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Discrete Differential Geometry Applied to the
Coil-End Design of Superconducting Magnets

Bernhard Auchmann, Stephan Russenschuck, and Nikolai Schwerg

Abstract—Coil-end design for superconducting accelerator mag-
nets, based on the continuous strip theory of differential geom-
etry, has been introduced by Cook in 1991. A similar method has
later been coupled to numerical field calculation and used in an in-
tegrated design process for LHC magnets within the CERN field
computation program ROXIE. In this paper we present a discrete
analog on to the continuous theory of strips. Its inherent simplicity
enhances the computational performance, while reproducing the
accuracy of the continuous model. The method has been applied to
the design of coil ends for the SIS300 dipole magnets of the FAIR
project.

Index Terms—Coil winding, differential geometry.

1. INTRODUCTION

HE SIS300 dipole magnets of the FAIR project will be

wound from Rutherford-type cables with a stainless-steel

core [1]. The core makes the cable less stable and thus more

difficult to wind into a saddle-shaped coil. Winding tests have

revealed a very low limit for so-called hard-way bend (bending

of the cable over its narrow edge) to avoid collapsing cable and
lift-off from the winding mandrel.

In the elastic regime, the strain energy F in a rectangular rod

is proportional to the square of the curvature parameters, i.e.,

torsion w' (s), normal curvature w?(s), and geodesic curvature

w3(s):

/ (1 (W) + 12 (W) + 13 (w?)?) ds, (D)

0

1
E=-
2

where s is the arc-length and s. is the overall cable length.
The flexural rigidities of the cable, v, vo, /3, are material and
cable-type related parameters to be measured. In general, v3 >
V13, so that the control of the strain energy can be reduced to
controlling the geodesic curvature, with the ideal cable having
zero geodesic curvature.

Models for the geometry of cables in coil ends of so-called
cos © magnets have employed the theory of strips, which is a
discipline of differential geometry [2], [3]. These models analyt-
ically determine the shape of an ideal strip from a parameterized
baseline, e.g, an ellipse on the winding mandrel. In this paper we
introduce a solely discrete theory of strips. The discrete theory is
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Fig. 1. Left: Two flat and straight discrete strips, differing only by the position
of the joints. Right: Bending of a curved strip in its joints.

computationally more efficient and yields a more flexible frame-
work for the modeling of coils and busbars, as no parameteriza-
tion of the baseline is required. The asymptotical equivalence of
discrete and continuous model is demonstrated and the coil-end
design for the SIS300 magnet is briefly outlined.

II. MATHEMATICAL FRAMEWORK

A. Discrete Strips, Bending, Geodesic Curvature

We define a discrete strip as a set of flat, quadrilateral faces
embedded in R3. Each face has exactly two neighboring faces
and is bounded by four edges: we distinguish between the two
boundary edges (one of which will become the baseline) and the
two joining edges (in short joints) to the neighboring faces.

Bending of a strip is the act of isometric (arc-length pre-
serving) continuous deformation. In the discrete model, bending
consists in turning the strip’s faces around the joints, a process
that is the very definition of a developable surface. Developable
surfaces in Euclidean space are surfaces which can essentially
be made of a piece of paper, if we assume sufficient smoothness
and thus exclude possible ways of arranging crumpled paper.

Fig. 1 (left) shows two straight discretized strips. Fig. 1 (right)
illustrates the bending of a non-geodesic strip, that is, a strip
with hard-way bend. Obviously, the joints of a discrete strip
must not intersect.

The curvature of a flat strip is measured by the angles «; =
/(d*,a}) and B; = /(d’,ai™) between the joints represented
by the joint vectors d’ and the tangent vectors a} of neighboring
baseline edges, see Fig. 2 (left). For oi; + 3; = 180° we call the
strip a straight or geodesic strip. The measure

w? = 180° — (a; + B:) )
is called the discrete geodesic curvature or the discrete hard-way

bend. The geodesic curvature w? is invariant with respect to
bending.
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Fig.2. Left: Illustration of the discrete geodesic curvature measure. Right: Tan-
gent plane assigned to a node of the primary baseline.

Fig. 3. Primary and secondary (dashed) discrete baseline. For a given param-
eterization of the baseline, primary and secondary nodes may be located on the
baseline (left). If no parametrization of the baseline is given (the input is a mere
set of primary nodes), secondary nodes are located in the barycenters of primary
edges (right).

Furthermore we define the discretization density h :=
sup; (1%), where !, is the length of the baseline element 4, and h
is the length of the longest element in the set.

B. Geodesic Strip

The aim is now to find an element from the set of geodesic
strips that can be bent along a given discrete baseline, i.e., we
determine the joints around which the strip can be developed. To
this end we introduce two discrete baselines denoted primary-
and secondary baseline, see Fig. 3. Let a} denote the i-th nor-
malized tangent vector to the primary baseline and a} the nor-
malized tangent vector to the secondary baseline. The primary
baseline is used to determine normal vectors to the faces of the
strip that is bent along the secondary baseline.

We define the mean tangent vector as

) = ——
P jlaitt +af’
and the mean normal vector as
ai = 1 )
lai™t —af|

The (mean) binormal vector is then &5 = &% x &l.
Making use of a8 ~ &}, we now use the normal vectors &%
as normal vectors to the secondary faces: a3 := a3, see Fig. 4.1
The joints of the secondary strip are defined as the intersec-
tions of two consecutive tangent planes. The joint vector d’ in
node ¢ of the secondary baseline must therefore be orthogonal
to a4 and éé"’l. Thus

d' = aj x ajtt. 5)
ITo justify this choice we show that w! := (ai™' —ai) -4 = 0 and
that limy, o w; = limy,_o w?. We see that vanishing w/ implies vanishing

geodesic curvature for h — 0.
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Fig. 5. Calculating the intersection of consecutive joints to verify that this in-
tersection is indeed outside the strip surface.

An example of the resulting bent strip is shown in Fig. 4. For
h — 0 the joint vector is identical to the Darboux vector in
differential geometry, [4].

C. Edge of Regression

In order to determine the length [, of the joints we calculate

;1 w w
lh=< , 6
d Z(Sinai—i_sinﬂi)’ ©

where «; and [3; are defined in Fig. 2 (left) and where w denotes
the width of the strip. In general, only a straight strip will have
parallel bounding edges. The family of intersections of consec-
utive joints is called the edge of regression.

We have to verify whether the resulting joint vectors repre-
sent an admissible choice for a strip of a given width w. The
intersection point of any two consecutive joints, as well as the
joint lengths [3* and l(’;iil can be calculated from geometrical
data in the plane

I cosa; + 15 teos By =12, (7a)

I3 sin oy = lji*l sin 3;_1, (7b)
where [? is the length of the baseline element. An edge of regres-
sion penetrating into the strip surface indicates a non-physical
solution (crumbled and torn paper, so to say). It is thus verified
that indeed /%' > [} and l:‘ii_l > lfi_l, compare Fig. 5.

A violation of the above criteria indicates that no geodesic
strip of width w can be bent onto the given baseline. Assuming
that the baseline is fixed, some geodesic curvature has to be ad-
mitted. In order to avoid crossing joints within the strip, addi-
tional twist of the faces around the baseline elements can be
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Fig. 6. Discrete strips bent along a discrete “ellipse on a cylinder.” The models
contain 5, 10, 30, and 80 points on the primary baseline. Note that for n nodes
on the primary baseline, only » — 2 joint vectors are mathematically defined in
the nodes of the secondary baseline.

applied (and is sometimes required by the non-radial position
of the cable at the magnet’s cross-section). The additional twist
angle is denoted 7;. We obtain

=/ =i i al
a3z = CoST;ag + SIn 7;a,,

(8a)
(8b)

aly = cos7;ah — sin 7;a%.
From the primed normal vectors we can calculate the updated
joint vectors d” from (5), check the geodesic curvature (2) and
the intersection of joints (7b).

III. VERIFICATION OF THE MODEL

In order to verify the discrete model, we determine a dis-
crete geodesic strip that is bent along an “ellipse on a cylinder”.
The model is shown in Fig. 6 for different discretization den-
sities. Note that the first and the last joint vector to complete
the semi-arc are missing, as for n nodes on the baseline, only
n — 2 joint vectors are mathematically defined. The problem
can be overcome by making use of the symmetry at the apex of
the cylinder and by assuming that the strip continues as a flat,
straight strip at the onset of the arc.

The discrete geodesic curvature w?® as defined in (2) tends to
zero with o(h?) for h — 0, which is shown for the numerical
example in Fig. 7(a).

Comparing the discrete model to a model based on contin-
uous differential geometry, [3] we see that the joint vectors in
the discrete model converge to the Darboux-vectors in a con-
tinuous model. Fig. 7(b) shows the distribution of the angle ¢
between the joint vectors and the Darboux-vectors, which tends
to zero with o(h?) for h — 0, thus validating the discrete theory.

IV. CoIL-END DESIGN IN ROXIE

The above model has been implemented in the CERN field
computation program ROXIE and is linked to an optimization
toolkit, [5]. The integrated design process of coil ends now in-
cludes the following steps:
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Fig. 7. Logarithmic plot of (a) the geodesic curvature in the discrete strip and
(b) of the angle between the discrete joint vectors and the continuous Darboux
vectors. The discrete models contain (top-to-bottom graph) 5, 10, 20, 40, and
80 nodes on the primary baseline. The angles are given in degrees.

Fig. 8. Display of design variables. ¢ is the inclination angle at the apex; « is
the inclination angle at the onset of the coil end; 7; is the additional twist angle
by which each face of the discrete strip can be twisted; b/ a is the ellipticity of
the hyper-ellipse on the winding mandrel.

1) The 2-D cross-section, that has been optimized with the
electromagnetic codes of ROXIE, defines the starting point
of each cable’s baseline on the winding mandrel. We use
the hyper-ellipse formula

sk 22

atpE=1 ©))
to calculate the points on the primary and secondary base-
lines. z is the longitudinal coordinate in the magnet and s
is the azimuthal arc-length on the winding mandrel as mea-
sured from the apex. The ellipticity ratio b/a and the order
of the hyper-ellipse &k are optimization parameters for the
definition of the baselines.

2) We determine the position of the discrete geodesic strip on
the baseline of the first cable in a block according to the
above theory.

3) The inclination angle « at the onset of the coil end is de-
fined by the 2-D cross-section, compare Fig. 8. The incli-
nation angle 6 at the apex of the mandrel is provided as a
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design variable in order to be able to match two unsym-
metric arcs at the apex. The geodesic strip calculated in
the previous step generally matches neither of the inclina-
tion angles « and #. An additional twist by an angle 7; is
therefore applied to each face of the strip according to (8b),
which is distributed linearly along the strip is required to
match « and f. This inevitably introduces some geodesic
curvature to the strip.

4) A model of all cables wound on top of each other in a coil
block is created.

5) Objective function values can be calculated. The integrated
square of the geodesic curvature

@2 =3 T,

(10)

where j is the cable number in a block and 7 is the node-
number on the baseline, is to be minimized. Intersecting
joints within a strip are taken as a constraint in the opti-
mization process. To do so, we introduce the intersection
parameter e: For each intersecting joint according to (7b),
we add the angle between the normal vectors of the neigh-
boring faces.

e= Z b; arcsin(al x a4t!) = Z 6; arcsin ||d*||,  (11)

where ¢; is 0O if joint ¢ does not intersect with a neighbor
and 1 if it does intersect.

6) Inorder to find aminimum (w?*)? and zero e, we use the fol-
lowing design variables: The ellipticity ratio b/a, the order
of the hyper-ellipse k, the inclination-angle at the apex 6,
and the additional twist-angles 7;. In practice the additional
twist-angles are parameterized with the arc-length of the
baseline and determined from a spline-function with 4 sup-
ports, thus adding 4 design variables to the optimization
problem.

V. CoIL ENDS FOR THE SIS300

The SIS300 dipoles will be wound from a cored Rutherford-
type cable which is more sensitive to hard-way bend than cable
without stainless-steel core. Special care needs to be taken in
the design of endspacers in order to minimize the integrated
geodesic curvature in each block of cables. Further goals in the
design of coil ends are

 the minimization of peak-field enhancement in the coils,

* the minimization of the physical magnet-length (maxi-

mization of the magnetic length of the magnet),

* and the minimization of unwanted multipoles from the coil

ends.
The minimization of the geodesic curvature is achieved by the
above-described method. The additional three objectives, which
are related to the magnetic field in the magnet ends, are met in a
subsequent optimization run, by the variation of the longitudinal
position of the blocks in the coil ends.
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Fig.9. Coil ends on the connection side SIS300 seen from different viewpoints.

The results of the optimization of the averaged field har-
monics over the length of the coil end is given in units 10~ at
a reference radius of 40 mm:

n units n units n  units
3 <1001 7 <107! 11 6.7
5 <1071 9 -0.8 13 07

Peak-field- and magnetic-length calculations will be available
once the 3-D yoke design is finalized. The final coil-end design
is shown in Fig. 9.

VI. CONCLUSION

We have outlined a discrete theory of strips that serves as a
model for superconducting cables in the coil ends of cosine-theta
shaped coils. We have shown that the discrete model yields re-
sults that are equivalent to those of the previously validated con-
tinuous model. The advantage of discrete model lies in its low
complexity as compared to the continuous model. The simplicity
of the model results in an reduction of computing time, especially
in optimization runs. The discrete design allows to model arbi-
trarily shaped busbar configuration in interconnection regions.
The model was used to determine the mechanically optimal po-
sition of the cables in the coil ends of the SIS300 magnet.
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