81	17.04	17.77	1.21
9	1	13	11.65	11.97	11.26	-3.00
9	1	-15	9.14	9.42	-9.02	1.48
-9	1	15	11.49	12.50	-11.33	-1.90
-11	1	1	5.88	4.10	-5.77	1.14
11	1	1	0.	3.39	0.	-0.
-11	1	-1	14.98	13.83	-14.79	-2.39
11	1	-1	7.11	5.23	-5.02	-5.03
-11	1	-3	8.80	5.75	-6.79	-5.59
11	1	-3	18.33	19.03	-18.32	-0.65
-11	1	3	11.05	10.50	-11.05	-0.11
11	1	3	0.	0.73	-0.	0.
-11	1	-5	5.20	2.08	4.70	-2.23
11	1	-5	24.11	22.92	24.07	1.33
-11	1	5	6.49	7.31	5.78	-2.96
11	1	5	0.	0.28	-0.	-0.
-11	1	-7	11.65	11.00	-11.59	1.16
11	1	-7	8.31	8.97	-8.16	-1.56
-11	1	7	19.09	18.29	-18.84	-3.08
11	1	7	14.31	14.66	-13.99	-3.00
-11	1	-9	9.24	8.97	9.13	-1.41
11	1	-9	6.63	6.90	5.34	-3.93
-11	1	9	10.57	9.33	10.56	0.54
11	1	9	9.56	10.66	9.21	-2.58
-11	1	-11	14.20	13.13	-13.62	-4.03
11	1	-11	25.91	26.51	-25.88	-1.17
-11	1	11	18.13	18.64	-18.12	0.62
11	1	11	0.80	2.71	-0.80	0.06
11	1	-13	20.93	21.51	20.87	1.60
-11	1	13	11.07	11.08	10.69	-2.86
-13	1	1	22.01	21.33	21.99	-0.96
13	1	1	23.64	24.43	-23.45	-3.03
-13	1	-1	5.47	4.66	-5.34	1.17
13	1	-1	27.44	29.31	27.44	0.12
-13	1	-3	0.	1.30	0.	-0.
13	1	-3	15.12	14.99	-15.10	0.85
-13	1	3	28.48	28.16	-28.24	-3.67
13	1	3	6.54	6.02	-5.69	-3.23
-13	1	-5	13.67	11.74	-13.00	-4.24
13	1	-5	4.98	3.85	3.75	-3.28
-13	1	5	5.11	6.42	-4.82	-1.70
13	1	5	0.	2.86	0.	0.
-13	1	-7	0.	3.49	-0.	-0.
13	1	-7	17.78	19.01	-17.43	-3.50
-13	1	7	0.	8.33	-0.	$0 \cdot$
13	1	7	5.80	3.91	5.74	0.85
-13	1	-9	9.63	$8 \cdot 38$	9.56	1.18

13	1	-9	16.10	15.34	16.10	-0.28
-13	1	9	12.33	18.53	19.33	-0.11
13	1	9	0.	3.30	-0.	-0.
-13	1	-11	3.14	3.23	3.10	-0.47
-13	1	11	17.54	18.87	-17.25	-3.18
-13	1	13	7.78	8. 28	-7.35	-2.55
-15	1	1	18.34	18.19	17.98	-3.62
15	1	1	22.27	23.75	-22.26	0.65
-15	1	-1	22.86	22.84	-22.79	-1.76
15	1	-1	16.07	16.24	16.07	0.17
-15	1	-3	7.64	$7 \cdot 85$	7.59	0.86
15	1	-3	12.29	12.28	-11.88	-3.16
-15	1	3	6.41	7.60	-6.33	-1.04
15	1	3	10.66	11.64	10.44	-2.14
-15	1	-5	1.96	6.03	1.96	-0.14
15	1	-5	0.	3.33	-0.	-0.
-15	1	5	5.82	6.09	5.73	1.03
15	1	5	11.69	10.69	-11.12	-3.61
-15	1	-7	10.33	10.90	9.85	-3.12
15	1	-7	0.	0.50	0.	0.
-15	1	7	0.59	4.51	-0.58	-0.13
15	1	7	7.58	7.73	7.56	-0.56
-15	1	-9	16.17	16.40	-16.00	-2.37
15	1	-9	3.78	4.62	-3.71	0.72
-15	1	9	5.88	3.77	-1.27	-5.74
-15	1	11	6.78	7.34	-6.56	-1.73
-17	1	1	4.67	$5 \cdot 91$	4.66	-0.31
-17	1	-1	6.93	8.30	-6.39	-2.69
17	1	-1	4.63	3.78	-1.87	-4.24
-17	1	-3	10.47	11.61	10.23	-2.21
17	1	-3	10.12	11.53	-9.92	-1.98
-17	1	3	6.42	4.66	-6.30	1.25
-17	1	-5	11.11	9.76	-11.10	0.56
17	1	-5	6.45	6.22	-6.37	1.02
-17	1	5	6.62	9.17	6.49	-1.30
-17	1	7	3.36	5.96	2.69	-2.02
0	2	-4	46.80	44.03	46.00	8.62
0	2	4	65.49	67.60	65.01	7.92
0	2	-6	4.90	5.45	4.33	-2.29
0	2	6	51.81	51.65	50.68	10.78
0	2	-8	7.13	5.83	7.13	0.21
0	2	8	18.53	10.38	-18.53	0.05
0	2	-10	9.79	10.18	-1.56	9.66
0	2	10	16.92	16.23	-16.72	-2.59
0	2	-12	30.31	27.34	29.23	8.03
0	2	12	66.01	78.46	65.72	6.20
0	2	-14	15.59	15.03	15.44	-2.15
0	2	14	36.51	42.09	35.59	-8.15
0	2	-16	5.56	3.31	-5.55	0.36
0	2	16	17.51	24.20	-17.51	-0.05
2	2	0	131.24	166.55	$130 \cdot 91$	9.37
2	2	-2	30.86	28.18	30.17	6.47
-2	2	-4	72.48	71.79	71.87	9.42
2	2	-4	40.52	36.66	$-40 \cdot 34$	-3.86
-2	2	4	49.49	$48 \cdot 35$	48.55	9.59

179

2	2	4	46.77	47.10	-46.64	-3.54
-2	2	-6	46.74	42.81	45.50	10.68
2	2	-6	6.14	3.76	-4.80	3.83
-2	2	6	15.74	13.82	15.61	-2.0.4
2	2	6	50.35	49.51	50.01	5.88
-2	2	-8	23.65	22.10	-23.63	-1.07
2	2	-8	65.52	66.21	64.58	11.08
-2	2	8	0.	1.16	0.	-0.
2	2	8	103.79	120.74	103.33	9.71
-2	2	-10	11.94	10.20	-11.80	-1.80
2	2	-10	41.57	$40 \cdot 31$	41.19	5.62
-2	2	10	3.02	9.50	-0.41	2.99
2	2	10	14.16	13.62	13.98	2.23
2	2	12	20.27	12.74	-20.00	-3.28
-2	2	-12	81.16	83.28	80.76	8.08
2	2	-12	43.38	42.84	-43.27	-3.02
-2	2	12	23.97	26.77	22.75	7.55
-2	2	-14	36.23	33.25	35.04	9.22
2	2	-14	2.14	2.17	0.60	2.05
-2	2	14	14.17	18.53	14.12	-1.18
2	2	14	18.16	17.49	17.38	5.27
-2	2	-16	23.70	23.09	-23.69	-0.73
2	2	-16	26.16	23.45	23.96	10.49
-2	2	16	5.20	6.25	-5.75	-0.73
-4	2	0	124.49	155.57	124.15	9.15
4	2	0	60.87	59.97	60.77	3.51
-4	2	2	45.86	45.30	45.25	7.44
4	2	2	96.46	103.61	95.82	11.09
4	2	-2	31.57	27.02	-31.28	-4.30
-4	2	-4	42.18	40.78	-42.06	-3.14
4	2	-4	60.67	57.48	60.47	4.98
-4	2	4	30.06	28.35	-29.88	-3.30
4	2	4	49.36	50.47	49.15	4.58
-4	2	-6	63.82	60.47	63.38	7.52
4	2	-6	98.47	103.49	07.86	10.97
-4	2	6	17.03	14.70	-17.00	1.07
4	2	6	22.31	21.39	-21.98	-3.80
-4	2	-8	105.85	112.78	105.37	10.05
4	2	-8	26.31	22.56	-26.03	3.85
-4	2	8	54.14	56.62	53.13	10.43
4	2	8	55.01	54.48	54.91	3.32
-4	2	-10	8.58	8.23	8.53	-0.94
4	2	-10	14.87	15.56	14.54	-3.11
-4	2	10	47.12	54.28	4.6 .75	5.90
4	2	10	31.86	32.59	29.99	10.74
-4	2	12	30.64	38.13	-30.56	-2. 24
4	2	12	17.99	18.27	17.51	$4 \cdot 11$
-4	2	-12	18.75	16.15	-18.51	-3.01
4	2	-12	29.59	27.62	29.24	4.55
-4	2	-14	24.09	21.72	23.10	6.82
4	2	-14	42.72	42.29	41.51	10.09
-4	2	14	1.70	5.17	-1.68	0.28
4	2	14	$0 .$			-0.
4	2	-16	22.44	21.83	-22.24	2.97
-4	2	16	13.06	19.94	11.55	6.10

-6	2	0	69.77	$72 \cdot 7 \cdot 7$	69.61	4.74
6	2	0	56.81	55.93	-56.72	-3.14
-6	2	2	30.24	25.53	-29.92	-4.42
6	2	2	32.42	29.94	32.40	1.18
-6	2	-2	89.75	97.74	89.09	10.89
6	2	-2	60.38	59.53	59.96	7.08
-6	2	-4	39.28	38.48	39.14	3.27
6	2	-4	88.90	93.10	88.28	10.51
-6	2	4	39.89	38.17	39.75	3.39
6	2	4	84.05	88.97	83.40	10.43
-6	2	-6	19.73	17.80	-19.34	-3.92
6	2	-6	62.00	60.60	61.99	1.12
-6	2	6	87.85	108.65	87.34	9.42
6	2	6	25.82	25.66	24.91	6.81
-6	2	-8	64.44	62.94	64.26	4.79
6	2	-8	47.35	45.88	-47.26	-2.90
-6	2	8	13.36	12.75	-12.42	4.92
6	2	8	24.28	21.18	-24.04	-3.41
-6	2	-10	30.90	28.53	28.60	11.69
6	2	-10	40.90	39.66	40.36	6.63
-6		10	10.44	13.46	10.09	-2.67
6	2	10	20.81	20.23	-20.78	1.03
-6	2	12	14.76	16.65	14.53	2.62
6	2	12	57.33	58.42	56.50	9.72
-6	2	-12	9.89	8.88	9.35	3.22
6	2	-12	51.81	53.37	50.92	9.54
-6	2	-14	5.93	4.56	4.53	-3.82
6	2	-14	24.80	25.12	24.78	1.06
-6	2	14	28.22	44.97	27.48	6.42
6	2	14	18.51	18.66	17.56	5.84
-6	2	16	6.55	11.44	-6.13	2.32
-8	2	0	62.21	65.56	-62.12	-3.37
8	2	0	47.71	46.00	46.82	9.16
-8	2	2	49.49	50.94	42.19	5.44
8	2	2	31.78	30.42	31.72	-1.91
-8	2	-2	45.21	46.70	45.15	2.40
8	2	-2	57.35	55.74	56.48	9.97
-8	2	-4	85.44	21.42	84.77	10.66
8	2	-4	51.09	48.19	-51.08	-0.92
-8	2	4	78.93	21.50	78.30	2.95
8	2	4	55.23	54.58	-55.22	-0.93
-8	2	-6	10.37	11.41	9.15	4.89
8	2	-6	5.10	1.68	-0.35	-5.09
-8	2	6	56.40	71.40	56.37	1.90
8	2	6	17.13	15.55	13.61	10.40
-8	2	-8	29.09	23.78	-28.81	-4.00
8	2	-8	65.90	64.91	65.35	8.49
-8	2	8	45.74	50.66	-45.64	-3.06
8	2	8	52.13	48.93	E1.37	8.88
-8	2	-10	9.10	2.50	-8.83	2.20
8	2	-10	62.35	59.44	61.65	9.35
-8	2	10	26.18	29.84	25.77	4.59
8	2	10	10.47	8.77	10.27	-2.05
-8	2	12	44.29	58.88	43.59	7.84
8	2	12	18.37	15.86	-18.35	-0.95

-8	2	-12	62.96	62.36	62.13	10.18
8	2	-12	21.19	21.02	-21.18	-0.66
-8	2	-14	10.55	9.24	9.10	5.34
8	2	-14	19.48	18.24	-19.43	-1.45
-8	2	14	19.00	27.34	18.94	1.48
-10	2	0	37.64	36.12	36.78	7.99
10	2	0	7.68	8.59	-3.30	6.94
-10	2	2	59.68	68.52	58.97	2.20
10	2	2	38.99	38.32	37.63	10.21
-10	2	-2	24.99	25.82	24.86	-2.56
10	2	-2	10.63	10.69	10.37	-2.33
-10	2	-4	53.93	53.32	-53.93	0.25
10	2	-4	17.11	14.03	17.11	-0.02
-10	2	4	42.70	41.94	-42.70	0.22
10	2	4	17.32	16.69	-17.32	-0.09
-10	2	-6	30.42	27.62	28.29	11.18
10	2	-6	17.05	15.68	13.34	10.62
-10	2	6	14.82	12.96	-14.52	-2.97
10	2	6	19.89	18.69	19.73	-2.48
-10	2	-8	48.93	42.20	48.22	8.30
10	2	-8	7.04	8.33	3.30	6.22
-10	2	8	54.51	64.27	$=4.15$	6.24
10	2	8	28.30	26.57	27.20	7.82
-10	2	-10	5.30	4.22	4.41	-2.94
10	2	-10	0.	2.98	0.	-0.
-10	2	10	51.80	62.19	51.15	8.18
10	2	10	31.91	31.23	30.49	9.41
-10	2	12	8.83	14.31	-8.83	0.13
10	2	12	18.71	18.15	-18.71	-0.11
-10	2	-12	16.33	12.07	-16.33	0.37
10	2	-12	21.11	20.97	21.11	0.07
-10	2	14	17.17	27.43	-17.11	-1.40
-12	2	0	9.41	10.56	5.09	7.91
12	2	0	35.00	35.27	-34.86	-3.13
-12	2	2	9.96	8.78	9.80	-1.78
12	2	2	50.23	49.13	49.92	5.60
-12	2	-2	36.38	34.73	35.09	9.62
12	2	-2	6.25	5.81	-5.88	2.11
-12	2	-4	22.73	22.85	-22.70	-1.15
12	2	-4	59.37	58.21	58.40	10.68
-12	2	4	16.19	15.76	16.14	-1.21
12	2	4	61.43	62.72	60.57	10.24
-12	2	-6	28.82	27.27	28.78	-1.55
12	2	-6	28.14	25.71	27.52	5.87
-12	2	6	12.28	11.93	7.98	9.34
12	2	6	11.22	9.34	11.00	2.22
-12	2	-8	29.85	24.89	28.15	9.94
12	2	-8	18.36	17.13	-18.10	-3.08
-12	2	8	12.82	15.44	10.70	7.06
12	2	8	36.41	35.40	-36.28	-3.11
-12	2	-10	33.99	31.37	32.77	9.03
12	2	-10	13.90	16.00	-13.80	1.63
-12	2	10	6.73	1.70	-3.49	-5.76
12	2	10	46.33	47.32	46.07	4.92
-12	2	12	10.78	18.44	10.76	-0.60

－12	2	－12	22.97	23.31	－22．95	－0．94
12	2	－12	33.43	34.03	32.14	2.21
－14	2	0	25.09	23.83	－24．92	－2．90
14	2	0	33.68	32.41	33.43	4.13
－14	2	2	16.30	17.46	－16．29	0.63
14	2	2	0.	4.12	－0．	－0．
－14	2	－2	50.76	49.30	50.29	6.92
14	2	－2	49.06	50.11	47.99	10.17
－14	2	－4	60.56	62.32	59.78	9.69
14	2	－4	12.45	10.69	11.88	3.71
－14	2	4	51.40	56.07	50.55	9.29
14	2	4	16.24	16.33	15.94	3.12
－14	2	－6	0.	1.31	0.	0.
14	2	－6	18.35	19.60	－18．12	－2．87
－14	2	6	28.86	32.40	28.25	5.90
14	2	6	40.70	41.73	39.49	9.83
－14	2	－8	35.51	33.28	－35．41	-2.70
14	2	－8	43.56	43.07	43.39	3.86
－14	2	8	9.39	12.57	－9．18	－1．97
－14	2	－10	52.95	53.01	52.60	6.10
14	2	－10	31.51	32.50	30.11	9.28
－14	2	10	12.03	18.19	－12．02	0.44
－14	2	12	18.28	30.06	17.40	5.59
－16	2	0	26.79	26.22	26.65	2.74
16	2	0	49.84	52.72	49.02	9.03
－16	2	2	45.47	49.90	44.47	9.49
16	2	2	6.37	7.57	4.15	4.83
－16	2	－2	7.78	6.88	－6．87	－3．65
16	2	－2	24.29	22.39	24.26	1.21
－16	2	－4	24.63	24.58	24.23	4.40
16	2	－4	4.52	2.76	1.52	－4．26
－16	2	4	14.11	15.16	13.49	4.14
－16	2	－6	35.81	34.56	34.29	10.33
16	2	－6	3.44	5.64	－0．15	3.44
－16	2	6	14.12	17.65	－13．89	－2．55
－16	2	8	25.50	32.20	25.42	2.06
－16	2	10	22.43	33.93	21.49	6.44
－18	2	0	44.99	49.66	44.08	8.99
－18	2	2	27.45	29.25	27.37	2.12
－18	2	4	2.12	3.96	－1．36	－1．63
－18	2	6	1.09	7.54	－0．87	0.65
－1	3	－3	20.72	17.62	-20.40	-3.60
1	3	3	16.63	15.75	16.59	－1．16
－1	3	－5	11.52	9.73	11.48	0.97
1	3	－5	4.45	3.84	－4．44．	－0．26
－1	3	5	13.51	11.79	13.28	－2．46
1	3	5	16.86	15.94	-16.82	1.15
－1	3	－7	16.75	15.52	16.73	0.73
1	3	－7	27.22	25.52	26.87	－4．33
－1	3	7	13.56	13.80	－13．06	－3．66
1	3	7	9.56	9.80	－9．49	－1．19
-1	3	－9	15.38	14.65	－14．95	-3.63
1	3	－9	28.50	29.46	－28．37	－2．77
－1	3	9	19.48	19.21	-19.45	-1.06
1	3	9	0 。	5.39	－0．	－0．

-1	3	-11	0.	3.67		-0
-1	3	-11	16.59			1.07
-1	3	11	16.81	16.11	16.78 5.07	1.07
1	3	11	2.89	3.68		-3.00
-1	3	-13	8.46	10.38	-8.44	0.57
1	3	-13	12.36	10.65	-12.35	0.56
-1	3	13	4.21	3.41	3.95	-1.47
1	3	13	15.66	13.74	-15.63	1.02
-1	3	-15	24.95	23.38	24.91	1.35
1	3	-15	12.71	12.88	12.13	-3.80
-1	3	15	0.72	3.60	0.13	-0.71
1	3	15	7.85	6.27	-7.84	-0.44
3	3	-1	13.70	10.14	-13.58	1.82
-3	3	-3	11.23	10.81	10.77	-3.18
3	3	-3	45.65	43.43	45.63	-1.29
-3	3	3	11.79	10.59	-11.31	-3.33
3	3	3	32.29	33.86	-32.08	-3.72
-3	3	-5	10.33	8.30	-9.20	-4.69
3	3	-5	54.55	55.31	-54.38	-4.24
-3	3	5	0.	3.43	- 0.	-0.
3	3	5	10.65	10.54	-10.46	-2.02
-3	3	-7	15.01	14.16	-15.01	0.09
3	3	-7	6.75	7.34	-6.52	-1.73
-3	3	7	29.41	27.74	29.41	-0.22
3	3	7	17.60	17.30	17.58	0.92
-3	3	-9	2.05	1.49	0.92	1.83
3	3	-9	5.74	1.70	-0.68	5.70
-3	3	9	11.67	10.19	-11.63	0.95
3	3	9	10.23	8.77	-10.22	-0.40
-3	3	-11	8.09	5.08	6.97	-4.10
3	3	-11	29.93	29.78	29.93	-0.51
-3	3	11	8.42	8.74	8.18	-2.00
3	3	11	8.94	11.12	-8.54	-2.65
-3	3	-13	12.61	11.75	-11.80	-4.45
3	3	-13	10.97	11.39	-10.14	-4.19
-3	3	13	22.61	23.33	-22.35	-3.45
3	3	13	10.74	12.08	-10.50	-2.28
-3	3	-15	4.90	1.46	-4.87	-0.56
3	3	-15	29.02	29.92	-28.94	-2.19
-3	3	15	20.64	20.56	20.62	-0.87
3	3	15	9.02	10.17	9.01	0.44
-5	3	1	24.08	21.37	-23.73	-4.08
5	3	1	31.26	29.60	31.24	1.14
5	3	-1	49.24	49.06	-4.9.19	-2.20
-5	3	-3	0.	1.83	-0.	0.
5	3	-3	1.64	4.49	0.63	-1.51
-5	3	3	18.62	16.21	18.34	-3.23
5	3	3	29.85	20.18	-29.85	-0.38
-5	3	-5	33.09	30.70	-33.01	-2.35
5	3	-5	0.	3.85	-0.	-0.
-5	3	5	36.37	33.98	-36.37	0.53
5	3	5	20.09	18.87	19.75	-3.69
-5	3	-7	12.98	11.27	-12.07	-4.78
5	3	-7	15.20	12.40	15.06	2.04
-5	3	7	18.01	16.75	18.01	0.36

5	3	7	20.95	19.91	-20.75	-2.88
-5	3	-9	7.97	7.39	7.92	-0.88
5	3	-9	0.	3.92	-0.	-0.
-5	3	9	6.99	8.50	-6.58	-2.36
5	3	9	5.03	5.38	-5.01	0.40
-5	3	-11	4.91	4.68	4.59	1.74
5	3	-11	34.38	35.80	-34.11	-4.30
-5	3	11	21.07	12.59	20.78	-3.50
5	3	11	4.07	4.43	4.06	0.32
-5	3	-13	16.81	15.88	-16.73	-1.64
5	3	-13	15.82	14.85	15.76	-1.32
-5	3	13	13.66	13.75	-13.66	-0.10
5	3	13	7.13	6.05	6.41	-3.13
-5	3	-15	9.98	10.95	-9.19	-3.89
5	3	-15	6.20	5.49	5.77	2.26
-5	3	15	6.83	5.17	-6.74	1.13
-7	3	1	51.78	51.03	-51.74	-2.00
7	3	1	15.48	14.38	15.14	-3.21
-7	3	-1	11.30	11.07	-10.56	-4.02
7	3	-1	9.33	8.65	-8.47	-3.91
-7	3	-3	24.52	24.54	-24.49	-1.18
7	3	-3	11.02	11.05	-11.02	0.07
-7	3	3	42.03	39.70	42.02	1.01
7	3	3	16.17	12.28	-16.16	0.67
-7	3	-5	30.27	28.40	30.23	1.46
7	3	-5	11.47	10.45	11.39	1.39
-7	3	5	15.90	15.54	-15.89	-0.41
7	3	5	17.48	18.07	17.47	0.43
-7	3	-7	3.90	2.67	-3.49	-1.73
7	3	-7	19.09	18.60	-18.91	-2.65
-7	3	7	17.45	17.65	-17.11	-3.41
7	3	7	32.62	33.18	-32.51	-2.72
-7	3	-9	25.86	23.80	-25.46	-4.53
7	3	-9	17.88	15.11	17.17	-4.98
-7	3	9	17.96	15.39	-17.69	-3.10
7	3	9	25.55	24.38	25.33	-3.38
-7	3	-11	13.21	13.29	-13.09	-1.75
7	3	-11	19.26	19.00	-19.26	-0.23
-7	3	11	0.	1.44	-0.	0.
7	3	11	6.08	1.15	-5.95	-1.27
-7	3	-13	14.19	13.33	14.08	1.73
7	3	-13	7.45	8.23	7.27	1.63
-7	3	13	21.52	19.99	21.52	0.36
-7	3	15	18.46	19.47	-18.26	-2.68
-9	3	1	15.15	14.94	-15.11	1.11
9	3	1	22.67	22.34	-22.49	-2.89
-9	3	-1	28.63	25.79	28.61	-1.14
9	3	-1	23.88	24.00	23.87	0.76
-9	3	-3	25.20	22.70	-24.83	-4.33
9	3	-3	0.	3.69	-0.	0.
-9	3	3	13.33	11.06	-13.24	-1.53
9	3	3	8.71	7.00	-7.56	-4.33
-9	3	-5	11.78	9.95	11.52	-2.48
9	3	-5	7.51	5.87	6.76	-4.30
-9	3	5	7.31	6.08	-5.77	-4.48

9	3	5	8.42	9.09	$8 \cdot 42$	－0．23
-9	3	－7	31.32	23.83	-31.28	1.62
9	3	-7	25.46	25.40	－25．21	－3．59
－9	3	7	14.23	14.27	－14．11	-1.85
9	3	7	6.36	1.93	-5.70	2.83
－9	3	－9	28.48	27.80	28.48	-0.22
9	3	－9	16.53	14.02	16.51	0.76
－9	3	9	18.61	15.62	18.58	1.10
9	3	9	14.77	16.14	14.67	-1.75
－9	3	－11	0.	3.87	－0．	-0.
9	3	－11	8.15	5.47	$7 \cdot 93$	1.87
－9	3	11	33.18	32.88	-33.18	－0．40
9	3	11	27.60	28.18	－27．40	-3.32
－9	3	－13	7.89	7.41	－7．39	－2．77
－9	3	13	8.54	6.40	7.27	－4．48
－11	3	1	19.97	18.72	19.84	－2．28
11	3	1	23.34	20.55	－23．30	1.28
－11	3	－1	0.	2.92	－0．	0.
11	3	－1	13.20	13.05	13.20	-0.30
－11	3	－3	5.82	4.00	5.82	-0.20
11	3	－3	6.96	7.03	－5．84	－3．79
－11	3	3	15.52	15.38	-15.07	－3．69
11	3	3	8.42	9.69	8.25	－1．66
－11	3	－5	12.67	12.49	12.16	－3．56
11	3	－5	0 。	2.70	0.	－0．
－11	3	5	5.99	4.28	5.83	-1.37
11	3	5	8.94	5.96	－7．10	-5.43
－11	3	－7	24.96	23.14	-24.77	－3．10
11	3	－7	7.83	3.77	－7．39	2.60
-11	3	7	16.95	16.98	－16．92	1.01
11	3	7	0.	2.03	0 ．	－0．
－11	3	－9	24.55	22.85	24.54	0.85
11	3	－9	3.58	3.86	3.56	0.40
-11	3	9	32.80	29.90	32.77	-1.37
11	3	9	11.57	9.93	－11．52	1.11
－11	3	－11	7.52	6.11	－7．48	0.73
11	3	－11	6.44	8.04	-5.69	-3.02
-11	3	11	13.55	13.62	-13.07	－3．56
－11	3	13	15.85	15.89	-15.76	-1.66
-13	3	1	21.70	21.78	21.46	－3．24
13	3	1	3.24	4.72	3.13	－0．83
－13	3	－1	31.54	30.25	－31．40	－2．99
13	3	－1	3.90	4.33	－1．68	－3．52
-13	3	－3	4.26	7.65	4.25	0.24
13	3	－3	25.08	23.98	-25.02	-1.78
-13	3	3	0.	3.07	0.	－0．
13	3	3	10.52	10.44	10.46	1.16
－13	3	－5	7.12	5.96	7.09	0.70
13	3	－5	0.	4.78	0.	0 ．
－13	3	5	15.60	14.10	15.58	0.86
13	3	5	18.07	16.62	－18．04	－1．07
-13	3	-7	3.25	4.96	2.67	-1.86
13	3	－7	16.53	14.90	16.52	－0．59
－13	3	7	13.18	11.80	-12.97	-2.32
13	3	7	4.79	3.83	-2.12	－4．29

-13	3	-9	8.83	6.69	-7.59	-4.51
13	3	-9	5.58	5.93	4.00	-3.89
-13	3	9	4.19	3.54	-0.62	-4.14
-13	3	11	2.80	2.35	2.62	-1.00
-15	3	1	1.52	2.40	1.49	0.31
15	3	1	14.63	14.85	-14.19	-3.58
-15	3	-1	16.81	14.71	-16.55	-2.96
15	3	-1	13.29	12.62	13.27	-0.77
-15	3	-3	12.12	12.08	11.64	-3.36
15	3	-3	2.02	1.85	1.29	1.55
-15	3	3	14.41	12.26	-14.41	0.33
15	3	3	7.82	7.29	-7.52	-2.16
-15	3	-5	9.29	10.42	-9.29	-0.23
15	3	-5	0.	3.30	0.	-0.
-15	3	5	5.99	5.57	5.20	-2.98
-15	3	-7	1.48	1.46	-1.04	1.05
-15	3	7	8.08	8.84	7.57	-2.83
-15	3	9	4.12	1.48	4.12	-0.20
-15	3	11	11.98	11.62	-11.95	0.82
-17	3	1	16.72	13.89	16.71	-0.49
-17	3	-1	0.	2.41	-0.	0 .
-17	3	-3	10.72	10.82	-10.58	-1.75
-17	3	3	18.33	17.71	-18.02	-3.33
-17	3	-5	21.90	18.74	-21.51	-4.13
-17	3	5	15.30	15.23	-15.10	-2.45
-17	3	7	3.60	1.44	-3.36	1.28
0	4	-4	87.69	88.31	87.37	7.48
0	4	4	62.75	66.55	62.34	7.15
0	4	-6	58.19	55.39	57.18	10.80
0	4	6	10.13	7.79	9.51	-3.49
0	4	-8	14.57	13.42	-14.56	0.50
0	4	8	0.	0.38	-0.	0.
0	4	-10	7.28	9.39	7.07	-1.74
0	4	10	9.69	10.00	-0.58	9.67
0	4	12	34.16	32.72	33.41	7.14
0	4	-12	54.38	54.40	53.97	6.66
0	4	-14	42.21	40.31	41.18	9.28
0	4	14	6.12	7.24	5.78	-2.02
2	4	0	12.93	9.26	-12.82	-1.71
2	4	2	5.96	6.02	-5.78	-1.47
2	4	-2	7.32	15.97	5.92	4.30
-2	4	-4	51.49	47.41	-51.36	-3.63
2	4	-4	62.50	60.52	t 1.80	9.33
-2	4	4	54.69	32.48	-54.57	-3.65
2	4	4	53.47	54.02	52.70	9.04
-2	4	-6	37.79	35.75	37.37	5.59
2	4	-6	25.55	23.09	25.51	-1.46
-2	4	6	11.22	10.65	10.90	2.66
2	4	6	15.41	13.66	11.38	10.39
-2	4	-8	96.91	101.51	06.36	10.27
2	4	-8	29.67	27.03	-29.65	-1.13
-2	4	8	94.14	99.66	93.56	10.46
2	4	8	7.43	5.23	-7.21	-1.79
-2	4	-10	9.27	6.16	8.51	3.67
2	4	-10	40.12	38.38	39.11	8.93

-2	4	10	34.58	32.86	$34 \cdot 17$	5.31
2	4	10	18.61	16.84	-18.54	-1.57
-2	4	12	29.83	29.07	-29.65	-3.29
2	4	12	48.19	46.37	47.42	8.59
-2	4	-12	27.07	24.73	-26.90	-3.07
2	4	-12	39.19	36.02	38.20	8.74
-2	4	-14	17.39	15.96	16.67	4.96
2	4	-14	21.95	21.05	21.93	-1.00
-2	4	14	3.67	2.24	0.25	3.66
2	4	14	23.76	21.72	22.05	8.84
4	4	0	70.45	69.25	69.62	10.81
4	4	2	19.98	16.87	19.97	0.77
4	4	-2	16.14	14.56	14.05	7.95
-4	4	-4	50.26	49.24	50.02	4.95
4	4	-4	56.51	52.96	-56.44	-2.81
-4	4	4	67.38	67.47	E7. 20	4.89
4	4	4	39.50	36.71	-39.39	-2.98
-4	4	-6	5.99	6.20	-5.06	-3.21
4	4	-6	25.69	23.16	25.68	0.80
-4	4	6	76.05	76.35	75.20	11.32
4	4	6	9.85	9.70	6.79	7.13
-4	4	-8	20.74	19.03	20.49	3.22
4	4	-8	44.01	38.20	42.49	11.46
-4	4	8	5.40	7.24	-4.94	2.18
4	4	8	76.49	78.74	75.85	9.84
-4	4	-10	9.97	10.44	0.55	9.95
4	4	-10	38.18	35.89	37.53	7.00
-4	4	10	1.54	4.82	-1.10	-1.08
4	4	10	2.10	2.73	-2.06	0.41
-4	4	12	41.10	40.10	40.85	4.56
4	4	12	12.95	9.53	-12.48	-3.45
-4	4	-12	24.38	22.75	23.93	4.67
4	4	-12	35.81	36.22	-35.75	-2.13
-4	4	-14	3.40	2.70	0.34	-3.38
4	4	-14	3.50	2.99	3.40	0.82
-4	4	14	53.78	55.05	52.88	9.80
-6	4	0	31.64	27.83	-31.47	-3.31
6	4	0	14.81	12.23	13.56	5.96
-6	4	2	9.22	10.39	6.70	6.34
6	4	2	55.69	56.50	54.61	10.90
-6	4	-2	19.65	18.60	19.63	0.89
6	4	-2	22.32	21.27	22.05	-3.46
-6	4	-4	61.23	60.70	60.28	10.73
6	4	-4	9.27	7.94	8.68	3.26
-6	4	4	65.00	63.21	64.04	11.12
6	4	4	5.56	4.14	4.17	3.68
-6	4	-6	7.35	7.66	-3.29	6.57
6	4	-6	40.28	36.25	38.50	11.85
-6	4	6	39.86	35.49	39.85	0.86
6	4	6	8.65	6.47	7.41	-4.46
-6	4	-8	17.05	14.80	-16.79	-2.99
6	4	-8	12.88	13.85	-12.12	4.36
-6	4	8	39.63	36.41	-39.51	-3.09
6	4	8	51.07	42.30	50.84	4.84
-6	4	-10	6.43	6.28	-6.37	0.86

6	4	-10	12.49	13.19	12.20	-2.69
-6	4	10	36.02	34.75	35.35	6.93
6	4	10	30.78	29.51	28.86	10.70
-6	4	12	43.37	41.64	42.15	10.22
6	4	12	8.33	8.36	7.97	2.42
-6	4	-12	59.66	57.73	58.87	9.66
6	4	-12	16.34	13.91	16.07	2.98
-6	4	-14	12.00	9.04	9.04	7.89
-6	4	14	22.31	21.22	22.30	0.69
-8	4	0	58.27	55.55	57.51	9.41
8	4	0	56.77	57.47	-56.68	-3.20
-8	4	2	41.90	37.18	40.52	10.67
8	4	2	58.95	59.27	58.89	2.59
-8	4	-2	10.02	7.50	9.80	-2.11
8	4	-2	26.66	25.76	26.17	5.08
-8	4	-4	40.42	37.22	-40.40	-1.13
8	4	-4	79.87	78.68	79.14	10.75
-8	4	4	47.23	43.20	-47.21	-1.25
8	4	4	71.21	75.05	70.49	10.13
-8	4	-6	33.60	29.45	31.97	10.34
8	4	-6	40.49	36.82	40.39	2.85
-8	4	6	8.98	8.34	8.81	-1.73
8	4	6	23.95	23.19	23.44	4.91
-8	4	-8	72.11	67.26	71.55	8.95
8	4	-8	33.74	31.25	-33.60	-3.12
-8	4	8	38.46	33.56	37.16	9.90
8	4	8	38.16	37.46	-38.02	-3.24
-8	4	-10	8.08	7.07	-7.24	-1.50
8	4	-10	13.77	11.18	12.59	5.57
-8	4	10	48.58	45.96	47.67	9.34
8	4	10	23.10	22.06	22.97	2.49
-8	4	12	26.88	28.33	-26.86	-1.01
-8	4	-12	9.14	7.51	-9.09	-1.00
8	4	-12	44.53	43.70	43.49	9.59
-8	4	14	6.84	5.20	-6.58	-1.86
-10	4	0	27.39	24.34	26.05	8.46
10	4	0	46.89	46.30	46.38	6.88
-10	4	2	26.33	25.52	26.20	-2.62
10	4	2	12.49	12.11	12.22	-2.58
-10	4	-2	50.33	46.75	49.13	10.92
10	4	-2	53.49	52.77	52.57	9.89
-10	4	-4	8.36	7.14	-8.36	0.25
10	4	-4	12.66	10.56	-12.64	0.6 .9
-10	4	4	5.42	1.58	-5.39	0.58
10	4	4	27.29	27.17	-27.29	0.49
-10	4	-6	20.57	12.15	20.42	-2.51
10	4	-6	6.85	7.59	-6.53	-2.06
-10	4	6	35.03	30.32	33.05	11.62
10	4	6	36.26	35.70	34.94	9.69
-10	4	-8	51.61	46.18	51.01	7.82
10	4	-8	55.70	55.21	55.32	6.46
-10	4	8	8.17	7.60	2.54	7.76
10	4	8	30.14	29.76	29.43	6.51
-10	4	-10	28.23	26.04	27.08	10.17
10	4	-10	44.02	44.23	43.11	8.89

-10 -10	4	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	14.21 9.24	15.15 6.16	14.03 9.24	$\begin{array}{r} -2.26 \\ 0.24 \\ \hline \end{array}$
-10	4	-12	4.15	2.63	-4.12	0.47
-12	4	0	49.38	49.25	-49.27	-3.27
12	4	0	23.86	22.24	22.15	8.86
-12	4	2	0.	3.03	0.	
12	4	2	19.79	19.08	17.88	8.49
-12	4	-2	70.53	72.52	70.35	5.10
12	4	-2	10.80	9.54	10.73	-1.25
-12	4	-4	68.78	69.65	67.92	10.39
12	4	-4	6.29	2.63	5.70	-2.67
-12	4	4	72.58	71.04	71.75	10.97
12	4	4	8.52	8.33	-8.43	-1.26
-12	4	-6	4.99	3.13	3.58	3.48
12	4	-6	15.54	14.24	12.91	8.65
-12	4	6	57.84	55.17	57.59	5.41
12	4	6	3.32	4.00	3.17	-0.97
-12	4	-8	37.06	32.71	-36.91	-3.32
12	4	-8	37.01	34.41	36.04	8.40
-12	4	8	29.70	26.66	-22.49	-3.55
-12	4	-10	42.22	38.98	41.91	5.14
-12	4	10	5.82	8.49	-5.64	1.44
-12	4	12	44.25	43.96	$43 \cdot 14$	9.87
-14	4	0	31.68	29.98	31.35	4.56
14	4	0	31.79	31.31	-31.71	-2.29
-14	4	2	62.04	61.68	61.12	10.67
-14	4	-2	4.11	4.25	2.64	-3.15
14	4	-2	2.30	3.88	-2.28	0.27
-14	4	-4	13.30	13.76	-13.00	2.82
14	4	-4	48.20	47.36	47.34	9.05
-14	4	4	0.	3.26	0 .	0 .
14	4	4	13.50	46.50	13.25	2.59
-14	4	-6	42.63	40.08	41.26	10.74
-14	4	6	22.82	21.14	-22.54	-3.54
-14	4	-8	21.52	19.13	21.04	4.54
-14	4	8	42.94	42.42	42.73	4.22
-14	4	10	48.54	47.30	47.45	10.23
-16	4	0	32.49	31.86	30.94	2.21
-16	4	2	16.63	13.25	16.60	1.06
-16	4	-2	11.82	10.85	9.75	6.68
-16	4	-4	18.31	16.72	-18.09	-2.83
-16	4	4	0.71	2.72	-0.10	-0.70
-16	4	-6	18.53	18.72	18.51	0.84
-16	4	6	3.05	6.33	0.83	2.93
-16	4	8	46.82	47.10	45.88	9.33
-18	4	0	18.41	15.45	-18.38	-1.05
-18	4	2	21.09	21.78	-21.04	-1.48
1	5	-3	20.91	18.34	20.41	-4.55
-1	5	3	35.65	37.89	-35.47	-3.57
1	5	3	6.32	7.31	6.31	0.35
-1	5	-5	61.06	60.34	-60.89	-4.49
1	5	-5	16.95	14.76	16.95	0.16
-1	5	5	4.48	2.67	-1.35	-4.27
1	5	5	28.87	28.99	28.70	-3.14
-1	5	-7	3.26	3.71	$-3 \cdot 17$	-0.75

1	5	－7	5.57	2.02	3.30	4.49
－1	5	7	35.76	37.86	35.75	0.68
1	5	7	17.69	18.69	－17．43	－3．01
－1	5	－9	10.69	9.70	10.46	2.19
1	5	－9	29.76	30.20	－29．65	－2．60
-1	5	9	24.37	22.38	－24．37	0.14
1	5	9	14.65	13.69	－14．65	0.08
－1	5	－11	16.75	15.25	16.66	－1．71
1	5	－11	8.17	8.78	－7．06	－4．12
－1	5	11	3.55	2.93	－0．16	－3．55
1	5	11	20.24	22.56	20.23	0.59
－1	5	－13	28.04	28.25	－ 27.66	-4.60
1	5	－13	11.64	12.29	11.64	－0．04
－1	5	13	10.54	11.78	－10．22	－2．56
1	5	13	6.23	5.12	5.63	－2．66
3	5	1	43.16	41.14	42.99	-3.80
3	5	－1	14.28	12.64	－13．81	－3．65
3	5	－3	23.68	20.85	-23.66	1.05
3	5	3	0.	0.90	0.	0.
－3	5	－5	20.03	20.48	－20．01	-0.99
3	5	－5	5.63	3.77	5.46	1.39
－3	5	5	44.80	43.73	－44．78	1.16
3	5	5	9.04	8.57	－8．99	0.98
－3	5	－7	18.19	15.39	17.40	-5.30
3	5	－7	28.02	26.50	27.77	－3．75
－3	5	7	10.09	10.22	10.07	－0．63
3	5	7	24.76	23.59	－24．64	－2．43
－3	5	－9	20.05	19.55	－19．95	－1．95
3	5	－9	6.25	5.25	－4．26	－4．58
－3	5	9	7.46	7.29	－6．71	－3．25
3	5	9	28.44	26.56	28.19	－3．73
－3	5	－11	12.79	14.15	12.67	1.78
3	5	－11	12.21	11.97	－12．18	0.91
－3	5	11	13.11	12.63	12.89	－2．38
3	5	11	1.75	3.03	1.70	－0．40
－3	5	－13	10.91	9.84	-10.90	－0．49
－3	5	13	23.64	21.68	-23.63	0.67
5	5	1	20.27	18.96	－20．12	－2．43
5	5	－1	18.93	19.37	18.88	1.36
－5	5	－3	26.56	27.99	－26．47	-2.24
5	5	－3	33.77	32.61	33.77	－0．
－5	5	3	51.88	51.20	51.87	1.24
5	5	3	35.25	35.65	－35．04	－3．86
－5	5	－5	44.66	41.58	44.63	1.58
5	5	－5	27.03	25.41	－26．67	－4．40
－5	5	5	14.11	13.12	－14．01	-1.66
5	5	5	16.61	16.21	16.59	－0．80
－5	5	－7	15.92	15.44	15.92	0.03
5	5	－7	21.15	21.40	－20．95	－2．92
－5	5	7	29.37	31.04	－29．16	-3.53
5	5	7	11.40	11.70	11.35	1.09
－5	5	－9	28.32	25.30	－27．94	－4．63
5	5	－9	15.32	14.08	15.22	1.71
－5	5	9	20.10	20.60	-20.05	-1.48
5	5	9	0 －	1.41	0 。	－0．

-5	5	-11	6.62	6.40	-5.92	-2.97
5	5	-11	22.51	23.50	22.50	-0.60
-5	5	11	14.31	14.17	14.28	0.94
5	5	11	31.50	33.00	-31.33	-3.30
-5	5	-13	5.18	5.52	4.96	1.48
-5	5	13	4.90	6.34	4.87	-0.52
-7	5	1	32.01	29.86	-31.99	1.04
7	5	1	6.43	4.14	-6.00	2.32
-7	5	-1	47.98	47.88	47.98	0.18
7	5	-1	18.80	18.73	-18.77	-1.02
-7	5	-3	12.59	14.22	12.17	-3.23
7	5	-3	6.33	4.42	1.20	-6.22
-7	5	3	18.90	19.07	-18.74	-2.42
7	5	3	4.11	2.53	-3.56	-2.05
-7	5	-5	2.23	4.68	-1.61	-1.54
7	5	-5	2.54	1.94	-0.58	-2.47
-7	5	5	18.81	16.82	18.36	-4.07
7	5	5	9.10	9.60	8.35	-3.62
-7	5	-7	40.47	38.49	-40.46	1.00
7	5	-7	5.84	3.43	-4.86	3.23
-7	5	7	19.43	18.35	19.42	-0.70
7	5	7	20.81	19.54	-20.74	-1.75
-7	5	-9	33.99	$33 \cdot 48$	33.98	0.92
7	5	-9	5.95	7.16	5.94	-0.35
-7	5	?	4.52	5.17	-4.44	0.84
7	5	9	10.88	8.70	-10.81	1.23
-7	5	-11	14.30	14.10	13.87	-3.50
7	5	-11	15.59	18.16	-15.10	-3.86
-7	5	11	18.20	19.16	-18.14	-1.43
-7	5	13	1.35	4.58	-0.90	-1.01
-9	5	1	21.46	21.98	21.23	-3.14
9	5	1	15.92	14.16	15.76	-2.22
-9	5	-1	8.54	6.75	8.52	0.52
9	5	-1	16.08	17.71	-15.63	-3.76
-9	5	-3	21.66	18.74	-21.63	1.07
9	5	-3	30.15	29.82	-30.14	-0.83
-9	5	3	4.28	5.17	3.35	-2.66
9	5	3	7.75	7.93	7.66	1.21
	5	-5	3.75	3.33	-1.80	-3.29
9	5	-5	22.03	21.07	21.95	1.93
-9	5	5	17.24	16.84	-17.24	0.14
9	5	5	10.37	10.55	-10.36	-0.34
-9	5	-7	7.02	5.73	-5.20	-4.72
9	5	-7	3.28	2.10	2.28	-2.36
-9	5	7	1.34	3.28	1.31	0.27
9	5	7	20.72	22.35	-20.48	-3.15
-9	5	-9	25.07	23.09	25.07	0.20
9	5	-9	3.63	4.63	-0.65	-3.57
-9	5	9	25.78	24.68	25.67	-2.43
-9	5	-11	24.22	23.18	-24.17	1.59
-9	5	11	6.10	4.47	4.10	-4.52
-11	5	1	12.93	11.60	-12.63	-2.79
11	5	1	16.44	18.62	-16.13	-3.17
-11	5	-1	36.37	34.00	-36.15	-3.99
11	5	-1	33.49	34.81	33.49	0.11

-11 11	5 5	-3 -3	2.36 2.04	1.91 5.15	-2.31 -1.96	$\begin{array}{r} -0.46 \\ 0.57 \end{array}$
-11	5	3	28.22	28.45	28.21	0.76
11	5	3	12.59	14.82	-12.37	-2.32
-11	5	-5	24.23	21.44	24.18	1.58
11	5	-5	8.86	8.85	-8.50	-2.50
-11	5	5	2.02	0.69	1.99	0.32
-11	5	-7	15.55	12.61	-15.36	-2.45
-11	5	7	24.13	22.31	-23.91	-3.26
-11	5	-9	25.00	22.39	-24.57	-4.62
-11	5	9	6.81	4.09	4.80	-4.83
-11	5	11	6.99	7.01	6.99	-1. 11
-13	5	1	15.65	16.51	-15.61	1.07
-13	5	-1	0.	2.44	-0.	-0.
-13	5	-3	6.22	3.97	-0.94	-6.15
-13	5	3	17.02	17.07	-17.01	-0.64
-13	5	-5	6.57	4.44	-6.30	-1.85
-13	5	5	10.52	8.84	9.68	-4.11
-13	5	-7	14.35	15.55	-14.28	1.41
-13	5	7	6.81	7.23	-6.48	-2.11
-13	5	9	3.18	5.56	$3 \cdot 16$	0.37
-15	5	1	25.04	24.78	25.00	-1.49
-15	5	-1	9.92	6.86	9.77	1.69
-15	5	-3	4.71	6.82	-4.69	-0.48
-15	5	3	32.78	34.88	-32.61	-3.37
-15	5	-5	17.15	14.45	-16.56	-4.46
-15	5	5	10.44	9.33	-10.32	-1.60
-15	5	7	6.79	8.38	-6.75	0.75
-17	5	1	21.19	23.34	20.96	-3.08
-17	5	3	9.30	8.87	9.28	-0.62
0	6	-4	34.67	31.24	-34.50	-3.43
0	6	4	13.94	14.47	-13.57	-3.19
0	6	-6	24.60	22.62	24.32	3.69
0	6	6	4.38	7.39	3.70	2.34
0	6	-8	40.36	37.90	38.92	10.67
0	6	8	76.02	83.27	75.49	9.51
0	6	-10	19.18	16.73	18.68	4.33
0	6	10	4.27	3.29	1.06	$4 \cdot 14$
2	6	0	9.88	10.07	9.70	1.86
2	6	2	63.08	64.87	62.26	10.16
2	6	-2	7.97	7.09	-7.27	-3. 26
-2	6	-4	30.55	27.61	29.80	6.75
2	6	-4	40.35	37.02	39.91	5.97
2	6	4	28.69	27.84	28.12	5.69
-2	6	-6	7.63	3.04	-3.97	-6.51
2	6	-6	55.02	53.85	54.07	10.20
-2	6	6	33.07	31.51	31.26	10.79
2	6	6	13.47	14.36	-13.17	-2.82
-2	6	-8	3.34	1.45	1.14	3.14
2	6	-8	14.02	2.87	-13.76	2.70
-2	6	8	3.91	2.43	3.37	1.99
-2	6	8	30.19	27.67	30.13	1.92
-2	6	-10	25.62	22.94	23.41	10.42
2	6	-10	1.96	2.66	0.78	-1.80
-2	6	10	16.40	14.73	-16.10	-3.13

2	6	10	24.30	24.11	22.21	9.86
4	6	0	19.89	18.23	-19.76	-2.23
4	6	2	10.50	9.48	10.50	-0.08
4	6	-2	35.44	33.23	34.56	7.84
-4	6	-4	66.86	62.66	66.14	9.79
4	6	-4	58.39	56.52	57.61	9.50
-4	6	4	39.82	35.73	38.43	10.44
4	6	4	44.07	41.56	4.2 .94	9.90
-4	6	-6	4.52	14.16	3.77	2.49
4	6	-6	20.48	17.84	20.48	0.09
-4	6	6	17.36	16.23	17.35	-0.66
4	6	6	35.65	33.77	34.82	7.64
-4	6	-8	6.80	3.63	-6.18	-2.84
4	6	-8	17.13	17.55	-17.05	-1.70
-4	6	8	14.30	15.26	-14.20	-1.73
4	6	8	12.38	11.42	-12.17	-2.26
-4	6	-10	7.70	6.25	-7.69	-0.43
4	6	-10	34.97	36.09	34.37	6.45
-4	6	10	21.88	22.17	20.54	7.55
6	6	0	40.36	37.72	39.26	9.38
6	6	2	12.65	11.10	12.63	-0.74
6	6	-2	31.27	27.89	30.03	8.72
-6	6	-4	9.39	8.17	-9.12	-2.22
6	6	-4	24.33	24.15	-24.29	-1.45
-6	6	4	26.57	24.62	-26.47	-2.27
6	6	4	23.79	22.01	-23.73	-1.75
-6	6	-6	30.49	26.26	29.25	8.62
6	6	-6	11.02	10.27	11.01	-0.53
-6	6	6	0.	3.88	0.	-0.
6	6	6	11.08	10.62	7.68	7.98
-6	6	-8	73.21	72.70	72.66	8.95
6	6	-8	34.04	30.59	32.81	9.08
-6	6	8	27.54	23.66	25.33	10.80
-6	6	-10	12.91	12.80	-12.91	-0.03
-6	6	10	42.67	41.87	42.02	7.43
-8	6	0	29.42	26.97	28.74	6.27
8	6	0	8.13	8.29	-5.72	5.78
8	6	2	35.84	36.53	34.60	9.35
-8	6	-2	63.62	64.59	62.80	10.18
8	6	-2	9.27	8.67	8.89	-2.63
-8	6	-4	0.	2.06	0.	0.
8	6	-4	2.50	1.36	-1.33	2.12
-8	6	4	9.23	6.66	$8 \cdot 94$	2.30
8	6	4	2.59	1.14	-0.96	2.41
-8	6	-6	6.21	4.65	-5.03	-3.64
8	6	-6	31.67	30.29	30.20	$\underline{9.55}$
-8	6	6	61.24	$60 \cdot 70$	60.35	10.38
-8	6	-8	45.98	42.49	45.62	5.78
-8	6	8	12.97	13.43	11.82	5.34
-8	6	-10	19.87	17.91	16.99	10.30
-8	6	10	6.47	5.13	-5.32	-3.69
-10	6	0	27.70	30.87	-27.55	-2.91
-10	6	2	14.44	15.54	14.01	3.50
-10	6	-2	38.50	36.60	38.32	3.72
-10	6	-4	48.18	43.98	46.84	11.27

-10	6	4	60.76	58.98	59.78	10.87
-10	6	-6	13.15	12.52	12.58	3.83
-10	6	6	37.92	34.51	37.73	3.81
-10	6	-8	25.48	21.54	-25.26	-3.36
-10	6	8	26.67	26.72	-26.47	-3.22
-10	6	10	18.04	17.86	17.68	3.57
-12	6	0	23.74	22.00	22.92	6.20
-12	6	2	48.20	46.56	47.07	10.37
-12	6	-2	6.30	2.88	-1.75	-6.05
-12	6	-4	13.80	12.41	-13.71	1.58
-12	6	4	12.86	11.33	-12.76	1.57
-12	6	-6	34.39	29.39	32.55	11.10
-12	6	6	12.25	9.25	-11.65	-3.79
-12	6	8	25.44	24.61	24.78	5.75
-14	6	0	16.33	14.75	13.11	9.73
-14	6	2	12.43	11.67	12.42	-0.48
-14	6	-2	21.67	27.80	20.90	5.71
-14	6	-4	13.62	13.16	-13.50	-1.78
-14	6	4	2.62	6.02	-2.49	-0.81
-14	6	6	23.97	22.37	22.66	7.83

Appendix III

Comparison of observed and calculated miructure factors of rhodonite.

H	K	L	FOBS	FCAL	AOBS	BOBS
0	1	0	6.19	3.45	10.63	1.29
1	0	0	6.14	4.93	-10.34	-2.84
2	0	0	23.43	18.89	-40.91	1.64
3	0	0	17.43	12.79	30.24	3.64
4	0	0	39.79	35.42	69.49	2.22
5	0	0	63.53	57.06	-108.93	-21.36
6	0	0	22.33	13.34	-35.72	15.71
7	0	0	9.10	1.96	-15.61	3.04
8	0	0	10.82	7.06	-18.84	-1.59
9	0	0	10.39	8.57	-18.15	-0.13
1	-1	0	22.35	19.77	38.33	7.46
1	1	0	43.59	2.42	-74.52	-15.74
2	-1	0	22.30	20.87	-38.96	-0.55
2	1	0	28.79	25.77	-50.19	-3.46
3	-1	0	36.25	35.46	-63.33	-1.24
3	1	0	46.85	44.28	-81.68	-5.53
4	-1	0	27.59	24.40	-47.92	-5.23
4	1	0	12.94	12.63	22.60	-0.54
5	-1	0	14.83	11.85	-24.16	-9.38
5	1	0	23.26	19.06	40.55	2.68
6	-1	0	9.98	7.63	4.89	-16.74
6	1	0	5.15	5.40	-7.44	5.06
7	-1	0	10.91	8.93	-18.91	2.44
7	1	0	31.69	26.67	54.57	9.37
8	-1	0	8.08	6.42	13.78	-3.09
8	1	0	18.61	12.99	29.59	13.48
9	-1	0	6.30	4.56	10.63	2.85
0	2	0	8.20	7.02	-14.31	-0.72
1	-2	0	3.52	1.24	-2.45	-5.64
1	2	0	0.	0.87	0.	-0.
2	-2	0	40.83	43.76	-71.23	-4.01
2	2	0	138.28	159.67	-240.61	-22.13
3	-2	0	76.55	83.40	132.35	19.35
3	2	0	22.44	20.57	38.77	5.88
4	-2	0	7.45	5.13	9.85	-8.52
4	2	0	12.08	10.20	20.93	-2.72
5	-2	0	5.06	5.68	-8.76	-1.17
5	2	0	13.42	11.86	-23.25	-3.05

6	-2	0	13.03	11.48	22.71	1.64
6	2	0	25.22	23.05	-44.07	0.26
7	-2	0	19.99	18.11	34.87	1.99
7	2	0	40.23	31.33	67.32	20.24
8	-2	0	27.53	25.19	-46.48	-12.39
8	2	0	12.72	11.93	18.50	-12.32
9	-2	0	7.55	8.15	-7.88	10.58
0	3	0	3.26	1.30	4.68	3.25
1	-3	0	20.31	21.68	35.49	0.47
1	3	0	17.62	19.45	-29.99	-6.95
2	-3	0	47.41	51.31	82.78	3.28
2	3	0	0.	8.19	0.	0.
3	-3	0	27.97	30.14	48.57	5.40
3	3	0	17.99	12.00	31.23	3.57
4	-3	0	42.76	44.99	73.18	15.06
4	3	0	14.82	12.42	25.40	5.06
5	-3	0	8.70	9.28	-15.05	-2.17
5	3	0	6.91	4.74	-10.69	5.62
6	-3	0	9.70	9.99	16.75	2.62
6	3	0	0.	0.92	0.	0.
7	-3	0	4.25	3.84	7.25	-1.60
7	3	0	25.07	19.54	-43.60	-4.24
8	-3	0	23.02	22.46	-39.91	-5.00
8	3	0	9.05	6.30	-13.80	-7.72
9	-3	0	29.42	23.99	-49.24	-14.76
0	4	0	9.74	7.82	15.16	7.73
1	-4	0	100.20	135.88	-174.40	-15.50
1	4	0	6.85	5.11	11.91	1.15
2	-4	0	18.00	18.73	31.41	1.57
2	4	0	28.13	22.85	49.15	0.47
3	-4	0	8.26	8.52	-14.37	1.37
3	4	0	13.32	12.72	22.88	4.26
4	-4	0	17.89	17.70	-31.22	-1.53
4	4	0	54.84	51.28	02.85	23.69
5	-4	0	41.17	43.89	-71.86	-3.32
5	4	0	8.84	7.03	12.15	-9.54
6	-4	0	37.13	38.75	63.79	11.86
6	4	0	18.31	13.82	31.70	4.31
7	-4	0	14.43	15.54	23.74	-8.49
7	4	0	22.44	18.72	39.13	2.50
8	-4	0	9.98	10.41	-16.33	-6.13
8	4	0	9.07	8.47	15.72	-2.04
9	-4	0	17.12	15.84	-29.69	-3.65
0	5	0	14.18	14.04	-24.66	-2.44
1	-5	0	15.10	14.30	-26.19	-3.21
1	5	0	6.78	5.88	-11.85	-0.11
2	-5	0	78.03	96.96	-135.58	-14.42
2	5	0	4.49	4.30	7.67	-1.67
3	-5	0	24.44	26.62	42.66	1.97
3	5	0	24.25	22.38	41.44	8.84
4	-5	0	3.06	1.51	2.09	-4.92
4	5	0	52.95	48.82	-92.41	-4.48
5	-5	0	3.48	2.83	-6.00	0.99
5	5	0	17.09	15.16	-29.64	-3.67
6	-5	0	21.02	23.47	36.57	3.39

6 7	5 -5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 5.04 \\ 25.49 \\ \hline \end{array}$	$\begin{array}{r} 3.86 \\ 28.43 \\ \hline \end{array}$	$\begin{aligned} & -6.49 \\ & 42.08 \end{aligned}$	$\begin{aligned} & -5.95 \\ & 14.59 \end{aligned}$
7	5	0	13.72	13.86	23.82	-2.67
8	-5	0	3.50	3.93	-0.31	-6. 11
9	-5	0	3.35	4.04	-5.06	2.94
0	6	0	8.10	6.46	-13.82	3.07
1	-6	0	18.16	15.71	-31.72	-1.02
1	6	0	119.33	130.60	207.78	17.42
2	-6	0	10.26	9.96	-17.87	1.38
2	6	0	9.25	7.31	-13.27	-2.23
3	-6	0	40.51	43.89	70.64	4.52
3	6	0	5.94	1.93	10.31	1.20
4	-6	0	42.75	$50 \cdot 18$	-73.98	-10.37
4	6	0	6.28	0.36	-2.19	-10.75
5	-6	0	4.44	$5 \cdot 10$	5.81	5.14
5	6	0	21.70	17.96	-37.21	-7.30
6	-6	0	9.62	10.62	15.58	6.31
6	6	0	30.61	24.76	-49.00	-21.44
7	6	0	5.66	4.90	-0.62	9.87
7	-6	0	0.	2.11	0.	0.
8	-6	0	0.	7.27	-0.	0.
9	-6	0	12.38	12.24	19.96	8.33
0	7	0	57.39	63.30	98.86	16.81
1	-7	0	3.32	0.84	-0.66	-5.76
1	7	0	9.46	8.59	-16.53	-0.36
2	-7	0	8.10	7.57	-14.02	1.91
2	7	0	18.96	16.21	33.08	1.82
3	-7	0	4.41	6.29	-7.70	-0.29
3	7	0	4.47	1.53	7.81	-0.28
4	-7	0	5.52	7.67	9.56	-1.26
4	7	0	7.14	7.76	12.41	1.29
5	-7	0	11.23	16.50	-14.33	-13.41
5	7	0	20.66	19.22	-35.09	-8.49
6	-7	0	6.70	8.30	-10.81	4.49
6	7	0	32.21	28.72	55.82	7.18
7	-7	0	14.93	17.38	-25.94	-2.73
8	-7	0	0.	2.56	-0.	-0.
9	-7	0	15.97	17.57	27.90	0.24
0	8	0	14.81	12.02	25.84	-1.33
1	-8	0	28.17	24.84	-48.82	-6.29
1	8	0	13.57	14.01	-23.71	-0.12
2	-8	0	30.10	29.73	51.45	10.93
2	8	0	37.58	36.84	-65.42	-5.72
3	-8	0	13.64	14.22	-23.73	-2.25
3	8	0	59.59	57.04	-102.83	-16.37
4	-8	0	5.00	4.27	5.05	-9.19
4	8	0	22.06	19.64	37.64	$8 \cdot 30$
5	8	0	3.33	3.31	-5.65	-1.39
5	-8	0	0.	2.16	-0.	-0.
6	8	0	6.81	8.19	-11.86	0.95
6	-8	0	0.	1.89	-0.	-0.
7	-8	0	24.53	29.03	-42.34	-6.64
8	-8	0	0 。	1.93	-0.	0.
9	-8	0	17.79	20.67	30.56	5.67
0	9	0	15.75	15.12	27.50	-1.06

$\angle 2 \cdot L$	6\＆•Tカ	$56 \cdot 6 \mathrm{I}$	$50^{\circ}+$ 2	0	$\varepsilon!-$	ε
	－	「द．	\bigcirc	0	हा－	2
$87^{*} 6$ I	ع0．8L	06．5ヵ	ع0•9カ	0	ε I	T
$08^{\circ} 1$	67．21－	$66^{\circ} 9$	90.01	0	हI－	1
－ 0	－0	$80^{\circ} \mathrm{T}$	－ 0	0	$\varepsilon \tau$	0
87＊8	कद．${ }^{\text {c }}$	TL．TT	29° T1	0	2I－	L
0S＊\dagger	85・カI	をと・6	$\varepsilon L \cdot 8$	0	2I－	9
$26^{\circ} 9$	67＊	${ }^{9} \mathrm{c}^{\circ} 91$	द7．8T	0	2I－	9
0カ・をー	9カ・ك	$\varepsilon 8^{\circ} 0$	$89^{\circ} \varepsilon$	0	2T－	\square
○サーロー	18．${ }^{\circ}$	L2＇G	हा＇G	0	21	ε
IT＊${ }^{\text {－}}$	56．t－	19＊5	$96^{\circ} \mathrm{L}$	0	2I－	ε
0¢\％${ }^{\circ}$	टह．6ह	दा०12	18.22	0	2 I	2
てて・ャー	$2 T \cdot L T$	$59 \cdot 9$	$60 \cdot 01$	0	2T－	2
15．${ }^{\text {c }}$	とでここ	65° T I	$88^{\circ} \mathrm{I}$ I	0	2 L	I
OT• $\varepsilon-$	99 ・どっ	$8 L^{\circ} \angle I$	$50 \cdot 52$	0	2T－	1
हद ${ }^{\circ} \varepsilon-$	O1＊01－	$10 \cdot 9$	2T09	0	$2 T$	0
0 T •2－	06．2T－	$90 \cdot 8$	$8{ }^{*}$－	0	T I－	8
75．${ }^{\circ}$	16．81－	$00 \cdot 71$	$59^{\circ} 11$	0	II－	$\stackrel{L}{2}$
$\tau \dagger \cdot L \tau$	$19 \cdot 62$	$0 \mathrm{~S} \cdot 8 \mathrm{~T}$	$69^{*} 61$	0	T 1 －	9
$18 * *$	66°［	$00^{\circ} 6$	TC＇IT	0	IT－	द
Iと・カ	0カー「9	$9 \mathrm{P} \cdot 8 \varepsilon$	$80 \cdot 9 E$	0	II	\rightarrow
ह0＇\％－	דह．11－	ट5＇\％	68%	0	TI－	万
－ 0 －	－ 0 －	$\rightarrow 6^{\circ} \mathrm{T}$	－ 0	0	T－	ε
060	9て．$¢ 乙$	हד＇1T	＜ह＇हा	0	II	ε
$29 \cdot 0$	L8．9－	$85 \cdot 2$	$56^{\circ} \mathrm{\varepsilon}$	0	IT	2
मह．	61	$90^{\circ} \mathrm{B}$	$6 \bar{S}^{\circ} \mathrm{L}$	0	TI－	己
ع6＊－	Tと・Tヶー	19•12	$\varsigma 9^{\circ} \mathrm{\varepsilon}$ 乙	0	IT	I
9ह．दू－	26． IT－$^{\text {a }}$	G7＊LS	$16^{\circ} 29$	0	IT－	τ
$90^{\bullet \bullet}$	2T•92		$\varepsilon T \cdot \zeta T$	0	II	0
86＊－	דह．द्वा－	C2．01	हा＇6	0	OT－	8
LZ． 5 －	く5•力	$\dagger \mathrm{T} \cdot \mathrm{S}$	$66^{*} \varepsilon$	0	OT－	L
＜6\％		$16^{\circ} \mathrm{L}$	$65^{\circ} 9$	0	OL－	9
$5 ¢ \cdot 9$	$\rightarrow 2 \cdot 05$	$55^{*} 0 \varepsilon$	$86 \cdot 82$	0	OT－	5
$86^{\circ} \mathrm{L}$	Lद．${ }^{\text {¢ }}$	59.62	हा०てह	0	0 OT	7
$L L^{\circ}$ Z	$9 \mathrm{~T} \cdot 6 \tau$	てヵ・0I	$80^{\circ} \mathrm{I}$ I	0	OT－	${ }^{7}$
くわ．	92.02	ह8．01	16．t T	0	01	ε
$\tau<\cdot \varepsilon$	$\varepsilon L \cdot て 乙$	$\dagger \varepsilon \cdot \tau T$	$8 T \cdot \varepsilon \tau$	0	OT－	ε
$66^{\circ} 0$	$19 . \mathrm{CL}$	ह6．1T	$56^{\circ} \mathrm{L}$	0	01	2
$\varsigma \varepsilon \cdot 9$	19＊ 2 －	てカ・をโ	5て・9I	0	OT－	2
$66^{\circ} \mathrm{E}$	OE：8－	OLL	$\underline{L 2.5}$	0	0 OT	I
＋0 ${ }^{\circ}$－	LL＇tT	$\left[S^{\circ} \mathrm{S}\right.$	91•9	0	OT－	I
$86^{\circ} 8$	O2．टヵー	$65^{\circ} \mathrm{E}$（	69.72	0	01	0
とでて！－	6T•08－	OL・てて	79 ${ }^{\circ} 8$ I	0	6－	8
L＊＊	98002	दूरहा	26.11	0	6 －	2
－ 0	－0－	E0．S	－ 0	0	6－	9
$90^{\circ} \mathrm{I}$	18．${ }^{\text {L－}}$	18.0	とて＊	0	6	G
$6 \underbrace{*}$ 2	$66 \cdot 25$	10.02	ع6．8T	0	6－	5
－ 0	－ 0	$9 L^{\circ} \mathrm{E}$	${ }^{\circ} \mathrm{O}$	0	6	7
$50^{\circ} \mathrm{S}-$	T0．5－	$06^{\circ} 0$	L0．ヵ	0	6	\square
द9 ${ }^{\circ} \mathrm{E}$	妃可年	ह． 92	L5．92	0	6	ε
Lと＊て	をT•9カ	$87^{*} 82$	$\dagger \varepsilon \cdot 6 乙$	0	6－	ε
$88^{\circ} \mathrm{LI}$	95．${ }^{\text {¢ }}$－	LT•8を	$68^{\circ} 8 \varepsilon$	0	6	2
ع0＊ $1-$	55•8－	$02 \cdot \square$	ع6＊${ }^{\circ}$	0	6－	2
דワ＊	LS．9－	阿星	$\angle L^{\circ} \mathrm{E}$	0	6	T
6サ・0	80^{\bullet} \＆\ni	98＊τ	OT•9E	0	6－	T

4	-13	0	18.01	15.36	-24.41	-19.87
5	-13	0	7.54	6.91	-11.61	6.23
6	-13	0	0 .	2.22	-0.	0.
0	14	0	0.	2.30	0.	0.
1	-14	0	4.66	2.76	-6.06	5.44
2	-14	0	11.53	8.86	19.97	2.69
3	-14	0	15.98	14.04	27.31	-5.80
4	-14	0	14.95	12.59	-25.70	-4.68
5	-14	0	19.58	17.49	-32.41	-10.96
1	0	1	0.	1.76	-0.	-0.
-1	0	1	0.	2.87	-0.	-0.
2	0	1	12.06	10.97	-20.77	-3.54
-2	0	1	44.19	42.63	77.15	-3.14
3	0	1	8.34	6.56	-14.45	-1.85
-3	0	1	9.70	8.83	-16.74	-2.64
4	0	1	35.14	31.18	-61.32	-3.11
-4	0	1	42.02	40.30	-73.15	-6.27
5	0	1	22.02	21.79	-38.08	-5.53
-5	0	1	46.76	42.69	-79.38	-19.37
6	0	1	15.28	13.50	26.29	4.63
-6	0	1	22.69	22.48	39.36	4.79
7	0	1	34.30	34.10	F.9.54	6.83
-7	0	1	24.25	22.34	-42.36	-1.01
8	0	1	9.81	6.85	14.96	8.37
-8	0	1	3.86	0.71	-6.72	0.58
9	0	1	0.	4.72	0.	0.
-9	0	1	0.	3.79	0.	0.
0	1	1	3.64	2.85	6.10	1.81
0	-1	1	0.	0.98	-0.	0.
1	-1	1	39.69	44.87	65.73	22.11
-1	-1	1	9.95	9.73	17.39	0.01
1	1	1	0.	8.34	0.	-0.
-1	1	1	0.	3.20	-0.	-0.
2	-1	1	5.01	5.34	-7.40	-4.67
2	1	1	22.29	20.35	-38.60	-5.19
-2	-1	1	14.36	11.87	25.09	-0.33
-2	1	1	33.77	38.58	56.75	16.17
3	-1	1	43.69	39.37	76.17	5.07
3	1	1	96.73	97.18	-167.56	-22.17
-3	-1	1	22.25	19.45	38.56	4.99
-3	1	1	2.95	4.62	-5.05	-1.06
4	-1	1	14.34	12.88	24.77	3.78
4	1	1	6.79	8.67	10.62	5.28
-4	-1	1	59.95	60.81	-103.22	-17.87
-4	1	1	0.	1.00	-0.	-0.
5	-1	1	45.11	38.94	-78.81	-1.49
5	1	1	28.44	25.88	-49.32	-6.12
-5	-1	1	27.98	26.64	48.55	5.74
-5	1	1	0.	4.51	-0.	-0.
6	-1	1	23.14	20.57	-35.58	-12.21
-6	-1	1	21.99	20.78	38.36	2.15
6	1	1	0.	3.09	0.	-0.
-6	1	1	0.	3.53	-0.	0.
7	-1	1	50.69	51.92	C7.82	11.50
7	1	1	13.98	15.15	24.27	2.77

-7	1	1	$7 \cdot 31$	$7 \cdot 27$	-9.09	-8.98
-7	-1	1	0.	0.92	0.	0.
8	-1	1	13.98	13.23	-24.31	-2.40
8	1	1	17.38	17.05	27.45	12.99
-8	-1	1	8.01	7.15	-13.77	-2.50
-8	1	1	41.85	38.31	72.58	8.92
9	-1	1	6.38	$5 \cdot 51$	-11.09	-1.16
-9	1	1	15.08	14.42	25.60	6.25
0	-2	1	10.07	2.67	-15.89	7.56
0	2	1	9.13	11.72	15.77	2.41
1	-2	1	$7 \cdot 16$	5.97	12.49	0.64
1	2	1	3.21	4.89	5.31	1.81
-1	2	1	23.58	25.98	$-41 \cdot 16$	1.80
-1	-2	1	0.	6.86	0.	-0.
2	-2	1	$54 \cdot 13$	52.83	94.54	2.95
2	2	1	37.04	39.36	-63.68	-11.57
-2	-2	1	17.01	16.27	-27.91	-10.23
-2	2	1	0.	3.06	0.	-
3	-2	1	19.06	18.27	32.99	4.58
3	2	1	3.43	4.15	4.54	3.92
-3	-2	1	12.24	11.46	21.06	3.71
-3	2	1	24.00	24.25	36.58	20.50
4	-2	1	13.12	10.12	-22.78	-2.55
4	2	1	12.04	10.72	20.62	4.18
-4	-2	1	38.83	34.86	-67.77	3.22
-4	2	1	16.86	15.71	-29.16	-4.16
5	-2	1	30.97	27.78	-53.56	-7.71
5	2	1	9.89	9.01	17.14	2.19
-5	-2	1	13.40	11.61	23.16	3.43
-5	2	1	24.38	22.41	42.60	0.15
6	-2	1	17.81	14.40	-30.14	-7.76
6	2	1	37.25	37.28	65.03	2.79
-6	-2	1	26.03	22.20	44.55	9.16
-6	2	1	0.	0.74	-0.	0.
7	-2	1	52.21	45.52	-90.62	-10.53
7	2	1	19.08	18.00	32.76	6.20
-7	-2	1	47.01	39.26	80.51	16.31
-7	2	1	9.86	8.54	16.85	-3.58
8	2	1	4.30	3.76	-3.26	-6.77
-8	-2	1	33.86	33.56	-58.97	-4.84
-8	2	1	43.40	39.40	-73.60	-18.28
8	-2	1	0.	1.91	-0.	-0.
9	-2	1	8.53	8.98	-14.83	-1.50
-9	2	1	34.82	35.94	60.28	8.22
0	-3	1	11.21	10.79	-19.42	2.55
0	3	1	22.11	20.95	34.09	-18.17
1	-3	1	26.56	27.34	-46.30	-3.15
1	3	1	26.84	26.39	46.50	6.09
-1	-3	1	15.84	20.81	-19.69	-19.45
-1	3	1	17.72	17.94	-30.89	-2.11
2	-3	1	41.84	35.49	-72.97	-4.58
2	3	1	10.66	10.09	18.45	-2.53
-2	-3	1	16.41	14.82	28.60	$2 \cdot 12$
-2	3	1	6.01	5.63	-10.48	0.60
3	-3	1	14.56	13.24	25.41	-1.25

3	3	1	5.17	4.71	-8.92	1.46
-3	-3	1	18.62	15.63	-32.54	-0.10
-3	3	1	0.	2.19	-0.	0.
4	-3	1	48.75	44.15	82.15	22.54
4	3	1	27.48	27.91	47.54	6.73
4	-3	1	16.23	14.93	-28.35	-0.75
-4	3	1	21.17	18.63	36.76	-4.16
5	-3	1	51.30	46.70	-89.03	-10.45
5	3	1	79.80	55.55	137.02	25.87
-5	-3	1	10.29	12.18	19.05	-2.44
-5	3	1	20.06	21.01	34.04	8.34
6	3	1	37.70	38.79	-65.47	-7.26
-6	-3	1	54.09	47.83	92.72	18.33
-6	3	1	46.02	41.35	-80.15	-6.49
6	-3	1	0.	3.09	0.	0.
7	-3	1	8.05	6.99	13.79	2.76
7	3	1	12.34	10.68	20.43	6.90
-7	-3	1	34.96	29.85	-60.27	-9.98
-7	3	1	23.65	22.00	-40.76	-6.80
8	3	1	3.99	4.68	-6.94	0.65
-8	-3	1	6.58	7.74	-11.40	-1.47
-8	3	1	12.29	11.31	-20.52	-6.34
8	-3	1	0.	4.87	-0.	-0.
9	-3	1	19.13	19.91	-31.72	-10.55
-9	3	1	25.10	24.28	-43.76	-2.98
0	-4	1	14.46	14.65	-25.07	-3.14
0	4	1	0.	1.53	-0.	0.
1	-4	1	14.76	13.49	25.60	-3.13
1	4	1	5.51	4.45	-9.34	-2.32
-1	-4	1	8.52	9.12	-14.87	0.71
-1	4	1	60.79	81.19	-104.93	-16.50
2	-4	1	7.17	4.18	-12.53	-0.06
2	4	1	25.68	25.45	-44.77	-2.95
-2	-4	1	9.38	7.61	16.38	-0.51
-2	4	1	15.37	15.83	-26.77	2.20
3	-4	1	18.99	18.16	32.55	6.47
-3	-4	1	10.98	9.53	18.40	5.42
-3	4	1	5.27	4.68	-9.17	0.84
3	4	1	0.	1.73	-0.	-0.
4	-4	1	24.90	22.11	4.3.01	6.60
4	4	1	28.47	29.63	48.43	11.36
-4	-4	1	4.67	4.27	0.98	8.10
-4	4	1	0.	1.87	-0.	0.
5	-4	1	102.44	101.25	178.63	11.40
-5	-4	1	34.29	31.84	-59.84	-3.11
-5	4	1	12.80	12.06	-22.34	0.97
5	4	1	0 .	4.52	-0.	-0.
6	-4	1	8.33	8.71	14.47	1.53
6	4	1	12.49	13.52	-21.60	-3.15
-6	-4	1	10.41	10.38	17.97	-2.84
-6	4	1	74.97	72.72	129.26	21.29
7	4	1	15.17	14.89	-26.41	-2.29
-7	-4	1	30.04	7.49	-50.66	-13.75
-7	4	1	28.70	29.47	-49.70	-6.72
7	-4	1	0 .	2.93	-0.	0.

8	－4	1	8.34	7.92	－14．04	－3．92
－8	－4	1	17.72	14.70	－29．33	－9．91
－8	4	1	11.42	10.35	19.92	1.09
8	4	1	0.	17.69	－0．	-0.
9	－4	1	6.56	7.38	10.82	－3．79
－9	4	1	12.41	11.68	21.58	2.18
0	－5	1	4.73	4.12	－7．18	4.10
0	5	1	0.	3.17	0.	0.
1	－5	1	14.51	14.17	25.06	3.87
1	5	1	27.32	32.92	47.54	4.29
－1	－5	1	10.26	1.26	－7．91	16.09
-1	5	1	12.37	11.56	21.59	－1．05
2	－5	1	83.58	85.43	－144．44	－21．54
2	5	1	7.50	11.31	8.78	9.73
－2	－5	1	19.19	15.73	33.53	0.39
－ 2	5	1	9.26	10.16	15.86	3.23
3	－5	1	7.84	7.92	12.35	5.92
3	5	1	11.15	12.55	－18．83	－4．99
－3	－5	1	45.38	40.45	74.66	26.71
－3	5	1	17.98	16.97	－30．32	－8．21
4	－5	1	11.39	10.24	19.90	－0．36
4	5	1	22.24	22.42	38.75	2.88
－4	－5	1	9.34	9.00	－15．43	-5.33
－4	5	1	0.	2.43	0.	0.
5	5	1	2.50	6.98	－4．29	－0．82
－5	5	1	24.73	21.57	42.70	6.61
5	－5	1	0 。	2.26	0.	－0．
－5	－5	1	0.	0.35	－0．	0.
6	－5	1	8.28	9.26	14.43	－0．99
6	5	1	21.96	21.46	－37．57	－7．79
－6	－5	1	6.23	3.70	－10．69	2.05
－6	5	1	25.11	22.75	43.38	6.56
7	－5	1	13.49	12.87	18.96	14.00
7	5	1	22.99	20.57	－37．41	－14．64
－7	－5	1	9.19	6.76	－16．00	1.32
－7	5	1	6.13	7.79	10.26	3.09
8	－5	1	51.02	45.13	－88．01	－14．18
-8	5	1	8.27	7.59	13.67	4.70
9	－5	1	6.64	6.36	－10．76	－4．33
－9	5	1	13.89	11.64	－24．00	－3．59
0	－6	1	14.09	13.26	24.56	1.65
0	6	1	4.41	3.57	－7．70	－0．28
1	－6	1	2.18	$2 \cdot 84$	0.90	－3．70
1	6	1	67.43	85.93	116.63	16.72
－1	－6	1	20.68	20.34	－36．11	1.28
－1	6	1	2.06	7.92	15.75	－1．62
2	－6	1	29.99	27.42	－52．17	－4．89
－2	－6	1	11.38	7.63	19.16	5.30
－2	6	1	32.95	35.35	57.57	－0．79
2	6	1	0.	4.99	0.	－0．
3	－6	1	83.09	80.62	－144．57	-13.37
3	6	1	8.42	9.68	-14.60	1.85
－3	－6	1	52.11	45.95	91.02	－2．61
－3	6	1	0.	3.40	0.	－
4	－6	1	0 ．	1.32	0.	－0．

4	6	1	5.08	6.14	-8.65	2.00
4	6	1	61.11	69.18	-104.80	-20.46
-4	-6	1	0.	3.05	0 .	-0.
5	-6	1	14.73	13.29	-25.35	-4.48
5	6	1	6.71	8.60	-11.72	0.14
-5	-6	1	17.12	14.40	-29.05	-7.14
-5	6	1	11.76	13.02	20.20	3.76
6	-6	1	5.94	6.44	2.98	2.86
6	6	1	21.18	21.42	-35.60	-10.12
-6	-6	1	8.90	5.85	-13.61	-7.52
-6	6	1	6.73	6.16	11.76	-0.30
7	-6	1	8.75	5.87	-13.87	6.44
7	6	1	5.14	5.89	2.17	8.72
-7	-6	1	15.45	14.63	26.92	2.04
-7	6	1	0.	2.46	-0.	-0.
8	-6	1	22.68	16.52	36.35	15.78
-8	6	1	31.12	31.48	-54.31	-2.65
9	-6	1	4.61	3.48	5.69	-5.70
-9	6	1	18.82	19.82	30.11	13.21
0	-7	1	41.62	44.62	69.90	20.08
0	7	1	16.89	18.19	-29.39	-2.63
1	7	1	7.66	7.95	-13.38	0.35
-1	-7	1	39.79	37.86	-69.23	-6.38
-1	7	1	16.19	18.15	-27.74	5.56
1	-7	1	0.	1.08	0.	-0.
2	-7	1	10.66	10.44	18.62	-0.29
2	7	1	9.08	11.37	15.74	-1.99
-2	-7	1	22.46	20.28	-39.14	-2.89
-2	7	1	8.84	7.37	15.43	-0.70
3	-7	1	25.59	22.44	44.50	4.32
-3	-7	1	3.09	2.02	-5.16	-1.60
-3	7	1	26.60	28.41	-46.29	-4.16
3	7	1	0.	4.40	-0.	-0.
4	-7	1	12.93	11.27	-22.26	3.88
4	7	1	32.34	33.91	-55.45	-10.89
-4	-7	1	12.04	9.60	-20.75	-3.47
-4	7	1	28.97	30.48	-50.38	-4.95
5	-7	1	2.33	10.55	-9.29	-12.88
5	7	1	10.28	10.15	17.34	4.67
-5	-7	1	54.96	49.55	-03.39	-22.36
-5	7	1	15.49	14.17	-26.49	-5.55
6	-7	1	48.41	44.14	83.91	10.72
6	7	1	10.49	10.48	-18.11	-2.81
-6	-7	1	9.67	2.84	15.25	7.27
-6	7	1	10.65	9.13	18.17	-4.04
7	-7	1	28.17	23.78	48.76	6.73
-7	7	1	10.42	14.58	$18 \cdot 16$	1.25
-8	7	1	7.89	6.90	12.37	6.08
8	-7	1	0.	1.14	0.	0.
2	-7	1	14.14	11.79	24.30	4.46
-9	7	1	6.73	6.56	9.89	6.37
0	-8	1	28.80	27.94	50.27	2.34
0	8	1	41.56	46.73	-72.60	1.73
1	-8	1	39.22	40.52	67.19	13.49
-1	-8	1	6.96	4.90	11.26	4.61

-1	8	1	6.43	6.46	-10.29	-4.51
1	8	1	0.	2.06	-0.	0.
2	-8	1	6.91	4.04	-12.07	0.24
2	8	1	13.12	13.84	22.86	-1.69
-2	-8	1	10.70	10.42	18.53	-2.47
-2	8	1	57.85	65.52	58.92	20.82
3	-8	1	21.30	17.81	36.85	5.23
3	8	1	45.07	48.25	-76.78	-17.50
-3	-8	1	9.06	8.10	15.83	0.06
-3	8	1	16.24	15.94	28.37	-0.81
4	-8	1	13.70	13.46	-23.83	-2.25
4	8	1	10.49	12.39	-17.21	6.30
-4	-8	1	5.51	5.08	8.68	-4.17
-4	8	1	4.66	3.33	-8.14	-0.27
5	-8	1	21.84	17.91	-37.92	-4.26
5	8	1	5.09	4.04	-8.27	-3.28
-5	-8	1	16.78	15.69	-29.03	4.10
-5	8	1	22.80	21.76	39.79	1.93
6	-8	1	66.90	60.79	-115.76	-16.24
-6	8	1	29.63	36.30	51.61	4.06
6	8	1	0.	4.91	0.	-0.
-6	-8	1	0.	1.64	0.	0.
7	-8	1	21.29	17.50	36.85	5.08
-7	8	1	41.92	39.89	-71.24	-17.02
8	-8	1	19.30	15.25	-33.07	-6.59
-8	8	1	25.85	25.08	44.10	8.78
9	-8	1	0 .	13.02	-0.	0.
-9	8	1	0.	3.43	-0.	0.
0	-9	1	3.53	5.97	-6.16	0.24
0	9	1	0.	13.77	-0.	-0.
1	-9	1	34.98	34.46	-61.01	-3.65
1	9	1	10.65	11.35	18.11	-4.28
-1	-9	1	2.73	1.79	3.65	-3.07
-1	9	1	15.80	17.34	27.50	2.49
2	9	1	14.47	16.87	25.24	1.51
-2	-9	1	16.62	15.54	-20.65	-20.41
2	-9	1	0 .	3.45	-0.	-0.
-2	9	1	0.	4.30	0.	0.
3	-9	1	42.91	35.72	72.99	17.16
3	9	1	8.08	8.11	14.11	0.58
-3	-9	1	18.26	17.24	30.90	7.96
-3	9	1	31.69	33.98	55.08	5.71
4	-9	1	25.35	22.31	-43.76	-6.86
-4	-9	1	10.42	8.70	18.14	1.57
-4	9	1	7.55	6.78	-12.91	2.73
4	9	1	0.	3.68	0.	0.
5	-9	1	37.92	33.75	-65.86	-7.26
5	9	1	6.05	6.75	8.20	6.67
-5	9	1	16.75	16.61	-29.26	-0.68
-5	-9	1	0.	1.92	0.	0.
-6	9	1	17.67	20.58	-30.59	-4.22
6	-9	1	0.	4.67	0.	-0.
7	-9	1	14.73	11.98	-25.53	-3.29
-7	9.	1	3.55	11.83	-5.94	-1.79
8	-9	1	20.13	16.79	-32.61	-13.18

$9 \varepsilon^{*} 0$	86•9スー	$\tau \varepsilon \cdot G T$	カサ・ら T	I	2I－	T
$91^{\circ} 0$	LO＇LI	820 TI	LL＇6	I	$2 I$	0
L8＊${ }^{\circ}$	$8 \varepsilon \cdot T \mathrm{~T}$	ご・ら	$\varepsilon G \cdot 9$	T	こI－	0
－0－	${ }^{\circ} \mathrm{O}-$	8द． 22	－ 0	T	IT	8
－ 0	－ 0	$69^{\circ} 0$	－ 0	I	II	L－
$66^{\circ} \mathrm{E}-$	द8．${ }^{\circ}$	6T．8	$08^{\circ} 8$	T	T 1	L
$\varepsilon \varepsilon \cdot T T$	$88 \cdot 07$	$0 カ \cdot L 2$	82・ャて	T	I I	9－
＊T－て！	76.6	$98^{\circ} \mathrm{L}$	86＊8	I	IT	9
［9＊ 7	$86 \cdot 62$	08．LT	$9 \varepsilon \cdot L T$	I	II	$5-$
\cdots	$\cdot 0$	G6．0	－ 0	τ	IT－	5
－ $0-$	－ $0-$	29＊G	－ 0	I	TI	7
－0	－ 0	$60^{\circ} \mathrm{E}$	－ 0	τ	T－	7
$8 カ$－¢	$88 \cdot 8 \varepsilon$	ع8＊92	カを・てて	I	［［	ワー
くL＊91	$99^{\circ} 01$	Lह－ण	दह＇T1	I	IT－	カー
－ 0	－ 0	$\bigcirc \varepsilon \cdot \varepsilon$	－ 0	I	II－	$\varepsilon-$
［T•0－	द5．91－	L6＊	Lヵ＊	I	IT	$\varepsilon-$
$\varepsilon ャ \bullet$ 2	62．01－	$G G^{*} L$	50.9	T	I I	ε
$29^{\circ} 9$	てE．IL	$56^{\circ} 88$	$66^{\circ} 07$	T	II－	
－0－	－0－	$26 \cdot 0$	－ 0	I	IT	て－
－0	－ 0	97＊	－ 0	1	I－	2－
－ 0	－ $0-$	て，カ	－ 0	I	T T	2
$60^{\circ} \mathrm{C}$	हわ＇とट	Lह＊	$97^{\circ} \mathrm{E}$ I	I	T	？
こヵ＊ 9 －	8T•25－	86＊$\frac{1}{}$	$60^{\circ} 0 \varepsilon$	I	IT	T－
	6L．${ }^{\text {¢ }}$	8与． 2	$95^{\circ} \cdot{ }^{\circ}$	I	IT－	［－
06＊0－	88＊6－	$76 \cdot 9$	89＊G	I	IT	I
$88^{\circ} \mathrm{E}$－	LL＇CS	9\％．82	हて＂［ह	T	T－	T
－ 0 －	－ 0	［0＊+	－ 0	I	IT	0
$\varepsilon L \cdot 9$	$6 T \cdot T \varepsilon$	$\varepsilon 9 \cdot L T$	92．81	I	TI－	0
－0－	－ 0 －	$9 \varepsilon \cdot 乙$	－ 0	I	OT	8－
OL＇0－	$\varepsilon 8^{\circ} 07$	7T．8I	$L \varepsilon \cdot \varepsilon ट$	T．	OT－	8
$\rightarrow 6^{*}$－	と0•与てー	LL＊9T	0G・ャI	I	0 I	L－
LC＇L	$69^{\circ} \mathrm{CL}$	ह8＇01	8द हा	T	OT－	L
LT・カー	Oサ・LI－	68＊ヶT	ャて・0I	I	0 T	$9-$
OL＊	हら． 21	$68 \cdot 9$	ह！ 8	I	OT－	9
$T \varepsilon \cdot L T$	95•88	$\angle L \cdot O S$	79°［G	I	OL	$5-$
Iて＊＊ー	76•9\％＊	ह6． 12	L6．92	I	OL－	5
－0	－ $0-$		－ 0	I	OT－	ヶ－
－ 0	－	78°	－ 0	I	OT	क
19＊9－	くカ・てらー	$08 \cdot 18$	LZ•OE	T	0 T	$7 \rightarrow$
$96^{\circ} \mathrm{EL}$	हG．6IT	［8．78	L8．89	I	OT－	Ђ
－0－	－0		－ 0	I	0 T	ε
$88^{\circ} 0$	$65 \cdot 8 \varepsilon=$	$00 \cdot \varepsilon て$	$60 \cdot 22$	I	OT	$\varepsilon-$
00＊2－	$L L \cdot G T-$	$62^{*} 8$	OT＊6	！	0 T－	$\varepsilon-$
$80 \cdot 2$	8t＊9を	पह－8t	72．02		OL－	ε
$5 \overbrace{}^{*} 0$	T8•2T	$16^{\circ} 9$	$\varepsilon \varepsilon^{\bullet} L$	โ	0 T	2－
$98 * 0$	7で或场	$28^{\circ} 61$	LT＊OZ	I	OT－	2－
06＊2－	$69 \cdot$ ここ	$99^{\circ}+$ T	$99^{\circ} \mathrm{EL}$	T	0τ	？
$\varepsilon 0^{\circ} \mathrm{z}$	2900t	$80^{\circ} 7$	$6 \mathrm{~T}^{\circ} \mathrm{O}$	T	OT－	2
8でて－	89＊81－	T6＊TT	$\angle L \cdot O T$	T	0 T	I－
$98^{\circ} \mathrm{EL}$	दT＊6て	हら・8T	LT＊		OT－	I－
$76{ }^{\circ} \mathrm{G}$	$70 \cdot 6$	$\varepsilon 6 \cdot 9$	6T＊9	I	OL	I
$66^{\circ} \varepsilon=$	Lて＊カわ＂	$58^{\circ} \mathrm{GL}$	カワ＊ 5 ？	L	OT－	T
†L＊6T－	$26^{\circ} \mathrm{LL}$	$58^{\circ} 05$	$00 \cdot 97$	I	0τ	0
$12 * 0$	$98.02=$	\＄t हा	76.11	I	OT－	0
$5 S^{\circ} \mathrm{OL}$	$76 \cdot<9-$	L8＊8を	$\varsigma \varepsilon \cdot \sigma \varepsilon$	I	6	8－

1	12	1	6.89	8.02	11.21	4.39
-1	－12	1	5.97	5.11	9.69	3.86
－1	12	1	27.87	29.93	48.70	－0．24
2	－12	1	56.33	57.16	－96．77	－17．99
2	12	1	39.50	43.47	66.98	16.66
－2	12	1	16.55	17.46	27.83	7.88
－2	－12	1	0 ．	0.17	－0．	－0．
3	－12	1	5.10	4.06	8.51	2.66
－3	－12	1	13.17	14.64	19.91	11.54
－3	12	1	37.75	38.29	－64．00	－15．97
3	12	1	0.	8.46	0.	－0．
4	－12	1	20.61	20.61	－35．70	-4.76
－4	12	1	5.79	5.50	9．85	2.30
5	－12	1	13.13	7.37	－22．65	－3．67
－5	12	1	24.48	24.54	42.55	4.34
6	－12	1	6.39	5.70	－11．10	－1．19
－6	12	1	4.27	10.71	－7．44	0.54
7	－12	1	27.87	25.42	46.49	14.50
－7	12	1	39.35	39.99	－68．65	－3．82
0	－13	1	4.75	4.55	－8．18	1.43
0	13	1	8.68	9.17	－15．14	0.86
1	－13	1	15.84	11.97	－26．79	－6．97
1	13	1	7.90	7.96	11.95	6.91
－1	－13	1	16.39	13.85	26.11	11.76
－1	13	1	0.	2.87	0.	0.
2	－13	1	12.15	10.10	21.21	-1.00
－2	13	1	17.86	18.20	－31．03	－3．30
3	－13	1	4.39	4.71	－7．65	－0．60
－3	13	1	5.41	5.86	－9．12	－2．49
4	－13	1	14.42	13.12	-23.09	－10．08
－4	13	1	23.29	23.64	－38．20	－14．04
5	－13	1	16.70	11.03	29.14	1.44
－5	13	1	0.	6.23	0.	－0．
6	－13	1	35.79	36.66	62.12	7.21
－6	13	1	2.45	7.17	－4．21	－0．78
0	－14	1	0.	22.12	0.	0.
0	14	1	0.	10.92	－0．	－0．
1	－14	1	10.35	11.28	18.08	-0.46
－1	14	1	28.20	26.86	47.04	14.69
2	－14	1	12.60	14.33	21.75	3.42
－2	14	1	5.61	6.78	9.74	1.13
3	－14	1	5.12	2.62	7.42	5.00
－3	14	1	12.05	14.87	－20．88	－2．75
4	－14	1	5.30	4.37	-8.52	3.62
－4	14	1	7.91	11.97	13.77	－1．15
5	－14	1	0.	30.96	－0．	－0．
－5	14	1	0.	14.33	0.	0.
－1	0	2	83.57	87.50	145.41	13.36
1	0	2	0.	2.75	－0．	0.
2	0	2	21.74	18.99	－37．87	－2．98
－2	0	2	10.85	10.34	－18．93	0.98
3	0	2	33.96	31.05	-58.93	－6．99
－3	0	2	11.05	9.88	19.30	0.47
4	0	2	68.71	62.59	-118.53	-19.08
－4	0	2	0 ．	2.12	0 。	－0．

5	0	2	12.16	12.24	20.63	5.08
-5	0	2	46.59	40.93	81.38	2.03
6	0	2	13.77	14.16	-22.83	-7.58
-6	0	2	15.46	14.03	-26.51	-5.20
7	0	2	10.86	9.51	-18.98	0.17
-7	0	2	20.60	16.70	35.24	7.32
8	0	2	8.14	10.18	13.87	3.14
-8	0	2	15.51	14.04	26.58	5.31
-9	0	2	17.95	16.33	30.36	7.89
0	-1	2	33.80	36.65	-58.98	-3.07
0	1	2	37.64	42.30	65.72	2.58
0	-1	2	100.40	108.70	174.86	14.18
1	1	2	22.84	23.58	39.52	5.53
-1	-1	2	65.31	68.74	-113.98	-5.59
-1	1	2	10.88	10.46	18.94	-1.61
2	-1	2	27.48	26.71	-47.68	-5.66
2	1	2	33.37	28.89	58.29	1.53
-2	-1	2	8.18	7.10	-14.08	-2.48
-2	1	2	78.15	81.95	134.69	22.50
3	-1	2	14.84	14.24	-25.71	-3.37
3	1	2	91.04	59.74	-157.47	-22.58
-3	-1	2	16.67	14.04	-29.02	-2.56
-3	1	2	4.99	5.17	8.36	-2.49
4	-1	2	7.05	6.43	12.27	1.07
4	1	2	54.96	55.15	95.59	9.17
-4	-1	2	97.70	95.14	-169.26	-22.26
-4	1	2	41.14	37.98	-71.82	-3.11
5	-1	2	47.55	42.13	83.01	-3.48
-5	-1	2	9.73	6.53	-15.43	7.15
-5	1	2	6.24	4.29	-10.87	-0.82
5	1	2	0.	2.69	0 -	0.
6	-1	2	23.75	22.80	-40.40	-9.49
-6	-1	2	20.19	17.02	35.21	2.25
-6	1	2	16.51	14.18	-28.85	0.41
6	1	2	0.	1.81	-0.	-0.
7	-1	2	20.40	18.63	34.64	8.40
7	1	2	10.72	10.10	-18.23	4.33
-7	1	2	55.92	49.27	-25.10	-22.42
-7	-1	2	0.	2.44	0 .	-0.
8	-1	2	12.67	13.84	21.44	5.51
8	1	2	10.40	12.18	16.79	6.95
-8	-1	2	15.59	14.11	27.17	1.91
-8	1	2	10.89	8.18	-16.36	9.72
-9	1	2	6.67	7.67	11.64	0.68
0	-2	2	24.89	25.04	43.47	1.29
0	2	2	19.24	20.12	-33.45	-3.35
1	-2	2	37.93	34.62	66.10	4.86
1	2	2	58.46	64.91	-101.52	-11.34
-1	-2	2	26.54	25.31	-46.22	-3.81
-1	2	2	14.00	14.05	24.37	-2. 17
2	-2	2	28.53	29.94	45.83	19.61
2	2	2	20.33	18.88	35.40	2.95
-2	-2	2	24.04	22.93	41.79	4.27
-2	2	2	10.58	10.01	18.27	2.80
3	-2	2	23.34	23.56	-40.50	-4.78

3	2	2	4.06	4.04	-5.83	-4.04
3	-2	2	60.18	54.51	-103.94	-15.95
-3	2	2	53.14	51.22	-92.85	-0.83
4	-2	2	14.99	14.07	24.85	8.27
4	2	2	15.51	15.27	26.82	3.88
-4	-2	2	17.47	15.92	30.44	2.32
-4	2	2	7.24	8.12	12.10	3.69
5	-2	2	6.78	4.80	11.63	2.25
5	2	2	12.59	10.71	20.33	8.40
-5	-2	2	27.02	24.75	-47.20	1.10
-5	2	2	18.14	14.42	-31.21	-5.53
6	-2	2	6.78	6.14	11.27	-3.65
6	2	2	49.55	48.15	85.47	13.79
-6	-2	2	7.10	8.20	12.04	3.01
-6	2	2	5.40	4.50	-7.93	-5.11
7	-2	2	40.70	38.02	-62.75	-13.88
7	2	2	8.07	8.49	13.36	-4.50
-7	-2	2	5.92	3.86	-9.74	-3.47
-7	2	2	26.28	22.79	-45.14	-8.45
8	-2	2	9.79	11.06	13.82	10.08
8	2	2	10.91	10.22	17.56	7.43
-8	2	2	11.99	7.04	-18.87	-9.11
-8	-2	2	0 .	13.59	0 .	0.
-9	2	2	10.68	10.18	18.65	-0.76
0	3	2	35.36	42.35	-58.64	-19.46
0	-3	2	0.	2.75	0.	0.
1	-3	2	18.53	17.11	32.19	3.53
1	3	2	15.57	16.42	26.75	4.98
-1	-3	2	31.62	33.04	-53.52	-13.71
-1	3	2	7.81	7.74	13.65	-0. 12
2	-3	2	17.04	15.12	-29.71	-1.98
2	3	2	35.41	40.74	-61.78	-3.37
-2	-3	2	34.70	30.86	60.39	5.41
-2	3	2	10.57	11.90	18.23	2.98
3	-3	2	55.67	51.24	-97.25	2.07
3	3	2	5.60	5.92	-8.67	-4.54
-3	-3	2	80.26	77.30	140.13	5.61
-3	3	2	10.00	9.79	17.36	2.02
4	-3	2	32.40	31.01	55.82	9.44
4	3	2	22.38	20.96	-39.10	0.78
-4	-3	2	18.19	15.42	31.72	2.07
-4	3	2	3.82	2.97	-5.59	-3.65
5	-3	2	16.57	15.22	-28.40	-5.61
5	3	2	22.23	21.65	36.54	13.19
-5	-3	2	7.58	3.01	2.93	12.92
-5	3	2	77.53	71.40	123.22	24.58
6	-3	2	17.08	15.03	-28.66	-8.33
6	3	2	36.50	36.56	-62.69	-11.72
-6	-3	2	56.72	50.07	96.98	20.41
-6	3	2	8.06	7.39	13.23	-4.84
7	-3	2	12.83	21.82	-22.31	-2.16
7	3	2	8.08	7.99	14.06	-1.25
-7	-3	2	14.69	13.76	24.83	-6.52
-7	3	2	0.	3.57	-0.	-0.
8	-3	2	18.09	15.96	$-30 \cdot 30$	-9.01

$\begin{array}{r} -8 \\ -8 \\ \hline \end{array}$	$\begin{array}{r} -3 \\ -3 \end{array}$	2 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.57 \\ & 3.20 \end{aligned}$	$\begin{aligned} & -0 . \\ & -0 . \end{aligned}$	$\begin{array}{r} -0 . \\ 0 . \end{array}$
9	-3	2	7.98	$8 \cdot 38$	-12.74	-5.66
-9	3	2	0.	4.97	-0.	0.
0	-4	2	73.25	81.77	-126.42	-19.99
0	4	2	10.29	10.22	17.94	-1.21
1	-4	2	8.82	10.38	15.07	3.24
1	4	2	21.78	25.04	37.91	3.31
-1	-4	2	28.11	24.17	-49.08	-1.82
-1	4	2	13.53	15.17	23.64	-0.46
2	-4	2	25.43	23.45	-43.81	-7.44
2	4	2	20.47	20.75	35.40	5.12
-2	-4	2	17.87	15.50	-31.22	-0.31
-2	4	2	10.83	11.63	-18.65	-3.20
3	-4	2	8.95	8.79	15.31	-3.17
3	4	2	30.56	29.10	52.23	11.12
-3	-4	2	15.32	14.26	26.62	2.84
-3	4	2	17.49	18.68	20.45	2.63
4	-4	2	10.83	10.96	18.85	1.72
4	4	2	4.16	3.20	-6.99	-1.98
-4	-4	2	34.08	31.02	-59.40	-4.19
-4	4	2	7.24	6.41	12.14	3.57
5	-4	2	73.69	70.66	127.55	17.61
5	4	2	23.91	22.44	-4.1.64	3.40
-5	-4	2	26.32	23.48	43.31	15.47
-5	4	2	35.90	34.27	62.37	6.66
6	-4	2	23.03	21.96	-38.64	-11.23
6	4	2	19.20	19.74	-33.25	-4.48
-6	-4	2	22.72	21.86	-39.35	-5.23
-6	4	2	15.08	14.03	25.06	8.15
7	-4	2	15.00	11.96	25.59	5.66
7	4	2	7.33	6.95	-10.64	-7.14
-7	-4	2	0 。	2.06	0.	-0.
-7	4	2	0.	0.15	0.	0.
8	-4	2	4.71	0.92	6.33	5.26
-8	4	2	6.90	4.69	-11.32	-4. 14
-8	-4	2	0.	2.92	0.	-0.
9	-4	2	8.95	10.76	-15.41	-2.66
-9	4	2	12.24	11.30	-21.06	-3.72
0	-5	2	38.22	37.99	66.74	2.41
0	5	2	17.85	20.40	-31.07	-2.74
1	- 5	2	9.23	8.68	16.10	-0.93
1	5	2	5.22	4.74	-8.62	2.99
-1	-5	2	12.61	11.62	-21.86	-2.79
-1	5	2	48.31	54.10	-84.35	-3. 28
2	-5	2	47.55	42.42	-82.62	-8.83
2	5	2	59.29	64.57	101.81	19.19
-2	-5	2	9.48	9.07	16.37	2.52
-2	5	2	7.24	6.93	11.42	5.45
3	-5	2	21.53	20.17	37.55	2.35
3	5	2	34.39	34.77	-59.54	-8.10
-3	-5	2	37.29	33.65	63.79	13.30
-3	5	2	81.18	95.63	-140.43	-20.00
4	-5	2	23.39	21.25	39.97	8.52
4	5	2	30.85	29.15	53.66	5.10

$\begin{aligned} & -4 \\ & -4 \end{aligned}$	$\begin{array}{r} -5 \\ 5 \\ \hline \end{array}$	2	10.86 5.83	12.52 4.25	$\begin{aligned} & 18.37 \\ & 10.13 \end{aligned}$	$\begin{array}{r} -4.74 \\ 1.10 \end{array}$
5	-5	2	13.87	12.13	23.86	4.23
5	5	2	23.39	22.05	40.72	3.47
-5	-5	2	10.72	35.66	-18.68	-1.36
-5	5	2	0.	2.46	0.	0.
6	-5	2	24.58	23.89	-41.98	9.06
6	5	2	9.48	8.25	16.34	-2.72
-6	-5	2	17.91	12.42	-31.20	-2.41
-6	5	2	11.13	11.36	-19.45	-0.29
7	-5	2	15.41	13.52	26.05	6.81
7	5	2	9.36	11.13	-14.07	-8.33
-7	-5	2	34.89	10.26	-56.26	-23.49
-7	5	2	9.17	10.47	15.22	-5.01
8	-5	2	10.32	8.63	18.00	1.00
-8	5	2	31.68	28.86	53.06	15.79
9	-5	2	8.92	10.75	-15.06	-4.03
-9	5	2	11.38	11.71	-17.76	-8.-95
0	-6	2	18.05	18.22	31.09	5.32
0	6	2	37.89	41.12	66.16	2.61
1	-6	2	5.85	$5 \cdot 12$	$9 \cdot 13$	4.60
-1	-6	2	11.37	9.69	-19.70	-2.61
-1	6	2	8.20	8.35	-14.26	-1.36
1	6	2	0.	1.81	-0.	0.
2	-6	2	9.48	8.52	16.55	0.62
2	6	2	20.60	19.95	-35.99	-0.72
-2	-6	2	96.35	90.41	166.69	23.63
-2	6	2	10.69	11.35	-18.60	-1.75
3	-6	2	61.75	58.80	-105.89	-20.70
3	6	2	23.18	21.75	-40.17	-5.19
-3	-6	2	27.73	25.94	-6:8.42	-1.75
-3	6	2	0.	2.63	-0.	-0.
4	-6	2	33.02	31.45	56.97	9.11
4	6	2	15.75	13.76	-26.70	-6.69
-4	-6	2	11.05	$8 \cdot 14$	19.30	-0.35
-4	6	2	16.27	15.95	26.71	-9.73
5	-6	2	12.96	12.12	-22.31	-3.89
5	6	2	19.31	16.48	-32.28	-9.81
-5	-6	2	11.06	8.15	19.22	-2.06
-5	6	2	12.30	13.22	-21.49	0.13
6	-6	2	10.49	13.27	-18.18	-2.36
-6	-6	2	15.67	12.01	27.10	3.92
-6	6	2	4.66	4.11	-7.57	3.00
6	6	2	0.	11.62	-0.	0.
7	-6	2	9.74	9.49	16.93	1.76
-7	-6	2	25.06	22.93	-41.73	-13.26
-7	6	2	10.32	9.60	17.67	3.59
8	-6	2	32.40	30.18	55.24	12.40
-8	6	2	$34 \cdot 18$	32.42	59.38	6.42
9	-6	2	21.67	23.44	-35.54	-13.07
-9	6	2	8.35	$7 \cdot 30$	5.37	13.56
0	7	2	24.93	25.53	-43.02	-6.82
0	-7	2	0 -	36.76	0 .	0 .
1	-7	2	2.83	9.51	-17.17	0.61
1	7	2	48.53	54.15	84.67	4.69

-1	-7	2	5.45 48.13	0.68 53.87	-9.36	1.73
-1	7	2	48.13	53.87	81.70	19.95
2	-7	2	56.89	50.02	-99.07	-8.14
-2	-7	2	47.32	45.75	-82.63	-3.05
2	7	2	0.	1.46	0 .	0 .
-2	7	2	0.	1.63	0.	0.
3	-7	2	5.98	5.63	-9.86	-3.46
3	7	2	20.27	19.48	-35.08	-4.85
-3	-7	2	5.23	3.13	8.83	2.37
-3	7	2	0.	0.97	0.	-0.
4	-7	2	40.73	38.14	70.46	-10.06
4	7	2	49.53	46.70	-84.66	-17.96
-4	-7	2	12.17	10.68	-20.45	-5.84
-4	7	2	5.66	3.67	-2.79	-1.38
5	-7	2	32.60	30.83	-56.69	-5.57
5	7	2	37.77	39.12	65.31	9.51
-5	-7	2	25.64	. 22.64	-43.65	-10.08
-5	7	2	0.	5.08	-0.	0.
6	-7	2	12.58	10.47	-21.69	-3.56
6	7	2	17.65	15.81	-30.30	-5.72
-6	-7	2	7.27	6.57	-11.30	5.80
-6	7	2	32.96	29.68	-55.03	-17.00
7	-7	2	14.96	14.53	25.61	5.22
-7	7	2	15.15	14.21	25.64	6.58
8	-7	2	26.86	21.24	46.82	3.32
-8	7	2	23.23	22.98	40.25	5.28
-9	7	2	2.55	1.86	-2.49	3.69
0	-8	2	12.29	11.78	-21.23	-3.24
0	8	2	18.05	18.42	31.53	0.69
1	-8	2	38.22	37.91	63.40	20.98
1	8	2	12.26	11.19	21.42	0.28
-1	-8	2	9.34	9.25	15.78	-4.15
-1	8	2	3.76	4.09	-6.45	1.26
2	-8	2	11.52	10.42	-12.15	-6.19
2	8	2	16.30	15.44	-28.37	-2.57
-2	-8	2	13.14	12.33	-22.62	-3.93
-2	8	2	24.39	26.64	-41.46	9.85
3	-8	2	12.06	12.83	20.24	2.37
3	8	2	4.17	3.19	6.31	-3.64
-3	-8	2	8.67	8.48	15.14	0.39
-3	8	2	0.	4.92	0.	-0.
4	-8	2	11.40	9.87	19.24	5.14
4	8	2	25.05	23.63	4.3.68	2.84
-4	-8	2	55.75	52.78	-95.06	-21.29
-4	8	- 2	0.	2.73	0.	-0.
5	-8	2	8.08	6.65	14.11	-0.57
5	8	2	16.57	16.06	28.47	5.28
-5	-8	2	20.91	20.33	36.24	4.63
-5	8	2	13.61	14.25	-23.59	-3.04
6	-8	2	37.79	34.94	-64.29	-15.08
-6	-8	2	12.31	11.69	-21.51	0.26
-6	8	2	26.85	25.12	-46.66	-4.90
7	-8	2	22.53	18.64	36.27	15.30
-7	8	2	26.47	22.73	-42.76	-17.64
8	-8	2	3.75	1.87	4.33	4.91

-8	8	2	10.23	7.73	17.63	2.96
0	-9	2	22.64	12.51	38.99	6.72
0	9	2	14.70	14.52	-25.01	-5.87
1	9	2	28.01	28.78	-45.20	-18.77
1	-9	2	11.37	9.52	-19.68	2.71
-1	-9	2	20.25	18.29	-35.25	-3.02
-1	9	2	14.94	16.28	-26.11	0.04
2	-9	2	9.27	8.16	-11.84	11.05
2	9	2	20.09	19.42	34.16	8.07
-2	-9	2	12.39	11.23	-21.27	-4.02
-2	9	2	27.78	28.95	48.50	2.03
3	-9	2	22.63	19.29	39.26	4.70
3	9	2	32.58	31.42	-56.55	-6.51
-3	9	2	7.77	8.28	-11.14	-7.76
-3	-9	2	0.	0.82	0.	-0.
4	-9	2	12.62	11.38	21.45	5.13
4	9	2	4.33	4.50	-7.52	-0.81
-4	-9	2	35.95	35.42	62.72	3.48
-4	9	2	35.50	36.75	60.35	14.33
5	-9	2	12.33	10.82	-20.89	-5.26
-5	-9	2	11.61	9.68	20.29	-0.19
-5	9	2	0.	2.45	0.	-0.
6	-9	2	14.75	15.02	-25.63	-2.70
-6	9	2	0.	3.05	0.	-0.
7	-9	2	14.80	12.10	-22.45	-12.83
-7	9	2	13.00	11.45	-22.39	-3.81
-8	9	2	18.78	19.82	-32.63	3.45
8	-9	2	0.	2.30	0.	0.
0	-10	2	7.18	5.29	12.22	2.83
0	10	2	13.45	14.06	-21.03	-10.50
1	-10	2	5.03	3.19	8.48	-2.31
1	10	2	5.74	6.55	9.91	1.52
-1	-10	2	48.91	47.24	-82.93	-20.64
-1	10	2	6.52	5.67	-11.39	-0.37
2	-10	2	17.07	15.59	29.29	-5.64
2	10	2	4.66	2.76	8.14	-0.02
-2	-10	2	14.53	14.52	24.82	5.36
-2	10	2	12.04	11.13	20.88	2.53
3	-10	2	11.38	11.44	-19.67	-2.89
3	10	2	6.19	5.43	10.80	0.66
-3	-10	2	3.87	2.91	4.96	4.59
-3	10	2	0.	4.85	0.	0.
4	-10	2	36.97	30.50	61.96	18.27
4	10	2	6.89	6.01	11.76	2.56
-4	-10	2	3.75	4.09	6.24	2.00
-4	10	2	0.	5.60	0.	0.
5	-10	2	21.24	18.46	-35.37	-11.24
-5	10	2	36.20	33.48	60.40	18.78
-6	10	2	7.55	5.55	-13.11	-1.43
6	-10	2	0.	2.64	0.	-0.
7	-10	2	17.91	15.62	-31.29	0.05
-7	10	2	5.92	3.48	-10.34	0.09
8	-10	2	21.86	18.66	-37.84	-5. 22
-8	10	2	0.	1.66	-0.	-10.
0	-11	2	34.51	31.45	- 59.37	-10.57

0	11	2	34.36	34.43	-59.96	-3.03
-1	-11	2	9.89	9.23	17.26	-0.88
-1	11	2	27.51	30.35	47.49	7.44
1	-11	2	0.	1.60	-0.	-0
1	11	2	0.	1.42	-0.	0.
2	-11	2	6.85	5.56	-9.86	-6.78
2	11	2	18.39	17.26	31.12	8.01
-2	-11	2	8.55	7.66	-14.24	-4.52
-2	11	2	26.65	27.90	-44.85	-12.52
3	11	2	28.49	26.50	47.06	16.24
-3	-11	2	12.19	10.83	20.84	4.42
3	-11	2	0.	2.13	0.	0.
-3	11	2	0 .	3.20	0 -	-0.
4	-11	2	6.74	5.69	-11.47	2.68
-4	11	2	8.77	7.12	-14.70	4.34
5	-11	2	8.97	9.82	10.77	11.39
-5	11	2	19.94	17.49	34.58	4.24
6	-11	2	11.11	10.07	19.39	-1.03
-6	11	2	12.77	13.95	22.00	-3.70
7	-11	2	12.48	10.65	20.55	7.29
-7	11	2	12.36	10.72	19.22	9.85
0	-12	2	9.50	9.52	-15.83	5.01
0	12	2	12.59	12.41	-21.91	-2.00
1	-12	2	29.82	28.02	51.83	5.38
1	12	2	6.90	6.59	12.01	1.01
-1	-12	2	3.96	4.24	-6.89	0.65
-1	12	2	5.98	4.81	-9.64	-4.03
2	-12	2	35.75	31.17	- E0. 16	-16.82
2	12	2	22.83	21.03	38.35	10.98
-2	-12	2	8.35	8.37	14.54	1.17
-2	12	2	0.	3.80	0.	0 .
3	-12	2	8.60	6.88	13.01	7.51
-3	12	2	24.62	25.21	-39.25	-17.60
-4	12	2	7.96	10.33	-13.90	-0.42
4	-12	2	0.	3.85	0.	0 .
5	-12	2	6.36	7.79	11.02	-0.64
-5	12	2	0.	1.09	-0.	0.
6	-12	2	7.24	5.91	12.19	3.40
-6	12	2	0.	1.41	-0.	0 .
0	-13	2	11.45	11.68	12.25	5.44
0	13	2	19.54	17.93	32.15	11.50
1	-13	2	6.71	5.21	-11.27	-3.23
-1	-13	2	5.05	4.88	-8.74	1.21
-1	13	2	4.55	5.19	7.33	3.07
2	-13	2	10.89	10.59	18.99	-1.18
-2	13	2	3.85	3.29	6.40	-2.06
3	-13	2	6.95	8.35	4.05	-11.45
-3	13	2	21.00	20.50	-36.51	-3.70
-4	13	2	10.61	9.83	18.07	4.15
4	-13	2	0.	1.23	-0.	0.
5	-13	2	8.31	8.47	-12.94	-6.59
-5	13	2	9.97	9.27	-15.61	-7.74
1	-14	2	0.	1.54	-0.	-0.
2	-14	2	12.16	10.39	-20.40	-5.94
3	-14	2	11.92	13.80	-20.80	1.02

4	-14	2	4.54	3.11	7.81	-1.39
1	0	3	18.73	18.37	32.13	6.20
-1	0	3	107.70	115.48	186.95	21.56
2	0	3	29.47	28.55	51.07	6.56
-2	0	3	8.29	7.21	14.48	0.44
3	0	3	13.18	11.74	- 22.97	-1.67
-3	0	3	7.69	7.34	12.66	-4.50
4	0	3	27.32	25.47	-4. 5.25	-15.22
-4	0	3	15.66	14.09	-27.08	-3.95
5	0	3	15.20	12.89	22.00	14.87
-5	0	3	0.	3.92	-0.	0 .
6	0	3	4.86	6.59	8.47	-0.58
-6	0	3	27.38	24.45	-42.24	-22.47
7	0	3	4.06	1.45	7.05	-0.83
-7	0	3	30.90	27.36	53.77	4.93
8	0	3	12.34	13.70	20.83	5.58
-8	0	3	0.	2.43	-0.	0.
0	-1	3	33.22	34.88	57.27	9.45
0	1	3	43.51	47.80	-75.90	-4.37
1	-1	3	6.08	6.25	10.60	0.67
-1	-1	3	31.40	28.04	54.86	0.93
-1	1	3	5.45	5.34	-9.42	1.37
1	1	3	0.	3.43	-0.	-0.
2	-1	3	38.63	36.32	67.34	4.66
2	1	3	28.59	27.32	-48.98	-9.82
-2	-1	3	8.98	7.43	15.15	4.09
-2	1	3	48.99	49.28	85.51	3.95
3	-1	3	12.56	9.97	-20.91	-6.67
3	1	3	10.97	10.64	-19.04	-2.18
-3	-1	3	19.19	17.89	-33.32	-3.75
-3	1	3	8.47	5.87	-14.75	1.17
4	-1	3	12.74	12.63	-21.60	-5.38
4	1	3	44.85	44.82	-78.32	-2.83
-4	-1	3	53.70	49.83	-93.80	-2.27
-4	1	. 3	10.50	11.57	-17.68	-4.89
5	1	3	12.96	11.67	21.68	6.53
-5	-1	3	10.27	9.24	-17.93	-0.83
-5	1	3	25.06	21.65	-43.74	-2.12
5	-1	3	0.	8.29	-0.	-0.
6	1	3	19.46	17.70	23.53	5.65
-6	1	3	5.52	4.49	-5.60	-7.86
6	-1	3	0.	5.82	0.	0.
-6	-1	3	0.	3.91	0.	0.
7	-1	3	27.44	27.28	-47.35	-7.54
7	1	3	15.50	12.75	24.03	12.50
-7	-1	3	16.67	12.18	28.93	3.40
-7	1	3	23.79	18.69	-39.75	-12.16
8	-1	3	3.15	6.17	5.32	1.42
-8	-1	3	16.39	14.12	27.27	8.76
-8	1	3	0.	1.77	0.	0.
0	-2	3	24.06	24.26	-41.36	-7.52
0	2	3	18.65	19.41	-32.44	-3.05
1	-2	3	12.34	11.24	-21.54	-1.02
1	2	3	46.17	48.58	-78.11	-20.18
-1	-2	3	4.50	4.29	-6.32	-4.68

-1	2	3	0.	2.28	-0.	0.
2	-2	3	12.11	10.44	-9.64	18.84
2	2	3	23.79	25.34	40.88	7.54
-2	-2	3	23.40	21.62	40.81	2.44
-2	2	3	19.18	19.16	33.03	5.66
3	-2	3	25.23	24.63	-42.90	-10.17
-3	-2	3	85.39	83.49	-147.36	-23.41
-3	2	3	2.36	8.80	15.36	-5.63
3	2	3	0.	7.50	-0.	-0.
4	-2	3	5.14	4.15	8.25	-0.79
4	2	3	22.64	22.65	-39.33	-4.28
4	-2	3	22.87	21.12	38.87	2.74
-4	2	3	50.40	45.62	84.84	23.63
5	-2	3	5.12	7.19	8.82	1.52
5	2	3	22.79	24.63	39.70	3.10
-5	-2	3	10.40	10.30	17.70	4.12
-5	2	3	27.32	25.12	-47.73	-1.07
6	-2	3	47.36	42.70	-82.55	-5.75
6	2	3	27.85	27.34	47.35	11.24
-6	2	3	7.20	3.68	-11.97	-3.87
-6	-2	3	0.	0.95	0 -	0.
7	-2	3	10.20	10.85	-15.13	-9.42
7	2	3	26.32	27.45	-44.07	-13.15
-7	-2	3	0.	2.66	-0.	-0.
-7	2	3	0.	3.54	0.	-0.
8	-2	3	26.32	25.81	44.61	11.19
-8	-2	3	38.80	35.93	65.22	18.53
-8	2	3	15.39	14.13	26.12	6.41
0	3	3	38.29	40.85	-66.71	-5.14
0	-3	3	0.	7.74	-0.	-0.
1	-3	3	10.19	9.13	-17.21	4.56
1	3	3	10.84	11.97	-18.90	1.25
-1	-3	3	19.27	18.24	-33.66	0.87
-1	3	3	9.14	8.88	15.92	-1.30
2	-3	3	7.40	9.16	12.37	3.77
2	3	3	17.45	18.90	30.06	5.11
-2	-3	3	29.55	26.18	$-50 \cdot 36$	-11.41
-2	3	3	28.06	27.17	48.79	4.8 .2
3	-3	3	60.09	59.03	103.77	16.02
3	3	3	7.70	7.34	-13.06	3.23
-3	-3	3	25.19	21.76	-44.00	1.15
-3	3	3	11.70	11.15	20.41	1.24
4	-3	3	14.57	12.80	25.37	-2.11
4	3	3	9.38	7.10	11.83	11.35
-4	-3	3	10.08	9.60	17.52	-1.76
-4	3	3	6.98	6.24	-11.35	4.46
5	-3	3	43.54	40.69	75.49	9.48
-5	3	3	82.14	79.32	142.96	12.68
5	3	3	0 .	2.87	0 .	0.
-5	-3	3	0.	16.06	0.	
6	3	3	28.19	29.96	49.25	0.83
-6	3	3	11.56	7.68	-19.92	-3.33
6	-3	3	0 .	1.46	-0.	-0.
-6	-3	3	0.	12.37	0.	0.
7	3	3	5.11	4.19	-5.64	-6.92

-7	-3	3	11.70	11.40	-20.42	1.00
-7	3	3	11.67	10.27	-19.68	-5.33
7	-3	3	0.	3.38	0.	-0.
8	-3	3	21.32	19.56	-35.96	-9.72
-8	-3	3	12.66	10.74	-20.89	-7.29
-8	3	3	5.02	6.13	8.63	-1.58
-9	3	3	8.50	10.47	14.24	-4.22
0	-4	3	27.89	27.61	-45.73	-16.85
0	4	3	5.90	6.64	-7.93	-6.59
1	-4	3	17.14	16.34	29.26	6.41
-1	4	3	25.18	27.58	43.61	5.84
1	4	3	0.	3.05	-0.	-0.
-1	-4	3	0.	10.28	0.	0.
2	4	3	32.45	34.48	55.48	4.96
-2	4	3	67.88	81.18	-117.32	-17.45
2	-4	3	0.	3.59	0.	0.
-2	-4	3	0.	4.57	-0.	0.
3	-4	3	11.12	10.29	-19.02	-3.25
3	4	3	14.31	11.04	10.06	22.89
-3	4	3	14.40	14.71	-25.04	-2.47
-3	-4	3	0.	2.00	-0.	0.
4	-4	3	37.34	35.37	65.14	3.63
4	4	3	16.01	12.48	-25.20	-12.14
-4	-4	3	24.27	21.85	42.39	1.08
-4	4	3	7.57	5.00	-13.13	1.60
5	-4	3	15.44	14.06	23.92	12.47
5	4	3	17.40	16.09	29.13	8.71
-5	-4	3	52.40	48.55	88.83	22.21
-5	4	3	10.20	8.34	17.47	3.53
6	-4	3	26.69	23.09	-4.5.43	-10.53
6	4	3	7.97	7.82	13.81	1.83
-6	4	3	41.28	26.11	-71.29	-10.96
7	-4	3	21.38	18.19	-36.86	-6.09
7	4	3	10.53	12.29	-18.02	-3.70
-7	4	3	23.40	18.91	38.01	15.07
-8	4	3	19.07	18.35	-32.69	-6.45
8	-4	3	0 .	1.49	0.	-0.
-9	4	3	6.03	5.34	-9.02	-5.44
0	-5	3	15.36	14.07	-26.63	-3.36
0	5	3	10.02	9.72	-17.09	-3.81
1	-5	3	71.13	71.91	-123.07	-17.36
1	5	3	11.48	12.94	-19.98	1.79
-1	-5	3	16.30	14.40	28.33	-2.91
-1	5	3	17.81	17.57	31.11	-0.80
2	5	3	20.36	20.78	35.04	6.14
-2	-5	3	11.34	10.26	18.96	5.76
-2	5	3	13.38	15.28	-23.37	-0.59
2	-5	3	0.	2.78	0.	0.
3	-5	3	37.28	36.33	-64.45	-9.49
3	5	3	20.15	20.18	34.97	-4.13
-3	-5	3	8.68	9.37	15.05	-1.90
-3	5	3	88.68	109.05	-154.54	-11.37
4	-5	3	20.70	19.30	-36.17	-0.36
4	5	3	15.53	16.64	-26.66	-5.04
-4	-5	3	17.75	17.61	29.39	9.92

-4	5	3	13.03	12.92	22.73	1.34
5	-5	3	12.98	10.52	-22.46	3.17
5	5	3	17.79	17.01	-30.88	-3.59
5	-5	3	16.42	14.60	28.50	-3.34
-5	5	3	27.24	26.27	4.7 .29	5.40
6	-5	3	35.27	30.50	59.95	14.27
6	5	3	4.37	4.35	-0.06	-7.64
-6	5	3	18.23	17.54	31.75	2.58
-6	-5	3	0 .	5.87	-0.	0.
7	-5	3	17.37	17.80	-29.06	-8.75
-7	-5	3	21.79	21.20	-37.73	-5.13
-7	5	3	14.35	14.26	-24.82	3.56
8	-5	3	10.39	10.54	17.02	6.33
-8	5	3	33.35	30.65	55.51	17.72
0	6	3	53.29	61.04	91.68	16.29
0	-6	3	0.	19.77	-0.	-0.
1	-6	3	10.15	8.48	-16.85	5.53
1	6	3	19.76	20.65	-33.93	-6.40
-1	-6	3	6.85	6.45	-11.79	-2.04
-1	6	3	21.30	22.69	36.87	5.11
2	-6	3	7.62	8.52	-13.26	-1.24
2	6	3	8.33	7.79	11.43	9.01
-2	-6	3	45.21	40.02	77.05	17.42
-2	6	3	0.	3.45	0.	0.
3	-6	3	17.15	16.50	-27.51	-11.89
3	6	3	15.66	15.63	27.36	0.46
-3	-6	3	15.99	15.82	-27.43	-5.33
-3	6	3	16.61	18.16	-28.80	-3.62
4	6	3	14.21	14.96	-24.10	-5.96
-4	6	3	21.73	21.42	37.26	7.31
4	-6	3	0 .	3.67	0 .	0 .
-4	-6	3	0.	4.12	0.	-0.
5	-6	3	25.09	23.31	43.23	7.29
5	6	3	17.15	16.51	-26.64	-13.73
-5	-6	3	7.88	7.06	-13.64	-1.91
-5	6	3	9.77	8.72	-10.43	-13.51
6	-6	3	15.30	13.50	26.70	1.35
6	6	3	3.61	6.16	2.82	5.64
-6	-6	3	18.79	16.43	-32.58	-4.09
-6	6	3	16.50	16.93	28.64	3.29
7	-6	3	27.82	29.38	47.90	8.30
-7	6	3	6.74	3.91	9.26	7.28
8	-6	3	10.79	10.28	16.46	9.20
-8	6	3	0.	3.32	-0.	0.
0	-7	3	16.81	14.99	-29.28	-2.28
0	7	3	13.99	13.86	24.27	-2.92
1	-7	3	18.36	28.80	31.61	5.48
1	7	3	22.75	22.98	-39.74	0.80
-1	-7	3	57.84	57.44	99.39	18.30
-1	7	3	63.73	76.50	110.72	11.94
2	-7	3	55.01	53.51	96.10	2.04
2	7	3	7.31	8.02	12.57	2.29
-2	-7	3	43.21	40.57	75.50	0.88
-2	7	3	5.52	0.87	-9.64	0.21
3	7	3	8.98	10.00	15.48	-2.57

-3	7	3	15.80	16.09	-27.12	-5.18
3	-7	3	0.	2.83	0.	-0.
-3	-7	3	0.	2.76	-0.	0.
4	-7	3	28.71	29.70	-47.92	-14.86
4	7	3	11.61	11.37	-19.28	-6.31
-4	-7	3	20.76	19.58	-35.96	-4.76
-4	7	3	7.99	9.51	-13.68	-2.77
5	-7	3	12.61	14.68	20.81	7.23
5	7	3	15.28	16.22	-26.02	5.98
-5	7	3	9.28	10.52	16.19	-0.93
-5	-7	3	0.	2.51	-0.	0.
6	-7	3	14.13	16.40	-24.04	-5.61
-6	-7	3	19.05	19.27	-32.06	-8.95
-6	7	3	52.40	53.13	-89.60	-18.83
7	-7	3	6.73	6.37	-11.75	-0.46
-7	7	3	0.	3.55	-0.	0.
8	-7	3	12.92	18.41	-22.47	2.17
-8	7	3	8.13	9.00	-14.08	1.88
0	-8	3	16.12	17.63	-28.16	-0.46
0	8	3	14.16	6.56	-24.30	-4.66
1	-8	3	5.38	5.86	-0.25	9.40
1	8	3	24.21	26.43	-41.78	-6.63
-1	-8	3	19.12	10.82	-32.22	-8.83
-1	8	3	8.66	10.16	-14.64	3.83
2	8	3	27.88	26.55	-4. 5.99	-16.06
-2	-8	3	14.10	13.63	24.51	2.46
-2	8	3	9.09	10.08	-14.71	-5.99
2	-8	3	0.	1.90	0.	-0.
3	-8	3	7.70	8.80	-11.75	-6.55
3	8	3	9.23	9.80	16.18	6.26
-3	8	3	11.29	11.95	16.75	10.42
-3	-8	3	0.	1.12	0.	-0.
4	-8	3	6.87	10.59	-11.99	-0.50
4	8	3	5.72	5.92	-5.78	-8.16
-4	-8	3	36.60	37.12	-62.70	-12.60
-4	8	3	20.16	23.41	-35.22	-0.44
5	-8	3	40.47	46.09	-70.33	-7.34
-5	-8	3	23.92	24.87	41.48	6.05
-5	8	3	16.58	14.66	-28.79	-3.24
5	8	3	0.	2.70	-0.	0.
-6	8	3	5.62	3.12	-1.63	-9.68
6	-8	3	0.	8.24	-0.	
-7	8	3	11.22	12.18	19.48	2.24
7	-8	3	0.	5.11	0.	0.
8	-8	3	6.57	10.84	11.06	3.08
-8	8	3	7.55	7.58	-11.98	-5.52
0	-9	3	35.62	43.01	-62.19	-2.61
0	9	3	0.	2.03	-0.	-0.
1	-9	3	11.43	13.16	19.97	-0.43
1	9	3	22.34	22.74	-36.80	-13.02
-1	-9	3	15.40	15.46	-25.96	-7.09
-1	9	3	13.60	15.11	23.38	4.27
2	-9	3	36.42	43.82	61.98	14.43
2	9	3	0.	4.17	م.	0.
-2	-9	3	0.	3.06	0 .	0 -

-2	9	3	0.	11.87	0.	0.
3	-9	3	2.12	10.57	-14.78	-5.25
3	9	3	5.77	2.80	-9.78	-2.45
-3	-9	3	28.16	31.45	-46.66	-15.61
-3	9	3	0.	1.13	0.	-0.
4	-9	3	7.80	7.22	12.06	6.35
4	9	3	9.72	11.52	-16.95	-1.01
4	-9	3	18.88	20.30	-32.95	1.53
-4	9	3	67.76	81.29	117.19	16.85
5	-9	3	10.10	13.50	17.53	2.01
-5	-9	3	0 .	1.48	0 .	-0.
-5	9	3	0.	3.89	-0.	0.
6	-9	3	0.	9.33	0 .	-0.
-6	9	3	0.	1.40	0.	-0.
7	-9	3	9.70	27.07	-16.48	-3.95
-7	9	3	6.36	5.79	11.10	-0.48
-8	9	3	26.53	28.39	46.25	3.10
0	-10	3	0.	5.68	0.	-0.
0	10	3	0.	3.86	-0.	0.
1	-10	3	10.84	18.29	18.45	4.27
1	10	3	14.83	15.02	25.56	-4.28
-1	-10	3	0.	4.61	0.	-0.
-1	10	3	0.	28.01	-0.	-0.
2	10	3	8.44	2.81	14.41	3.15
-2	-10	3	5.87	7.06	10.14	1.52
-2	10	3	7.23	5.25	-12.37	-2.57
2	-10	3	0.	6.11	0 .	0.
3	-10	3	15.42	42.74	26.93	2.76
3	10	3	16.97	18.25	28.77	7.20
-3	10	3	14.23	14.81	24.84	1.02
-3	-10	3	0 .	6.04	-0.	0.
-4	-10	3	12.64	10.63	-21.98	-2.18
-4	10	3	9.11	9.95	15.28	4.46
4	-10	3	0.	16.59	0.	0.
-5	10	3	10.58	10.57	-18.42	-1.61
5	-10	3	0.	5.53	0.	0.
-6	10	3	6.96	6.92	11.21	4.72
6	-10	3	0.	12.89	-0.	-0.
-7	10	3	6.48	6.51	-10.63	-3.89
0	-11	3	16.60	38.47	-27.97	-7.70
0	11	3	9.21	10.14	-15.36	-4.81
1	11	3	4.75	4.12	-7.17	-4.17
-1	-11	3	8.91	10.89	-15.42	2.11
-1	11	3	7.33	9.42	-12.34	3.44
1	-11	3	0.	2.98	0.	0.
2	-11	3	5.85	16.64	-10.09	-1.66
2	11	3	7.21	7.94	12.33	2.59
-2	-11	3	8.25	15.98	14.30	1.86
-2	11	3	59.29	71.21	-102.33	-16.17
3	-11	3	6.83	38.25	-11.91	-0.79
-3	-11	3	11.75	20.17	20.30	3.04
-3	11	3	0.	1.62	0.	-0.
-4	11	3	7.52	5.77	12.79	3.00
4	-11	3	0.	7.33	-0.	-0.
5	-11	3	8.56	31.04	14.52	3.61

-5	11	3	$0 \cdot 36$	1.15	-0. -54.54	0. -5.29
-6	11	3	31.36	31.47	-54.54	-5.29
0	12	3	8.12	7.66	13.72	3.62
0	-12	3	0.	2.65	-0.	0.
1	12	3	13.11	12.08	21.45	8.03
-1	-12	3	6.00	16.80	-10.26	-2.17
1	-12	3	0 .	18.62	-0.	-0.
-1	12	3	0.	4.53	-0.	0.
2	-12	3	0 .	7.23	-0.	-0.
-2	12	3	0.	4.14	0.	-0.
-3	12	3	7.21	6.78	12.59	0.56
3	-12	3	0.	9.66	-0.	-0.
-4	12	3	4.62	5.65	7.48	-3.04
4	-12	3	0.	17.10	0.	0.
-5	12	3	7.52	10.87	13.03	1.73
-6	12	3	15.56	15.75	26.81	4.53
0	-13	3	0.	14.44	0 .	0 .
1	-13	3	3.69	43.17	6.43	0.46
-1	13	3	13.37	14.84	22.97	4.25
-2	13	3	0.	3.15	-0.	-0.
-3	13	3	10.46	10.11	-17.92	-3.59
-4	13	3	5.25	6.36	7.22	5.66
1	0	4	15.70	16.33	-26.95	-5.12
-1	0	4	0.	8.04	0.	0.
2	0	4	12.38	11.59	-21.63	0.28
-2	0	4	0.	1.44	-0.	0.
3	0	4	44.27	$42 \cdot 48$	-76.82	-9.10
-3	0	4	33.18	35.22	-57.52	-7.24
4	0	4	8.51	7.47	-13.01	-7.20
-4	0	4	0.	3.38	0.	-0.
5	0	4	37.41	38.38	65.36	0.64
-5	0	4	17.85	16.94	-31.04	-3.08
6	0	4	9.28	10.19	15.33	5.29
-6	0	4	20.04	17.31	-21.25	-15.81
7	0	4	7.21	6.56	12.34	2.55
-7	0	4	0.	2.06	0.	0.
-8	0	4	23.89	23.05	41.23	6.52
0	-1	4	21.93	113.70	159.84	15.97
0	1	4	30.02	29.68	52.43	1.52
1	-1	4	25.12	25.99	-4.3.39	-6.62
1	1	4	17.45	15.69	-30.02	-5.31
-1	1	4	37.58	38.57	65.06	8.88
-1	-1	4	0.	1.69	0.	0.
2	-1	4	16.92	15.14	27.49	10.88
2	1	4	108.50	119.22	-188.95	-15.52
-2	-1	4	20.10	19.04	-34.96	-3.33
-2	1	4	40.63	40.09	-70.82	-4.98
3	-1	4	16.22	14.72	27.93	4.81
3	1	4	11.85	13.64	19.56	6.80
-3	-1	4	14.99	14.29	-25.03	-7.72
-3	1	4	51.63	52.59	88.51	17.48
4	-1	4	7.47	6.65	12.43	-3.98
-4	-1	4	43.71	42.59	76.23	4.75
-4	1	4	36.32	33.72	63.45	1.49
4	1	4	0 .	20.66	-0.	-0.

5	-1	4	27.70	27.58	-47.08	-11.22
5	1	4	7.01	5.12	-12.07	-2.09
-5	-1	4	52.78	51.28	-90.43	-18.11
-5	1	4	0.	5.05	0.	-0.
6	-1	4	20.53	23.59	33.95	11.60
6	1	4	14.57	13.55	-25.01	4.78
-6	-1	4	34.21	32.10	-59.76	1.59
-6	1	4	0.	4.06	-0.	-0.
7	-1	4	12.13	14.26	-20.88	-3.64
7	1	4	14.16	13.56	23.38	8.11
-7	1	4	24.15	23.63	41.80	$5 \cdot 82$
-7	-1	4	0.	2.33	-0.	0.
-8	-1	4	7.27	6.99	12.24	3.41
-8	1	4	0.	4.94	-0.	-0.
0	-2	4	16.14	16.76	-28.18	-1.21
0	2	4	9.59	8.96	-16.64	-1.98
1	-2	4	27.41	28.02	47.24	7.92
1	2	4	6.11	5.23	1.34	-10.59
-1	-2	4	22.77	21.21	39.41	5.47
-1	2	4	22.99	24.86	39.65	6.44
2	-2	4	22.19	21.60	38.36	5.66
2	2	4	31.55	30.19	54.80	5.98
-2	-2	4	5.59	5.82	-9.74	-0.75
-2	2	4	6.95	6.43	12.04	1.61
3	-2	4	13.96	12.93	-24.32	1.90
3	2	4	13.01	12.56	22.20	4.87
-3	-2	4	9.84	8.59	15.34	-7.76
-3	2	4	0.	1.28	-0.	-0.
4	-2	4	27.77	27.72	-48.09	-6.47
4	2	4	20.02	20.02	34.97	0.71
-4	-2	4	22.86	21.65	39.93	1.23
-4	2	4	13.28	15.33	-18.77	13.64
5	-2	4	8.73	8.54	-15.02	-2.63
5	2	4	32.06	31.81	55.29	9.03
-5	-2	4	23.81	24.12	40.90	7.61
-5	2	4	0.	5.43	-0.	-0.
6	-2	4	21.31	17.82	-34.79	-13.28
6	2	4	9.94	10.36	16.32	5.93
-6	-2	4	10.01	10.12	-17.47	0.84
-6	2	4	17.16	15.39	-28.86	-8.12
7	-2	4	17.32	19.12	-30.18	-2.30
7	2	4	19.04	20.59	-33.17	-2.62
-7	-2	4	15.55	14.42	26.54	5.83
-7	2	4	8.86	8.02	-15.28	-2.49
-8	2	4	17.47	16.97	-30.46	-2.00
0	-3	4	46.28	50.24	-20.51	-7.57
0	3	4	0.	4.44	0.	0.
1	-3	4	20.24	18.96	-34.63	-7. 18
1	3	4	29.70	31.72	-51.06	-9.29
-1	-3	4	8.04	7.22	12.90	5.56
-1	3	4	43.95	47.95	-75.25	-15.31
2	-3	4	15.56	13.36	27.11	2.03
2	3	4	6.90	5.55	12.04	0.61
-2	-3	4	56.51	57.41	-96.58	-20.55
-2	3	4	12.36	12.78	-21.27	-3.77

3	-3	4	52.61	53.78	90.89	13.78
3	3	4	10.34	11.71	17.35	5.04
-3	-3	4	12.64	10.84	-22.08	-0.33
-3	3	4	6.68	4.04	-11.41	-2.47
4	-3	4	38.85	37.91	-66.71	-12.55
4	3	4	52.92	53.29	21.51	13.31
-4	3	4	14.09	14.62	24.09	5.09
-4	-3	4	0.	5.40	0.	0.
5	3	4	11.00	12.00	-17.82	-7.20
-5	-3	4	10.08	9.20	16.70	5.59
-5	3	4	32.98	32.74	-57.38	-5.32
5	-3	4	0.	1.83	0.	0.
6	-3	4	7.66	6.63	13.34	1.10
6	3	4	15.88	16.18	26.00	9.68
-6	-3	4	14.41	12.68	-24.82	-4.26
-6	3	4	29.00	25.27	49.72	9.76
7	-3	4	7.89	7.59	11.64	-7.39
-7	-3	4	33.54	34.00	56.43	15.83
-7	3	4	16.01	16.01	27.60	-4.54
-8	3	4	6.74	6.38	-11.37	-3.06
0	4	4	25.71	25.73	-44.86	-2.30
0	-4	4	0.	3.01	0.	-0.
1	-4	4	8.10	6.58	-13.32	-4.78
1	4	4	24.17	25.24	-41.90	-5.27
-1	-4	4	10.88	13.87	-18.14	-5.70
-1	4	4	7.80	7.78	12.99	4.11
2	-4	4	42.60	44.77	74.20	5.95
2	4	4	9.58	8.36	16.23	4.11
-2	-4	4	33.59	32.64	58.65	2.31
-2	4	4	12.67	15.18	-17.46	-13.61
3	-4	4	16.20	13.25	28.14	3.09
3	4	4	15.68	15.17	25.93	8.85
-3	-4	4	6.52	6.54	-10.62	-4.13
-3	4	4	4.90	10.01	8.56	-0.00
4	-4	4	43.90	40.29	75.48	13.66
4	4	4	46.52	49.16	-80.90	-7.86
-4	-4	4	8.06	8.75	-13.73	3.14
-4	4	4	14.73	14.73	24.60	7.57
-5	-4	4	17.45	18.27	-30.18	4.32
-5	4	4	6.70	8.66	-11.31	3.04
5	-4	4	0 .	2.32	-0.	0.
5	4	4	0.	6.26	-0.	-0.
6	-4	4	7.57	8.49	11.61	6.33
-6	4	4	18.99	18.81	33.18	-0.40
6	4	4	0.	1.44	0.	-0.
-6	-4	4	0.	3.89	-0.	-0.
-7	-4	4	16.05	19.98	-27.44	-5.79
-7	4	4	46.85	44.74	79.40	19.91
7	-4	4	0.	2.18	0.	-0.
-8	4	4	8.27	7.72	-14.18	-2.79
0	-5	4	16.11	16.65	-28.14	0.62
0	5	4	13.83	15.07	23.62	5.11
1	-5	4	85.38	92.98	-148.47	-14.58
1	5	4	68.01	77.94	118.15	12.73
-1	-5	4	23.24	21.56	39.65	8.76

-1	5	4	9.16	9.96	15.71	3.05
2	-5	4	37.01	36.61	63.91	9.85
-2	-5	4	38.72	36.17	67.34	6.58
2	5	4	0.	8.22	0.	-0.
-2	5	4	0.	3.95	-0.	-0.
3	5	4	20.74	21.32	35.02	2. 32
-3	-5	4	11.47	8.52	-19.73	-3.50
-3	5	4	33.50	37.58	58.59	3.74
3	-5	4	0.	1.83	0.	-0.
4	-5	4.	10.78	9.28	-18.40	-4.02
4	5	4	14.85	14.99	-25.84	-2.35
-4	-5	4	29.52	26.96	46.63	22.06
-4	5	4	41.63	43.50	-72.31	-7.88
5	5	4	6.84	6.14	-10.20	-6.23
-5	-5	4	15.69	12.47	27.25	-2.97
-5	5	4	25.20	23.70	-43.95	2.77
5	-5	4	0.	4.16	0 .	0 .
6	-5	4	33.92	33.86	58.29	10.75
-6	-5	4	8.12	6.00	-13.02	-5.64
-6	5	4	0.	3.63	-0.	0.
7	-5	4	12.16	13.10	-18.24	-10.89
-7	5	4	22.30	22.27	38.46	6.25
-8	5	4	10.13	9.04	-17.69	-0.44
0	-6	4	38.70	37.85	-67.41	-5.39
0	6	4	28.45	31.37	47.76	13.79
1	6	4	25.37	25.80	-43.75	-7.15
-1	-6	4	9.46	9.49	15.66	5.29
1	-6	4	0.	2.28	0.	-0.
-1	6	4	0.	3.43	-0.	0.
2	-6	4	53.86	52.57	-83.09	-13.86
2	6	4	23.24	22.62	4:0.47	3.37
-2	6	4	25.17	30.27	-43.60	-5.75
-2	-6	4	0.	3.28	0 .	0.
-3	-6	4	24.81	23.60	42.83	6.72
-3	6	4	8.29	8.63	-13.37	-5.56
3	-6	4	0.	5.78	0.	-0.
3	6	4	0.	2.82	-0.	0.
4	-6	4	9.06	9.83	-13.55	-8.19
4	6	4	22.72	22.76	-39.40	-4.89
-4	-6	4	24.58	21.37	-42.79	-3.67
-4	6	4	0.	4.36	-0.	0.
5	-6	4	10.00	7.08	17.09	3.66
5	6	4	15.47	17.23	-26.27	-6.37
-5	-6	4	9.89	8.85	17.01	3.08
-5	6	4	20.53	20.30	-29.25	-20.77
-6	-6	4	7.24	8.42	11.90	-4.29
6	-6	4	0 -	3.68	0.	0 .
-6	6	4	0.	3.92	-0.	-0.
7	-6	4	10.92	10.91	-16.89	8.89
-7	6	4	17.54	18.34	30.42	3.74
-8	6	4	7.17	5.59	12.43	1.60
0	-7	4	16.00	16.34	-27.28	-6.13
0	7	4	16.57	17.63	28.64	4.27
1	-7	4	11.16	9.16	12.50	0.32
-1	-7	4	62.88	$62 \cdot 42$	108.67	16.21

-1	7	4	24.33	27.35	-42.45	-2.37
1	7	4	0.	4.67	-0.	-0.
2	-7	4	15.65	15.43	26.79	5.50
2	7	4	12.51	12.29	-20.93	-6.32
-2	-7	4	20.10	18.98	-34.97	-3.25
-2	7	4	14.45	17.39	24.44	6.35
3	7	4	52.92	56.57	-91.80	-11.14
-3	-7	4	25.58	23.28	-43.74	-9.18
-3	7	4	10.11	12.98	17.65	-0.62
3	-7	4	0.	3.64	0.	-0.
4	-7	4	31.10	31.27	-52.98	-12.07
4	7	4	4.68	5.48	7.88	2.20
-4	-7	4	4.77	3.48	-6.30	-5.46
-4	7	4	9.62	9.75	16.81	-0.12
5	-7	4	28.84	27.83	49.35	10.18
-5	7	4	11.36	8.47	-18.52	-7.14
-5	-7	4	0 .	2.99	-0.	0 .
-6	7	4	9.14	10.02	15.94	-0.95
6	-7	4	0.	2.17	0.	0 .
7	-7	4	9.40	10.69	-16.42	0.16
-7	7	4	8.34	8.93	-14.44	-1.94
-8	7	4	4.06	5.04	5.42	4.58
0	-8	4	31.44	32.15	53.23	13.58
0	8	4	13.78	15.56	23.61	4.74
1	-8	4	11.26	12.60	19.66	0.69
-1	-8	4	18.97	18.80	-33.13	0.96
-1	8	4	24.62	27.89	42.51	6.60
1	8	4	0.	6.02	-0.	-0.
2	-8	4	15.57	15.17	25.33	9.92
2	8	4	25.94	27.16	-43.67	-12.15
-2	-8	4	13.93	13.71	24.03	3.88
-2	8	4	11.15	10.92	-18.73	-5.36
3	-8	4	43.54	41.14	-76.07	-1.21
3	8	4	27.67	29.04	47.52	8.91
-3	8	4	9.61	11.78	3.45	16.43
-3	-8	4	0.	4.39	-0.	-0.
4	8	4	10.39	9.94	-17.63	-4.33
-4	-8	4	11.35	12.20	19.83	-0.05
-4	8	4	20.79	24.96	36.24	2.46
4	-8	4	0.	2.94	-0.	-0.
5	-8	4	7.52	6.91	-5.02	-12.14
-5	8	4	0.	2.21	0.	-0.
-6	8	4	8.20	10.60	-14.11	-2.49
6	-8	4	0.	3.24	0.	0.
-7	8	4	10.13	9.92	-16.49	6.42
0	9	4	7.70	5.19	-8.78	-10.20
0	-9	4	0.	5.41	0.	-0.
1	-9	4	13.33	13.00	23.26	1.13
-1	-9	4	10.99	12.71	-19.19	0.76
1	9	4	0.	2.06	-0.	0.
-1	9	4	0.	0.65	0.	-0.
2	-9	4	35.18	32.52	60.03	13.25
2	9	4	19.80	21.81	-34.48	-2.83
-2	-9	4	6.77	6.40	-11.53	2.63
-2	9	4	17.96	21.42	-31.36	-1.09

3	-9 9	4 4	28.03 15.57	26.50 18.33	-48.44 26.79	$\begin{array}{r} -7.24 \\ 4.73 \end{array}$
-3	-9	4	20.46	19.75	-32.35	-15.22
-3	9	4	0.	2.54	-0.	0.
-4	-9	4	10.07	12.10	17.10	4.15
4	-9	4	0.	4.09	-0.	-0.
-4	9	4	0.	1.50	0 .	0.
5	-9	4	12.32	11.02	21.50	1.10
-5	9	4	9.52	9.68	16.53	1.88
6	-9	4	17.92	16.08	-29.57	-10.29
-6	9	4	5.68	8.37	-9.30	-3.46
-7	9	4	0.	2.59	-0.	-0.
0	-10	4	18.69	18.97	-31.34	-9.17
0	10	4	22.56	25.16	38.95	6.09
1	-10	4	30.17	29.49	52.72	-0.41
1	10	4	27.44	29.23	$-4.7 .26$	-8.08
-1	-10	4	14.48	14.07	-25.30	0.01
-1	10	4	19.09	20.18	-28.71	-16.99
2	-10	4	9.69	9.22	-16.93	0.16
2	10	4	9.50	9.42	-16.29	-3.19
-2	-10	4	26.34	26.09	-43.96	-13.62
-2	10	4	11.30	11.59	-19.05	-5.21
3	-10	4	27.05	25.40	45.19	13.84
-3	-10	4	17.22	20. 24	30.09	0.39
-3	10	4	0.	1.42	0.	0.
4	-10	4	16.48	16.29	-28.28	-5.42
-4	10	4	6.87	7.34	10.98	4.85
5	-10	4	23.74	22.38	40.66	8.23
-5	10	4	7.13	4.87	5.93	-10.95
6	-10	4	0.	7.58	-0.	-0.
-6	10	4	25.17	25.84	41.11	15.62
0	-11	4	33.41	33.88	-57.36	-10.88
0	11	4	11.79	13.63	20.51	1.94
1	-11	4	13.80	15.27	23.92	3.06
-1	-11	4	7.48	7.95	-13.02	$1 \cdot 13$
-1	11	4	9.58	8.68	-16.69	-1.31
1	11	4	0.	1.90	0 .	0.
2	-11	4	13.62	11.71	22.68	7.21
-2	-11	4	7.45	7.73	11.32	6.42
-2	11	4	11.63	10.78	-19.95	-3.88
3	-11	4	8.18	6.35	$14 \cdot 10$	-2.34
-3	11	4	0.	2.32	-0.	-0.
4	-11	4	12.72	13.08	20.89	7.60
-4	11	4	0.	3.49	0.	0.
5	-11	4	19.28	19.85	32.02	10.46
-5	11	4	9.61	10.66	- 16.54	2.87
0	-12	4	13.56	15.60	23.68	0.89
1	-12	4	33.56	36.35	-57.20	-12.92
-1	12	4	6.75	6.14	-11.77	-0.80
2	-12	4	15.12	16.97	26.11	4.02
-2	12	4	8.10	7.48	-12.14	-7.28
3	-12	4	9.22	9.81	-14.52	-6.98
-3	12	4	17.72	24.07	30.42	5.79
4	-12	4	7.34	6.80	12.69	-1.85
-4	12	4	12.37	11.70	-14.68	-15.87

1	0	5	20.60	19.48	-35.95	-1.81
-1	0	5	16.01	13.37	27.89	-2.16
2	0	5	4.68	6.15	-7.63	-2.94
-2	0	5	28.25	28.03	46.99	15.12
3	0	5	8.36	10.89	10.69	-9.95
-3	0	5	0.	4.22	-0.	0.
4	0	5	10.18	10.04	17.04	5.12
-4	0	5	5.77	4.23	9.57	3.19
-5	0	5	12.66	12.17	-21.30	-5.96
5	0	5	0.	37.15	-0.	-0.
6	0	5	5.97	8.04	$10 \cdot 34$	1.40
-6	0	5	0.	1.89	0.	0.
-7	0	5	12.34	14.24	-21.13	-4.28
0	-1	5	20.90	22.75	35.21	9.69
0	1	5	0.	5.84	0.	0.
1	-1	5	26.59	25.87	-45.90	-7.21
1	1	5	8.14	7.09	-13.42	-4.72
-1	-1	5	6.20	6.93	10.71	1.62
-1	1	5	9.70	9.71	16.41	4.25
2	-1	5	0.	4.37	0.	-0.
-2	-1	5	0 .	5.69	0.	-0.
-2	1	5	0.	3.01	-0.	-0.
3	-1	5	7.64	8.13	13.23	1.78
3	1	5	18.42	20.41	30.97	8.75
-3	-1	5	5.90	4.99	-9.81	-3.16
-3	1	5	39.11	38.93	66.30	16.58
4	-1	5	24.51	21.32	-41.25	-11.53
4	1	5	9.01	8.88	15.67	1.50
-4	-1	5	0 .	2.19	-0.	0 .
-4	1	5	0.	4.13	-0.	0.
5	-1	5	26.70	27.94	-46.00	-7.76
-5	-1	5	42.43	38.60	-72.10	-17.29
-5	1	5	17.50	16.98	-29.24	-8.94
5	1	5	0.	2.14	-0.	-0.
6	-1	5	6.37	7.45	-10.42	3.92
6	1	5	31.14	35.43	53.63	9.21
-6	-1	5	16.85	17.13	29.36	2.17
-6	1	5	18.37	16.93	-31.67	-5.22
-7	-1	5	7.64	5.82	7.76	10.86
-7	1	5	3.77	5.07	6.46	1.27
0	-2	5	7.90	7.53	13.40	3.30
0	2	5	10.81	13.45	15.59	-10.66
1	-2	5	30.95	30.16	-51.72	15.79
1	2	5	6.06	7.93	-10.58	0.46
-1	2	5	6.01	6.89	-10.23	-2.37
-1	-2	5	0.	2.01	0.	-0.
2	2	5	25.46	25.46	-43.43	-9.64
-2	-2	5	20.81	21.52	-35.09	-9.52
-2	2	5	12.33	12.67	-21.12	-4.26
2	-2	5	0.	3.64	-0.	-0.
3	-2	5	44.08	45.31	76.18	11.39
-3	-2	5	19.53	18.87	-34.00	2.91
3	2	5	0 .	2.06	-0.	0 .
-3	2	5	0.	3.30	0.	0.
-4	-2	5	46.99	47.57	-80.95	-13.71

－4	2	5	22.56	22.04	29.40	－1．39
4	－2	5	0.	3.43	0.	0.
4	2	5	0.	2.49	0.	0.
5	－2	5	21.84	22.46	－38．02	－3．33
5	2	5	21.85	19.43	36.42	11.44
－5	－2	5	22.03	24.10	38.49	－0．36
－5	2	5	5.64	4.36	6.98	6.95
6	2	5	13.35	14.77	－22．97	－4．04
－6	－2	5	6.62	4.94	11.49	－1．37
－6	2	5	41.72	43.28	－72．74	-4.85
6	－2	5	0.	5.03	0 。	－0．
－7	－2	5	10.93	10.52	18.27	5.57
－7	2	5	0.	2.61	0.	－0．
0	－3	5	8.97	11.12	15.31	3.37
0	3	5	30.21	35.55	52.37	6.65
1	3	5	2.81	5.59	－3．97	－2．89
－1	－3	5	25.54	26.21	44.49	3.54
－1	3	5	31.25	34.96	－52．79	-13.95
1	－3	5	0.	2.09	－0．	－0．
2	－3	5	14.76	14.32	24.17	8.99
2	3	5	10.68	11.18	－18．00	－4．92
－2	－3	5	13.97	13.52	－22．11	-10.35
－2	3	5	18.05	19.58	－31．46	－2．25
3	－3	5	17.52	18.68	29.53	8.06
3	3	5	11.74	11.75	19.66	5.87
－3	－3	5	5.69	6.74	9.93	0.41
－3	3	5	12.17	13.05	19.93	7.42
4	3	5	13.57	14.43	22.47	7.58
－4	－3	5	14.45	14.53	23.31	9.71
－4	3	5	22.77	22.38	39.08	7.48
4	－3	5	0 ．	1.58	－0．	－0．
5	－3	5	7.55	7.49	－12．19	－5．04
5	3	5	7.07	$8 \cdot 57$	－8．24	－9．20
－5	3	5	17.12	17.55	-22.69	－3．64
－5	－3	5	0.	4.95	0 ．	0.
6	－3	5	5.61	2.15	－9．80	-0.18
－6	3	5	48.01	49.90	81.89	18.20
－6	－3	5	0.	0.85	0.	0.
－7	3	5	9.68	10.19	－16．91	-0.13
0	－4	5	5.42	6.89	－8．69	3.78
0	4	5	14.68	17.57	25.23	4.63
1	4	5	14.09	12.96	24.33	3.75
－1	－4	5	9.99	9.96	－4．07	－16．98
1	－4	5	0.	22.82	－0．	－0．
－1	4	5	0.	3.23	－0．	－0．
2	－4	5	18.11	16.25	－ 2.1 .39	－3．98
2	4	5	19.76	22.53	－32．87	10.57
－2	4	5	23.78	25.42	-41.55	-0.33
－2	－4	5	0 ．	1.30	0 。	－0．
3	－4	5	0.	7.38	0.	0.
3	4	5	0.	2.60	－0．	0.
－3	－4	5	0.	3.88	0.	0.
－3	4	5	0.	3.36	0.	－0．
4	－4	5	17.90	18.11	29.53	10.32
4	4	5	23.40	24.37	40.17	7.61

-4	-4	5	19.68	20.55	33.45	7.96
-4	4	5	30.58	33.38	53.31	3.65
5	-4	5	25.93	23.29	-43.45	-12.84
-5	4	5	10.67	11.28	-18.63	-0.67
5	4	5	0.	7.45	-0.	-0.
-5	-4	5	0.	4.16	0.	-0.
6	-4	5	10.93	10.11	17.91	6.64
-6	-4	5	25.12	23.49	41.62	13.94
-6	4	5	$7 \cdot 16$	9.12	11.92	3.80
-7	4	5	11.38	11.87	19.60	3.37
0	-5	5	17.36	17.62	-29.56	-6.81
0	5	5	11.41	11.36	19.44	4.41
1	-5	5	14.77	14.80	-24.57	-7.91
1	5	5	29.25	30.94	49.55	12.54
-1	-5	5	21.29	21.23	-36.93	4.49
-1	5	5	4.92	5.09	-6. 22	-5.94
2	-5	5	8.22	8.35	-14.36	-0.25
2	5	5	22.53	22.92	-38.20	-9.53
-2	-5	5	22.58	22.36	-39.19	-4.60
-2	5	5	20.53	23.03	-24.84	-8.54
3	5	5	7.00	7.90	10.63	6.05
-3	-5	5	8.85	8.02	15.46	-0.24
-3	5	5	$14 \cdot 34$	15.15	24.53	5.12
3	-5	5	0.	3.56	0.	م.
4	-5	5	8.76	6.62	15.30	-0.41
4	5	5	13.58	15.30	23.65	1.90
-4	-5	5	25.37	24.23	43.46	$8 \cdot 74$
-4	5	5	54.37	61.67	-93.51	-16.77
5	-5	5	46.95	43.62	81.06	12.62
-5	-5	5	11.41	12.04	-19.82	-2.15
-5	5	5	6.02	6.51	$-10 \cdot 22$	-2.48
6	-5	5	9.68	9.38	15.95	5.64
-6	-5	5	10.93	10.76	-16.66	-9.34
-6	5	5	0.	2.38	0.	0.
-7	5	5	0.	3.19	0.	0.
0	-6	5	25.73	24.50	44.53	6.23
0	6	5	10.20	12.89	17.76	1.44
1	-6	5	19.85	18.25	34.66	-1.36
-1	-6	5	11.73	11.67	18.02	9.76
-1	6	5	10.32	7.83	15.99	8.33
1	6	5	0.	3.36	-0.	0.
2	-6	5	6.70	8.41	5.87	-10.13
2	6	5	16.66	18.35	-28.61	-5.40
-2	-6	5	6.51	7.58	-10.89	-3.28
-2	6	5	0.	2.58	0.	-0.
3	-6	5	17.27	17.32	28.26	10.59
3	6	5	4.27	4.48	-6.62	-3.44
-3	-6	5	40.96	37.23	69.03	18.91
-3	6	5	9.03	9.06	-15.71	1.49
4	-6	5	8.20	9.32	-13.52	-4.74
4	6	5	8.35	$7 \cdot 31$	-8.33	-11.98
-4	-6	5	4.41	4.00	-7.70	-0.31
-4	6	5	12.79	12.27	-22.18	-2.75
-5	-6	5	9.90	7.32	-16.84	-3.98
-5	6	5	14.81	14.39	-25.31	-5.38

5	－6	5	0.	1.46	0.	－0．
6	－6	5	20.12	18.92	34.37	7.41
－6	6	5	11.09	$9 \cdot 30$	19.37	－0．51
－7	6	5	24.58	25.72	42.33	7.29
0	－7	5	11.64	10.72	20.12	2.94
0	7	5	6.28	6.88	4.39	10.06
1	7	5	2.86	2.74	$3 \cdot 34$	3.71
－1	-7	5	4.26	4.57	4.60	5.85
－1	7	5	11.22	12.23	-18.70	－5．88
1	－7	5	0.	4.98	－0．	－0．
2	－7	5	17.04	16.59	－29．77	0.64
2	7	5	2.60	4.24	－3．05	－3．37
－2	－7	5	6.75	4.85	9.50	6.99
－2	7	5	43.43	47.76	74.20	15.89
3	－7	5	27.08	23.21	－45．30	－13．66
3	7	5	24.92	24.83	－42．36	－10．08
－3	－7	5	14.78	14.21	25.29	－5．22
－3	7	5	5.63	4.88	7.89	5.88
4	－7	5	20.89	20.44	－36．08	－5．52
－4	－7	5	13.74	13.62	23.63	4.23
－4	7	5	12.80	12.92	－22．25	－2．27
5	－7	5	22.41	22.48	－38．72	－5．86
－5	7	5	9.18	8.23	－14．18	－7．49
－6	7	5	30.58	31.96	52.98	6.95
6	－7	5	0.	5.89	0.	0.
－7	7	5	17.17	19.53	－27．48	－12．03
0	－8	5	7.01	8.26	-3.03	11.87
0	8	5	0.	0.91	0.	0.
1	－8	5	20.77	20.14	－35．20	－8．85
1	8	5	6.43	5.16	7.58	-8.30
－1	－8	5	6.43	5.14	－11．20	－0．89
－1	8	5	10.21	10.70	17.76	－1．72
2	－8	5	8.07	7.06	13.32	4.62
2	8	5	10.72	11.89	18.57	－2．45
－2	－8	5	22.39	21.69	－38．38	－7．59
－2	8	5	0.	2.72	－0．	－0．
3	－8	5	24.91	22.89	43.33	4.14
－3	－8	5	16.43	17.35	－27．83	－7．04
－3	8	5	17.49	19.23	30.01	5.75
4	－8	5	20.47	20.90	－35．35	－5．47
－4	8	5	12.57	13.81	－21．93	1.26
－4	－8	5	0.	10.41	0.	0.
5	－8	5	9.73	9.18	－13．07	－10．87
－5	8	5	24.48	25.18	-42.17	－7．16
6	－8	5	31.96	31.04	54.62	11.63
－6	8	5	11.26	12.01	－19．46	－2．88
0	－9	5	10.97	9.30	19.13	－1．14
0	9	5	32.51	35.67	-55.21	－ 13.38
1	－9	5	8.93	8.96	10.91	11.16
1	9	5	4.53	4.75	4.83	6.27
－1	－9	5	12.15	11.42	20.32	6.16
－1	9	5	18.09	21.16	－31．10	-5.66
2	－9	5	15.45	14.11	26.52	5.03
－2	－9	5	7.40	7.26	-12.08	－4．61
－2	9	5	0 。	2.95	0 ．	0 ．

3	-9	5	30.60	30.80	52.89	7.83
-3	-9	5	13.62	13.68	-23.45	-4.03
-3	9	5	14.33	14.15	23.59	8.38
4	-9	5	9.52	7.93	16.15	-4.00
-4	9	5	22.72	26.38	-39.22	-6.16
5	-9	5	8.97	8.17	-15.60	1.52
-5	9	5	36.96	39.51	63.38	12.40
-6	9	5	0.	0.79	0.	0.
0	10	5	12.31	13.81	21.36	2.51
0	-10	5	0.	2.08	0.	-0.
1	-10	5	30.73	29.21	-53.33	-6.28
-1	-10	5	23.89	22.49	41.29	6.14
-1	10	5	14.48	14.54	-24.44	-6.53
2	-10	5	9.47	9.48	16.20	3.38
-2	-10	5	10.68	10.67	-12.44	-13.91
-2	10	5	0.	3.06	0.	-0.
3	-10	5	23.64	21.29	39.30	12.72
-3	10	5	13.50	15.97	22.95	5.44
4	-10	5	19.88	18.87	-33.25	-10.06
-4	10	5	23.37	25.73	40.70	3.38
5	-10	5	28.29	28.86	-49.42	-1.26
-5	10	5	0.	0.52	0.	0.
0	-11	5	5.05	4.65	-8.08	-3.55
1	-11	5	25.28	26.06	-43.31	-8.68
2	-11	5	7.03	6.29	-12.00	2.64
3	-11	5	6.11	7.02	10.61	-1.17
1	0	6	33.61	35.27	58.46	5.59
-1	0	6	19.87	21.17	-34.01	-7.00
-2	0	6	47.40	49.85	81.67	13.75
2	0	6	0.	3.75	-0.	-0.
3	0	6	26.16	26.14	-44.99	-8.07
-3	0	6	14.21	15.36	24.75	1.99
4	0	6	24.82	27.44	42.12	10.32
-4	0	6	28.88	29.69	-49.91	-7.48
-5	0	6	16.73	15.28	-27.70	-9.36
5	0	6	0.	5.06	-0.	-0.
-6	0	6	0.	3.53	-0.	0.
0	1	6	7.06	9.23	-12.34	-0.03
0	-1	6	0.	6.18	-0.	0 .
1	-1	6	31.91	33.29	55.15	8.22
1	1	6	59.16	66.46	-102.82	-10.67
-1	1	6	15.58	18.24	-26.80	-4.78
-1	-1	6	0.	47.89	0 .	0.
2	-1	6	8.48	9.33	-14.39	-3.54
2	1	6	6.46	8.16	10.96	-2.68
-2	-1	6	0.	0.45	0.	-0.
-2	1	6	0.	4.71	0.	0.
3	-1	6	7.65	6.52	-13.31	-1.26
3	1	6	11.74	12.67	-19.56	-6.19
-3	-1	6	20.53	20.82	35.54	4.87
-3	1	6	18.67	20.33	-32.51	2.72
4	-1	6	30.41	28.97	-51.93	-11.25
4	1	6	11.32	12.43	19.37	3.98
-4	-1	6	7.92	8.74	-13.29	-3.87
-4	1	6	9.02	6.87	14.71	5.65

5	-1	6	6.43	6.45	11.14	1.44
5	1	6	7.18	5.27	12.50	1.05
-5	-1	6	0.	0.79	-0.	-0.
-5	1	6	0.	4.35	0.	-0.
-6	-1	6	6.55	4.34	-10.53	-4.47
-6	1	6	0.	0.77	0.	0.
0	-2	6	6.23	7.35	$-10 \cdot 30$	3.51
0	2	6	15.51	21.75	-25.56	-9.00
1	-2	6	30.32	31.80	52.15	9.35
1	2	6	10.26	8.85	14.66	10.32
-1	-2	6	52.11	54.06	-90.67	-8.31
-1	2	6	0.	3.28	0.	-0.
2	-2	6	28.75	27.85	-49.14	-10.42
2	2	6	29.73	32.11	-51.24	-8.56
-2	-2	6	16.06	13.71	-27.11	-7.23
-2	2	6	29.01	31.67	50.41	5.34
3	-2	6	12.01	12.05	-20.97	0.90
-3	-2	6	22.23	21.80	38.48	5.27
-3	2	6	34.99	36.45	60.21	10.62
3	2	6	0.	3.77	-0.	-0.
4	2	6	6.35	6.80	8.99	6.51
-4	-2	6	40.25	41.02	-68.78	-14.70
4	-2	6	0 -	4.13	0 -	0 -
-4	2	6	0.	2.73	-0.	-0.
5	-2	6	9.46	8.97	11.21	-12.14
-5	-2	6	19.99	20.59	-34.93	0.04
-5	2	6	31.45	30.19	52.22	17.10
-6	-2	6	22.92	23.95	39.23	8.06
-6	2	6	18.93	20.96	33.04	1.60
0	3	6	6.36	7.95	-11.11	-0.19
0	-3	6	0.	7.75	0 .	0.
1	-3	6	11.77	11.19	20.53	1.16
1	3	6	10.53	11.97	17.76	4.81
-1	-3	6	32.40	33.76	-55.87	-9.17
-1	3	6	12.30	15.57	21.23	-3.36
2	-3	6	44.98	44.21	77.62	12.36
-2	-3	6	10.76	10.12	18.78	-0.99
-2	3	6	10.08	11.67	-16.88	-5.04
2	3	6	0.	0.53	0.	0 .
3	3	6	34.12	37.30	58.64	10.76
-3	-3	6	13.44	11.27	-19.51	-13.07
3	-3	6	0.	5.37	-0.	-0.
-3	3	6	0.	5.87	0.	0.
4	-3	6	21.72	23.60	36.62	9.97
4	3	6	5.28	6.30	8.68	3.12
-4	3	6	15.89	17.68	-27.75	-1.02
-4	-3	6	0 .	5.39	-0.	0.
5	-3	6	0.	4.54	-0.	-0.
-5	-3	6	0 .	23.08	-0.	-0.
-5	3	6	0.	2.85	0.	0.
-6	3	6	15.35	15.48	25.88	7.03
0	-4	6	13.44	12.98	22.12	7.90
0	4	6	13.40	13.94	-23.21	-3.06
-1	-4	6	31.83	29.75	-54.46	-11.28
-1	4	6	34.70	39.37	-59.60	-11.15

$\frac{1}{1}$	$\begin{array}{r} -4 \\ 4 \\ \hline \end{array}$	6 6	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 1.10 \\ & 6.60 \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$
2	-4	6	12.28	13.11	-21.16	-3.56
2	4	6	12.01	13.31	18.98	8.95
-2	-4	6	12.68	13.34	-22.10	-1.62
-2	4	6	6.07	5.92	2.22	5.24
3	-4	6	9.88	12.85	15.28	8.03
3	4	6	14.00	16.05	-23.08	-8.10
-3	-4	6	47.90	48.98	83.10	9.98
-3	4	6	41.58	47.48	-71.34	-13.76
4	-4	6	20.23	19.18	34.08	9.38
4	4	6	22.86	24.84	38.98	8.72
-4	-4	6	19.09	18.03	33.08	4.26
-4	4	6	13.16	15.28	-22.76	-3.30
5	-4	6	14.05	13.97	-23.84	-5.87
-5	-4	6	0.	3.33	-0.	-0.
-5	4	6	0.	0.87	-0.	0.
-6	4	6	15.95	15.71	26.77	7.74
0	-5	6	49.71	52.41	-85.96	-12.46
0	5	6	25.87	29.79	4.4 .76	6.29
1	-5	6	17.73	17.05	30.90	2.24
-1	-5	6	6.92	5.98	-12.06	-0.82
-1	5	6	17.59	21.46	-30.49	-3.90
1	5	6	0.	2.76	0.	0.
2	-5	6	23.64	25.64	-39.84	-10.92
-2	5	6	11.83	13.54	20.66	0.60
2	5	6	0.	4.00	-0.	-0.
-2	-5	6	0.	2.65	-0.	-0.
3	-5	6	9.63	8.07	16.83	0.23
3	5	6	10.62	13.00	-18.17	-3.75
-3	-5	6	13.92	14.01	22.45	9.36
-3	5	6	0.	5.21	0.	0.
4	-5	6	7.38	6.78	-12.81	1.52
-4	-5	6	9.19	8.54	-16.05	-0.63
-4	5	6	0.	7.19	-0.	-0.
5	-5	6	22.29	21.39	38.18	7.67
-5	5	6	0 .	0.91	-0.	-0.
-6	5	6	12.24	13.15	12.38	2.05
0	-6	6	33.07	35.11	57.53	5.37
0	6.	6	8.40	8.33	-13.84	-4.88
1	-6	6	23.61	20.80	-40.14	-9.52
1	6	6	41.82	49.55	72.25	10.93
-1	6	6	27.52	32.39	46.61	11.84
-1	-6	6	0.	2.63	-0.	-0.
2	-6	6	34.33	35.58	-59.28	-9.15
2	6	6	9.43	10.04	16.48	0.28
-2	-6	6	15.38	13.87	-26.41	-4.96
-2	6	6	5.53	2.67	9.20	2.97
3	-6	6	17.37	15.91	30.07	4.12
-3	-6	6	15.39	15.47	24.96	10.01
-3	6	6	7.15	8.45	12.48	0.47
4	-6	6	13.61	13.27	23.52	3.49
-4	-6	6	12.88	14.10	22.50	-0.65
-4	6	6	16.45	18.41	-27.59	-8.06
5	-6	6	9.07	$8 \cdot 86$	-15.73	-1.94

$\begin{aligned} & -5 \\ & -6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	6 6	$\begin{aligned} & 11.41 \\ & 19.48 \end{aligned}$	$\begin{array}{r} 12.30 \\ 21.90 \end{array}$	$\begin{array}{r} -19.25 \\ -32.69 \end{array}$	$\begin{array}{r} 5.19 \\ -9.50 \end{array}$
0	-7	6	25.88	25.86	43.71	11.61
0	7	6	0.	2.74	-0.	0.
1	-7	6	0.	1.73	-0.	0 .
1	7	6	0.	7.86	0.	0.
-1	-7	6	0.	2.82	-0.	-0.
-1	7	6	0.	6.05	-0.	-0.
-2	-7	6	42.95	46.08	74.00	12.52
-2	7	6	2.38	11.52	-14.99	6.63
2	-7	6	0.	0.71	0 .	-0.
3	-7	6	21.73	22.79	-36.95	-8.74
-3	7	6	14.35	17.88	24.97	2.30
-3	-7	6	0.	0.75	-0.	-0.
4	-7	6	21.22	22.56	$36 \cdot 16$	8.19
-4	7	6	10.03	2.75	-14.93	-9.18
5	-7	6	16.72	17.06	-28.34	-7.10
-5	7	6	11.47	13.86	-19.64	-3.29
0	-8	6	0 。	24.18	0 .	0.
0	8	6	0.	7.01	-0.	-0.
1	-8	6	9.76	6.28	-16.95	-1.92
-1	-8	6	9.13	9.23	14.87	5.78
-1	8	6	9.72	12.61	-16.87	-1.97
2	-8	6	14.52	13.91	-24.86	-5.09
-2	-8	6	36.83	40.81	-64.07	-6.07
-2	8	6	22.08	25.99	37.75	7.98
3	-8	6	16.92	17.39	29.43	2.77
-3	8	6	7.48	6.00	11.88	-5.45
4	-8	6	9.36	9.58	11.48	-11.65
-4	8	6	10.16	10.46	14.67	10.00
0	-9	6	0.	2.80	0.	0.
1	-9	6	23.29	23.53	39.33	10.44
-1	-9	6	8.89	7.55	-14.68	-5.09
2	-9	6	11.98	11.44	-12.16	-8.44
3	-9	6	12.34	12.47	20.46	6.80
1	0	7	0.	3.02	0.	0.
-1	0	7	0.	1.25	0.	-0.
2	0	7	18.43	18.05	-29.49	-12.94
-2	0	7	14.25	33.30	24.78	2.43
3	0	7	18.32	21.93	-31.68	-4.63
-3	0	7	11.22	11.83	18.93	5.11
-4	0	7	14.46	15.33	-23.89	-8.22
0	-1	7	13.73	16.98	-23.30	-5.73
0	1	7	9.68	11.80	-16.70	-2.69
1	1	7	17.83	17.36	-29.66	-9.52
-1	-1	7	26.13	26.11	44.29	11.10
-1	1	7	5.73	10.07	-9.93	1.27
1	-1	7	0.	7.69	0.	0.
2	1	7	12.16	12.86	20.12	6.84
-2	1	7	19.56	21.88	32.12	11.69
2	-1	7	0.	6.34	-0.	0.
-2	-1	7	0.	3.79	-0.	0.
3	-1	7	16.31	18.23	-27.98	-5.39
3	1	7	7.67	8.82	-9.51	-9.44
-3	-1	7	0 .	6.13	0 .	-0.

$76^{\circ} 9$	20．92－	$2 G \cdot 6 T$	しカ＊らT	L	G	$\varepsilon-$
5て－2＝	7501	96．7	L［．9	L	5－	ε
－0	－0	$56 \cdot 5$	－ 0	L	\checkmark	て－
\cdots	－ 0	$8 L^{\circ}$ Z	－	L	G－	己
$\varepsilon \nsim \cdot 9$	$2 L \cdot L T-$	8L・をI	$6 L^{\circ} 01$	L	S－	2－
－0－	－0	L90\％	${ }^{\circ} \mathrm{O}$	L	G－	T－
ムサ・て	［T•92	$\varepsilon 8 \cdot 8 T$	T0＊ST	L	ζ	T－
71．8	L6．${ }^{\circ}$	89＊91	6加年	L	5	T
$9 L^{*} 6$	$50 \cdot 87$	8L＊ 28	$90 \cdot 82$	L	5	0
عO＊OT－	とで教	Tて＊8	$05^{\circ} 6$	L	द－	0
$\tau \varepsilon^{\bullet} \varepsilon-$	こT・てTー	LS•9	$6 T^{\circ} \mathrm{L}$	L	7	ワー
OT＊	76．09	与ह・で		L	7	を－
こと・カ	をI•6－	てて・G	8 L° G	L	ワー	$\varepsilon-$
$26 \cdot 01$	LL＊6を	10＊＊	09° ह	L	ワー	ε
$0 Z^{*} 5$	8L•0乙	$\zeta 乙 \cdot \varepsilon I$	92^{*} てI	L	7	2－
Tह＊6－	ヵら．1ह－	Lを＊0て	28.81	L	ワー	2－
LO＇T－	カサ・8ー	GL＊8	L8＊\dagger	L	ワー	2
－ $0-$	－0－	8L． 2	${ }^{\circ} 0$	L	\％	I－
－ 0	－ 0	6I＊ \mathcal{L}	－ 0	L	カー	I
Lて＊＊－	720 0\％－	$7{ }^{\circ} 61$	पL\％L	L	ワー	I－
\downarrow ¢•8	$9 L^{\circ}$ 2	$05 \cdot 5$	$\varepsilon 0^{\circ} \mathrm{G}$	L	\dagger	T
－	＊－	［で号	0	L	ワー	0
$82^{\circ} 5$	Lヵ・とI－	9 $L^{\circ} \mathrm{L}$	82•8	L	\dagger	0
－0－	－0－	7 T－2	－ 0	L	ε	ワー
－ $0-$	－ 0	$カ て$ •L	－ 0	L	ε	$\varepsilon-$
$26^{\circ} \mathrm{T}=$	67＊17\％	6でL2	पद5\％	L	ह－	$\varepsilon-$
$76^{\circ} 6-$	02・てこ－	09＊カI	$26^{\circ} \mathrm{E}$ I	L	$\varepsilon-$	ε
$\bigcirc 0$	－ 0	75＊＊	${ }^{\circ} \mathrm{O}$	L	$\varepsilon-$	て－
T9＊T－	T6・とてー	8サ・91	$T て \bullet ら T$	L	ε	て－
こ「＊2	ह6＊91	Oट．हा	6L．6	L	ε	2
［8＊5	ع9＊$L T-$	$8 て \cdot \varepsilon \tau$	$29^{\circ} 01$	L	$\varepsilon-$	2
－ 0	－ 0	99\％	－0	L	ε	I－
－ 0	－ 0	$92^{\circ} 0$	－ 0	L	ε	T
$96^{\circ} 6-$	9L＊ 18	$66^{\circ} \mathrm{L}$	$50^{\circ} 61$	L	$\varepsilon-$	T－
9＊\quad ¢	$5 カ$ こて	T 6^{\bullet} カT	II＊ 1 I	L	$\varepsilon-$	I
OE＊OL	99．6T＝	で＊ 91	$0 L^{\circ} \mathrm{ZI}$	L	ε	0
［0＊カー	カサ・枵	\dagger T•8	$\angle 8^{\circ} 5$	L	$\varepsilon-$	0
790\％	$19^{\circ} \mathrm{Z2}$	हI．दू	ह0＊हा	L	乙	ワー
「ガカー	と8・とてー	［G・カT	$\angle 8^{\circ}$ ¢	L	て－	カー
－0－	－0－	LZ＊	${ }^{\circ} 0$	L	2－	ह－
$98^{\circ} 0$	サて・8I	00＊TI	Gカ・OT	L	2	$\varepsilon-$
しであー	81．91	12＊8	$85^{\circ} 6$	L	2－	ε
－ 0	－ 0	66＊ 7	－ 0	L	2－	て－
2805	98＊ 2	L8．91	Oद．${ }^{\circ}$	L	て	2－
カサ・て	$6 L \cdot 6 T$	$\varsigma \varepsilon \cdot \varepsilon T$	てカ＊IT	L	2	2
$L L^{\circ} \cdot \varepsilon$	$80^{\circ} I T$	$\tau 5 \cdot 8$	OL．9	L	2－	2
－ 0 －	$\cdot 0$	9 －+	－ 0	L	て－	［－
$65^{\circ} 8=$	8＊＊है－	$8 \varepsilon^{\circ} \mathrm{LI}$	$8 L^{\circ} 6$ I	L	2	I－
$\varepsilon I \cdot \varepsilon$	9カ・【て	$00 \cdot G I$	Iヶ＊てI	L	2	T
$58^{\circ} 7$	7L－OC	$52-02$	$18^{\circ} \mathrm{LT}$	L	て－	
$\varepsilon 8 * カ ー$	［9＊ 1 －	$\varepsilon \varepsilon \cdot \varepsilon \varepsilon$	$6 \varepsilon^{*} L 2$	L	2	0
$\varepsilon L \cdot O T$	91＊2を	$60 \cdot 12$	07.61	L	て－	0
99＊II	20．2て	OT•9T	$9 て ゙ カ$ I	L	I	ワー
ST＊OT－	ह丂＊हع－	5L・で	50.02	L	T－	サー
－0－	－ 0	98•1	－ 0	L	I	$\varepsilon-$

$$
236
$$

$$
\begin{array}{rrrrrrr}
0 & -6 & 7 & 7.28 & 6.49 & -12.53 & 2.17 \\
1 & -6 & 7 & 25.68 & 27.24 & -43.62 & -10.51 \\
-1 & -6 & 7 & 0 . & 4.47 & -0 . & -0 . \\
2 & -6 & 7 & 0 . & 4.28 & -0 . & -0 .
\end{array}
$$

ACKNOWLEDGEMENTS

I am indebted to Professor M. J. Buerger who brought this problem to my attention and supervised the investigation. All intensity data for rhodonite, which were collected by Dr. N. Niizeki, was turned over to me by Professor Buerger. In addition, he made avallable his notes on preliminary investigations of both rhodonite and buscamice.

Discussions with Mr. Charlac Prewitt, who worked on the related minerals pectolete and wollastonite, resulted in many valuable ideas. Mr. Prewitt kindly made ayailable his program for least-squares refinement of crystal structures and many times helped in revisions of this program. In addition, he kindly made available unpublished data on wollastonite. A11 othex members of the erystallographic laboratory, including Mr. Wayne Dollase, Mr. Bernhardt Wuensch, and Mrs. Hilde Cid-Dreedner, have been encouraging and helpful at all times,

Specinens for this investigation were kindly provided by Dr. Clifford Frondel of Harvard University. Dx. Waldemar Seballer of the U.S.G.S. made available many other specimens of Ca, Ma metasilicates. IBM 709/7090 program,
as well as advice on their use, were contributed by Dr. C. W. Burnham of the Geophysical Laboratory and Dr. Donald Wright of the M.I.T. Chemistry Department.

My wife, Dorothy, helped in countless ways toward the completion of this project. She contributed her time and effort as well as providing constant encouragement. Miss Deborah Jope typed the final draft of this thesis, and Mrs. Shirley Veale and Miss Gay Lorraine the final drafts of the published papers. Fellowahip support provided by Standard 0 il of Callfornia is gratefully acknowledged.

BIOGRAPFY

The author was born February 15, 1937 at Somerville, Massachusets to Caxroll and Leona Pexcox. Ile has two brothers, C. Morman, mad Robert W. ine attended gxade school and high school ins Stonehan, Messachusects fron 3942 co 1954. Institutions atcended include Tufts Universicy (1954-1958), where he received the degree of Bachelor of Science, Magna Cun Leudt, and M.I.2. (1958-1962) wher he received the degxee of Master of Science in 1960. At Tufts University be was a laboratory sssistant for three years in the Department of Geology, and both teaching and research assiatant in the Deparcment of Geology \& Geophysics at M.I.T.

Professional expexience includes the following: Summer of 1955 as a geological field assistant; Summer of 1957 as field assistant in Greenland Involved in perma* frost research; Sumers of 1959 and 1960 research assistant in cxystallograplay in the Departaent of Geology of M. I.T. Summer of 1961, staff member ac Lincoln Laboratory.

The authur recelved che standard 011 or california fellowship at M.T.T.s 1961-1962, and is a member of Sigmax. He is a conauthor of the following publications.

1. M. J. Buergex, C. W. Dumham and D. R. Paacor (1962) Assessment of the several structures proposed for tourmaline. Acta Cryst., 15, 583-590.
2. D. R. Peacor and M. J. Buerger (1962) The decermination and refinement of the structuce of narsarsukite, $\mathrm{Na}_{2} \mathrm{Tfost}_{4}^{\mathrm{i}} \mathrm{O}_{10^{\circ}}$ An. Mineral.
3. D. R. Peacor and C. T. Prewitt (1962) Drilling coordinates for cystal structure models. Rev. Sci. Instx., 33, 550-551.

He was married to Mies Dorothy Coniaris of Milford, Massachusetts on Pebruaxy 1, 1959. They have a son, Scott David, born February 1, 1962. The autior has accepted a position as instructor in the Department of Geology and Mineralogy, University of Michigan, beginning September, 1962.

1. Barnick, Max A. (1935) Strukturuntersuchung des natürlichen Wollastonite. Mitt. Kaiser - Wilhelm o Inst. SLilkatforsch., No. 172, 1-36.

2 Belov, N.V. (1960) A second chapter in the chemical crystallography of the silicates. J. Struct. Chem., 1. 35-43, Consultants' Bureau translation.

3 Berman, Harry and Forest A. Gonyer (1937) The structural lattice and classification of bustamite. Am Minexal. 22. 215-216.

4 Boll-Dornberger, Kate (1961) Zux Structur einiger Kalsiumsilikate. Silikattechn., 12, 327-329.

5 Brown, W.L., N. Morimoto, and J.V. Smith (1961) A etructural explanation of the polymorphism and transim tions of MgSiO_{3}, J. Geol., 69, 609-616.

6 Buerger, M.J. (1956) The arrangement of atoms in crystals of the wollastonite group of metasilicates. Proc. Nat' 1. Acad. Sci. 42, 113-116.

7 Buerger, M.J. and C.T. Prewitt (1961) The crystal structures of wollastonite and pectolite. Proc. Nat'1. Acad. Sci., 47, 1884-1888.

8 Burnham, C.W. (unpublished) LCLSQ3, IBM 709/7090 program for the least-squares refinement of lattice constants.

9 Burnham, C.W. (1962) Absorption corrections for prismatic crystals, and evaluation of end effect. Abstract. A.C.A. program.

10 Busing, W. R. and H.A. Levy, (1959) A crystallographic function and error program for the IBM 704. Oak Ridge National Laboratory Report No. 59-12-3.

11 Doelter, C. (1912) Handbuch dex Hineralchame. (Sceinkopff, Dresden and Leipzig).

12 Glaser, O. (1926) Thermische und Mikroskopische Untersuchungen an den fur die Kupologenschlacke Bedeutsamen Systemen: MnO-A1 $2_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}, \mathrm{MnS}-\mathrm{MnSLO} \mathrm{S}_{3}$ CaS-CaSiO, Cent. F. Miner. ${ }^{2}$ ABt. A ${ }^{2}$. Min. und pet. : 81-56.

13 Glasser, F.F. (1958) The gytem MO-S10 ${ }_{2}$. An Journal Sci. 256. 398-412.

14 Glasser, L.S. Dent and R.P. GLasser (1960) Fesch Losung and Kristallstrukturen un Systen CaSiO $_{3}$ MnSiO $_{3}{ }^{\circ}$ S11ikattechn. 11, 363.

15 Glasser: L. S. Dent, and F. P. Glassar (1961) Silicate transformations: rhodonita wollastonite. Acta Cryat. $14,818-822$.

16 Hay, Max H. (1929) The vaciation of optical proparties with chemical composition in the rhodonite-bustamite series. Min. Mag., 22, 193-205.

17 Hilmer, W. F, Liebai, E. thilo and K, Dornberger . Schiff (1956) Ein neuer Kettentyp in der Kristallstruktur des Rhodonits $/(\mathrm{Mn}, \mathrm{Ca}) \mathrm{SiO}_{3} 7 \mathrm{X}$. Die Naturwissen. 43. 177-178.

18 Hughes, $\mathrm{E} . \mathrm{W}$. (1941) The crystal structure of melamine. J. Amer. Chem, Soc. 63, 1737-1752.

19 Ito, T. (1950) X-ray studies on polymorphism. (Maruzen, Tokyo) 93-110.

20 Jaegex, F, and H. van Rloostex (1916) Investigations In the fielc of ollicute chemistry. IV. Some data on the meta and orthosilicates of the bivalent metals. Proc. Kon. Akad. Wetensch. Amstexdam, 8, 896.

21 Jeffrey, J. W, and L. Hellex (1953) Preliminary x-ray investigation of pseadomollastonite. Acta Cryst. 6. 807 mog .

22 Larsen, Esper S., and Earl \#. Shamon (1922) Bustamite from Franklin Purnace, Naw Jer3ey, Aro. Minernly 7 , 95-100.

23 Lazarev, A. N. and T. F. Tenisheva (1960) Vibrational spectra of silicates IIK. Infrarad spectra of the pyroxenoids and other chain metasilicates. Optics and Spect. $10,584-587$.

24 Liebau, Friedrich (1956) Benerkungen gur Systematik der Kristallstrukturen von Silikaten mit hochkondensierten Anionen. 2. Physik. Chem., 206, 73-92.

25 Liebau, Friedreth (1957) Ein weiterer neuex Kettentyp in der Kristailstruktur des Pyroxmangits (Fe,Mn, Ca,Mg) Sio $_{3} 7_{\mathrm{x}}$. Natursvissen., 6, 178-179.

26 Láebau, Friedrici (1958) Uber die Kristallstruktur des Pyrommangits (Mn, Fe, Ca, Mg) Si. 3 . Acta Cryst. $12,177 \times 181$.

27 Liebau, E., M. Sprung and E. Thilo (1958) Ubex das Syatem $\mathrm{MnSiO}-\mathrm{CaMn}\left(\mathrm{SiO}_{3}\right)_{2}{ }^{*}$ 2. anorg. Ellg. Chem. 297, 213-225.

28 Liebau, Friedrich, Waltraud Hilmex and Gerhard Lindemann 11958) Uber die Kristallstruktur des Rhodonite (Mn,Ca)810. Acta Cryst. 12, 182-187.

29 Liaban, Fiedrich (1961) Untersuchungen uber die Grosse des SL-0-si Valenaqinkels. Acta Cryst., 14 , 1103-1109.

30 Mamedoy, Kh.S. and N.V. Belov (1956) Crystal structure of wollastontte. Doklady Akad. Nauk S.S.S.R. 107, 463.486.

31 Mamedov, Kh. S. (1958) The crystal structure of rhodonite. Doklady Akad. Neuk Azerb. S.S.R. 16 , $445 \cdots 50$.

32 Morimoto, Nobuo, Daniel E. Applemans and Howard T. Evans, Ir, (1960) The crystal structures of cilnoenstatite ard pigenitte. 2, Krist., 114, 120-147.

33 Prewitt, C. T. (1961) The parameters Y and φ for equi-inclination with application to the single-crystal counter diffractometer. 2. Krist., 114, 355-360.

34 Pranitt, C. T. (1962) Structures and crystal chemistry of wollastonite and pectolite. Ph.D. Thesis. M.I.T.

35 Prewitt, C. T, and M. J. Buerger (in press) A comparison of the crystal structures of wollastonite and pectolite. Ara. Mineral.

36 Richmond, Wallace E. (1937) On babingtonite. Am. Mineral, 22, 630-642.

37 Schaller, Waldemar T. (1938) Johannsenite, a new manganese pyroxene. Am. Mineral., 23, 575-582.

38 Schallex, Waldemar T. (1955) The pectolitemschizolite serandite series, Am. Mineral, $40,1022-1031$.

39 Schiavinato, G, (1953) Sulla johannsenite dei giacimenti a silicati manganesiferi del Monte Civillina presso Recoaro (Vicinqa). Rend. Soc. Min. Lt., 9, 210 m 218.

40 Sly. W. G., D. P. Shoemaker, and J. H. Van Den Hende (1962) Two and three- dimensional crystallographic Fourier sumation program for the LBM 7090 computer. ESSO report CBRL-22M-62.

41 Smith, J.V. (1959) The crystal structure of proto enstatite, MgSiO_{3}. Acta Cryst. $12,515-519$.

42 Smich. J. V. and S. W. Bailey (in press) Second review of A1-0 and SL-0 distances.

43 Sundius, N. (1931) On the triclinic manganiferous pyroxenes. Am, Mineral., 16, 411-429, 488-518.

44 Tolliday, Joan (1958) Crystal structure of β-wollastonite
Nature, $182,1012-1013$.

45 Voos, E. (1935) Untersuchung des Schmitts $\mathrm{CaO} \cdot \mathrm{SiO}_{2}-\mathrm{MnO} \cdot \mathrm{SiO}_{2}$ in ternaren $\mathrm{Systam} \mathrm{SiO}_{2}-\mathrm{CaO}-\mathrm{MnO}$. Z. anorg. 11g. Chem. 222, 201-224.

