INFRARED HEAT TRANSFER BY ATMOSPHERIC WATER VAPOR

by ROBERT A. McCLATCHEY

B.Sc., Massachusetts Institute of Technology (1960)

WATTI HERAL

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 1961

Certified by _____

Thesis Supervisor

Accepted by

Chairman, Departmental Committee on Graduate Students

INFRARED HEAT TRANSFER BY ATMOSPHERIC WATER VAPOR

by Robert A. McClatchey

Submitted to the Department of Meteorology on 21 August 1961 in Partial Fulfillment of the Requirements for the Degree of Master of Science

ABSTRACT

Empirical data on transmission functions are used to set up a general program to calculate the infrared radiation flux in the atmosphere in the two major regions of water vapor absorption. These empirical data are converted into analytic formulae and the problem is solved through the use of the IBM 709 computer. Results are obtained for several soundings and the corresponding cooling rates determined. These results are then compared with those obtained from the Elsasser Radiation Chart.

Thesis Supervisor: Henry G. Houghton Title: Professor of Meteorology

Acknowledgements

The author gratefully acknowledges the invaluable advice and encouragement he received from Dr. L. D. Kaplan who also suggested the problem. Without Dr. Kaplan's extensive background information on infrared radiation this study could not have been undertaken. The author is also grateful to Professor Henry G. Houghton who served as thesis supervisor for his careful reading of the draft and for his suggestions.

TABLE OF CONTENTS

٠

Ĩ	INTRODUCTION	1
II	GENERAL RADIATION THEORY	2
III	DETERMINATION OF THE TRANSMISSION FUNCTION	7
IV	THE ROTATIONAL BAND	12
	ABSORPTION OF DIFFUSE RADIATION	29
v	THE 6.3-MICRON BAND	34
VI	RESULTS AND CONCLUSIONS	41
	Appendix I - Computer programs used for calculations	61
	Appendix II- Approximate results in window region	62
	BIBLIOGRAPHY	67

.

LIST OF TABLES AND FIGURES

.

Table	1	Values of \checkmark which displace the generalized curve of Figures 6 and 7 to left or right appropriately	20
Table	2	The quantity K necessary to determine the theo- retical position of the transmission function for a given spectral interval	22
Table	3	Rotational band temperature correction factors	23
Table	4	A list of corrections to the quantities "x" and "y" required because of experimental tempera- ture differences	28
Table	5	Diffuse transmission as a function of $-\log_{10}$ kpm	31
Table	6	Constants used with generalized 6.3-micron trans- mission function depending on spectral interval	35
Table	7	6.3-Micron temperature correction factors	36
Table	8	Correction to the quantity "x" resulting from the differences in experimental temperatures	40
Table	9	Soundings used for radiation calculations	42-43
Table	10	Temperature change due to flux divergence in the rotational band	44-46
Table	11	Rate of change of temperature due to flux diver- gence in the 6.3- micron H ₂ 0 band	47-48
Table	12	Total temperature change due to flux divergence in the 6.3-micron and rotational bands of H_2^0	49-50
Table		A comparison of the use of the method reported in this paper and the method of the Elsasser Radia- tion Chart	51
Table	14	An estimate of the error introduced into the cal- culations by inability to measure small amounts of water vapor at high levels	53
Table	15	Temperature change due to flux divergence in the window region $680 < y < 1200$	63-64

LIST OF TABLES AND FIGURES (cont'd)

,

Table	16	Total temperature change due to flux diver- gence in the interval 50 $< V < 2000$ cm ⁻¹	65-66
Figs.	1-7	Experimentally determined curves of trans- mission vs log ₁₀ mp (See Palmer 1960)	13-19
Figa.	8-11	Temperature correction curves for rotational water	24-27
Figs.	12-13	Curves used to determine diffuse transmission	32-33
Fig.	14	Typical transmission curve generated by Goody (1952) expression	37
Fig s.	15-16	Temperature correction curves for 6.3-micron water	38-39

DEFINITION OF SYMBOLS

ર	. 24	See Table 1.
В	24	Planck black body function
C	p =	heat capacity at constant pressure
D	302	downward radiation flux
8	-	line half-width
g	×	gravity
ĸ	鱬	antilog 🗶
k	1 21	absorption coefficient
K	and a	$\Sigma(s, \mathbf{y}_{i})^{1/2}$
m	hat	mass of water vapor
ν	int	wave number
p	M	pressure
R		net upward radiation flux
S		line intensity
Т	100	temperature
t,	. =	diffuse transmission function
τ_{j}	- 34	beam transmission function
u	=	upward radiation flux
· •	* 100	zenith angle
w	HR.	m sec
x	3 22	$\mathcal{E} S_{i}(T) / \mathcal{E} S_{i}(T_{o})$
у	= ($\left(\mathcal{E} \left[S_{i}(T) \mathcal{Y}_{i}(T) \right]^{\mathcal{H}} / \mathcal{E} \left[S_{i}(T_{o} \mathcal{Y}_{i}(T_{o}) \right]^{\mathcal{H}} \right)^{\mathcal{L}}$

I. INTRODUCTION

This paper is a semi-empirical general procedure for determining the net upward radiation flux in the infrared water vapor bands in the atmosphere. If this net upward flux is known at the various levels of a sounding, the flux divergence and time rate of change of temperature within a given level can be determined. Temperature and mass of absorber will be required at each pressure level. Between levels, the temperature and absorber parameters will be assumed to vary linearly with pressure.

The difficulty in the solution of the equation of radiative transfer is the dependence of the transmission function on pressure, temperature, wave number, and amount of absorbing material. Therefore, empirical data will be used to obtain a transmission function and to determine its variation with pressure, mass of water vapor, and spectral interval. A theoretical treatment will be introduced to account for the temperature dependence of the transmission.

-1-

II. GENERAL RADIATION THEORY

The solution to the radiative transfer problem for an atmosphere of arbitrary constitution is stated by Elsasser (1942) as follows, giving the flux arriving at $m = m_0$ from the region between m_0 and m_1 :

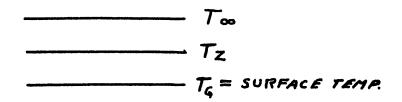
$$F = -\int_{0}^{\infty} d\nu \int_{m_{o}}^{m_{i}} \frac{d}{dm} \tilde{c}_{j} (m - m_{o}) dm \qquad (1)$$

where m = mass of water vapor, $\mathbf{t} = transmission$, $\mathcal{V} = wave number$, B = Planck black body function.

Integrating equation (1) by parts and adding a constant of integration, we have for the flux arriving at a level m_0 from the layer between m_0 and m_1 :

$$F = -\int_{0}^{\infty} \pi B(m_{n}) \mathcal{T}(m_{n} - m_{o}) d\nu + \int_{0}^{\infty} \pi B(m_{o}) d\nu$$

$$+ \int_{m_{o}}^{m_{i}} dm \int_{0}^{\infty} \frac{d(\pi B)}{dm} \mathcal{T} d\nu + C$$
⁽²⁾


Converting the independent variable from m to T, where

T = temperature, we have:

$$\int dm \int_{0}^{\infty} \frac{d(\pi B)}{dm} \tau d\nu = \int dT \int_{0}^{\infty} \frac{d(\pi B)}{dT} \tau d\nu$$

$$F = -\int_{0}^{\infty} \pi B(T_{i}) \varepsilon(T_{i} - T_{o}) d\nu + \int_{0}^{\infty} B(T_{o}) + \int_{0}^{T_{i}} dT \int \frac{d(\pi B)}{dT} \varepsilon(T_{o} - T) d\nu + C \qquad (3)$$

Consider the following picture:

It is desired to determine the net upward flux across the level Z. The upward flux will be given by an expression like (3) above but with T_o replaced by T_z and T₁ replaced by T_g, the temperature of the surface.

$$U = -\int_{0}^{\infty} \pi \mathcal{B}(T_{G}) \tau(T_{G} - T_{Z}) d\nu + \int \pi \mathcal{B}(T_{Z}) d\nu + \int_{T_{Z}}^{T_{G}} dT \int_{0}^{\infty} \frac{d(\pi \mathcal{B})}{dT} \tau(T_{Z} - T) d\nu + C$$
⁽⁴⁾

The integration constant must yet be determined. This can be done from the condition that $U = \int_{0}^{\infty} \mathcal{B}(T_{g}) \mathcal{T}(T_{g} - T_{z}) d\mathcal{V}$ near the surface where $\Delta \mathcal{M} \rightarrow 0$, $T = T_{z}$ can be replaced by T_{g} and $\mathcal{T} \rightarrow 1$.

Therefore, the above expression, valid an infinitesimal distance from the surface, becomes (noting that the interval of integration is also infinitesimal):

So,

$$\int_{0}^{\infty} \pi B(T_{q}) \varepsilon(T_{q}-T_{z}) d\nu = - \int_{0}^{\infty} \pi B(T_{q}) \varepsilon(T_{q}-T_{z}) d\nu$$

$$+ \int_{0}^{\infty} \pi B(T_{z}) d\nu + \int_{0}^{\infty} \pi B(T_{q}) \varepsilon(T_{z}-T_{q}) d\nu$$

$$- \int_{0}^{\infty} \pi B(T_{z}) \varepsilon(T_{z}-T_{z}) d\nu + Constant$$

It should be clear that $\mathcal{T}(T_{G} - T_{Z}) \equiv \mathcal{T}(T_{Z} - T_{G})$ and also that $\mathcal{T}(T_{Z} - T_{Z}) \equiv 1$. Therefore, we have: Constant = $\int_{0}^{\infty} \mathcal{T}B(T_{G})\mathcal{T}(T_{G} - T_{Z})d\mathcal{Y}$ And, $\mathcal{U} = \int_{0}^{\infty} \mathcal{T}B(T_{Z})d\mathcal{V} + \int_{T_{Z}}^{T_{G}} dT \int_{0}^{\infty} \frac{d(\pi B)}{dT}\mathcal{T}(T_{Z} - T)d\mathcal{V}$ (5)

The downward radiation flux can be expressed similarly using equation (3) as starting point, but T_g must be replaced by T_{oo} .

$$D = -\int_{0}^{\infty} \pi B(T_{\infty}) \mathcal{T}(T_{\infty} - T_{z}) d\nu + \int_{0}^{\infty} \pi B(T_{z}) d\nu$$

$$+ \int_{0}^{T_{\infty}} dT \int_{0}^{\infty} \frac{d(\pi B(T))}{dT} \mathcal{T}(T_{z} - T) d\nu + Constant$$
(6)
(6)

In order to determine the constant of integration here, two situations must be considered, the one in which T ∞ refers to a region where no more absorber exists, and the one in which T ∞ refers to a cloud base. The first situation is quite easy: $T_z \rightarrow T_{\infty}$, $\mathcal{T}(T_{\infty} - T_z) \rightarrow \mathcal{T}(T_{\infty} - T_{\infty}) = 1$, and D must be zero. Therefore, all terms in equation (6) must add to zero, and the constant of integration is itself equal to zero. If T_{∞} refers to a cloud base, however, the expression becomes exactly analogous to the one for the upward flux except with T_g replaced by T_{∞} . In this case the constant of integration is $\int_{0}^{\infty} \pi B(T_{\infty}) \tau (T_{\infty} - T_z) dv$.

The following expressions for the downward flux at level "Z" are thus obtained:

Without cloud cover:

$$D = -\int_{0}^{\infty} \pi B(T_{\infty}) t (T_{\infty} - T_{z}) d\nu + \int_{0}^{\infty} \pi B(T_{z}) d\nu + \int_{T_{z}}^{T_{\infty}} dT \int_{0}^{\infty} \frac{d(\pi B(T))}{dT} t (T_{z} - T) d\nu$$
(7)

With cloud cover:

$$D = \int_{0}^{\infty} \pi B(T_z) dy + \int_{T_z}^{T_{\infty}} \int_{0}^{\infty} \frac{d(\pi B)}{dT} r(T_z - T) dy \qquad (8)$$

Summing the upward and downward radiation fluxes will result in the following net upward radiation flux (R_z) at level z:

Without overcast (equation (5) minus (7)):

$$R_{z} = \int_{-\infty}^{T_{g}} dT \int_{0}^{\infty} \frac{d(\pi B(T))}{dT} \mathcal{T}(Tz - T) dV$$

$$+ \int_{0}^{\infty} \pi B(T_{\infty}) \mathcal{T}(T_{\infty} - T_{z}) dV$$
(9)

With overcast (equation (5) minus (8)):

$$R_{z} = \int_{T_{\infty}}^{T_{G}} dT \int_{0}^{\infty} \frac{d \pi B(T)}{dT} \tau (T_{z} - T) dV \qquad (10)$$

Equations (9) and (10) are the basic equations, the solution of which comprises the remainder of this report.

In finite difference form, for computational purposes, equations (9) and (10) become:

$$R_{z} = \sum_{\nu} \begin{cases} \mathcal{B}(T_{q}) \\ \sum_{\sigma(T_{\infty})} \mathcal{T}(T_{z} - T) \Delta(\pi B) \\ \mathcal{B}(T_{\infty}) \end{cases} \Delta \nu + \sum_{\nu} \pi B(T_{\infty}) \mathcal{T}(T_{\infty} - T_{z}) \Delta \nu (9^{*}) \\ \mathcal{R}_{z} = \sum_{\nu} \begin{cases} \mathcal{B}(T_{q}) \\ \sum_{\sigma(T_{\infty})} \mathcal{T}(T_{z} - T) \Delta(\pi B) \\ \mathcal{B}(T_{\infty}) \end{cases} \Delta \nu$$
(10')

Once the net upward flux (R) is determined, the radiative cooling can be evaluated from the relation $\frac{\partial T}{\partial t} = -\frac{9}{c_p} \frac{\partial R}{\partial p}$.

Others have devised various theoretical and experimental methods of solving these equations. The black body flux, B, is a well-known function, but the difficult term to evaluate is the transmission, \mathcal{I} .

III. DETERMINATION OF THE TRANSMISSION FUNCTION

The transmission is a complicated function of wave number, pressure, temperature and amount of absorber. Thus, a theoretical justification will be given for determining \mathcal{T} , although the final analysis will make direct use of experimentally determined values of transmission.

The following summary of a paper by Godson and comments by Curtis (both unpublished) should serve to indicate the method of considering the pressure, temperature, and absorber dependence of the transmission for a given wave number interval.

For transmission through thin layers:

In general, the transmission through a layer of thickness m for a frequency interval of infinitesimal width is given by the exponential expression

$$\tau_{\nu} = e \times p - \int k_{\nu} dm$$

where $k_{\mathcal{V}}$ is the absorption coefficient at wave number \mathcal{V} and the integral recognizes the variability of $k_{\mathcal{V}}$ with m or with parameters such as pressure and temperature which may be expressed as functions of m. For a thin layer for which $\mathbf{T}_{\mathcal{V}}$ is not too different from unity we may write

$$T_{y} = I - \int k_{y} dm$$

The average transmission for a thin layer over a band of width Δy that contains i spectral lines is given by

-7-

$$T_I = 1 - \frac{\int \Sigma' k_i dv dm}{\Delta V}$$

The intensity of a line S, is defined by

$$S_i = \int_{-\infty}^{\infty} k_i d\nu$$

Substituting

$$T_I = I - \frac{\int z S_i dm}{\Delta V}$$

An effective mass of absorber is defined as follows:

$$m_{e} \sum_{i} S_{i}(T_{o}) = \int_{i}^{z} S_{i}(T) dm$$

$$m_{e} = \frac{\int z S_{i}(T) dm}{z S_{i}(T_{o})} = \int \chi dm \text{ where } \chi = \frac{z S_{i}(T)}{z S_{i}(T_{o})} \quad (11)$$

The quantity "x" will depend on the spectral interval as well as on the temperature. This function "x" has been determined theoretically and curves of x vs T are included for specified spectral intervals.

Kaplan (1953), using a model assuming random line-position, obtained the following transmission for a homogeneous path:

$$\mathcal{T}_{I} = e \chi p \left\{ -\frac{1}{\Delta \nu} \sum_{i}^{+\infty} \int_{-\infty}^{+\infty} \left[1 - e^{-k_{\nu}} \right] d(\nu - \nu_{i}) \right\}$$

For Lorentz lines, this equation becomes:

$$\mathcal{T}_{I} = exp\left\{-\frac{2\pi}{\Delta v}\sum_{i}Y_{i}x_{i}e^{-X_{i}}\left[I_{o}(x_{i})+I_{i}(x_{i})\right]\right\}$$

where I and I are Bessel functions of imaginary argument and $\chi_i = \frac{S_i m}{2 \pi Y_i}$ where $\chi_i = half$ -width of the ith line.

When examined for large argument, we have:

$$I_o(x_i) + I_i(x_i) \approx \frac{2e}{(2\pi x_i)^{1/2}}$$

So,

$$\mathcal{T}_{I} = e \chi_{P} - \left[\frac{2 \pi}{4 \nu} \sum_{i}^{\gamma} \frac{2 \chi_{i}^{\gamma} \gamma_{i}}{(2 \pi)^{\gamma}} \right]$$
$$= e \chi_{P} - \left[\frac{2}{4 \nu} \sum_{i}^{\gamma} \left(S_{i} m \gamma_{i} \right)^{\gamma} \right]$$

In order to consider an arbitrary distribution of m and noting that \mathcal{V}_i is proportional to pressure, integration with respect to m and the setting of $\mathcal{V}_i = \mathcal{V}_{o_i}$ $\frac{\mathcal{P}_i}{\mathcal{P}_o}$ is justified. Thus, we have:

$$\mathcal{T}_{\Gamma} = e \times p - \left[\frac{2}{A\nu} \sum_{i}^{\infty} \left(\int_{m_{o}}^{m} S_{i}(T) Y_{oi}(T) \frac{P}{P_{o}} dm\right)^{\gamma_{i}}\right]$$

But, this above is the same as for m all at To and p if

$$\begin{split} \mathcal{Z}_{i}^{T}\left(\int S_{i}(T) \mathcal{Y}_{i}(T) \frac{P}{P_{o}} dm\right)^{V_{2}} \\ = \left(\frac{P_{e} m_{e}}{P_{o}}\right)^{V_{2}} \mathcal{Z}_{i}^{T}\left(S_{i}(T_{o}) \mathcal{Y}_{i}(T_{o})\right)^{V_{2}} \end{split}$$

Thus, for this model,

$$P_{e}m_{e} = \begin{cases} \frac{\sum_{i} \left(\int S_{i}(T) \forall_{i}(T) p dm \right)^{1/2}}{\sum_{i} \left(\int S_{i}(T_{o}) \forall_{i}(T_{o}) \right)^{1/2}} \end{cases}^{2}$$
(12)

This expression is inconvenient as it stands, since the integral has to be evaluated separately for each line, the SS product having a different temperature dependence for each line.

In order to obtain a more usable expression, consider a homogeneous layer at P_j , \mathcal{T}_j , containing mass dm_j.

Using (12), the contribution to $p_e = e$ is:

$$d\left(p_{e}m_{e}\right)_{j} = \begin{cases} \frac{\sum_{i}\left(\left[S_{i}(T) \ \aleph_{i}(T)\right] \ p_{j} \ dm_{j}\right)^{1/2}}{\sum_{i}\left(\left[S_{i}(T_{o}) \ \aleph_{i}(T_{o})\right]\right)^{1/2}} \end{cases}^{2} \\ = \begin{cases} \frac{\sum_{i}\left(S_{i}(T) \ \aleph_{i}(T)\right)^{1/2}}{\sum_{i}\left(S_{i}(T_{o}) \ \aleph_{i}(T)\right)^{1/2}} \right)^{2} \\ \sum_{i}\left(S_{i}(T_{o}) \ \aleph_{i}(T_{o})\right)^{1/2}} \\ P_{j} \ dm_{j} = y_{j} \ p_{j} \ dm_{j} \end{cases} \end{cases}$$

$$(13)$$

where
$$y_{j} = \begin{cases} \frac{\sum_{i} \left[S_{i}(T) Y_{i}(T) \right]^{\gamma_{1}} \\ \frac{\sum_{i} \left[S_{i}(T_{o}) Y_{i}(T_{o}) \right]^{\gamma_{1}} \end{cases}^{2} \end{cases}$$
 (14)

Thus, we have a much more convenient form in which the values of y_j can be determined theoretically from the above and then y can be graphed as a function of T for a given wave-number interval.

$$p_e m_e = \int y p dm$$
 (15)

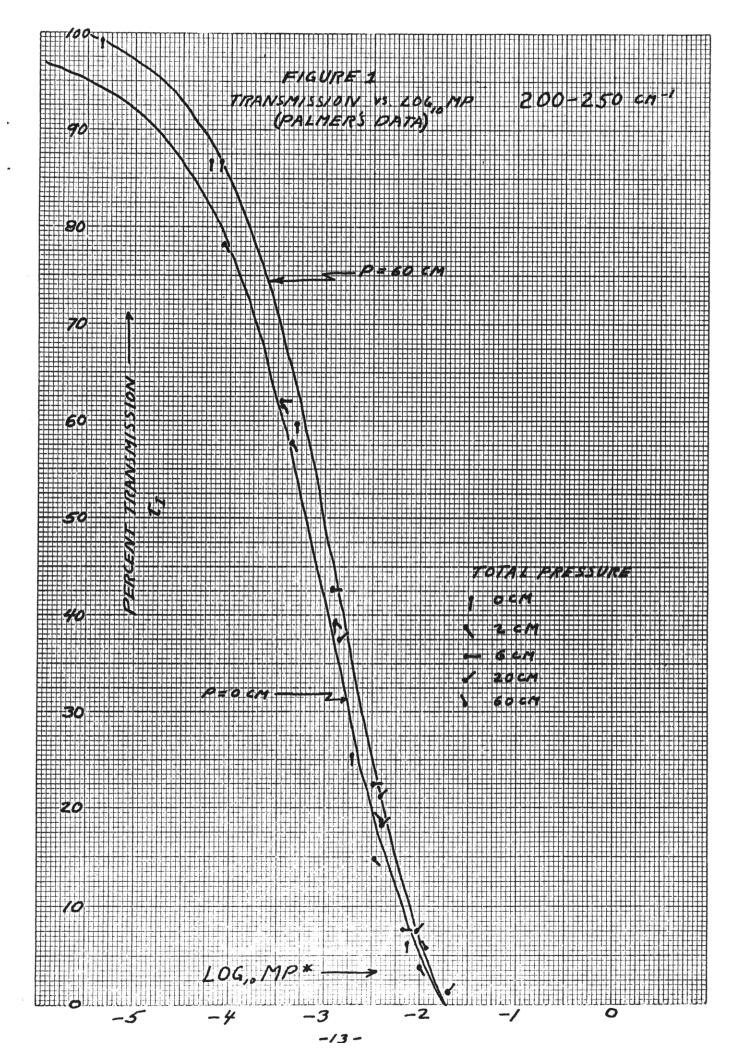
This above treatment allows an effective mass to be determined for thin layers and an effective pm product to be determined for thick layers, thus yielding correct transmissions for both of these cases.

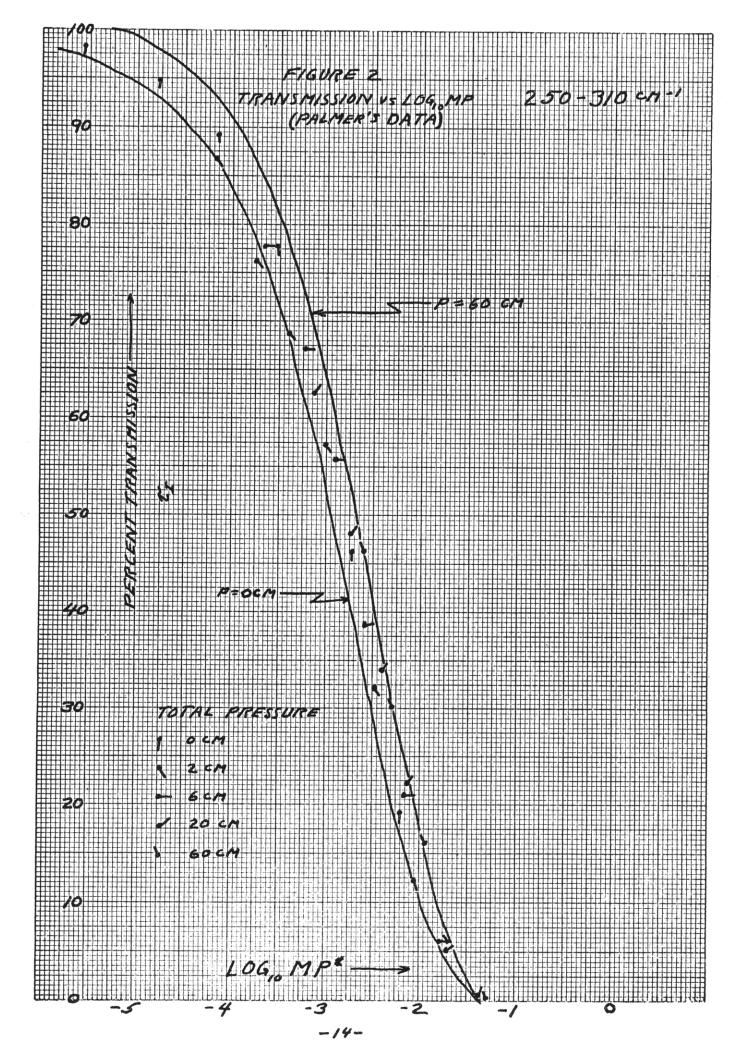
Equation (15) will be used along with equation (11) to determine an effective pressure at which to place all the absorber. This will constitute a temperature correction which can be applied as soon as the pressure, temperature and amount of absorbing material are known. In this way, both the $p_{e}m_{e}$ product and the effective pressure itself can be determined for each sounding.

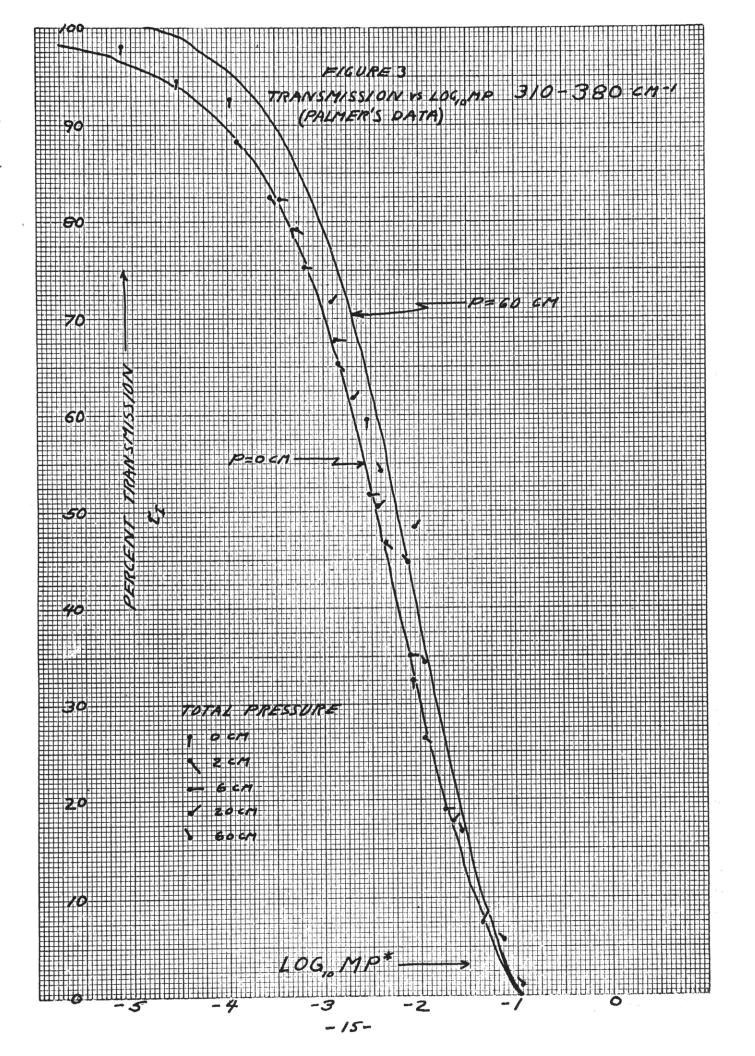
The procedure will be to determine $p_{e}^{m}_{e}$ and p_{e} from the sounding through a given slice of atmosphere; then to go to experimental curves of transmission to determine the values of \mathcal{T} required for the numerical integration in equations (9¹) and (10¹).

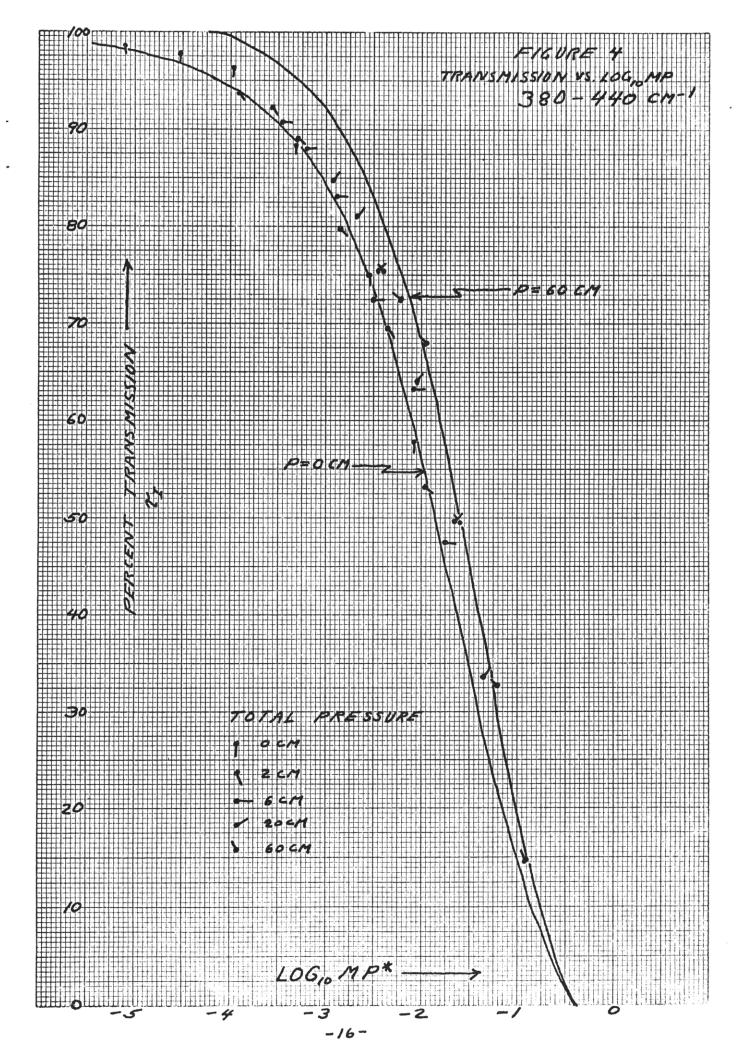
IV. THE ROTATIONAL BAND

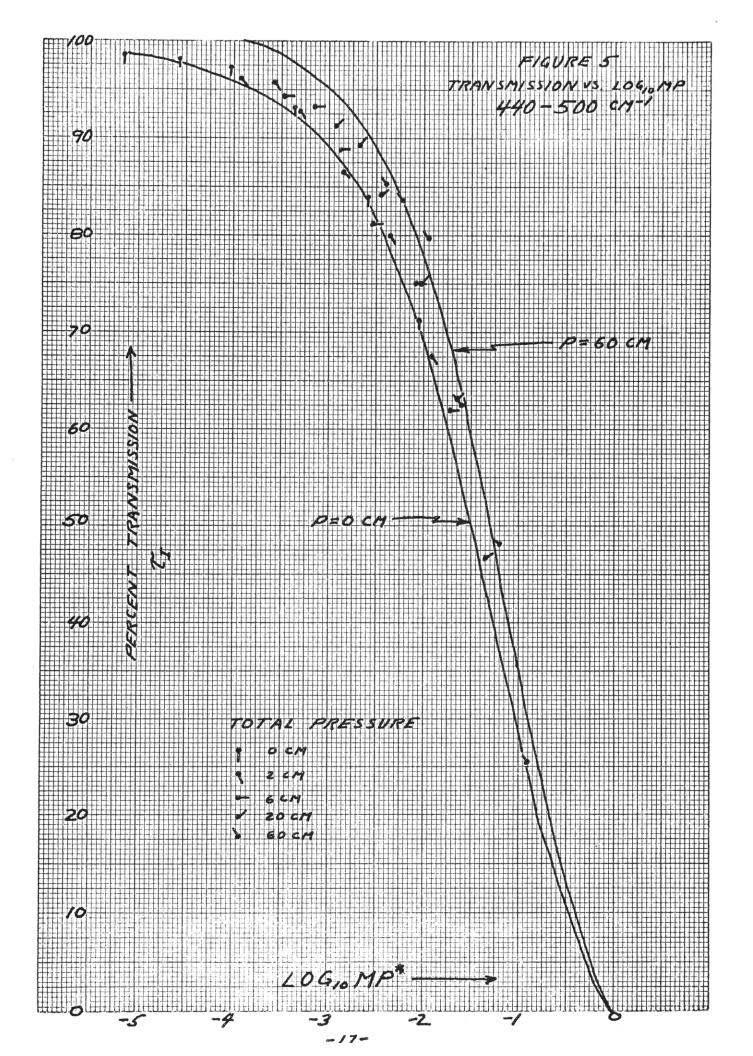
The rotational band is located in the wave-number region 0-600. Later in the report, the rotation-vibration band will be considered. It is centered at 1595 cm⁻¹ and contains two symmetric sides, the shapes of each being similar to the rotational band.

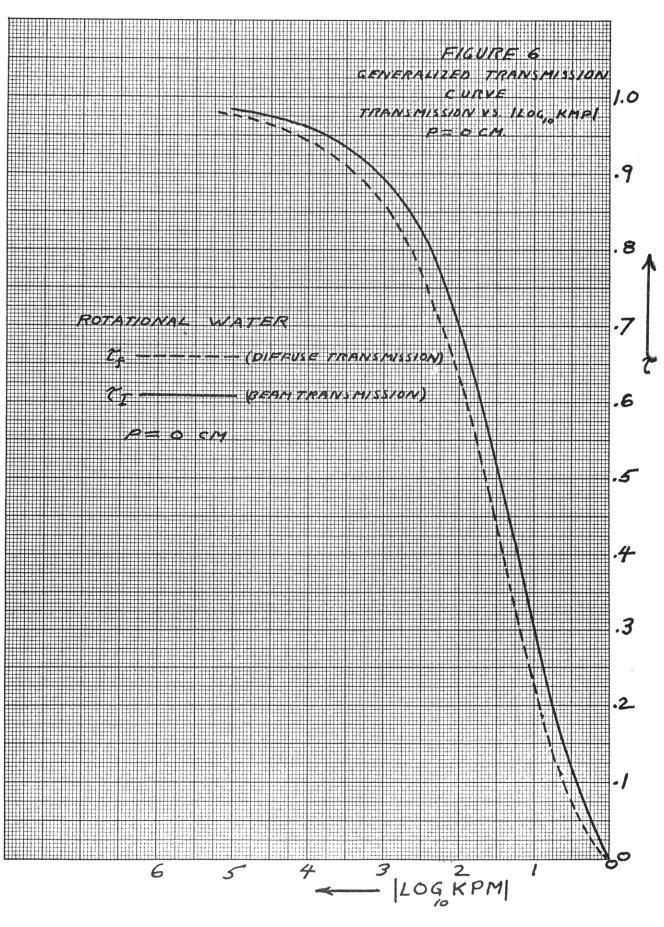

Palmer (1960) has experimentally measured transmission of water vapor for various values of pressure and mass of absorber in the rotational band.

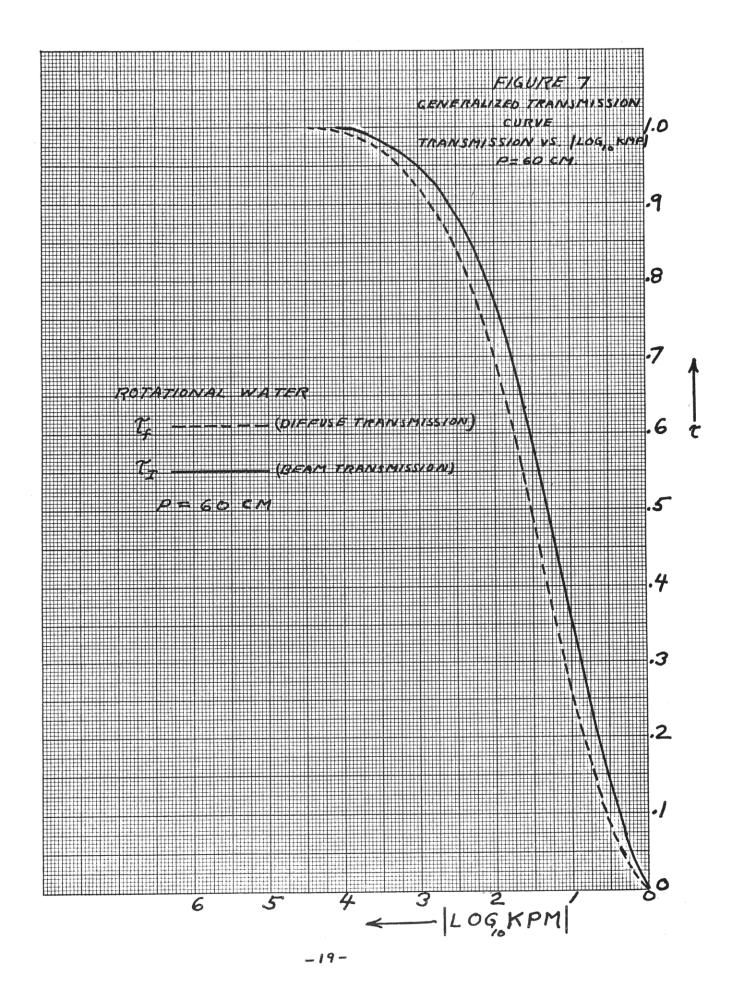

He has also done some work at different temperatures, although his temperature spread is not sufficient to draw any conclusions for comparison with the preceding theoretical discussion.


On the following pages Palmer's curves of transmission vs log mp are displayed for some of the spectral intervals to be used in the numerical integration. Notice that the high pressure (~ 60 cm of Hg) curves are slightly above the low pressure curves in all cases. Comparing the curves in these spectral intervals indicates that a generalized curve might be used for each of these two pressures. These curves could then be displaced appropriately to right or left along the log mp axis depending on the spectral interval. This idea of a generalized curve was first proposed by Cowling (1950).


Expressions have been determined for both the high and low pressure curves in order that this whole problem might be programmed and run on the IBM 709 computer. Then initial data of a sounding might be punched on cards and the resulting radiation fluxes immediately determined. The


-12-





-18-

empirical expressions used (which give a very good fit) are as follows:

High pressure curve (p = .79 atm. = 802 mb):

$$\mathcal{T}_{I} = \frac{\chi^{3} + .7 \chi^{2} + 1.5 \chi}{\chi^{3} + .6 \chi^{2} + 7.4}$$
(16)

Low pressure curve (p = 0 atmospheres):

$$\mathcal{T}_{I} = \frac{\chi^{3} + J \chi^{2} + J x^{2} + J x^{2}}{\chi^{3} + J \chi^{2} + 7.4}$$
(17)

where the subscript I refers to beam transmission, and where x = |Z - A| and $Z = \log_{10}$ mp, and A is tabulated below for the various spectral intervals.

Table 1.		displace the generalized curve to left or to right appropriately.
SPECTRAL	INTERVAL (cm ⁻¹)	Alpha
(520 - 680	+1.45
1	560 - 620	+ .86
1	500 - 560	+ .37
2	40 - 500	02
	380 - 440	40
	310 - 380	99
. 2	250 - 310	-1.40
2	200 - 250	-1.73
]	50 - 200	-1.80
3	100 - 150	-1.92
	50 - 100	-1.85

The transmissions in the region from 500-200 cm⁻¹ have been experimentally determined in 5 cm⁻¹ intervals by Palmer. The displacements of the generalized curves (Equations (16) and (17)) for the regions greater than 500 cm⁻¹ and less than 200 cm⁻¹ have been determined from the following theoretical argument:

For a narrow spectral region $T = e \times p(-k \sqrt{mp})$ where $\mathcal{K} = \sum_{i} (S_i \vee S_i)^{\mathcal{H}}$. The constant \mathcal{K} can be determined theoretically from quantum mechanics. Taking logarithms of the above expression for the transmission, we have:

$$log_e t = -k \sqrt{mp}$$
 : $(log_e t)^2 = k^2 mp$

For a different spectral interval, we will in general have $(\log \tau')^2 = \chi'(mp)'$. However, if the curve is to move to right or left as a whole, the change in log mp must be determined at constant τ . So, placing $\tau = \tau'$ above, we have:

$$\mathcal{K}' \mathcal{M} \mathcal{P} = \mathcal{K}' (\mathcal{M} \mathcal{P})' \text{ or } (\mathcal{M} \mathcal{P})' = (\frac{\mathcal{K}}{\mathcal{K}'}) \mathcal{M} \mathcal{P}$$

Taking log₁₀ of the result gives:

$$log_{10}(mP)' = 2 log_{10}(\frac{k}{k}) + log_{10} mP$$

So, the displacement of the generalized curve from the 500-560 region to the 560-620 region is found by simply adding 2 log $(\frac{k}{k})$ to each point on the curve at constant transmission.

The values of k for the various spectral intervals are listed below:

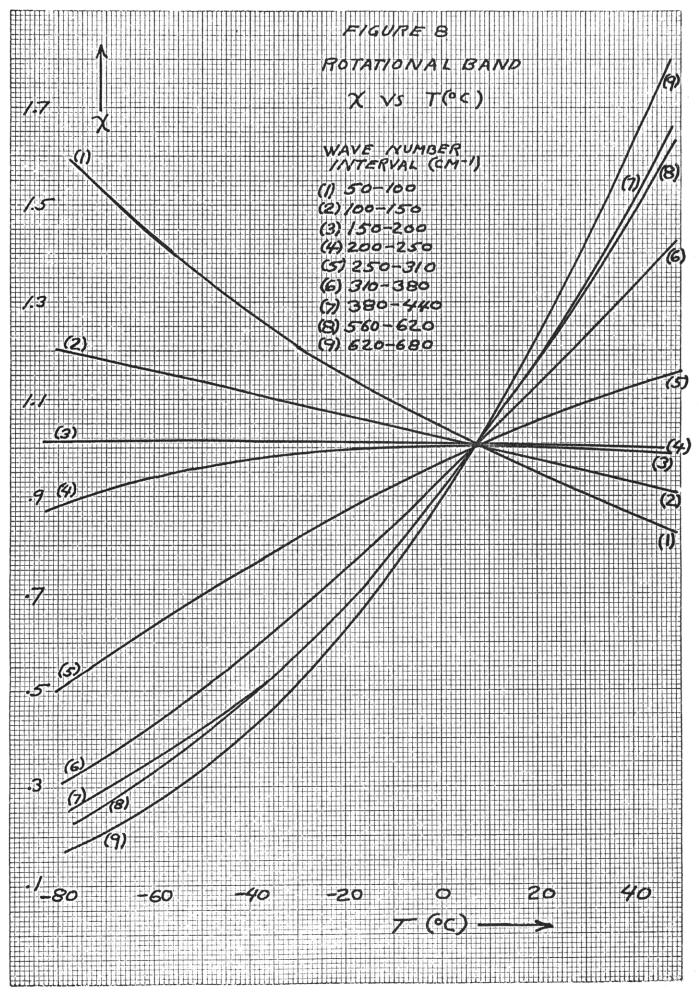
position of the transmission tral interval.	function for a given spec-
SPECTRAL INTERVAL (cm ⁻¹)	K = Z (S, Y) "
620 - 680	15.39
560 - 620	28,14
500 - 560	48.47
440 - 500	85.21
380 - 440	144.43
310 - 380	359.96
250 - 310	518,04
200 - 250	727.82
150 - 200	755.42
100 - 150	924+07
50 - 100 ·	838.77

The quantity (k) necessary to determine the theoretical Table 2.

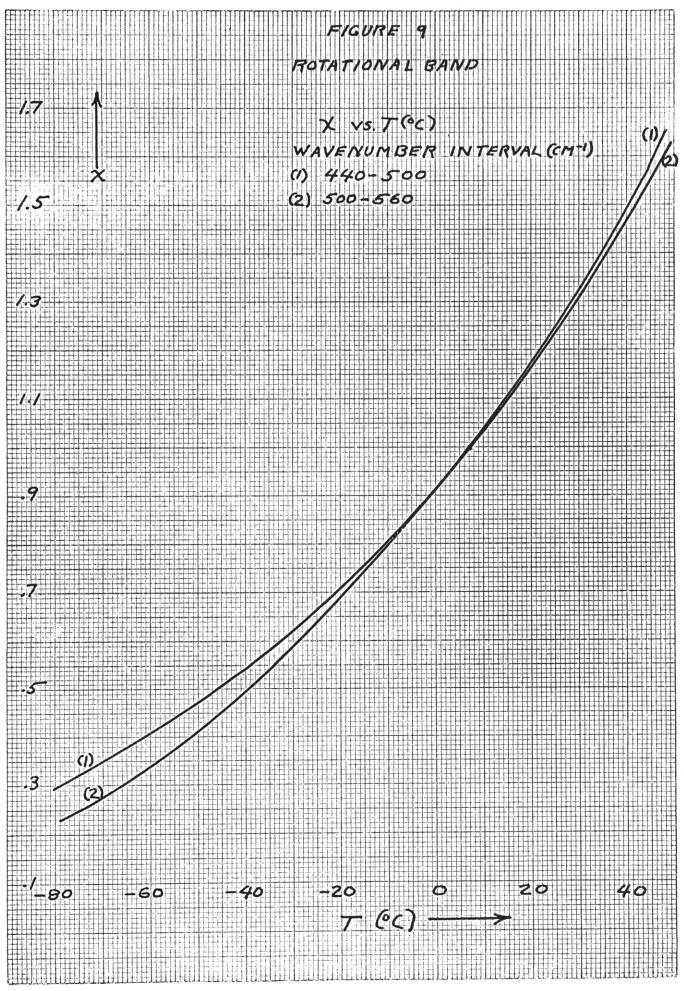
In order to set up this problem for programming, the curves of x and y vs T for all spectral regions of interest must also be written down as analytic functions. This has been done and the results appear in Table 3.

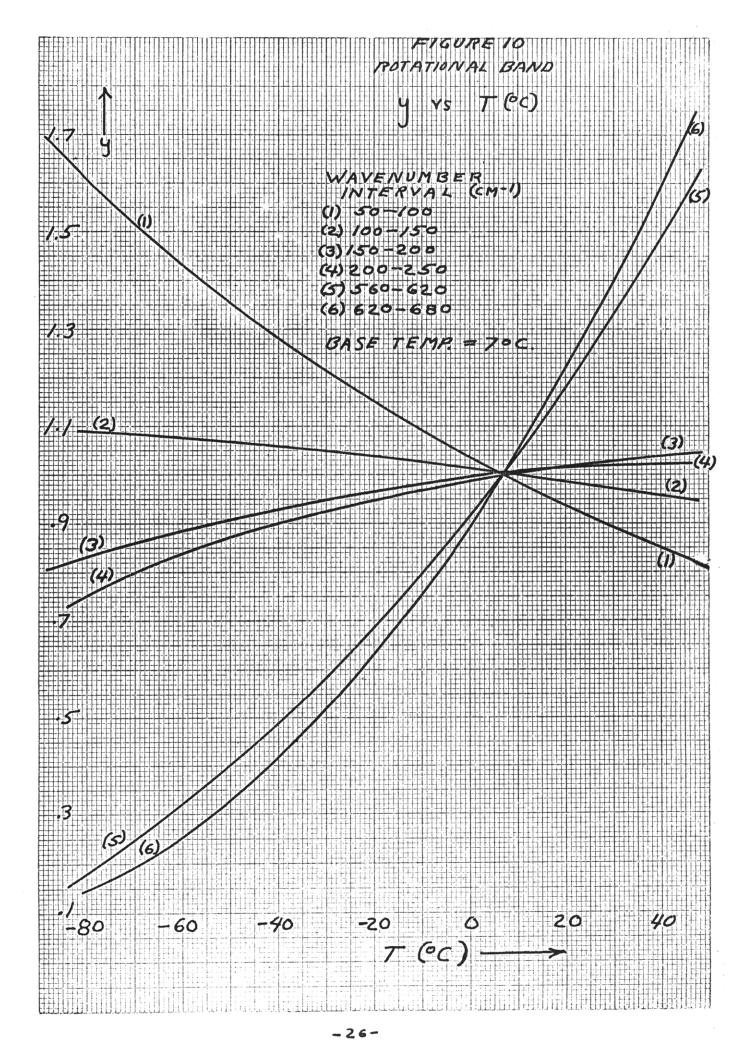
For computation purposes, the fact that Palmer's data are determined at many temperatures leads to the necessity of a further correction to the above treatment. The transmission in the spectral region from 500 - 380 cm^{-1} will be taken as valid at 19°C. (This is about the average temperature of the experimental data.) The spectral region from 380 - 250 cm⁻¹ can be taken as experimentally valid at 10°C. Similarly. the region from 250 - 200 cm⁻¹ will be valid at 19° C. The spectral regions either greater than 500 cm⁻¹ or less than 200 cm⁻¹ will be taken as valid at $T = 19^{\circ}C$ because the extrapolation is taken from both ends of the experimentally determined region.

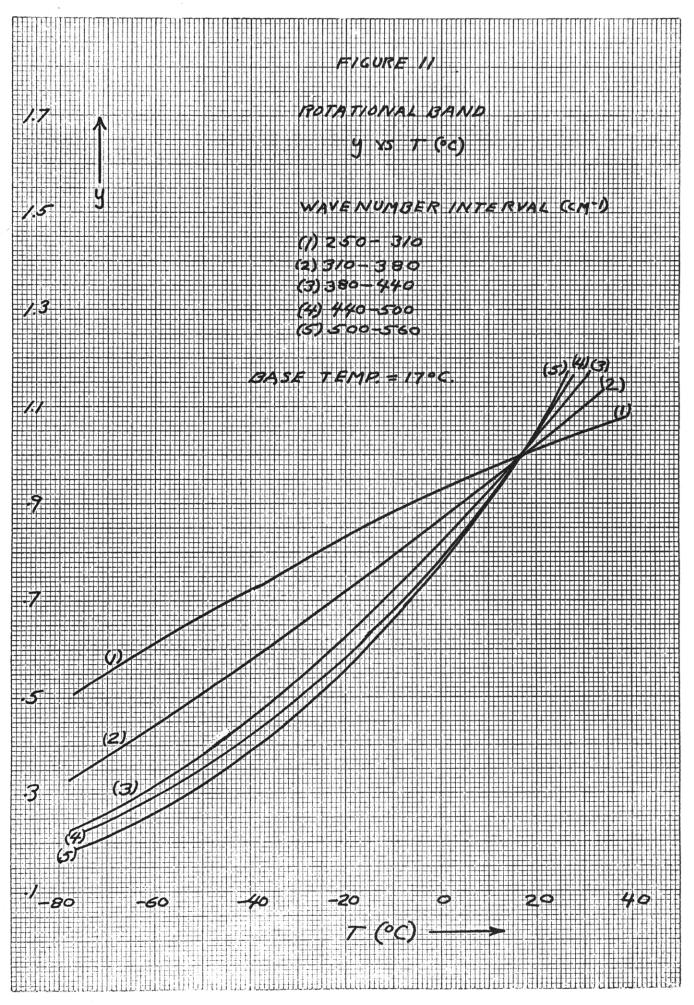
-22-


,

.


ROTATIONAL BAND TEMPERATURE CORRECTION FACTORS


DV cm	"Y" CORRECTION	"X" CORRECTION
50-100	$y = 1.60 \times 10^3 (T + 273)^{-1.31}$	$\chi = 1.55 \times 10^3 (T+273)^{-1.3}$
100-150	y = 7.78(T+273)364	X= 1. 60800217(T+273
150-200	J=.0757(T+273).458	x=1.0
	$y = 1.02 \cos(\frac{T-40}{167})$	$\chi = \cos\left[\frac{T-17}{220}\right]$
	y=1.28 cos [T-145]	$x = 1.25 \cos\left[\frac{T-115}{168}\right]$
	y=.8+.62.cos[T-119]	$x = 1.20 - 1.10 \cos \int \frac{T + 148}{111.3}$
	$y = 1.1 - \cos\left[\frac{T + 121}{91.9}\right]$	x= 5.75x10-10(T+273)3.77
	y = 1.1 95 cos [T+102]	x =. 17+ 4.05x10-5(T+13)
500-560	y=1.09cos[T+97]	x=. 1 + 4.72x10-5(T+132
560-620	$\frac{y=1.09\cos\left[\frac{T+97}{72.6}\right]}{y=2.285\times10^{-10}(T+273)^{3.94}}$	$\chi = 2.00 \times 10^{-10} (T + 2.73)^{-3}$
	y=5.010 × 10-12 (T+273) 4.618	


The curves corresponding to these expressions are found on the following pages in figures 8 - //.

-24-

The curves of y vs T are plotted for a base temperature of $17^{\circ}C$, but the curves of x vs T are plotted for a base temperature of $7^{\circ}C$. Consider for a moment the curves of (x vs T):

$$x = \frac{\sum S_{i}(T)}{\sum S_{i}(7^{\circ})}$$

If we would like to use these same curves, but have experimental data for $T = 19^{\circ}C$, we can do the following:

$$\chi = \frac{\sum S_{i}(T)}{\sum S_{i}(T)} / \frac{\sum S_{i}(19)}{\sum S_{i}(7)} = \frac{\sum S_{i}(T)}{\sum S_{i}(19)}$$

Thus, the data as given for both "x" and "y" can be used for any experimental temperatures, providing that the parameters x and y are modified correctly depending on the spectral region and the corresponding base temperatures mentioned above. These factors are listed in Table 4.

Table 4.	A list of corrections to the quantities "x" and "y" required
	because of experimental temperature differences. "x" and
	"y" are temperature correction factors.

SPECTRAL INTERVAL (cm ⁻¹)	"x" divisor	"y" divisor
50 - 100	. 95	.94
100 - 150	•98	. 98
150 - 200	1.00	1.01
200 - 250	1,00	1.01
250 - 310	1.01	.97
310 - 380	1.03	" 95
380 - 440	1.17	1.03
440 - 500	1,17	1.04
500 - 560	1.15	1.04
560 - 620	1.16	1.16
620 - 680	1.20	1.20

Absorption of Diffuse Radiation in Rotational Band

Thus far the transmission functions have been determined only for the transmission of a parallel beam of radiation. In the real atmosphere, the radiation from one layer to another is diffuse, so an integration of $\mathcal{T}_{\mathcal{L}}$ must be carried out over solid angle. The integration over azimuthal angle has already been carried out and accounts for the factor \mathcal{T} in equation (1) and the factor of 2 in equation (18) below. The integration with respect to the zenith angle must yet be carried out.

$$T_{f} = 2 \int_{0}^{\pi/2} T_{I}(\Theta) \cos \Theta \sin \Theta \, d\Theta \qquad (18)$$

where \mathcal{T}_{f} is the diffuse transmission function. The functions \mathcal{T}_{I} are those listed in equations 16 and 17.

For the purpose of this integration, let $\chi = / \log(WP) - d/W$ where $W = m \sec \Theta$

Consider the case where $\alpha = \log K \leq 0$; then, $\gamma = / \log K pm pace/$

CASE I:
$$\log_{10}(kpmpec\theta) \le 0$$
; So, $kpmpec\theta \le 1$ for $pec\theta \le \frac{1}{kpm}$
 $x = \left| \log(kpmpec\theta) \right| = -\log_{10}(kpmpec\theta) = -.4343\log_{10}(kpmpec\theta)$
Then, $dx = -.4343$ ton $\theta d\theta$ and $10^{-x} = kpmpec\theta$
or $\cos \theta = kpm \times 10^{x}$
So, $T_{f} = -4.605 \int T_{I}(kpm)^{2}/0^{2x} dx = -4.605(kpm)^{2} \int T_{I}/0^{2x} dx$
The limits on this integral are still to be defined.

 $0 \leq \Theta \leq \frac{\pi}{2}$ corresponds to $1 \leq \rho c \Theta \leq \infty$. So, for Case I the limits should be $1 \leq \rho c \Theta \leq \frac{1}{kpm}$ or $-\log(kpm) \leq x \leq 0$.

$$\frac{CASE II}{\log_{10}(kpmpec \Theta)} \ge 0 \quad SO, kpmpec \Theta \ge 1 \text{ for } pec \Theta \ge \frac{1}{kpm}$$

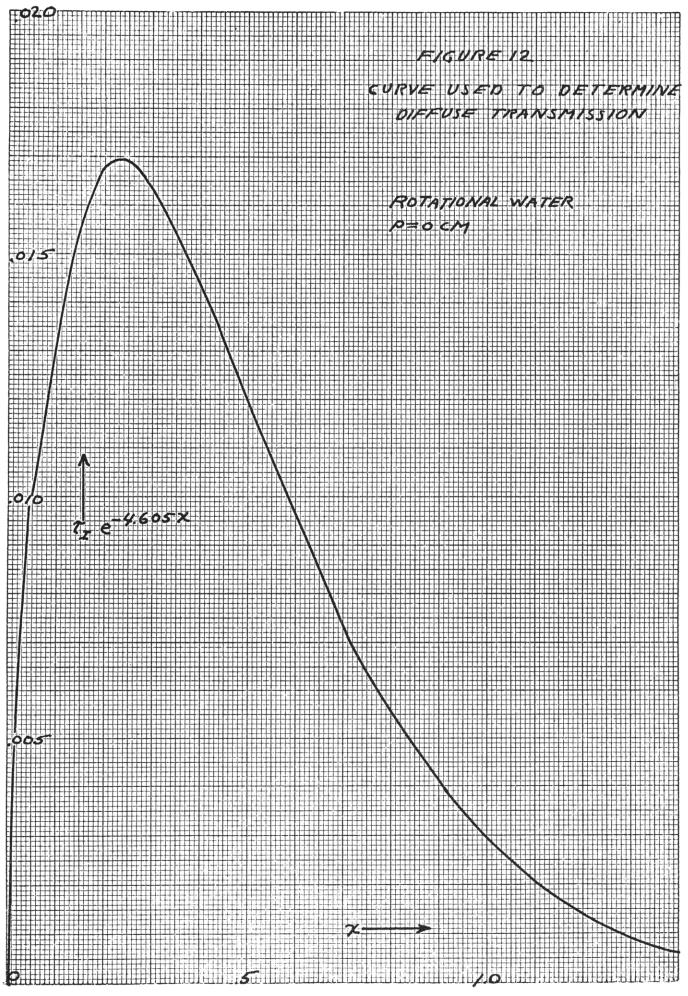
$$x = \left| \log_{10}(kpmpec \Theta) \right| = \log_{10}(kpmpec \Theta) = .4343 \log_{10}(kpmpec \Theta)$$

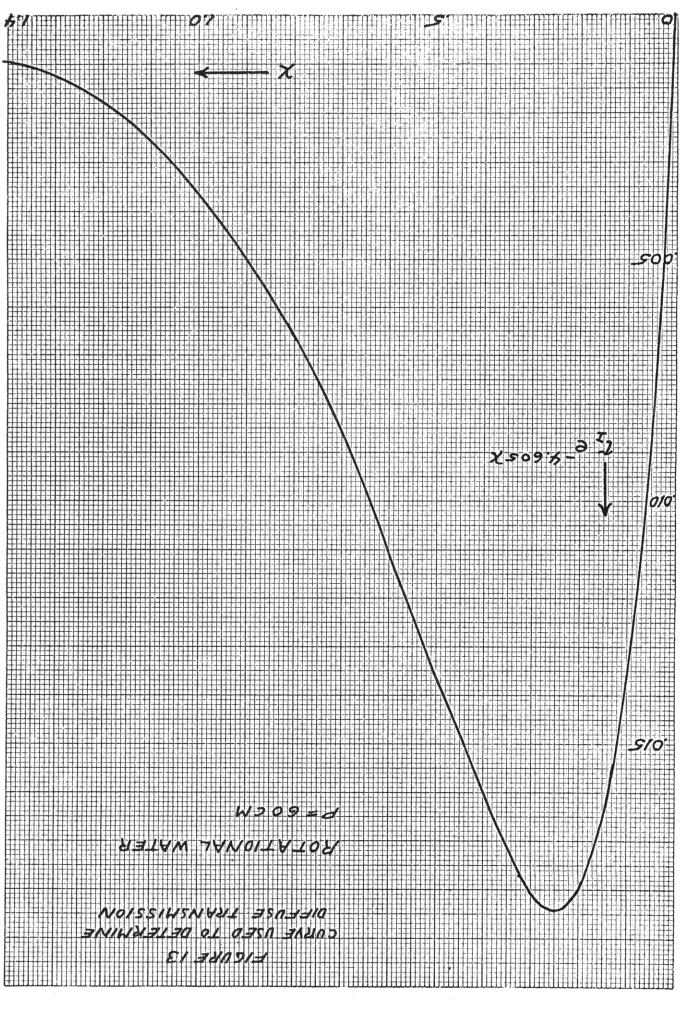
so, $d\chi = .4343 \tan \Theta d\Theta + 10^{\chi} = kpm \rho \Theta \Theta Or COO \Theta = kpm \chi 10^{-\chi}$ And, $T_{f} = 4.605 (kpm)^{2} \int T_{I} 10^{-2\chi} d\chi$

The limits on this integral are $\frac{1}{Kpm} \leq \rho lc \Theta \leq \infty$ or $\Theta \leq \chi \leq \infty$. Thus, for $\log k \ge 0$,

$$\mathcal{T}_{f} = 4.605 (\text{kpm}) \left[\int_{0}^{\infty} \frac{-4.605 \times -\log(\text{kpm})}{\sqrt{t_{I}e}} \right]$$
(19)

If $\log k Z O$, k p m should simply be replaced by $\frac{p m}{k}$ in the above. The first integral in equation (19) can be plotted and evaluated once and for all for each of the pressures used in the determination of equations (16) and (17). This curve is plotted in Fig. (12) for the high pressure region (p = 60 cm of Hg) and has been planimetered, its area being .01225. The low pressure curve has similarly been planimetered, its area being .01110. This curve appears in Fig. (13). The second integral of equation (19) has been evaluated by Simpson's Rule, and values of \mathcal{T}_f are tabulated as a function of $-\log k p m$ below in Table 5.


₹; (p=0)	Cf (p=60cM)	-log,o kpm
.0745	•0829	• 50
.2217	.2602	1.00
. 4278	.4928	1.50
.6271	.6968	2.00
.7731	,8395	2,50
.8649	.9229	3.00
.9185	.9694	3.50
•9496	.9943	4.00
.9679	•9993	4.50
.9789	.9998	5.00


Table 5. Diffuse transmission as a function of $-\log_{10}$ kpm

The first integral in equation (19) is so small that it is of no importance for values of $-log_k \text{kpm > 1}$.

It is of interest at this point to make a comparison between the curves of beam and slab transmission for corresponding pressures. The graphs comparing the two are found in Figs. (6) and (7). A factor ranging between 1 and 2 times the actual mass will make $C_{\mathcal{I}}$ coincide with \mathcal{T}_{f} . Thus, Elsasser's value of 1.66 might be used with reasonable accuracy to convert $\mathcal{T}_{\mathcal{I}}$ to \mathcal{T}_{f} through most of the region of interest. In fact, in order to obtain a basis of comparison, 1.66 m has been used in place of m to convert $\mathcal{T}_{\mathcal{I}}$ into \mathcal{T}_{f} (See Elsasser (1942)).

-31-

V. THE 6.3-MICRON BAND

Howard, Burch and Williams (1955) have experimentally measured the transmission of radiation through various amounts of water vapor at different total pressures in the 6.3-micron water vapor band. All of their data were taken at 22°C. Their data show a remarkable fit throughout the entire range to a transmission function proposed by Goody (1952) which follows:

$$\mathcal{T}_{I} = e \chi p \left[\frac{-\frac{W}{W_o} 1.97}{\left(1 + \chi \frac{W}{W_o}\right)^{1/2}} \right]$$
(20)

where $w_0 = mass$ of H_20 for $\mathcal{T}=..., \mathcal{V}=6.57$ for a pressure of 740 mm Hg and $\mathcal{V}=39.9$ for a pressure of 125 mm Hg. By means of a multiplication of w/w_0 by the proper value of w_0 , depending on the spectral interval and division by either 740 or 125, equation 20 takes the general form:

$$\mathcal{T}_{I} = e \times p \left[\frac{-AWP}{(I+BWP)^{1/2}} \right], \quad \mathcal{T}_{I} = e \times p \left[\frac{-CWP}{(I+DWP)^{1/2}} \right] \quad (21)$$

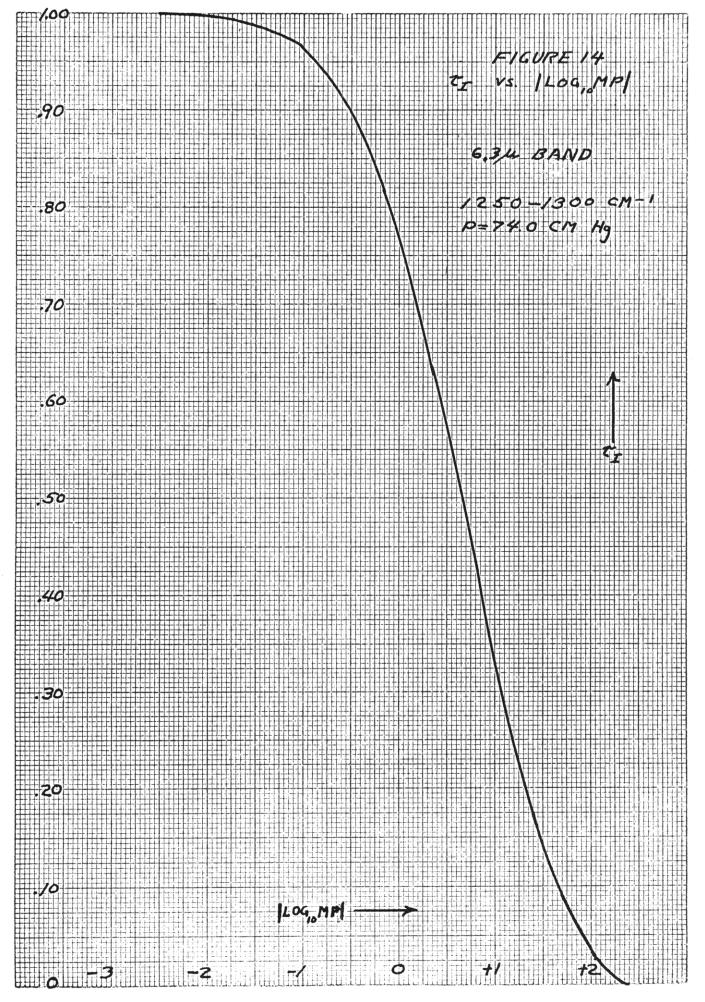
where A and B are the high pressure (740 mm Hg) coefficients and C and D are the low pressure (125 mm Hg) coefficients. Table 6 gives the values of A, B, C, and D as a function of spectral interval.

The 6.3-micron band is effectively two displaced rotational bands either side of 1595 cm⁻¹, one of which is inverted. The same temperature correction routine can be used here as in the rotational band to deter-

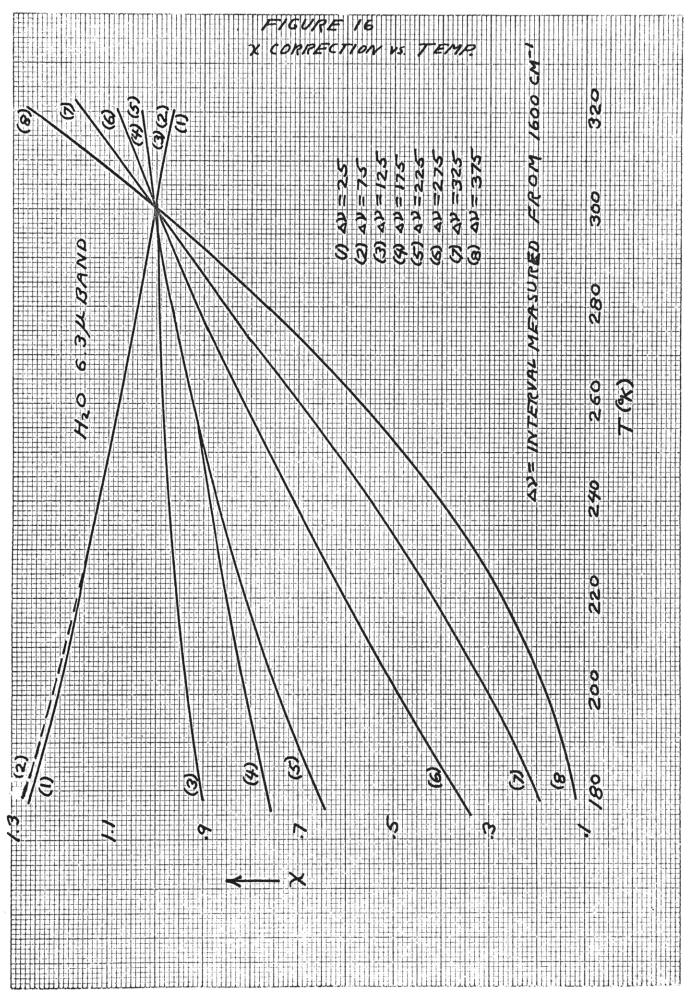
-34-

mine x and y as a function of temperature for a given spectral interval. However, the line intensities (S_i) must be modified by a factor

$$\frac{I - e \times p\left(-\frac{I \cdot 4388V}{T_0}\right)}{I - e \times p\left(-\frac{I \cdot 4388V}{T}\right)}$$
 (See Wexler (1960) and Johnson (1954)).


This has been done and the resulting curves are to be found in Figs. (15) and (16). Analytic functions have been determined to describe these curves and these expressions follow in Table 7.

•••••					
wave r	number .	A	<u>B</u>	<u>C</u>	D
1200 - 1	250	 1.517			
			5.059	48.05	973.2
1250 - 1		.405	1.349	14.41	292.0
1300 - 1		.1214	. 4047	2.162	43.79
1350 - 1	.400	.0364	.1214	.721	14.60
1400 - 1	450	.0091	.0304	.216	4.379
1450 - 1	500	.0036	.0121	.084	1.703
1500 - 1	550	. 0050	.0169	.204	4.136
1550 - 1	.600	.0172	.057	.480	9.732
1600 - 1	.650	. 0044	.0148	.132	2.676
1650 - 1	.700	.0051	.0169	.216	4.379
1700 - 1	.750	.0152	.0506	.541	10.950
1750 - 1	.800	.0465	.1551	1.562	29.200
1800 - 1	.850	.1739	.5801	4.204	85.15
1850 - 1	.900	. 4652	1.551	9.610	194.6
1900 - 1	950	1.214	4.047	26.43	535.2
1950 - 2	000	2.629	8.769	84.09	1703.0


Table 6. Constants used in equation (21)

The resulting curve for $1250 - 1300 \text{ cm}^{-1}$ is shown in Fig. (14) as a typical curve generated by equation(21) and Table (6).

7	ABLE 7	
6.3-MICRON	TE MPERATU	IRE CORRECTION
WÄVENUMBER INTERVAL (cm²)	"X" CORRECTION T = * K	"Y" CORRECTION T= °K
1550-1600 51600-1650	X=20.01(T) ⁵²⁵³	Y = 2, 2 036 x10 ² (J ⁻) ^{7,9487}
1500-1550 \$1650-1700	x=20.01(T) ^{-,5253}	J=16.84(7) ^{-,49} 65
1450-1500\$ 1700-1750	X=.6035(T) ^{.0885}	y=./396(T) ^{.346} Z
1400-1450 § 1750-1800	x=5.328×102(T).514	y=3.166x10 ⁻³ (T) ^{1.012}
1350-1400 § 1800-1850	X= .0250 (T) ^{. 6467}	Y=1.337x10"²(T) ^{.7587}
1300-135051850-1900	x = 1. 114x10-4(Tf.525)	J=5.385x10-3(T)589
1250 -1300 \$ 1900 -1950	x=1.299x10-7(T)2.785	y=6.173×10-7(7)2.514
1200-1250 5 1950-2000	x = 5.790×10 ⁻¹¹ (T) ^{4.135}	y = 3. 672 × 10 -1 ° (T) 3.825
	1	

The "y" correction is valid at the experimental temperature of 22° C, but the "x" correction is valid at 27° C, so a factor must be divided into the "x" results as listed in Table 8 in order to determine the proper temperature correction factor. This is necessary because the experimental data were determined at a temperature of 22° C. This factor is determined in the same way as shown on page (28) for the rotational band.

Table 8. Correction to the quantity "x differences in experimental t	
Spectral Interval	"x" divisor
1550-1600 and 1600-1650	.94
1500-1550 and 1650-1700	.96
1450-1550 and 1700-1750	.98
1400-1450 and 1750-1800	.99
1350-1400 and 1800-1850	.99
1300-1350 and 1850-1900	1.00
1250-1300 and 1900-1950	1.01
1200-1250 and 1950-1900	1.01

The only other item necessary to solve equations 9' and 10' for 6.3-micron water vapor is the integration of the function \mathcal{T}_{I} over zenith angle. Due to the relative inaccuracy of the data being used here, there will be no additional loss in accuracy by simply allowing m to become 1.66 m as was originally proposed by Elsasser (1942).

-40-

VI. RESULTS AND CONCLUSIONS

In order to obtain realistic results, three actual soundings were taken from Northern Hemisphere Data Tabulations. An attempt was made to obtain a dry, cold sounding as well as a warm, humid one. The sounding originally used by Elsasser (1942) for some of his radiation calculations was also included. The four soundings used appear in Table 9.

The computer program was written so that a cloud cover could be introduced at any level or so that clear conditions could be assumed. Each of the four soundings was used, first with clear conditions and then with a cloud cover at the top of the sounding. The flux divergence obtained from the program, and the corresponding time rates of change of temperature are listed in Tables 10, 11 and 12. Table 10 lists the flux divergence due only to the rotational band; Table 11 similarly lists the flux divergence due to the 6.3-micron band; and Table 12 lists the totals. In these three tables, $\frac{\partial T}{\partial t} = 8.467 \times 10^{-4} \frac{AR}{AP}$ where R is in cgs units, p is in mb, and $\frac{\partial T}{\partial t}$ is in °C/day. Table 10 also compares the results obtained for the rotational band using the transmission function found by integration over zenith angle with the results obtained with approximate procedure of using the beam transmission with 1.66 times the actual mass of water vapor. It is seen here that the difference in the flux divergence is 2% or less for most of the cases. Thus, the use of the beam transmission with 1.66 times the mass is again well justified.

In order to obtain a basis of comparison for these results, the net

-41-

**************************************	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
<u>P (mb)</u>	<u>T_(°C)</u>	<u>W(pr. cm) ±.004</u>
	Sounding No. 1	
1015	10	1.815
950	7	1.405
920	7	1.240
790	-1	. 642
740	-4	•462
710	-2	• 37 5
650	-8	.261
580	-14	.177
505	-16	.107
470	-18	•070
350	- 34	.010
300	-44	.000
	Sounding No. 2	
973	28.9	4.415
933	26.3	3.892
900	26.0	3.494
850	22.8	2,899
700	11,9	1.450
500	-6.0	+ 302
442	-11.3	.118
400	-14.8	.047
300	-30.9	.005
250	-41.8	•000
	Sounding No. 3	
1015	29.4	5,769
1000	28.1	5.514
919	21.3	4.244
850	17.6	3.319
700	8,5	1.427
555	-2.4	.281
500	-7.4	,153
400	-19.1	.038
300	-35.2	.003
250	-44.6	.000

Table 9. Soundings used for radiation calculations.

•

۰.

,

Table 9 (continued)		
<u>P (mb)</u>	<u>T</u> ([°] C)	W(pr. cm) ±.004
	Sounding No. 4	·
991	-3.2	.770
956	-3.2	.694
942	1.7	.660
926	2.9	.615
850	-1.9	.436
700	-14.3	.175
500	-32.5	.013
444	-39.7	•003
400	-45.8	•000

.

Sounding No. 1	Taken from p. 27 of Elsasser's 1942 Radiation Paper.
	(See Ref. 4)
Sounding No. 2	Taken from Northern Hemisphere Data Tabulations of
	July 29, 1955 for Phoenix, Arizona.
Sounding No. 3	Taken from Northern Hemisphere Data Tabulations of
•	July 29, 1955 for Miami, Florida.
Sounding No. 4	Taken from Northern Hemisphere Data Tabulations of
_	January 26, 1958 for Anchorage, Alaska.
	- · ·

,

Table 10. Temperature change due to flux divergence in the Rotational Band. $\partial T/\partial t = -8.467 \times 10^{-4} (\Delta R/\Delta p)$, where p is in mb and R is in ergs/cm²/sec and $\partial T/\partial t$ is in $\circ C/day$.

,

		Factor of 1	.66 used	Ts Used instead	of 1.66
Level	d⊽	Flux Div.	aT/at	Flux div.	aT/at
	(mb)	(cgs units)	(°C/day)	(cgs units)	(°C/day)
		Sounding	<u> 1 - With</u>	no cloud cover	
1-2	65	4187	~.545	4160	542
2-3	30	2056	580	2144	~.605
3-4	130	11664	760	11632	758
4-5	50	6141	-1.040	6083	-1.030
5-6	30	4714	-1.330	4557	-1.286
6-7	60	8145	-1.149	7935	-1.120
7-8	70	6854	829	7082	857
8-9	75	8818	995	8465	956
9-10	35	7257	-1.756	7283	-1.762
10-11	120	25131	-1.773	24738	-1.745
11-12	50	33051	-5.597	33048	-5.596

		Sounding	<u>1 - With</u>	cloud	cover	at top	
1-2	65	2261	295			2258	294
2-3	30	1073	~. 303,			1096	~.309
3-4	130	5424	353			5372	~.350
4-5	5 0	2478	420			2424	410
5-6	30	2078	586			2028	572
6-7	60	3392	479			3321	469
7-8	70	1980	239			2005	243
8-9	75	2151	~.243			2059	232
9-10	35	1738	420			1719	~.242
10-11	120	2091	148			2050	145
11-12	50	-318	+.054			~308	+.052

Table 10 (continued)

8-9

9-10

100

50

29593

20950

.

.

Sounding 2 - With no cloud cover

÷

30102

20777

-2.549

-3.518

1-2	40	1797	380	1743	343
2-3	33	1453	373	1486	381
3-4	50	2626	445	2880	488
4-5	150	10690	603	10893	615
5-6	200	26850	-1.137	26373	-1.117
6-7	58	16828	-2.457	16705	-2.439
7-8	42	16191	-3.264	16608	~3.348
8-9	100	29258	-2.477	28850	-2.443
9- 10	50	26020	-4.406	26132	-4.425
		Soundi	ng 2 - With co	ould cover at the	top
1-2	40	1169	247	1143	242
2-3	33	887	228	917	235
3-4	50	1580	268	1704	289
4-5	150	5424	306	5483	309
5-6	200	10062	426	9846	417
6-7	58	5348	781	5275	770
7-8	42	4252	857	4173	841
8-9	100	2896	245	2847	241
9-10	50	-199	+.034	-200	+.034
		Soundin	ng 3 - No clou	<u>id cover</u>	
1-2	15	654	369	634	~.358
2-3	81	2818	295	2956	309
3-4	69	2618	321	2530	310
4-5	150	11176	631	10842	612
5-6	145	28434	-1.660	28911	-1.688
6-7	55	12368	-1,904	12287	-1.892
7-8	100	23275	-1.971	23598	-1.998
8-9	100	29593	-2.506	30102	-2.549

-2.506

-3.548

Table 10 (concluded)

.

.

Sounding 3 - Cloud cover at top

1-2	15	482	272	473	~.267
2-3	81	1742	182	1813	190
3-4	69	1424	-,175	1378	-,169
4-5	150	5653	319	5514	311
5-6	145	12460	728	12720	~.743
6-7	55	4729	728	4751	~.731
7-8	100	5912	501	6039	511
8-9	100	2552	216	2587	219
9-10	50	-146	+.025	-144	+.024
		Soundin	ng 4 - No cloud	cover	
1-2	35	8 30	201	876	~.212
2-3	. 14	974	~.589	964	583
3-4	16	2426	-1.284	2420	-1.281

3-4	16	2426	-1.284	2420	~1.281
4-5	76	8791	979	8804	981
5-6	150	17168	969	17433	984
6-7	200	34024	-1.440	34354	~1,454
7-8	56	15469	-2.339	15781	-2.386
8-9	44	23002	-4.426	22910	-4.409

Sounding 4 - Cloud cover at top

1-2	35	-110	+.027	-96	+.023
2-3	14	470	284	469	~.284
3-4	16	1665	881	1681	~.890
4-5	76	4842	539	4906	~.547
5-6	150	5988	338	6091	344
6-7	200	4605	195	4664	197
7-8	56	794	120	812	123
8-9	44	-217	+2042	-222	+.043

Table 11.	Rate of change of temperature due to flux divergence
	in the $6.3\mu_20$ band. (factor of 1.66 used throughout)

,

.

.

.

	No	Cloud Cover		Cloud Cover	at Top
Leve1	Δp	Flux Div.	9 I/9t	Flux Div.	JT/9t
	(<u>mb</u>)	(cgs units)	(°C/day)	(cgs units)	(^O C/day)
				· · · · · · · · · · · · · · · · · · ·	·····
		Sc	ounding No.	_1	
1-2	65	934.8	122	759.2	099
2-3	30	379,9	107	297.6	099 084
3-4	130	1453.8	095	1061.0	069
4-5	50	418.7	071	253.9	043
5~6	30	278.2	079	182.1	051
6-7	60	405.9	057	255.3	036
7-8	70	182.4	022	47.6	006
8-9	75	140.9	016	-3.98	0004
9-10	35	110.6	027	10.35	003
10-11	120	143.5	010	111.5	008
11-12	50	36.7	006	58.7	010
		S.	unding No.	2	
			unding NO.		,
1-2	40	1028.6	218	907.6	192
2-3	33	728.4	187	625,1	160
3-4	50	1141.5	-,193	963.4	163
4-5	150	2440.6	138	1816.9	103
5-6	200	2084.1	088	1025.5	043
6-7	58	635.6	093	259.4	038
7-8	42	365.1	074	131.2	026
8-9	100	200.4	017	-31.5	+.003
9-10	50	28.3	005	-32,4	+.005

Table 11 (continued)

.

•

.

•

,

No Cloud Cover			Cloud Cove	r at Top	
<u>Level</u>	Δ Ρ (mb)		9T/9t °C/day)	Flux Div. (cgs units)	δT/Ət (^o C/day)
		Soun	ding No. 3	3	
1-2	15	486.9	275	446.2	252
2-3	81	1722.5	180	1490.9	156
3-4	69	901.4	111	689.5	085
4-5	150	2328.2	131	1649.4	093
5-6	145	2729.5	159	1768.9	103
6-7	55	581.7	- • 090	353.2	054
7-8	100	473.1	040	153.1	013
8-9	100	140.5	012	-65.7	+.006
9-10	50	12,9	002	-21.5	+.004

Sounding No. 4

1-2	35	150.6	036	106.3	026
2-3	14	109.5	066	87.3	053
3-4	16	221.8	117	189,5	100
4-5	76	857.9	096	709.4	079
5-6	150	891.2	050	587.0	033
6-7	200	345.2	015	-30.5	+.001
7-8	56 ·	44.1	007	-22.1	+.003
8-9	44	16.0	003	-16.8	+.003

		aland Comment Mana
r 7	No Cloud Cover	Cloud Cover at Tope
Level	(dT/dt) °C day	(ðT/ðt) °C day
	Sounding No. 1	
1-2	664	393
2-3	712	393
3-4	853	419
4-5	-1.101	453
5-6	-1.365	623
6-7	-1.177	505
7-8	879	249
8-9	972	232
9-10	-1.789	245
10-11	-1,755	153
11-12	-5,602	+.042
	Sounding No. 2	
1-2	561	434
2-3	568	~ , 395
3-4	681	452
4-5	753	412
5-6	-1.205	460
6-7	-2,532	808
7-8	-3.422	867
8-9	-2.460	238
9-10	-4.430	+.039
	Sounding No. 3	
1-2	633	519
2-3	489	346
3-4	421	254
4-5	743	404
5-6	-1.847	846
6-7	-1,982	785
7-8	-2.038	524
8-9	-2.561	213
9-10	-3.520	+.028

Table 12. Total temperature change due to flux divergence in the 6.3 μ and rotational bands of $\rm H_2O_{\bullet}$

-

,

Table 12 (continued)

.

.

<u>Level</u>	No Cloud Cover (ðT/ðt) ^o C day	Cloud Cover at Top (ƏT/Ət) ^O C day
	Sounding No. 4	
1-2	248	003
2-3	649	337
3-4	-1.398	990
4-5	-1.077	626
5-6	-1.034	377
6-7	-1,469	196
7-8	-2.393	120
8-9	-4.412	+.046

Table 13. A comparison of the use of the method reported in this paper and the method of the Elsasser Radiation Chart. All units are ergs/cm²-sec.

According to Elsasser Chart According to this paper Net upward Flux Flux Net upward $flux \times 10^{-4}$ $Div \times 10^{-4}$ $flux \times 10^{-4}$ $Div \times 10^{\circ}$ 5.385 .509 7,839 .677 5.894 .230 .253 8.516 6.147 1,308 8.746 2.290 .217 7.455 11.036 .651 .632 8,106 **.**484 11.253 8.589 .834 1.131 11.885 .337 9.423 13.016 .726 10.150 .861 13.353 .868 11.010 14.221 +872 .739 11.750 2.488 15.093 2.279 14,238 17.372 7.223 3.308 24.595 17.546

upward flux corresponding to Sounding No. 1 has been determined through the use of the Elsasser Diagram (Elsasser (1942)) and Johnson (1954). Table 13 lists both the net upward flux and the flux divergence as determined by the method of this paper and according to Elsasser's radiation chart. Although the agreement is not too good, it is seen that the variation of the flux divergence is similar.

It is also interesting here to notice the large values of flux divergence obtained toward the top of the sounding - particularly in the top layer itself. According to Table 12, this corresponds to the large rate of change of temperature of -5.6° C/day. The Elsasser diagram would yield an even larger temperature decrease. Either there is very strong

-51-

cooling at this level or an explanation must be found that will explain the similar results predicted by both techniques.

The sounding data themselves permit an uncertainty in the mass of precipitable water of 0.004 cm. Thus, it is possible that between 300 mb and the top of the atmosphere there may be as much as .004 cm of precipitable water. The only reason that a zero is entered in the sounding at 300 mb is that the instrument could no longer measure the amount of water vapor present. In fact, at a temperature of -44°C, the humidity sensor of a radiosonde is inactive below a relative humidity of about 20%. This humidity would correspond to a mixing ratio at 300 mb of .05 rather than zero. Based on a standard atmosphere between 200 and 300 mb (Wexler 1959), an average mixing ratio of .026 might be assumed. Thus, an amount of precipitable water of .003 cm between these levels might be present to contribute substantially to the downward radiation flux at 300 mb. By assuming the slightly worse case of .004 cm of water between 200 mb and 300 mb, the net upward flux at 300 mb was determined on the Elsasser diagram. The net upward flux at 300 mb would then be 18.135 \times 10⁴ instead of 24.595 \times 10⁴, indicating a flux divergence between 300 and 350 mb of only .763. The influence of this .004 cm of water on the net upward flux at 350 mb would be much less - the flux there would be 16.895 \times 10⁴ instead of 17.372 \times 10⁴ yielding a flux divergence between 470 mb and 350 mb of 1.802. Thus, the flux divergence here is only altered by about 20%. The levels below this will be almost unaffected by such an inaccuracy in measuring the amount of absorber.

Thus, the computed flux divergence in the top layer should be discarded, and in the second layer from the top the results should be con-

-52-

sidered with the knowledge of the maximum error. In a typical case the error in the next-to-top layer would be expected to be considerably smaller than the maximum. In order to determine more accurate values at the top of such a sounding, the assumption of a standard atmosphere above the "top" level will substantially decrease the error in the "top" levels. In order to demonstrate this more clearly, the Elsasser sounding has been run with an additional point in the sounding at 200 mb. This has been done such that the level between 300 and 200 mb contains .004 cm of precipitable water, the rest of the sounding remaining the same. The results follow in Table 14. The percent change in the quantity (2T/2t) may be taken as a measure of the error introduced in the "top" layers by the inability to measure the water vapor more accurately.

Table 14.	An estimate of the error introduced into the calcu-
	lations by inability to measure small amounts of
	water vapor at high levels.

<u>Level</u>	Net Upward Flux Total Both Bands (cgs units)	<u>Layer</u>	Flux 2Div. (ergs/cm ² -sec)	()T/Jt) (°C day)	<u>% Error</u>
1	53851.27	1-2	5095.79	664	0
2	58947.06	2-3	2524,98	713	0
3	61472.04	3-4	13091.96	853	0
4	74564.00	4-5	6507.55	-1.102	0
5	81071.55	5-6	4840.77	-1.366	0
6	85912.32	6-7	8353,95	-1.179	0
7	94266.27	7-8	7289.85	882	0.3
8	101556.12	8-9	8659.61	978	0.6
9	110215.73	9-10	7469.36	-1.807	1.0
10	117685.09	10-11	26334.56	-1.858	5.9
11 12	114019.65 153735.46	11-12	36050.37	-3.605	36.0

With the exception of the new "top" layer the results here stated should be quite satisfactory within the accuracy of both the experimentally determined transmission functions and the soundings themselves.

Before going further with this technique, actual measurements of flux divergence accompanied by complete soundings to high levels are needed. Then the validity of the method could be tested and compared with experiment.

In addition to the problem of obtaining accurate soundings, this method is limited by the experimentally determined transmission functions. To this extent the method should give quite accurate results. By employing this technique to various atmospheric soundings, a person might better be able to understand the physical process and resulting cooling rate due to radiative heat transfer in the atmosphere.

-54-

APPENDIX I

The purpose of this appendix is to display the actual Computer programs used for this report. The programs are written in FORTRAN for use on the IBM 709 Computer.

A description of the variables used in the program follows:

Actual Variable	Fortran Variable
^m e ^p e	EMP
m e	EM
7 (high pressure)	TAUH
C (low pressure)	TAUL
$\boldsymbol{\mathcal{T}}$ (value actually used)	TAW
x	x
у	Y
В	BLAK
T ([°] K)	TA
T (^O C) (average for a layer)	AT
p (atm) (average for a layer)	AP
Pe	PÅ
∆в	BLAK
R	SUM

Copies of the actual programs and data used appear in the following pages.

ROTATIONAL BAND

	26-1103. FMS. RESULT. 10:12: 5000: 0: MCCLATCHEY THESIS
	DIMENSION GNU(111: DELTNU(111: ALPHA(11): T(50): P(50): W(50):
	1AX(11), BX(11), CA(11), DX(11), EX(11), AY(11), BY(11), CY(11),
	201(11), EY(11), TA(50), AT(50), AP(50), DELTAM(50), BLAK(11, 50)
	IF DIVIDE CHECK 441, 441
441	L READ INPUT TAPE 4+ 2025 (AX(L) + L=1+11)
	READ INPUT TAPE 4, 214, (BX(L), L=1,111, (BY(L), L=1,11)
the second s	READ INPUT TAPE 4, 216, (CX(L), L=1,11), (CY(L), L=1,11)
	READ INPUT TAPE 4. 218. (DX(L), L=1,11)
	READ INPUT TAPE 4, 204, (EX(L), L=1,11)
	READ INPUT TAPE 4: 222: (AY(L): L=1:11) READ INPUT TAPE 4: 226: (DY(L): L=1:11)
	READ INPUT TAPE 4, 204, (EY(L), L=1,12)
	READ INPUT TAPE 4: 190, (GNU(L): L=1+11)
the monormal sector of the	READ INPUT TAPE 4, 208; (DELTAULL), L=1+11)
A CARLES AND A CARLES	READ INPUT TAPE 4. 210. (ALPHA(E), E=1.11)
500	1 READ INPUT TAPE 4, 206, NI, 100
502	READ INPUT TAPE 4, 200, (T(J), J=1,11)
and the second s	READ IMPUT TAPE 9, 202, (P(J), J=1, NI)
and the second s	READ INPUT TAPE 4, 202, (HIJ), J#1, NI)
	00 7 J=1+ N1 TA(J)=T(J)+273.
	AT[J]=[T[J]+T[J+1]]/2.
Marcal States	AP(J)=(P(J)+P(J+1))/2.
A CONTRACTOR OF	DELTAM(J)=(W(J)-W(J+1))
	CONTINUE
	DQ 11 L=1+11
	00.9 J=1+%1
	<pre></pre>
	CONTINUE
	CONTINUE DO 92 R=1: NT
	SUMED
1	DO SO L=1+11
	SUNX = 0.
	SURY = 0.
Second States	SU Z = 0.
	1=61=1
1000 C	D0.60 K=1,1
	IF (K-m) 13, 14, 15
	GG TO 298
	SUM = 0
	IF (L-4) 299, 300, 300
	<pre>x=tAx(L)+bx(L)*tAT(J)+Cx(L))*=0x(L))/Ex(L)</pre>
	Y=(A)(L)+3Y(L)*(AT(J)+CY(L))*0Y(L))/EY(L)
	G2 T0 17
	1 IF (1-7) 301, 302, 302
301	LX=(AX(L)+BX(L)*COSF((AT(J)+CX(L))/OX(L))/EX(L)
	Y=(AY(L)+5Y(L)*COSF((AT(J)+CY(L))/0*(L))/EY(L) G0 TO 17
	IF (L-10) 303, 279, 279
	x=(AX(L)+6X(L)*(AT(J)+CX(L))**0X(L))/EX(L)
	Y=(AY(L)+5Y(L)+COSF((AT(J)+CY(L))/DY(L))/2Y(L))
17	EMP=Y*AP(J)*DELTAL(J)
and in the second	
-	

ROTATIONAL BAND

EM#X#DELTA*(J) Z
SUMY=SUMY+LAP
SUNX=SUNX+EM
PA-SUHY/SUMX
A=+93634LDGF(SUMY) .
15 (A-ALPHAIL)1 30: 40: 40 30 B=ABSF(A=ALPHAIL)1
1F (1994) 12432431
JI TAUHEI
CO TO 33
32 TAUH#12**3.*1.25*8.**2.***07*81/(8*#3.**.07*8##2.**9.05)
33 TAUL=(B##3.++403#88#**2.+*.8888)/(8##3.+*.035#R##2.+7.2) TAU=(TAUH=T-UL)#PA/.796TAUL
IF (IAM-1.4) 36-26.32
32 TA(*).
35 GU TO 42
42. TAN=0.
92 DBLAK=BLAK(L+J)=BLAK(L+J+1) DFLUX=TAN#DBLAK#3+141593
56.50M245UN240LAX
50 CONTINUE
IF (N=N1) 644 1, 1
1 TAX=1.
44 1E (NOC) 70, 70, 65
65 FTIN=TAV#8LA((_+N1)*3+1415/3 SUM=SUM+(ETI)+SUM2(#0ELTNULL)
GO TO an
70 SUN=SUM+SUM2+DELTAU(L)
BO CONTINUE
20 WRITE OUTPUT TAPE 2, 100, T(1), P(1), A, SUM
92 CONTINUE 60 TO 500
100 FORMAT 10H T(1)=F4+0, 6H P(1)=F6.3, 3H N=12, 5H 3UM=E14.7)
195 FORMATT11F5+0)
200 FORMAT(14F3.0)
202 FORMAT(1866+3)
204 FORMAT(11F5+2) 205 FORMAT(13+12)
20. FORMATELIFAXO
210 FORMAT(1)EG.2)
214 FORMAT(7-10+2)
210 FURNAT (11F5.0)
218 FORMAT(8F 5+2) 222 FORMAT(9F7+3)
220 FURMATIST 9-11
END
* DATA
1.000 1.608 1.600 0.000 0.000 1.200 0.000 0.178 0.120 0.000 0.000
1.555+03 -2.175-03 0.005+00 1.005+00 1.255+00 -1.105+00 5.755-10 4.055-03 4.725-05 2.005-10 3.485-12 1.505+03 7.705+00 7.575-32
1.022#400 1.202#400 0.622#400 +1.002#00 +0.952#00 +0.02#00 2.295-10
5+012-12
273. 273. 273. 27317112. 198. 273. 196. 152. 273. 273.
273. 273. 27340149119. 121. 10247. 273. 273. -1.30 1.00 1.00 220.00 168.00 111.30 3.77 2.00
400 3475 9450
0.95 0.92 1.02 1.02 1.01 1.01 1.17 1.17 1.19 1.18 1.20
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.100 1.200 1.000

ROTATIONAL BAND

3	
	000000
72.600 3.940 4.613	00 3V#200
0.94 0.98 1.01 1.01 0.97 0.95 1.03 1.04 1.04 1.16 1.20	
75. 125. 172. 225. 200. 345.:410. 470. 530. 590. 550. 50. 50. 50. 50. 60. 70. 60. 50. 60. 60. 60.	and the second
-1.85 -1.92 -1.80 -1.73 -1.40994002 .37 .56	1.45
3 1	
10119.	
1.830 0.654 0.189	
12 1	
10. 7. 714281415183444. 1.002 0.938 0.900 0.780 0.791 0.701 0.642 0.573 0.499 0.664	
1.815 1.405 1.249 0.642 0.462 0.375 0.261 0.177 0.107 0.070	
	T-10
10. 7. 714281410103444. 1.002 0.938 0.908 0.780 0.731 0.701 0.642 0.573 0.499 0.464	
T.815 1.405 1.240 0.642 0.462 0.375 0.261 0.177 0.107 0.070	0.010 0.000W-IC
10 1 27. 25. 25. 23. 12611153147.	T-2
0.401 0.921 0.888 0.829 0.691 0.494 0.436 0.395 0.295 0.246	P-2
4.415 3.892 3.494 2.899 1.450 0.302 0.118 0.047 0.005 0.000	#-Z
10 0. 27* 26* 20* 23* 12* -0* -11* -15* -31* -42*	T-2C
.0.961 0.921 0.886 0.439 0.891 0.494 0.496 0.385 0.296 0.246	P-2C
4.413 3.892 3.494 2.699 1.490 0.302 0.118 0.047 0.005 0.000	W-2C
29, 28, 21, 18, 9, -2, -7, -19, -35, -45,	T-3
1.002 0.957 0.907 0.029 0.691 0.348 0.494 0.392 0.296 0.247	P=3
5.769 5.514 4.244 3.319 1.427 0.261 0.153 0.038 0.003 0.000	W=3
10 0. 122. 20, 21, 18, 9, -2, -7, -19, -39, -49,	T-3C
1.002 0.907 0.907 0.8039 0.631 0.548 0.494 0.295 0.298 0.247	P=3C
5.760 5.310 4.244 3.219 1.427 0.241 0.153 0.038 0.003 0.000	W-3C
-33. 2. 3214334046.	T-4
0.778 0.944 0.230 0.914 0.633 0.691 0.494 0.438 0.395	2-4 X-4
0.770 0.624 0.560 0.615 0.436 0.175 0.813 0.003 0.000	479
	7-40
0.7/5 0.994 0.930 0.914 0.839 0.531 0.494 0.938 0.595 0.7/50 0.594 0.9560 0.515 0.438 0.172 0.013 0.003 0.000	P-40
AFELO DACE NAME AND DAVES DALLA SALLA CARES HE WAS AND	100
	TOTAL 1004
a second	TOTAL 1004
	and the second
	and the second
the second se	- The second sec
	the second s
the second s	a second and the second s

6.3-MICRON BAIND

.

•

	DEBUG.7.10.1000.0	MCCLAICHEY THESIS	
* XEQ * LIST	The second s	and the second	
	2NU(16)+1(50)+P(50)+m	(50) +8A(10) +DX(16) +EX(16) +AY	(16).
		1.0(16) . (A(50) . AT(50) . AP(50) .	
	BLAK (10.50)		
IF DIVIDE	CHECK 441, 441	· · · · · · · · · · · · · · · · · · ·	
441 READ INPUT	TAPE 4, 202, (BX(L).	L=1.101	
	TAPE 4, 204, (DX(L),		
	TAPE 4. 206. (EX(L).		
	TAPE 4.208. (AY(L).L		
	TAPE 4.202. (BYIL).L=		
READ INPUT	TAPE 4, 204, 1041L1.	(L=1,10)	
450 READ INPUT	TAPE 4, 214, (GNU(L)	(+L=1+10)	
	TAPE 4. 204. 14(L)+L		
	TAPE 4. 204. 18111.L		
	TAPE 4. 222. (C(L).L		
	TAPE 4. 224. (DIL).L		
	TAPE 4. 226. NI. NOC		
	TAPE 4, 228, (T(J), J		
	TAPE 4. 208. (P(J).J		
	TAPE 4. 208. 18(J).J	(=1,N1)	
00 7 J=1 1			
TA(J)=T(J)			
	+P[J+11)/2.	and the second	
	•66*(W(J)=W(J+1))	and the second	
7 CONTINUE DO 8 J=1.NI	and the second se	the second s	
	1)+TA(J+1))/2.	and the second	Same and
8 CONTINUE	11+1A(J+111/2.		
DO 11 L=1+	A CONTRACT OF A CONTRACT OF A CONTRACT		
		and the second	A mining
. DO 9 J=1.N.		3./(FXPELL.43865*QNULL 1/TEL)	11-1-
DO 9 J=1.N. BLAK(L.J)=		3./(EXPF11.43868*QNU(L)/TA(J))-1.
. DO 9 J=1.NJ		3./(EXPF11.43866*3NU(L)/T4(J))-1.
DO 9 J=1.41 BLAK(L.J)=. 9 CONTINUE 11 CONTINUE	00001190605*0NU(L)**	3./(cxPF11.43868*0NU(L)/)A(J	11-1.
DO 9 J=1.NJ BLAK(L.J)=. 9 CONTINUE	00001190605*0NU(L)**	3•/(EXPF11•43868*GNU(L)/14(J	1)-1.
DO 9 J=1.NJ BLAK(L,J)=. 9 CONTINUE 11 CONTINUE DO 92 N=1.	00001190605*0NU(L)**	3•/(EXPF(1•43868*@NU(L)/TA(J	11-1.
DO 9 J=1+NJ BLAK(L+J)=. 9 CONTINUE 11 CONTINUE DO 92 N=1+ SUM=0	00001190605*0NU(L)**	3•/(EXPF11+43868*@NU(L)/T4(J	11-1.
DO 9 J=1.NJ BLAK(L.JJ=. 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0.	00001190605*0NU(L)**	3•/(cxPF11+43068+QNU(L)/74(J	11-1.
DD 9 J=1.N BLAK(L.JJ= 9 CONTINUE 11 CONTINUE DD 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0	00001190605*0NU(L)**	3•/(EXPF11+43068*0NU(L)/)A(J	11-1.
DO 9 J=1.NJ BLAK(L.JJ=. 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0.	00001190605*0NU(L)**	3./(EXPF11.43868*@NU(L)/14(J	,1-1.
DO 9 J=1.N. BLAK(L.JJ= 9 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0. SUMY = 0. I=NI=1 DO 60 K=1.1	00001190605*QNU(L)** NI 6	3•/(EXPF11+43868+9NU(L)/T4(J	11-1.
DO 9 J=1.N BLAK(L.J) 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM2 0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0. SUMY = 0. I=NI-1 DO 60 K=1.1 IF (K-N) 13	00001190605*QNU(L)** NI 6	3•/(EXPF11+43068+QNU(L)/TA(J	11-1.
DO 9 J=1.N. BLAK(L.JJ= 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0. SUMY = 0. SUMZ = 0. I=NI=1 DO 60 K=1.1	00001190605*QNU(L)** NI 6	3./[EXPF].43868*@NU(L)/1%(J	1)-1.
DO 9 J=1.N BLAK(L.JJ= 9 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMX = 0. SUMY = 0. I=NI=1 DO 60 K=1.1 IF (K-N) 13 13 J=N=K GO TO 298	00001190605*GNU(L)** NI 6	3./(EXPF11.43868*@NU(L)/TA(J	11-1.
<pre>D0 9 J=1.N</pre>	00001190605*GNU(L)** NI 6	3•/(EXPF11+43868+9NU(L)/T4(J	11-1.
DO 9 J=1.N BLAK(L.JJ= 9 GONTINUE 11 CONTINUE DO 92 N=1: SUM=0 12 DO 80 L=1:1 SUMX = 0: SUMY = 0: SUMY = 0: I=NI=1 DO 60 K=1:1 IF (K-N) 13 I3 J=N-K GO TU 298 14 SUMX = 0: SUMY = 0:	00001190605*GNU(L)** NI 6	3./[EXPF].43868*3NU(L)/TA(J	1)-1.
DO 9 J=1.N BLAK(L.JJ= 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM=0 12 DO 80 L=1.1 SUMX = 0. SUMY = 0. SUMY = 0. T=NI-1 DO 60 K=1.1 IF (K-N) 13 I3 J=N-K GO TO 298 14 SUMX = 0. SUMY = 0. 15 J=K	00001190605*GNU(L)** NI 6 , 14, 15	3./(EXPF11.43868*@NU(L)/TA(J	11-1.
<pre>D0 9 J=1.N</pre>	00001190605*GNUTL)** NI 6 , 14, 15 (J)**0X(L)//EX(L)	3./(EXPF11.43868+3NU(L)/T4(J	· · · · · · · · · · · · · · · · · · ·
DO 9 J=1.N DLAK(L.J)= 9 GONTINUE 11 CONTINUE DO 92 N=1: SUM=0 12 DO 80 L=1:1 SUMX = 0: SUMY = 0: SUMY = 0: I=NI=1 DO 60 K=1:1 IF (K-N) I3 I3 J=N-K GO TU 298 14 SUMX = 0: SUMY = 0: 15 J=K 298 X=(BX(L)*AT Y=AY(L)*BY(00001190605*GNU(L)** NI 6 , 14, 15 (J)**0X(L)//EX(L) L)*AT(J)**0Y(L)	3./(EXPF11.433068+QNU(L)/TA(J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<pre>D0 9 J=1.N BLAK(L.JJ= 9 GONTINUE 11 CONTINUE D0 92 N=1. SUM=0 12 D0 80 L=1.1 SUMX = 0. SUMY = 0. SUMY = 0. I=NI-1 D0 60 K=1.1 IF (K-N) 13 I3 J=N-K G0 T0 298 I4 SUMX = 0. SUMY = 0. 15 J=K 298 X=(BX(L)*AT Y=AY(L)+BY(17 EMP=Y*AP(J)</pre>	00001190605*GNU(L)** NI 6 , 14, 15 (J)**0X(L))/EX(L) L]*AT(J)*0V(L) *0ELTAM(J)	3./[EXPF].43868*3%U(L)/].(J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DO 9 J=1.4 DLAK(L.J)= 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM2 = 0. SUMX = 0. SUMY = 0. SUMY = 0. SUMY = 0. SUMY = 0. IF (K-N) 13 13 J=N=K GO TO 298 14 SUMX = 0. SUMY = 0. SUM2 = 0. S	00001190605*GNUTL)** NI 6 (J)**0X(L)//EX(L) L]**T(J)*0Y(L) *DELTAM(J) (J)	3./(EXPF11.43868*@NU(L)/TA(J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DO 9 J=1.4 BLAK(L.J)= 9 CONTINUE 11 CONTINUE DO 92 N=1: SUM=0 12 DO 80 L=1:1 SUMX = 0: SUMY = 0: SUMY = 0: I=NI=1 DO 60 K=1:1 IF (K=N) 13 I3 J=N=K GO TO 298 14 SUMX = 0: SUMY = 0: 15 J=K 298 X=(BX(L)*AT Y=AY(L)*BY(17 EMP=Y*AP(J) EM=X*DELTAM	00001190605*GNU(L)** NI 6 (J)**0X(L))/EX(L) L]*AT(J)**0Y(L) *DELTAM(J) (J) NP	3./(EXPF11.43868+3NU(L)/TA(J	¥)-1.
DO 9 J=1.N BLAK(L.J)= 9 CONTINUE 11 CONTINUE DO 92 N=1: SUM=0 12 DO 80 L=1: SUMY = 0: SUMY = 0: SUMY = 0: SUMY = 0: 13 J=N=K GO TO 298 14 SUMX = 0: SUMY = 0: 15 J=K 298 X=(BX(L)*AT Y=AY(L)+BY(17 EMP=Y*AP(J) EM=X*DELTAM SUMY=SUMY=	00001190605*GNU(L)** NI 6 . 14. 15 (J)**DX(L)//EX(L) L]*AT(J)*DY(L) *DELTAM(J) (J) MP	3./[EXPF].43868*3%U(L)/T.(J	¥)-1.
DO 9 J=1+N BLAK(L+J)= 9 CONTINUE 11 CONTINUE DO 92 N=1+ SUM2 12 DO 80 L=1+1 SUMY = 0+ SUMY = 0+ SUMY = 0+ SUMY = 0+ 13 J=N+K GO TO 298 14 SUMY = 0+ SUMY = SUMY = 0+ SUMY = SUMY = 0+ SUMY = SUMY = SUMY = 0+ SUMY = SUMY = SU	00001190605*GNUIL)** NI 6 (J)**0X(L)//EX(L) L]**T(J)*0Y(L) *DELTAM(J) (J) MP M X		, , ,
DO 9 J=1.N BLAK(L-JJ= 9 CONTINUE 11 CONTINUE DO 92 N=1. SUM2 = 0. SUMX = 0. SUMY = 0. SUMY = 0. SUMY = 0. IF (K=N) I3 IJ J=N=K GO TO 298 14 SUMY = 0. SUMY = 0. S	00001190605*GNU(L)** NI 6 (J)**0X(L))/EX(L) L]*AT(J)**0Y(L) *0ELTAM(J) (J) NP M X ALL)*SUMY/((1+8(L)*S)	μιγι **	11-1.
<pre>D0 9 J=1.M</pre>	00001190605*GNU(L)** NI 6 . 14, 15 . 15, 14, 15 . 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	μιγι **	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<pre>D0 9 J=1.M</pre>	00001190605*GNU(L)** NI 6 (J)**0X(L))/EX(L) L]*AT(J)**0Y(L) *0ELTAM(J) (J) NP M X ALL)*SUMY/((1+8(L)*S)	μιγι **	11-1.
DO 9 J=1.N BLAK(L,J)=. 9 CONTINUE 1 CONTINUE 1 CONTINUE 2 DO 80 L=1.1 SUMX = 0. SUMX = 0. SUMY = 0. SUMY = 0. 1 = NI-1 DO 60 k=1.1 1F (K-N) 13 3 J=N-K GO TO 298 4 SUMX = 0. SUMY = 0. 5 J=K 8 x=(BX(L)*AT Y=AY(L)+BY(7 EMP=Y*AP(J) EM	00001190605*GNU(L)** NI 6 . 14, 15 . 15, 14, 15 . 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	μιγι**	i)-1
D0 9 J=1.N BLAK(L,J)= 9 CONTINUE 11 CONTINUE 10 92 N=1. SUM=0 12 D0 90 L=1.1 SUMX = 0. SUMY = SUMY	00001190605*GNU(L)** NI 6 . 14, 15 . 15, 14, 15 . 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	μιγι**	

6.3-MICRON BAND

and the second se
IF(TAW-1+) 42+42+35
35 TAW=1.
42 DBLAK=BLAK (L, J)=BLAK (L, J+1)
DFLUX=TAW*DBLAK*3.141593
56 SUMZ=SUMZ+DFLUX
60 CONTINUE
IF (N=N1) 64, 1, 1
1 TAW=1.
64 IF (NOC) 70, 70, 65
65 FTIN=TAW*BLAK(L+N1)*3+141593
SUM=SUM+(FTIN+SU12)*50.
GO TO 80
70 SUM=SUM+SUM2*>0.
BO CONTINUE
90 WRITE OUTPUT TAPE 2: 100: T(1): P(1): N: SUM 92 CONTINUE
GO TU SOO
100 FORMAT (6H I(1)=F4.0, 6H P(1)=F6.3, 3H N=12, 3H SUN=E14.7)
202 FORMAT (7110-3)
204 FORMAT (1010-3) 204 FORMAT (1010-7-4)
206 FORMAT (14071+1) 206 FORMAT (1475-2)
208 FORMAT (12F6+3)
214 FORMAT (12F0+0)
222 FORMAT (10F7.3)
224 FORMAT (9F8.3)
226 FORMAT (13, 12)
226 FORMAT (14F2+0)
END
* DATA
5.790E-11 1.299E-07 1.114E-04 2.500E-02 5.328E-02 5.035E-01 2.001E+01
2.001E+01 2.001E+01 2.001E+01 6.035E-01 5.328E-02 2.500E-02 1.114E-04
1.299E-07 5.790E-11
4.1350 2.7850 1.5959 0.6467 0.5141 0.0885525352535253
0.0885 0.5141 0.6467 1.5959 2.7850 4.1350
0.94 0.96 0.98 0.99 0.99 1.00 1.01 1.01 1.01 1.00 0.99 0.99
0.96 0.94
0.000 0.000555 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000589 0.000 0.000 3.672E-10 6.173E-C7 5.385E-03 1.337E-02 3.16662-03 1.396E-01 1.654E+01
2.204E+02 2.204E+02 1.054E+01 1.336E=01 3.106E=03 1.337E=02 5.385E=03
5-1/3E-07 3-6/2E-10
3+8200 2+9140 1+0000 0+798/ 1+0120 0+9462 -+4765 -+9487 -+4965
0-3462 1-0120 0-7587 1-0000 2-5140 3-8250
1225. 1275. 1325. 1375. 1425. 1475. 1525. 1575. 1625. 1675. 1725. 1715.
1822 1875 1922 1972
1.5170 0.4045 0.1214 J.0364 0.0091 0.0036 0.0000 0.0172 0.0044 0.0051
0.0152 0.0465 0.1739 0.4652 1.2140 2.6290
5.0550 1.3490 0.404/ 0.1214 0.0304 0.0121 0.0164 0.0370 0.0148 0.0189
0.0006 0.1001 0.0001 1.0010 4.0470 8.7690
48.050 14.410 02.152 0.721 0.216 0.084 0.204 0.480 0.132 0.215
0.541 1.562 4.204 9.610 26.430 84.090
973.200 292.000 43.790 14.000 4.319 1.103 4.136 9.732 2.676
4.379 10.950 29.200 85.150 194.500 535.2001703.600
31
1+002 +760 +973 1+830 0+654 0+169
10000 00000 00000 00100

6.3-MICRON BAND

.

	and the second se	and the second second second second second
10. 7. 7142.	-014101034.	-44. T=1
1.002 0.938 0.908 0.780 0.731	0.701 0.642 0.513 0.499 0	.464 0.346 0.296P-1
1.815 1.405 1.240 0.642 0.462	0.375 0.261 0.177 0.107 0	.070 0.010 0.000W-1
12 0 10. 7. 7142.	-614101834.	-44. 1-11
1.002 0.938 0.908 0.780 0.731	0.101 0.642 0.573 0.499 0	.464 0.346 0.296P-1
1.815 1.405 1.240 0.642 0.462	0.375 0.261 0.177 0.107 0	.070 0.010 0.000W-10
10 1		
29. 26. 26. 23. 126.	-11153142.	T=2
0.961 0.921 0.888 0.839 0.691	0.494 0.436 0.395 0.296 0	•246 P=2
4.415 3.892 3.494 2.899 1.450 10 0	0.302 0.118 0.047 0.005 0	•000 N=2
29. 26. 20. 23. 12D.	-11122142.	1-20
0.961 0.921 0.888 0.839 0.091	0.494 0.430 0.393 0.290 0	•246 P-20
4.415 3.892 3.494 2.899 1.490	0.302 0.118 0.047 0.005 0	•000 w-20
10 1		1-3
29. 28. 21. 18. 92. 1.002 0.987 0.907 0.839 0.691	0-246 0-656 0-342 04246 0	
5.769 5.514 4.244 3.319 1.427	0.281 0.153 0.038 0.003 0	.000 #-3
10.0		COLUMN TO ALLONG YOUNG
29. 28. 21. 18. 92. 1.002 0.987 0.907 0.839 0.691	-7193545.	T-30
1.002 0.987 0.907 0.839 0.691	0.248 0.494 0.395 0.296 0	•247 . P-30
5.769 5.514 4.244 3.319 1.421	0.281 0.153 0.038 0.003 0	•000 w=30
9 1 -33. 2. 3214.	-334040.	1-4
0.978 0.944 0.930 0.914 0.839	0.691 0.494 0.438 0.395	P=4
0.770 0.694 0.660 0.615 0.436 9 0	0.175 0.013 0.003 0.000	w-4
-33. 2. 3214.	-304040.	1-40
0.978 0.944 0.930 0.914 0.839	0.091 0.494 0.438 0.395	P-40
0.770 0.694 0.660 0.615 0.436	0.175 0.013 0.003 0.000	W-40
and the second	a second state and a support of the second state of the second state of the second state of the second state of	100
		, 148
		148 TOTAL 148#
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second
		the state of the second second

APPENDIX II

Diermendjian (1960) proposes $\mathcal{T} = \exp(-.1 \text{ m})$ as a value which may be used for the transmission function in the window region around 10 microns. Thus, in order to determine the effect of such a transmission and to determine net upward flux and flux divergence in the entire region $50 < \mathcal{V} < 2000 \text{ cm}^{-1}$, calculations of net upward flux have been made in the region from 680-1200 cm⁻¹ based on this abovementioned transmission function. Elsasser's effective mass of 1.66 times the actual mass has been used to convert beam transmission to diffuse transmission.

The results of window transmission are listed in Table 15 and the rates of change of temperature for 50 < y < 2000 cm⁻¹ are listed in Table 16.

In this region there is also anomalous behavior of the top levels due to setting a zero at the top of the soundings.

Table 15.	Temperature ch	nange due	to flux	divergence	in the	
	window region	680 < v <	< 1200.			

	No cloud o	cover	Cloud cover	at top
Level	Flux Div. (cgs units)	ðT∕ðt (℃/ day)	Flux (cgs units)	ðT∕ðt (℃/day)
	Sounding No. 1			
1-2	6973.5	091	4524.9	~.059
2-3	2775.5	078	1442.1	~.041
3-4	9215.3	060	5223.5	034
4-5	2359.3	040	1078.1	~.018
5-6	1152.7	~.033	519.0	015
6-7	1408.7	020	565.1	~.008
7-8	717.3	009	127.7	~.002
8-9	488.8	~.006	-44.5	+.001
9-10	224.2	005	-60.2	+.001
10-11	105.9	001	-359.1	+.003
11-12	-12264.9	+.208	-118.6	+.002

Sounding No. 2

.

1	2	8297.6	176	6149.0	130
2	⊱3	6351.2	163	4586.5	-,118
3	⊢4	9702.2	164	6836.7	116
4	-5 2	21413.1	121	13128.0	074
5	-6	1831.7	050	3696.1	016
6	-7	1092.5	016	-361.8	+.005
7	-8	271.8	005	-301.4	+.006
' 8	-9	-49.0	000	-391.2	+.003
9	-10 -2	25647.5	+.434	-78.3	+.001

Table 15 (continued)

Sounding No. 3

1-2	3524.2	199	2763.1	156
2-3	16050.7	168	11741.0	123
3-4	11019.5	135	7256.4	089
4-5	23513.8	~.133	13759.0	~.078
5-6	13331.4	~.078	5748.0	034
6-7	1171.5	~.018	231.4	004
7-8	532.0	~.005	-329.8	0
8-9	-83.4	+.001	-349.0	+.003
9-10	-28287.1	+.479	-47.3	+.001

Sounding No. 4

1-2	1230.5	~.030	730.5	018
2-3	612.3	037	386.5	023
3-4	905,9	048	605.1	032
4-5	3422.0	~.038	2203.2	025
5-6	3774.4	~.021	1930.9	011
6-7	4858.6	021	-100.8	.000
7-8	6.9	.000	-67.2	+.001
8-9	-5376.0	+.103	~28.0	+.001

	、
Table 16.	Total temperature change due to flux divergence in the interval $50 \le v \le 2000 \text{ cm}^{-1}$.

<u>Level</u>	No Cloud Co ver <u>(∂T/∂t) °C day</u>	Cloud Cover at Top (dT/dt) °C day
,	Sounding No. 1	
1-2	755	~.452
2-3	790	434
3-4	913	453
4-5	-1.141	471
56	-1.398	638
6-7	-1.197	513
7-8	888	251
8-9	- ,978	~.231
9-10	-1.794	244
10-11	-1.756	150
11-12	-5.400	+.044

Sounding No. 2

1-2	737	564
2-3	731	513
3-4	845	568
4-5	874	486
5-6	-1.255	476
6-7	-2.548	803
7-8	-3.427	861
8-9	-2.460	235
9-10	-3.996	+.040

Table 16 (continued)

.

Level	No Cloud Cover (ƏT/Ət) ^O C day	Cloud Cover at Top (ƏT/Ət) C day
	Sounding No. 3	
1-2	832	~.675
2-3	657	469
3-4	556	343
4-5	- ,876	482
5-6	-1.925	880
6-7	-2.000	789
7-8	-2.043	524
8-9	-2.560	210
9-10	-3.041	+.029

Sounding No. 4

1-2	278	021
2-3	686	360
3-4	-1.446	-1.022
4-5	-1.115	651
5-6	~1.055	388
6-7	-1.490	196
7-8	-2,393	119
8-9	-4.309	+.047

BIBLIOGRAPHY

- 1. Cowling, T. G., 1950: Phil. Mag., 41, p. 109.
- Curtis, A. R., 1952: Discussion of Goody's "A statistical model for water-vapour absorption." Quart. J. R. M. S., 78, p. 638.
- 3. Diermendjian, D., 1960: Atmospheric extinction of infra-red radiation. Quart. J. R. M. S., Vol. 86, July 1960.
- 4. Elsasser, W. M., 1942: Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Stud., No. 6.
- 5. Elsasser, W. M., 1960: Atmospheric radiation tables. Contract No. AF 19(604)-2413.
- Godson, W. L., 1953: Spectral models and the properties of transmission functions. Proc. Toronto Meteor. Conference, pp. 35-42.
- 7. Goody, R. M., 1952: A statistical model for water-vapour absorption. Quart. J. R. M. S., 78, pp. 165-169.
- Howard, J. N., Burch, D. L., Williams, D., 1955: Near-infrared transmission through synthetic atmospheres. Geophysical Research Directorate, Geophys. Research Papers No. 40, AFCRC-TR-55-213, November 1955.
- 9. Johnson, John C., 1954: <u>Physical Meteorology</u>, Technology Press of M.I.T.
- Kaplan, L. D., 1950: Line intensities and absorption for the 15micron carbon dioxide band. J. of Chem. Phys., Vol. 18, No. 2, pp 186-189, February 1950.
- 11. Kaplan, L. D., 1952: On the calculation of atmospheric transmission

-67-

functions for the infrared. J. of Met., 9, 1952.

- 12. Kaplan, L. D., 1952: On the pressure dependence of radiative heat transfer in the atmosphere. J. of Met., 9, pp. 1-12.
- Kaplan, L. D., 1959: A method for calculation of infrared flux for use in numerical models of atmospheric motion. Rossby Memorial Volume.
- Palmer, C. H., 1960: Experimental transmission functions for the pure rotation band of water vapor. J. Optical Society of America, Vol. 50, No. 12, December 1960.
- 15. Roach, W. T. and R. M. Goody, 1958: Absorption and emission in the atmospheric window, Quart. J. R. M. S., Vol. 84, December 1958.
- 16. Twomey, S., Table of the Planck Function for Terrestrial Temperatures. Supported by National Aeronautics and Space Administration.
- Wexler, R., 1959 (Dec.): Satellite observations of infrared radiation.
 Contract No. AF 19(604)-5968.
- Wexler, R., 1960 (June): Satellite observations of infrared radiation. Contract No. AF 19(604)-5968.