RESISTIVITY INTERPRETATIOA

IN

GECPHYSICAL PROSPECTING
by
NORMAN FAEDERICK NESS
S. B. , Massachusetts Institute of Technology
(1955)

SUBMITTED IN PARTIAL FULPILLMENT
OF THE REQUIREMENTS OF THE DEGRES OF DOCTOA OF

PHILOSOPHY
at the
FHSSACHUSETTS INSTITUTS OF TECHNOLOGY
June, 1959

 Certified by ..: Thesis Supervisor

Accepted by . Chairman, Departmental Comittee on Graduate Students.

by
Horman Prederioin Nese

Subnitted to the Department of Geology and Geophysios on may 18.1959 , in partial fulfillment of the requirationts for the degree of Doetor of Philosophy.

Abstract

A8STHACT The direct interpretation of eleotrical reaistivity woasurement in applied geophysias requires the wolution of an inverge boundary value problem. Although an oxact olution for the verticel variation of eacific rasistivity with depth haw boon known for more time, no oxat matnod oxiste for tho odecs of two and thro dimensional variation of rasintivity.

The enrta can be considered as aubdividoci into a number of mall homogeneous retelong. A first approximution to the exact romard solution allow tro ecmponstinte dy muber of these regione and the superposition of their arfeote. The direct intorgretation of resistivity data is than accomplinhed by least quares fitting of the of rocts of the regione to the observed floid data By a proper cioles of time wbBurface regtone, two and threo dituentional variations of resistivity acn bo ropresented and the fiela data intorprotod on this basen.

It has bean necessary to nodify the firat approximation of Stovenson (1934) in order that ymatry of source and racelver be maintainod. Tha modifind ditran array, oasentially a dipole-dipole olectrode configuration, form tho basis for an application of the interpretation saheme developed. however, ther ia no fundamental roason why any other array oarnot be used in conjunction with thas approseh.

A number of practical direct interpretation operatort heve beon developed anc tested on model. theoretical and field weaule of apparent resittivity survers. Tho nethod it quite muccestiful in the majerizy of the onser. It is capable of resolution of rosistivity data on poproximutoly tho sames sale that the measuraments roprswont.

ACKNOWLADGEMENTS

The author acknowledges the continued interest and counsel of Prof. T.R. Madden during the period when this research was conducted. Seversi fruitful discussions have been held with Prof. George Backus of the NIT Mathematics Department on the inverse boundary value problems in resistivity interpretation.

During the school years 1956-1957, 1957-1958 the IBM Corporstion supported the author at the MIF Computation Center. The numerical work reportod on in this thesis has been done at the NIT Computation Center. The author has been a Gulf oll Fellow during this last year 1958-1959. He expresses his aprreciation to these two industrial organizations for their sponsorship. In addition the staff of the HIT Computation Center has provided valuable assistance I_{i} expedsting the completion of this work.

Finally he grateriully acknowledges the efforts of his wife Amelia who has performed all of the secretarial work involved in this thesis.

TABLE OF CONTENTS

Page
1.0 Introduction and Cbjective 1
2.1 Definition of Apparont Resistivity irospectine 2
2.2 Geologic Considerations 3
1.3 Field Procedures fer Eeaistivity heasurements 5
1.4 Historical Sumary of Resistivity Measurementa 7
2.5 The Indirect Methods of Interpretation 10

1. 6 The Direct Methods of Interpretation 15
1.7 Induced Poiarization Phenorena 21
1.8 Frequency-Time Relationships in MP 23
1.9 Blectromagnetic Coupling 25
1.10 Modified Blectrode Array 28
2.1 The Forward Problem in Resistivity Prospectine 30
2.2 The Inverse Problem in Resistivity Prospeotine 33
2.3 Stevenson's Series Solution 35
2.4 Green's pinction for Half Space 37
2.5 First Approximation Inversion of Stevenson 40
2.6 Physical Interpretation of Series Expansion
and Inverision 41
2.7 Source Strength and Saturation 44
2.8 Modified First Approximation 47
3.1 Formulation in Discrete Regions 49
3.2 Genersi Problem of Data Fitting for the InvorseProblem53

TABLE OF CONTENTS (cont'd)
Page
3.3 Least Squares Pormulation and Inclusion of Background 58
3.4 Pormulation of Rectangular Blocks and Resolving Power 66
3.5 Final Blocks and their Resolution 70
3.6 Compositing of Blocks and the Shifting of Operators 80
4.1 Comparison of Forward Problem Results with Models 82
4.2 Prediction of IP effects from Model and 1st Approximation Results 101
4.3 Interpretation Results for hodel Data 108
4.4 Interpretation Results for theoreticalsolutions to vertical layers 143
4.5 Interpretation of pield Data with
Horizontal Operstors 155
4.6 Interpretation of Field Data with VerticalOperator 190
4.7 Pinal Conclusions Regarding Resistivity
Intarpretation 202
4.8 applicability of interpretation for IP Data 205
4.9 Sugeestions for further work and Summary ofAssumptions 206

TABLE OF CONTENTS (cont'd)

Appenatices Paes
I. Nunerical Evaluation of Forward Problem 211
II. Numerical Svaluation of the Inverse Problem 215
III. Homogeneity of Apparont fesistivity in the
spocific reaistivities 221
IV. Remarks concerning tho use of computers 223
Figures
1 Genersl Diagram of Rectangular Blocks 75
2 Plot of $K_{1}=2\left[\frac{\sigma_{i}-\sigma_{0}}{\sigma_{i}+\sigma_{0}}\right]$ or $2\left[\frac{\rho_{i}-\rho_{0}}{\rho_{i}+\rho_{0}}\right]$ 110
3 Plan View of Profile Lines for Field Date
Number 1 and Number 3 156
4 Plan View of Profile Lines for Field Date
Number 4 192
Interpretation Results of Cperators Model Data. 111-140
Theoretical Vertical Layers 145-153
Field Dete Number 1 158-179
Field Data Mumber 3 180-189
Field Data Number 4 193-201
Bibliography 226

Geophysical prospecting represents the attempt of man to make intelligent decisions about the physical character of his environment. The environment is subjected to certain excitations, its response measured and predictions uade on the basis of how it has responded.

In quantizing this process man uses his knowledge of many different paysical forces and fields and interprets the response in terras of the physical laws which his environment must oboy. This theais is concerned with the apparent resistivity method of prospecting which measures the response of the arth to a source of lectrical current.

Other investigators have considered this problam but aave interpreted the response on the basis that the only variation of electrical parsmeters influencine the current flow occurs in the vertical direction. The work discussed represents the extension to interpret olectrical responses in terms of two and thre dimensional variations of parametors.

The method of stevenson in which the potential is oxpanded in a series is the basis for the research carried out in this thesis. The wory has only been possible because of the existing electronic conputers now available for ecientific calculation. In application the interpretation scheme devoloped is most efficient when used in conjunction
with such computers although it is not necessary in order to achieve an application of the method developed.

1.1 Definition of Apparont Resistivity Prospocting

Ine resistivity method of goophysical exploration is based upon the measurement of electrical fields which are conductively generated within the earth by means of grounded electrodes. By assuming the oarth to bo homogeneous and isotropic in its electrical characteristies it is possible to determine the resistivity necessary to produce the observed fields from the known sources. It is this offective physical parameter which is reforrod to as the apparent resistivity of the earth. Passing current through two electrodes into the earth and observing the voltage between two others leads to the calculation of the mutual resistance of these two circuits (source and receiver). The gometrical value which is required to transform this resistance to the apparent resistivity of the earth can be computed from a knowledge of the relative distances of the four electrodes.

There is no unique arrangement of electrodes in prose pecting apolications and indeed the current may be introduced into the earth by means of long cables grounded their entire length rather than with point electrodes. It is also possible to qualitatively investigate the resistivity by observing the
equipotential surfaces associated with the current flow. In each modification of the method a systematic distribution of source and receiver circuits within an area can lead to an evaluation of the subsurface variation of electrical resistivity and the possible geological structure and material inferred. It is only through a combined use of geological and geophysical data that an intelligent prediction about the details of the subsurface can be made.

1.2 Geological Considerations

The specific resistance or resistivity of matter on a microscople scale is defined from the equation $R \quad L / A$ where f is the resistance moasured across a sample of crosssectional area A, length L and ρ is the resistivity in units of ohms-length. Hany samples of minerals and rocks show anisotropic properties in their electrical parameters and in $80 n o$ of the more refined methods of electrical well surveying in regions with parallel boundaries between formations it is necossary to consider this possibility. In general the small scale of the inhomegeneities and the random prientations of anisotropic minersls combine to yield an approximate isotropic resistivity.

The range of resistivities measured in geological materials is tremendous, being over many orders of magnitude----- samples of minerals with metallic luster such as the
sulphide of lead will have a value as low as 10^{-6} ohrimeters while some igneous and sedimentary rocks may present values as high as 10^{8} chmmeters. However, for material in situ the influence of the electrolytic solutions and fluids filling the always present pore spaces, fractures and shears tends to dominate the resistivity pattern and it may be stated that for very low frequency electrical current flow the main transport of current is by ionic solutions. The range of resistivities observed in the field is thus much less than might be anticipated from laboratory measurenents but still is over a wide enough range: several orders of magnitude -- 1 to 10^{4} ohm-meters, to be useful in prospecting applica. tions.

It is possible to infer the structural relationships existing in the subsurface from the variations in the apparent resistivity meacured in an areal survey, on the assumption that the material causing the variations of electrical fields is directly associated with the structure. In the majority of cases this will certainly be true but it must not always be deduced that electrical variations are only asscciated with structural variations. Since the measurements are quantitative at each geometrical configuration not only the structure may be inferred from the variations but also the possible material from the absolute values of the apparent resistivity and any deduced specific resistivities. This last remark points out
the basic aim of all geophysical prospecting systems the detection of regions of anomalous physical parameters and the interpretation of the field data in terms of location, size and possible composition of such regions. Since current flow is strongly influenced by ionic solutions the resistivity of different geolofical materials depdnds largely upon the relative amount of void space present in each sample. With particular reference to mining geophysical applications, mineralization often occurs in regions where the fracturing or shear is much greater than in the surrounding material and thus the detection of the zone in these cases is direct in electrical parameters but indirect with reqards the mineralization.

1.3 Field Procedures for Resistivity Moasurenents

As previously indicated, the apparent resistivity method requires the measurement of a voltage oxisting across two electrodes which are in contact with the eartn. Because of the electrochemical reactions which take place between an ionic solution and an electronic conductor a resulting potential difference is measured between them. Therefore if two metallic electrodes are inserted into the eround they will not correctly measure the electrical fields within the oarth. This difficulty may be overcone by the use of nonpolarizable electrodes made of porous clay pots into which
is placed a saturated solution of metallic salt in equilibrium with a metallic electrode of the same element, commonly copper culphate and a copper rod. This roduces most of the ectraneous coriact potential although there may be a small potential difference between the solution within the pot and the electrolyte within the ground. Another ource of error in resistivity measurements is due to naturally occuring earth currents which arise from chemical potential gradients within the earth. There currents are at times used as indications of the electrical and geological character of the subsurface in the self-potantial or spontaneous potential method of prospecting.

In any event, these influences must either be determined by measurement and their effects subtracted from the artificially induced fields observing the correct pelarity or eliminated from the actual measurement. This can be done by inserting an opposing voltage of the same magnitude in series with the measured voltage. In addition the impedance of the voltage sensing device must be high enough so as not to alter the current flow within the earth or the characteristics of the device be modified by the contact resistance of the porous pots.

Methods have also been developed to utilize the naturally occuring fields of alternating currents in the telluric methods and the recently applied magnetotelluric techniques.

These require respoctively the simultaneous observation of the horizontal electric field at two different locations or the horizontal magnetic and electrical fields at one station. These fields may woll be due to extraterrestrial causes but thoir origin is only now being investigatod.

It is not necessary to take similar precsutions with the source electrodes although it may be necessary to add more ground contacts in the imediate vicinity of the souree points and to 'salt' the area with a solution of NaCl or other similarly hignly dissociated eloctrolyto. This is required in order that sufficiently low contact resistance for the powor source allow adequate current flow to be established. The calculation of apparent resistivity, P_{A}. will not be seriously in error if the distances between the olectrodes is much larger than the distances between the aultiole eround contacts at each source position.
1.4 Historical Summary of Resistivity Measurements

Historically, the electrical methods of prospecting in one form or another are amongst the oldest of applied geophysical techniques. However, a lack of adequate quantitative treatment of the bssic phenomena involved in the oarly work and even up to the present has nindered the proper development of some of these methods and may in some cases have had negative effects on their acceptance and utility in the professio.

In the electrical resistivity methods the first definitive work was performed by Frederick wenner in 1915 in which he explicitly showed that the apparent resistivity of the subsoll could be measured by a four electrode system placed on the surface. His analytical treatment derived the necessary geometrical factor to transform the observed mutual resistance to P_{A} and he indicated the scale of the samplo of earth material moasured by such a system. The electrode arrangement proposed used oqually spaced intervals between the four co-linear electrodes with the current being applied to the extrene ground contacts while the voltage was observed between the interior two. By varyine the spacine interval the size of the sampled oarth region varied and it is this electrode configuration, the wenner array, which has been widely used in its original from since then. There have been attempts made to utilize and introduce other arrangements or to permute the electrode connections but no other system has received as much consideration nor achievod as similar a success until quite recently.

It was not until 1923 that actual fiold tosts were begun to tost the theory and system proposed by wenner and in 1925 these results were published by Gish and Rooney in connection with the erowing interost of the Carnegie Institution's Dopartment of Perrestrial Magnetism in earth current phenomena. These two investigators made a series of
measurements at various localities throughout the world and compared the results with geological information to ascertain the value of the method in estimating the resistivity structure of large masses of the subsoil. The problems of polarization of receiver electrodes and naturally occurring earth currents were overcome by simultanoously reversine the voltage leads and the source leads with a hand operated double comutator which operated at approximately 30 cps . Thus the voltage observed was independent of the self-potentials within the earth and the polarization potentials were never allowed to build up due to the rapid reversal of current flow.

The field results of Cish and Rooney showed the usefulness of apparent resistivity as an oxploration technique and since then many investigators have used this system of resistivity prospecting with a pood degree of success. As might well be anticipated the ovaluation of the method dopends most heavily on the interpretation of the data obtained and its subsequent confirmation by reological examination. a great deal of effort on the part of many investigators during the 10 years followine this original field work improved on the inftial system and advances were made in the interpretational techniques used to predict the subsurface structure. Since 1935 artioles have appeared from tine to time regarding the resistivity metnod but the basic stops were well defined
during this first 10 year period. Applications of this method have not been limited to geological oxploration for economic minerals or petroloum and extensive work in civil engineering problems of building foundations and highway construction has been done. The objective there is essentially the same as that of geophysical exploration: the determination of the subsurface structure from surface measurements of the electrical field.
2.5 The Indirect iethod or Interpletation
dxisting methods of interpretation of apparent resistivity field data to yleld subsurface variations have had one point in common: all assumed that the only variation of resistivity was vertical, and that the rield data represented the response of such an earth to whatever array was used. since this assumption was very limiting in its validity, modifications were made which allowed for norizontal variations by correlating the vertical interpretations at different locations within an area and forming a composite model of the subsurface. However this is an appreximation useful only when vertical variations are rather similar at all the locations or in other words when the actual variation departs little from being truly vertical over the entire area.

The initial attempt at interpretation of resistivity date
was made by Gish and Rooney in the series of field experiments alroady mentioned. Without analytically justifying their mathod it was applied to their field data with a great degree of success, although it is impossible to reconstruct the detailed steps involved in reaching their final results. Graphically plotting the apparent resistivity measured as a function of the apacing interval and qualitatively observing that interval at which the character of the resulting curve changed, the depth to a horizontal interface separating two different media was obtained. Thus an exact correlation of electrode spacing to depth variation was inferred and this idea has been widely used in field operations since then. This 'break point' method of interpretation is strictly an empirically motivated and dorived approach that is in reality a very qualitative approximation to an interpretive schome since it places a great deal of responsibility on the part of the individual doing the interpretation. However, there have been recent extensions and modifications to this method by moore (1945), whose use of 'cumulative resistivity' as an interpretational basis has beon subject to much critical review. An integration of the curve is effected by summing the apparent resistivity of all the preceeding intervals as the electrode spacine is increased in oqual intervals. Although Ruedy (1945) hes attempted to analytically justify the interpretation by 'break points' of this integrated data when graphically pre-
sented it is not clear from his work that any improvement over the original Gish-Rooney concept is made. Published field results have not been capable of duplicate interrotations by other investigators.

In 1930 Tage and Lancaster-Jones criticized the interpretation method of Gish-Rooney and Page made a contribution to a more quantitative approach in presenting theoretical curves of a wenner array for the response of an earth of two horizontal layers, or two vertical layers. These theoretical curves were employed to deduce from field data the depth to an interface separating two media, whose specific resistivities were also determined. This was accomplished by graphically plotting the theoretical variation of depth versus electrical resistivity contrast factor $\left(k=\frac{p_{1}-p_{2}}{p_{1}+p_{2}}\right)$ which each data value could represent, since any value for a given spacing interval could be due to an infinite number of different two layer earth models. The upper layer's resistivity ρ was found from the limiting value of apparent resistivity for small electrode spacing. Combining the plots for the different field stations an intersection of all such curves at a certain depth and k value, hence ρ_{2}, led to the solution. While this mothod is as accurate as the field data for a real two layer earth, any departures from a perfect single intersection of curves would yield a range of two layer models which would approxinately satisfy the observed field data. It
would remain for the interpretor to deduce whether the data was in error or the earth was not an ideal two layer configuration. However, this method is a rapid technique for determining a two layer equivalent to field data and represents the first analytically correct interpretation scheme within the limiting assumptions outlined. Tage has since this original work modified it slightly in order to eliminate the need for knowing f_{1} with the use of dimensionless parameters and has also attempted to apply it to more than two layers. Other authors have published articles essentially using some further modification of Tage's method as well as the thooretical solution of probloms involvine more than two layers. The next original approach to interpretation was made by Irwin Foman in 1931 with a technique for eraphically comparing theoretically derived curves representing apparent resistivity versue the spacing interval with field curves. The plots for two horizontal layers were made on log-log scales and the theoretical curves were plotted in dimensionless variables so that by properly superposing the fiold curve with a theoretical curve the correct depth and contrast factor could be obtained directly. This approach is not only rapid but accurate, and required little training on the part of the interpretor. There is nowever, the problem that the real geometry may not be that assumed in the derivation of the theoretical curves, and in these cases the slight mismatch oxisting between the two curves might be attributable to data errors and/or variation
in the horizontal formations rather than as the number of layers involved. Bxperience on the part of the interpretor in these situations would again be relied upon to resolve the difficulty. Since this work was done families of theoretical responses and curves for two, three or four layers have been added but the basic principle of coincidence of curves is still utilized.

In 1940 Rosenzweig proposed a method of parametric curve interpretation in which a master plot would be made for all solutions of a specified geometry. He used dimensionless parameters in the form $p_{A}\left(\eta_{a}\right) / \rho_{A}(a)$ ovaluated from the field data at predetermined relative locations. Using two of these parameters for different values of η as coordinates, the master plot would allow a direct reading to be made of the corresponding depth and contrast values from the family of intersecting curves representing the theoretical solutions for these particular parameters. The success of this method, which is ideally simple in its applications, has not been great since the resolving power of the master plots is poor. Since the field data slways is in error, a range of solutions would be possible and for the difficulty alluded to above these would vary over a wide limit. Moreover unless this process were repeated for a number of values of the interpretor could never be certain that the real geometry was simply a two layer, and that the best solution had been obtained.

These represent the main methods of indirect interpretation in resistivity prospecting since they require the knowledge of theoretical solutions to assumed geometries. as indicated other workors have modified these basic appronehes but the principles remained the same. The method of superposition introduced by Roman appears to be the most useful developed although it requires the possision of a set of theoretical curves for many geonetries and contrasts, theoretically an infinite number. nowever, by judicious choice of these values it is possible to retain only a small number of solutions and interpolato between these when the field curve does not coincide exactly. Again the experience of the observer is required to decide upon the correct solution in such ceses.

1.6 The Direct Methods of Interpretation

The direct methods of interpretation would not require the use of extensive tables or curves of theoretical solutions, instead by opersting in some specific manner on the field data the exact solution to the resistivity variation with depth would be obtsined. The use of direct methods nowever implies a knowledge of the theoretical solutions for the apparent resistivity as a function of all the parameters involyed, and then an inversion of tis solution to obtain tnese parameters as a function of the apparent resistivity
mosured. The functional obtained from this inverse operation however, is not amply related to the dopth and resiativity parameters and some methed must bo utilized to abstract these values from the functional.

Here are two mothods to solve the physical problem of prodicting apparent resistivity for a givon vertical or horizontal variation or spocific rosistivity. One is"limited to direct current flow in either norizontal or vertical homogeneous, isotropic layers and corresponds to the faniliar lmage taeory of electrostaties. The other is more general and is useful for eitner a discrete number of layers of a continuous variation of resistivity which may be anisotropic and is the integral formulation using oigen-functions convenient for the eeometry. During the arly work in resistivity prospectine much efrort was davoted to obtaining numerical aolutions by these two methods. It is possible to saow that if an image theory solution exists it can always be obtained formally from tia integral derivation and vice versa.

The potential measured on tre surface of an infinite halfapace for a point source witi only vertical variations of apecific resistivity can bo ropresonted generally as:

$$
\varphi(r)=c \int_{0}^{\dot{\infty}} K\left(\lambda, x_{i}\right) J_{0}(\lambda r) d \lambda
$$

where φ is the potential
K the kernal function
J_{0} the ordinary bessel function of zeroth order
r distance between source and receiver
c constant
x_{i} the physical parameters
as already indicated tae potential linearly deteraines the apparent resistivity. The kernal function K is related to the rosistivity variation in different manners, dependent upon whether the variation is discrete or continuoue. Utilizing this intogral formulation and the requisite inversion formulae, ring (1933) and Slichtor (1933) independently presented a method for interpretation which was somi-direct since although it rigorously derived the kernal function from the field data the final scheme was comparison of known kernal functions for certain geometries. Langer (1933) treated the problem also and solved the Sturm-Liouville differential oquation which related the resistivity variation to the kernal function and Slicinter applied this development to solve the problem of direct interpretation.

Kine recognized the necessity of messuring the electrical field in all practical apoliestions and nence used a forward solution which prodicted the surface potential gradient due to a point source:

$$
\frac{\partial \varphi}{\partial r}=-c \int_{0}^{\infty} \lambda K\left(\lambda_{1} x_{i}\right) J_{1}(\lambda r) d \lambda \quad \text { 1.t. } 2
$$

Where J 1 is the Bessel function of order 1 .
Use of the linked Gourior-Bessol inversion formate for this equation led to the formal function when no referred to as the characteristic function of the teton.

$$
R\left(\lambda_{1} x_{i}\right)=\frac{-1}{c} \int_{0}^{\infty}\left(\frac{\partial \varphi}{\partial r}\right) J_{1}(\lambda r) d r \quad 1.6 .3
$$

By assuming different variations of resistivity, ne suggested obtaining a family of forward solutions witt which comparison of field derived data could bo made.

The work of slichtor was basal upon the point potential receiver and Lq . 2.6 .1 represents the forward solution which was also inverted by Hankel Inversion theory to yield the kernel function as:

$$
K\left(\lambda, x_{i}\right)=\frac{1}{c} \int_{0}^{\infty} \lambda_{r} \varphi(r) J_{0}\left(\lambda_{r}\right) d r
$$

Expansions of the logarithmic derivative of the conductivity in a laylor's series and substitution in the differential equation following Langer resulted in an algobraic expression relating the variation of conductivity with depth as a function of the derivod kernal. Slichter presented various forward solutions and their associated kernal functions for grapilcal corgarison with field dorived hernals. Intill the vary rocont devolopment of high sposd slectronic computers, the amount of numerical computations involved in agolying this rigorously developed intarpratetion scheme preciuded its frequent application. There are problems regarding the rosolving power of the actual field dita for certaln geometries and conductivities but a more fundawontal difilculty is that use of the Taylor series oxpansion is valid only for continuous variations of resistivity and hence discrete layering could only be aporoximated. Langer extended his original work so as to include one vertical discontinuity in the resiativity out the amount of cmputation involvod was even greater.

Vozoff (1959) usod a high speed computor to overcome the numerical hardships in applying Slichter's method of kernal comparison for discrete layoring. fe cmployed a trial solution which was obtained by comparine the derived kernal function with certain theoretical solutions and fixing the mumer of layers involved. Jaricus measures of the fit of the derived Kernal and the theoretical kernal were usod in modifyine the
values of donths and resistivities until the variations in these parameters were less than the accuracy of the field data would indicate. It is to be noted that since field data is taken in a four electrode arrangement only for a discrete number of data points, approximations regarding the behavior of the apparent resistivity, and the derived point potential and point source must be made. The resolution problem in the case of thin conducting or resistive layors was demonstrated in his work and the analytical treatment showed clearly why this would be anticipated.

Shortly after sichter and Langer's work tevenson (2934) published a paper presenting a rather different approach to the problem of interpretation which was sufficiently eoneral to consider both two and three dimensional variations of resistivity. It was based upon an expansion of the potential in a series of higher order terms whose physical signiffeance was pointed out by madden (1953). He indicated that it corresponded to secondary scurces created by the primary source in rogions of conductivity variation and the interactions of these secondary sources representing the nigher order terms in the series. Stevenson presented an example of the interpretation possible with this method which used only the first term in the series expansion for a one dimensional variation of resistivity with depth and compared his results with those
obtained by using the sichter-Langer method. The oxample chosen was for discrete laysing, and Stevenson's method gave much better rosults than the other. Recently Belluigi and Maaz (1956) have critically reviewod these two methods and employed a continuous variation of resistivity to illustrate the relative failure of Stevenson's method in this case. In addition they have pointed out that basic proofs of uniqueness and existonce which are lacking in his original mathomatical formulation, and which Stevenson himself readily acknowledged.

1.7 Induced Folarization Phenomena

A recent development closely associated with the measurement of apparent resistivity of the earth provides a more direct evaluation of the metallic content of the subsurface rocks. This method of geophysical prospecting has been referred to as the over-voltage or induced-polarization method and is based upon the measuroment of the artificial electrical field within the earth. It differs radically from the ordinary resistivity methods in that oither the variation with frequency of the resistivity is measured for an alternating current scurce or the chargeability of the earth is detormined by the decay of voltage fron its steady value at the receiver olectrodes after the primary source is turned off. Schlumberger in 1920 referred to this second form of the same phenomena as provoked polarization but his attompt to utilize it or to
completely understand it were not successful. It is only recently (since 1949) that practical results have been obtained and these mainly in mining geophysical applications. As mentioned previously, when an ionic solution is in contact with a metallic conductor a potential will arise because of the electrocherical reactions occuring at the interface of the two nedia. In addition to this will bo added a voltage drop acrose the circuit thus formed when current is passed through it. This voltage, and in reality the impodance of the circuit, will vary dependent upon the frequency of the current source.

Another method of observing this electro-chemical phenomena and even perhaps a better manner in which to visualize this process is to pass a direct current thru such a system for a certain time interval. If the source is then removed the voltage across the circuit will not instantancously decay to zero but rather will take a finfte amount of time and it is this whioh is roferred to as an ovor-voltage. Phis may be thought of as an internal storage of electrical charge at the interface of the two different media somewhat as a capacitor stores cnarce.

If the only process within the material commonly found in the earth that could store charge was alwoys associated with an ionic solution in contact with a metallic conductor then truly a direct method of prospecting for such mineralization
would exist. however, since the phenomena as outlined depends apon the differonce in lectrical current transport any other inineral or rook which is g good electronic conductor such as graphite will yield a similar olectrical response. Even more critical than this is the very rocently oxperimentally obsorved and theoretically investicated phenomenon of membrane polarization of curront flow which arises in many geologic material. In this physical process the flow of ions is highly selective with regards to the sign of charge carried, yieldine a result for electrical measurements that is identical with the electrode polarization. While there is some ovariap in the magnitude of tae membane and ionic-electronir polarization effects, usually the latter is the most significant in hardrock areas.
1.8 Prequency-Time iolationships in Ip

The results of observing this polarization of eoological material, regardess of its origin, are identical for electrical measurements and oither the time or frequency methoas may be emoloyed with equal success in field operations. measuroments on the phenomenon indicate that it is linear for the current densities commonly appied to ceologic materials and tifis allows the use of sophisticated mathematica? transform theory to relate time and frequency behavior to each other. The usual method of observing overvoltage phenonena is
to establish a current in the ground for a fixed time interval and then to observe the decay after the current is withdrawn. The value of the decay voltage imediately after the current is turned off divided by the normat voltage appearing when the source is active is taken to be a mossure of the amount of chare and hence of the metallic mineralization within the earth. Fodifications to this are measurement of decay voltages at other time intervals or the integration of the decay voltage for a certain time interval.

In the frequency donain, measurements are made upon the apparent resistivity for two different frequencies and the change in their reciprocals, the conductivity, is used to evaluate the subsurface eologie composition. Field measurements in an area procoed just as a normal rosistivity survoy, with variation of source-receiver position and distances involved with the objoctive to evaluate the variation of polarizability of subsurface material. If the time amain method uses tho fractional decay voltage apperring as a guantitativo Qetimate of the electrical charscter of the ground it can be shown from the lirit theorems of Laplace Transform theory that this is identically oqual to the fractional decrease in apparent resistivity from very low to very high frequencies.

Successful applications of this most recentiy developed geophysical prospectine method have obtained by inveatigatcrs
with the most significant results in areas of disseminated mineralization such as the porphyry copper doposits taroughout the world which have not been amenable to any of the other seophysical methoas of prosrecting in eonoral. The anomalies obtained from these areas are at times outstanding in the sharpness of the resolution of mineralized zones as compared with normal resistivity results in the sane areas. Nowever, as indicated the membrane phenomenon is important and as more fleld work is done in areae with lose eoological control greater experience will be required to interpret the data regarding the presence of metallic mineralization.
1.9 Electromagnotic Counline

Attrsctive as this now method aprears, there are cortain complicetions which arise because of the necessity to observe either the response to an alternating current source or the decaying voltage from interrapted steady current flow. Asscciated with every electrical currert fiow is e magnetic field calculable from Ampere's law. If the current flow varios with time however, and hence its magnetic field, thon by Paraday's law of induction ecay currents will be set up. These will act in tie same way as the orifinal source currents and in order to properly describe the current plow it is necessary to consider the problea as ons of gectronagnetism.
that is, starting from jaxwell's equations describing the differential benavior of electric and marretic fields, the complete description of the relstive position of source and receiver circuits, the connections to them ard the distribution of conducting material must me made in order to prediat the correct response of the systen to any excitation. Irere will be differences in the electrical fields observed as comored with direct current and two phenomenon are resoonsibls for this: in addition to the normal resistive coupline of the two circuits there will be inductive coupling through the conductive medic and the expgoitive coupline between the wires forming the two circujts. Formally it is necessary to refer to the coupling as the mutua? impedance rather than the mutual resistence in any of the existing resistivity methods. The use of a mmutstor in tio gishimooney oquipment actually creates a square wave source of current, inere have been reports of veristions of resistivity measured at given Iocation depsndent upon the rete of turning of the comatator in the $G-f$ syotems and this is no doubt attributable to an inctuced polarizaticn effect although the posibility of sn gM coupling phenomenon must also be considered. Since the distribution of conductine material in the subsurface is not known before a survey is made within an area the electromagetic coupling effocts can not be predicted and
their influence eliminated from the measuromont to yield the correct value of the frequency dependent resistivity. Theoretical investigations on a uniform region however can be used as indications of when $\overline{\text { GM }}$ coupling effects became important. As anticipated, the more rapid the change in current flow the larger will be the effect but the scale of the eleetrode configuration and tho conductivity of the material mast also be considered. Fortunately there are fow areas where the EM coupling effects are large enough to be troublesome and the polarization offect occur well before this critical point is reached. The solution to the problem when it arises is relatively straight forward in either the time or frequency method: measure the decay voltage a short time after the current rlow is interrupted rather than immedistely or use two frequencies which onow ongh not to yield Elioffects but atill sufficientiy far apart to show polarization effects in the resistivitios measured.

In the Eltran and Sawtran methoda of goophysical prospecting introduced wome years ago, the basic phenomenon measured was the Ey coupling of the two eircuits through the ground, and the polarixation offoct was not known to be important. Observations of the decaying field ware made for a four-eleotrode array similar to the Wenner but the connections to the electrodes were modified so that the current source was applied to
the two electrodes at one end of the apread while the voltage was measured at the other two. The rate of decay or time constant of the voltage was taken as the parameter indicative of subsurface conditions but both instrumental and analytical problems caused the method to suffer adversely in its appilcations.

1.10 Modifiod sloctrodo Array

There have been two asin groups working on the applieation of polarization phonomena as a geophysical prospecting mtehod and each has developed their respeotive syster about oither the time or frequency basis of measurement. The group using the time domain has utilized the Wenner array and prospocted areas by profiling along grid lines ofton using several spaaing intervals gislding both a lateral and vortical probing of the subsoil. Those using the frequency domain have utilized a modified Sitran array by fixing the spacing botween the pair of eleotrodes forming the sounce eirouit and similarly for the receiver circuit while varying the distanee betweon the two circuits in integral multiples of the alectrode interval.

The use of the modified Eltran array arose from the necessity to minimize as much of the capacitivo coupling offocts as possible by geometrical arrangement of the source and receiver circuits. Experienco has also indicated the advantages
of soparating the source and recelver circuits as contrasted to the Wenner array with respect to sensing the subsurface structural variations. Operationaliy this method has proven very successful in both efficient use of field personnel and equipment without sacrificing the quality of the results in the details of the resistivity variation.

Indeed there has been a substantial improvement in the mothod of obtaining data, and its presentation and interpretation regarding the lateral and vertical variations of resistivity by using the modified Eltran erray. The nomal field procedure has been to fix the position of the source circuit while sucessively moving the receiver cireuit farther away, then moving the source along the line in the same direction and repeating the roceiver movewent but for a slightiy different set of peritions. The diagram below 111ustrates the details of this system along one grid line with the most noteworthy aspect boing the two-dimensional character of the data measured. The data is plotted at a point midway between the two circuits with its distance bolow the surface Iine proportional to the spacine between the two oircuits.

Because of the symotry principle regarding ourrent flow in any media, thore is no difforence as to which circuit is the sourse and nence there is no variation of results dependent upon the direction in which the profile was made. Very characteristic patterns have beon obtained fros two dimensional model exporiments using this array as woll as for cortain thooretical subsurface goometrios. the applied interpretation systore which this thesis will develop is basod upon this electrode array although its basic principles can be applied to any array.

2.1 The Forward Problem in Rosistivity Prospocting

The forward problem in rosistivity prospecting is defined as the prediction of the eloctrical potential within a given region for specified distribution of scurces and variation of conductivity. This can be accomplished by obtaining the solution to the differential equation governing the flow of eurrent within tho media which satisfles the conciftions of continuity of potential and ourrent flow at any intorior point In addition to certain boundary conditions liaposed by the type of source and gecmetry mployed.

Representing the vector eurrent density by \vec{J} and the source distribution by q , application of Gauss's theorem equating the net out flow of oharge from within a small

Clement of volume to the nelosed sourco strength yields:

$$
\nabla \cdot \vec{J}=q
$$

where ∇ - is the divergence operator. This equation is actually a gtatement of the consorvation of olectrical charge at allpointe within the region. The generalizod form of Ohm's law for eontinuous media states that the current density is inearly proportional to the olectrical field strength \vec{B}, the constant being the conductivity; that is

$$
\vec{J}=\sigma \stackrel{\rightharpoonup}{E}
$$

Pais form of Oma's law is not strictly genoral sinco it implies that the eurrent flow parallels the olectrical field in all cases. Por anisotropic media this is not the case and -ither a modified form of Eq . 2.1.2 for each component must be stated or equivalent use made of the tensor concept and notation. however, this will not be done hore and it is possible to solve certain physically important anisotropic problems by choosing the coordinate directions to coineide with the directions of anisotropy, which are assumed to be constant throughout the media.

For eteady current flow the total work done on moving an eletrical charge in a closed circuit must be zero since the conservation of energy must be upheld. This implies that the . veetor $\&$ field is conservative and thus derivable as the
gradiont of a scalar eloctrical potential φ. Thus it is possible to write

$$
\vec{J}=\sigma \stackrel{\rightharpoonup}{\vec{E}}=-\sigma \nabla
$$

whers is the gradiont operator. Substitution of this oquation into 2.1 .1 Jields the general equation relating the olectrical potential to tho source distribution and conductivity variation as:

$$
\sigma \nabla^{2} \varphi+\nabla \cdot \nabla \cdot \nabla \varphi=-q
$$

There are two types of oroblems in rasistivity prospecting for which solutions to this equation have been obtained. The first ropresents the physical systen in which the conduotivity is constant within certain subregions of the entire region of interest and in this case the difforential equation reduees to the familiar Foisson's Equation $\nabla^{2} \varphi=-q / \sigma$ if sources are present and Laplace's equation $\nabla^{2} \varphi=0$ if there are none. Both of these quations have been etudiod in other fields of physics and solutions for different coordinate systorns are well known which also satiefy the necessary boundary conditions for the actual sources used. Inis forward problem of resistivity prosvecting is generally reforrod to as a boundary value problem in matheratical physies and with a complete set of solutions for different coordinete systems many specific problems of interest can be solved by satisfy-
ing the roquisite boundary conditions.
For those problems with eintinuous variations of resistivity only a liaitod number have been capable of solution, and these in partieular for a onedimensional variation. sven for this latter group completely arbitrary varlations of conductivity cannot bo solved in closed anslytie form beeause of formidable mathematieal operations required.

A second method of solution utilizes the concopt of an influonce function which corresponds to that solution for the physical systom in which the source is a mathematical point. By superposition of theso influence functions, which satisfy the nocessary boundary conditions, $s 0$ as to form a source identical with the actual source the net response of the systen will bo obtained. This is the Greon's function formulation which at present has been only fully developed for homogeneous regions in whioh the governing differential equation reduces to Poisson's oquation. In the general forward problom of rosistivity prospecting it will be necessary to develop a corresponding Green's function for oquation 2.1.4 when q is a point souree but this has yet to be done.

2.2 The Inverse Problem in Resistivity Prospecting

As contrasted with the problem of predicting the system response to known excitation with a knowledge of the parameters is the inverse problem of dotermining the dis-
tribution of paramoters from a known responeo. This is the inverse boundary value problem of mathematical phyaies which forms the core of this thosis investigation, and is ossontially a formalism of the interpretation procedure associsted with all geophysicel prospecting mothods. Gertain advantages in tho theorstioal aspects of the yoneral prospecting problom are associatod with the use of artifioial soureos as is dons here although it is not poosible to measure evory physical parameter of interest by their use. As indicated proviounly thers are two approaches to interprotation: the direct mothode use the forward solutions of soction 2.1 while the indirect method is exactiy the inverse problom.

Sy surface masuremente of apparent resistivity the invorse problem selation weuld prodict the subsurfse varietion of electriesl conductivity. This extremely airfioult problem has been appromehed only for one dinensionsl conductivity variation in the work of alienter and Laneer. A completely rigorous trentment necessitatea the formulation of basic proofs of existence and uniqueness which for the on dimenaionsl problex have applisd oniy to the characteristio function derived from the fleld deta by the use of the Fourler-Bessel inversion theorom. In addition there ars additionsl roquiremente that the surface potentigl, which is derivable from the apparent resistivity, be known for all distances of the recelver from the source. Such reçirement for date is un-
realistic in practical field operations and Vozoff was only able to apply the formal inversion techniques developed by assuaing a form for the continuous interpolation of the field data botweon the measured points. This limits the aceurscy which may be expected but by proper choice of spacing intervals for the number of discrete data points obtained the uncortainity for many eases may be minimized. hlso of useful assistance in the interpolation are the theoretical rosults of known geometries so that the potential's interpolatod behavior correspond somewhat to a roal systom.

2.3 Stovenson's Sories olution

In the work of Stevenson which has already been mentioned, a series expansion of the solution was made for the forward problem for an arbitrary 3 diwensional variation of conductivity. In addition he suggested that this approach be used in the solution of the inverse problem although certain points of mathematical rigor were not clarified. By transposing quation 2.1 .4 into the following form:

$$
\nabla^{2} 0=-\frac{1}{\pi}[q+\nabla \pi \cdot \nabla 10] \quad 2.3 .1
$$

and rocognizing the close analogy botween this equation and Poisson's equation he formally solved both the forward and
inverse problem e with a Green's function development as:

$$
\varphi(\vec{r})=\int \frac{1}{\sigma}\left[q+\nabla_{\sigma} \cdot \nabla \varphi\right] G(\vec{r}, \vec{\rho}) d V_{0} l_{p}^{2.3 .2}
$$

It is not possible to actually solve this integral equation for either problem as it stands because of the lack of adequate analytical methods for generalized integral equalions and Stevenson obtained a solution in his series oxmansion.

He assumed that the final potential could be expressed as the sum or an infinite sequence of potentials as:

$$
\varphi=\varphi_{0}+\sum_{i=1}^{\infty} \varphi_{i}
$$

Bore φ_{0} was the solution to the differential equation

$$
\nabla^{2} \varphi_{0}=-q / \sigma \quad 2.3 .4
$$

obtained by the Green's function development as

$$
Q_{0}(\vec{r})=\int \frac{q}{\sigma}[G(\vec{r}, \vec{p})] d V_{0} l_{p}
$$

The remaining φ_{i} wore obtained by succesive solution of the differential form:

$$
\nabla^{2} \varphi_{i}=\frac{-1}{\sigma} \nabla \sigma \cdot \nabla \varphi
$$

as before using the Oreon'a function to yield
$\varphi_{i}(\vec{r})=\int \frac{1}{\sigma}\left[\nabla \sigma \cdot \nabla \varphi_{i-1}\right] G(\vec{r}, \vec{\rho}) d V_{o l} \quad$ 2.3.7
Stovenson did not show that this series devolopxont would converge to the pronsr solution and the recent paper of Belluige and maz have pointed up this lack of fundamental mathamatical rigor. Assumine the convergence it can be shown that the series 2.3 .3 , whose terms satisfy 2.304 and 2. 3ot, also satiaries the general dfferential oquation 2.1.4.

2.4 Groen'g Punction for half Space

The qeometry used in all theoretical work thus far has beon that of an infinite half space whose upper surface corresponds with the oarth's surface within the area of interest. While tiss aseumption would not bo valid for rosistivity measurevents on an extromely larige scale. comparable with the eartin's radiug, it is valid for the problers of specific interest in geophysioal prospocting. The maximum distances involved in these cases are less than a kilometer, wifich is negligible when compared with the 6370 km radius of the oarth. Essentially tio oartin's surface may be considered as perfectiy flat for all of the present day roophysical prospecting systems and tiss is oxactly what tie previous assumption does.

The Green's function solution to Poisson's equation for a point source in such a geometry must satisfy the following boundary conditions:

$$
G(\vec{r}, \vec{p}) \Rightarrow \frac{1}{|\vec{r}-\vec{p}|} \quad \text { as }|\vec{r}-\vec{p}| \rightarrow 0
$$

where \vec{r} represente the position of the source point and \vec{p} the point at which the potential is meaaured. Also there can be no flow of current across the upper surface so that:

$$
\frac{\partial G}{\partial n}=0
$$

where \vec{n} represents the noxinal to the surface. There are two methods of constructing proper Green' function for the region considered. The first is to consider the exact problem as stated: conducting material below the upper surface. In this case for a rectangular ooordinate system With the origin on the surface and the 3 direction vertical the Green's function is given by:

$$
\begin{aligned}
G(\vec{r}, \vec{p})=\frac{1}{4 \pi} & {\left[\frac{1}{\left[\left(r_{1}-p_{1}\right)^{2}+\left(r_{2}-p_{2}\right)^{2}+\left(r_{3}-p_{3}\right)^{2}\right]^{1 / 2}}\right.} \\
& \left.+\frac{1}{\left[\left(r_{1}-p_{1}\right)^{2}+\left(r_{2}-p_{2}\right)^{2}+\left(r_{3}+p_{3}\right)^{2}\right]^{1 / 2}}\right]
\end{aligned}
$$

The second method and the one which Stevenson used is to refleot the conducting media about the upper aurface so that:

$$
\sigma\left(p_{1}, p_{2}, p_{3}\right)=\sigma\left(p_{1}, p_{2},-p_{3}\right)
$$

$$
G(\vec{r}, \vec{p})=\frac{1}{4 \pi}\left[\frac{1}{\left[\left(r_{1}-p_{1}\right)^{2}+\left(r_{2}-p_{2}\right)^{2}+\left(r_{3}-p_{3}\right)^{2}\right]^{1 / 2}}\right] 2.3 .11
$$

but the integrations must now be performed over all space rather than as previously only the half space. Either method is analytically correct, but the second allows a physioal interpretation which is helpful in qualltativoly studyine the responses of various geometries. It is to be noted that the Green's functions developed are symuetrical in the source and roceiver points. That is, an interchange of them will not yield any change in the value of the oreen's functions nor the boundary conditions which they satisfy. This principle of symetry allow the position of source and receiver to be reversed without yielding a different result for the apparent resistivity. In field operations this princivie can load to savings in expensea and time while maintaining the same quality and even increasing on the quantity of results obtained. A speoific example occurs when using the nodified oltran array if the source and receiver circuits are located respectively in high resiativity material and low resistivity material. The voltage developsd at the receiver electrodes might then be too small for the instrument employed to accurately measure but by exchanging the two circuits the anount of ourrent
omplojed could be made larger and thus so also would be the voltage measured.
2.5 Pirst Approximation Inversion of Stevenson

As already noted Stevenson suggested that the series expansion be used also in determining the eolution te the invorse problem. He was not sio to obtain such a solution excopt in a specific geometry and this included only the first term beyond the homogeneous solution. That is, Stevenson used the general form:

$$
\varphi \approx \varphi_{0}+\int \frac{1}{\sigma}\left[\nabla \mathrm{r} \cdot \nabla \varphi_{0}\right] G d V_{0} l
$$

He considered the case for only vertieal variations of conductivity and performed the integrations in the horizontal direetions without a knowlodeg of the conductivity variation. The one dimensional integral in the vertical diroction was finally inverted by the use of the Hankel inversion theorem. Because of the finite series expansion used in thit approach and the linearization in the conduetivity which it offected, the results of this inversion yielded the conductivity diroetly. This is quite difforent then the oxact proeedure of Slichter- Langer which yielded the kornal function which was then related. to the conduetivity variation.
2.6 Physical Interpretation of Series Expansion and Inversion

It is useful to consider a physical interpretation of the series expansion developed by Stevenson and the significance of the inversion resulting when only including the first term. The Green's function devolopment indicates that the term in Eq. 2.3 .2 essentially represents another source term whose strength and distribution is dependent upon the gradients of the electrical potential and the conductivity and the cosine of their included angle. However, the potential referred to is the final potential and thus in both the forward and inverse problems the correct distribution is not known.

In the series development the potential which is used to create the additional higher order sources is dependent upon a known potential of lower order and by iteration of these sources the final potential is derived. It is possible to consider the creation of secondery sources yielding φ_{1} as being an interaction between the field of the primary source and the conductivity veriations to a first approximation. The potential φ_{2} is then capable of interpretation as the result of the interaction of these secondary sources upon ach other, again to a first approximation. Continuing this interaction process finally approaches the real system in which the existing sources, both primary and secondary, and their fields satisfy equation
2.1.4. For those problems in which the chances in conductivity are limited to discrete jumps between regions of uniform but different values the sources induced will be distributed over the surfaces of the boundaries separating them.

In oither situation the interactions of the secondary sources will be governed by the Green's function which for a half-space is given by Eq. 2.3.10. Because of the two distances involved in this formulation it is seen that what is happening is not only an interaction of the sources with themselves witnin the half space but an interaction with image sources located above the plane boundary. By using Stevenson's form of the Green's function Bq. 2.3.11 and reflecting the half space about the plane boundary these added interactions are seen to correspond to the interaction of the actual conductivity variation with its image conductivity region above the plane. This method of interpretation of the series oxpansion as induced sources and their interactions was orieinally proposod by Madden (1953).

For plane surfaces of discontinuity the interactions of the sources on themselves are zero since the angle between the conductivity eradients and potential gradients of the secondary sources is 90°. Here the interactions of the secondary sources with their inages produce all the higher
order terms. For horizontal layering there are interactions of sources on plane discontinuities with one another but the first aporoximation solution corresponds to the induction of sources only by the primary source and no interactions with themselves or their images. The sources induced on these planes are equivalent to placing an image source at the point mirrored about the plane by the primary source. For three horizontal layers these images will be located at different depths in the media with strengths dependent upon the conductivity contrasts. The diagram below illustrates this interpretation with two planes of discontinuity and the equivalent image sources.
: Reflected Image Source of B

Layer I

Plane 1

Layer II * Primary Image Source A
Plane 2

* Primary Image Source B

Image Source Distribution for three horizontal layers

- 44 -

The electrical potential φ observed on the surface is then readily interpretated as being due to the total effect of the 5 sources; 1 primary, two secondary images and their reflected inages. Inis interpretation can be extended to any number of plane discontinuitios and is recognized as paralleling the image theory solutions of electrostatics. For the image theory solutions in resistivity problems with horizontal layers there is a decided difference between the manner in which the strength of the sources is calculated and the following section discusses the problems of the first approximation in this connection.

2.7 Source strencth and Saturation

From a consideration of the principles of energy conservation it is known that the secondary electrical fields associated with non-homogenous regions are bounded $\{$ in magnitude, regardless of the conductivity variations. The maximum values for these flelds are reached asymptotically as the contrasts betwoen different recions increase. Ihis phencmenon when viewed from the concept of equivalent induce induces sources implies that the strength of such sources reaches a finite saturation value when the contrasts become infinite.

In the first approximation of stevenson the strencth of the sources induced in his series develoment depends
upon $\nabla \sigma / \sigma$. This can be rowrition as $\nabla \ln \sigma$ so that across a discontinuity in oonductivity (σ_{1} to σ_{2}) the value is given as $\ln \left(\sigma_{2} / \sigma_{1}\right)$. This term however, does not exhibit any saturation behavior and although its singularity for both large and small contrasts is of low order, it does reach infinity for the limiting values of $\sigma_{2} / \sigma_{1}=0$ or 00 . This is a serious failure of the first approximation and has not bon capable of direct explanation other than that there must be interactions of the induced sources on themselves in the neighborhood of each surface point, and this leads to saturation.

Stevenson's series expansion does represent interactions between induced sources but does not refer to any which may take place between one surface point and its immediate neighborhood. That intentions of this nature occur in real problems is evidenced in the exact solutions for two geometries in which the interactions among surfaces are zero. Thus any saturation which occurs must be due to an interaction of the surface on itself.

The first example is that of a point source in a whole space containing two different media separated by an infinite plane. In this case the strength of the sources induced on the surface of the discontinuity is dependent upon the two conductivities as:

$$
2\left[\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}+\sigma_{2}}\right]
$$

$$
2.7 .1
$$

and this does show saturation. According to Stevenson's series however, there would never be any interactions since the gradient of the conductivity is perendicular to the gradient of the induced sources'potential. The first approximation does yield the correct current flow lines, but the wrong magnitude.

The second example is that of an infinite eylinder in a plane field with the axis of the cylinder perpendicular to the field. For a given infinitesimal surface area interacting with another thore is always a third area diametrically opposite the second whose effect exactly cancels that of the second on the first. The diagram below illustrates this:

Hence the not offect of all the interactions will be zero
but the oxact solution predicts that the induced sourees depend upon the conductivities as:

$$
2\left[\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}+\sigma_{2}}\right] \quad 2.7 .2
$$

and again this exhibits the phenomenon of saturation.
The conclusion reached is that saturation must occur in the first approximation oven if the quantity $\nabla \boldsymbol{\nabla} / \boldsymbol{\sigma}$ does not appear to explicitly indieate this. Hallof (1957) has shown that for a continuous variation of conductivity across a thin region soparating two different but homogeneous media the interaction of the surface on itself do not go to zero as the thickness approaches zero. Thus in the forward problems and also the interprotations based apon the use of the first approximation, consideration must be given to the strength of the induced sources dopending upon the conductivity contrasts in some manner which will domonstrate saturation. Shat is a form such as 2.7 .1 or 2.7.2 should very possibly bo considered as the correct expression of source strength es. function of the conductivities.

2.8 Modifiod Pirst Approximation

A more serious failure of the first approximation as it now stands than the lack of a saturation phenomenon is
its non-s ymmetrieal character. That is, beaause the real problem must show symetry in the source and reeeiver pointa it would be oxpected that so should the lst. approximation. This trouble does not arise in the applieation of the lst. approximation to only depth variations of conductivity but does arise when 2 or 3 dimensional variations are considered. The following explicit expression of the first approximation solution of the potential for the general case illustrates this faet.

$$
\varphi(\alpha \xi \xi) \approx \frac{1}{|\alpha-\xi|}+\left.\int \frac{\nabla \sigma}{\sigma} \cdot \nabla \varphi_{0}(\alpha) G\left(\alpha-q_{1} \vec{p}\right) d Y_{0}\right|_{p} ^{2.8 .1}
$$

Here d representa one position on the surface and ξ the other, with the vertieal line separating the source and the reeciver pesitions respectively. This problem has been resolved by the introduction in this thesis of a modified first approximation solution, which will always demonstrate the required symetry of source and receiver.

In order to preserve the linearity in the conductivity variation afforded by the first approximation a linear oporation on the existing approximation of Stevenson has been made. The modified fipst approximation potential is
defined as the average of the potentials observed when the original first approximation is used for both comoinations of source and recelver point. That is, usine the same notation as Eq. 2.8.1, the modified potential is defined 2s:

$$
\bar{\varphi}(\alpha \mid \xi)=\frac{1}{2}[\varphi(\alpha \mid \xi)+\varphi(\xi \mid \alpha)]
$$

It is this modified first aproximation whicn has been utilized to solve both the forward problen and the inverse problem. The solutions obtained are only aporoximations but they represent the first quantitative atterpt to predict and interpret apparent resistivity data for more than a one dimensional variation of conductivity.

3.1 Pormulation in Discrete Regions

As previcusly indicated, Stevenson was unable to obtain an analytic inversion of his approximate solution for more than a one-dimensional variation of conductivity. The fact that point sources and receiver are utilized in the field operations leads to a singularity of the integrand for the forward problem which can only be treated properly in the ore-cimensional problem. In this case it is possible to inm tegrate out the other two dimensions in the forward solution without a knowledge of the conductivity and invert the
romaining integral by the Fourier-Bessel transform. The author has attempted to obtain an analytic inversion of the modified first approximation when considering two or thiree dimensional conductivity variations witnout success. The main problem has been the sincularity of tne integrand associated with point sources and receivers.

Backus (1959) has ellminated the problem of the singular integrand by using source and receiver which are distributed over the entire half-space plane boundary. The voltage eurce varies in magnitude sinusoidelly in both surface dirensions and the current outflow is measured over the entire plane. Thus he is effectively considering the two-dinensional fourier transform of the point response of the eartin. It is possible to determine the response of the earth to such an extended source and receiver by superposing the responses for point sources and receivers which are distributed continuously over the plane surface. However the number of mathematical inversions necessary to yield the conductivity variation will be incesased by two if this method of obtaining data is employed in this approach. It is doubtful whether this analytic modification of the basic resistivity problem of interpretation will be helpful in establishing a useful procedure because of the numerical computations involved and also because field operations may never yield the required data. the use of point sources and receivers dictates that the mutual resistance be known for all corbinations of points on the surface and this
leads to field operations which measure the response for a Eiven point source over the entire surface. At present there appears good reason to restrict the collection of data to profile lines and this field procedure eliminates the opportunity to apply the approach of Backus.

Since there has not been effected an analytic solution to the interpretation of resistivity data another approach has been taken which is based upon the concept of finite sized regions in the subsurface. The geometry of these regions is pre-determined and then their effects calculated from the modified first approximation. Combiring a number of these regions allows the representation of the subsurface eeologic structure as well as the fitting of the measured field data to that predicted from the known effects of eacia region. The unknowns involved once the eonetry has been determined are the conductivity contrasts for each region.

Vozoff (1956) originally suegested for the subsurface "...that the region be considered as being made of homom geneous blocks of given geometry but unknown conductivity..." and it is this concept which has been fundamental in the interpretation scheme developed. he proposed that the region be divided into a three dimensional array of cubes and that by applying the first approximation solution of Stevenson a completely linear problem would be formulated. The effect of each cube was linearly combined with all the others and if
the number of observations equaled the number of cubes then a linear set of equations in the unknown conductivities would allow a solution to be obtained. He pointed out that the lateral resolvine power of such an approach would approximately be equal to the minimum spacing interval which the set of obsorvations represented.

However, Vozoff's efforts along this line of aporoach did not reach the actual numerical computation and certain problems have arisen in its application which have necessitated a modification of his approach. In adiltion certain considerations regarding the choice of the shape and distribution of the regions have led to a rather different subsurface geometry but the original sugcestion of using finite regions is due to Vozoff's work.

The first approximation has been modified in order that it demonstrate symmetry in source and receiver point. nowever, the linearity of the solution in the conductivity contrasts has been preserved so that a compositing of a number of regions yields a net response identical with the entire region. This is not the case when a contrast factor such as 2.7 .1 is used. Here the sum of induced sources at adjacent interfaces will not be equal to the source induced when the two regions are considered as being present simultaneously, unless the adjacent regions have the same conductivity value
or one of them has a value equal to the background. Hence any modification to the strencth factor $\nabla \sigma / \sigma$ to allow that saturation phenomenon be adequately treated must also consider the ramifications when a linear superposition is attempted with the finite sized regions.
3.2 General Problem of Data Pitting for the Inverse froblem

In order to determine the values of the conductivities of the different regions within the earth when applying the discrete region concept, it is necessary to fit the data to the effects of all the regions. By fitting the data is meant essentially that the results of the forward problem with the determined conductivities yield a response identicals or approximately so, to the response measured in the field.

There are many problems which arise in scientific research which require the fitting ot data to an assumed physical system. If the data fitting is satisfactory, according to some previously defined criterion, then the syster is considered to be a possible model of the phenomenon studied. However, simply because the data is well approximated by the model proposed is no guarantee that it is a true representation of the actual physical system. Often a model will explain phenomena other than the original one investigated and as the number of independent sets of data explained by the model increases so does the confidence of the investi-

Eators that they have the correct model. It may well be that they have not yet exhausted the number of experiments possible or that there are certain ones they cannot at present undertake. Whatever the situation, the basic fact that a model proposed and tested is just that and nothine more must always be considered. These remarks apply to the use of models in both economic and scientific research.

A set of data is associated with a certain number of variables and may be linoarly or non-linearly dependent upon their values. Also there may be the same number of data points as variables, or more or less data than variables. In general, scientific disciplines have only been concerned with the first two cases but there are possibilities for considering the last case of less data than variables. Certain very recent developments in operations research concerned with the efficiency of business and military loeistics as well as the optimization of 'return' have led to the anelysis of such problems. They are referred to as linear 'programing' problems when the relations between the data and the variables are linear as well as the function which is to be optimized. Correspondingly when the dependence of the data and/or the function is not linear then it is called non-linear 'proeramming'. It is to be noted that this use of the word 'programming' nas a very different connotation than when associated with the directions and commands used to program a computer.

When the number of variables is equal to the number of data points then unless there are non-linear relations to be considered the problem is usually capable of solution. There is no freedom in a ompletely linear problem and either a solution exists or it does not. That is, formal solution may be stated although numerically it may require the use of an electronic computer and highly developed computer codes to solve the resalting aquations. Few formal statements can be made for the non-linear case other than that in general the difficulties are much ereater than the linear problems. For those cases with more data than variables some technique to utilize some or all of tne data must be employed Which will fit the data in some 'best' sense. The most highly developed measure of 'best' is the familiar least squares approach which minimizes the ageregate squared error of the data fit. A preat desi of computational effort is eliminated by the use of orthoconal functions and a better fit can be obtained by using additional variables witnout recalculating those already considered. But most important of the properties of a loast squarss analysis is that it may require only linear operations to field a solution. This allows the use of many different linear techniques to obtain the 'best' fit and it is this method wilch has bean widely apolied since its original discovery independently by Gauss and Legendre in the early

1800's. No other method of dealing with the problem of surplus data has been as successful and modern statistical methods are based fundamentally upon its noncept and utilization.

The 'procraming' problems previously referred to have arisen to create an entirely now field of applied fathematics although the theoretical sspects of linear inequalities upon which they are based hed been etudied some time before. hs a result of the desire of the military and business interests to make their operations more efficient by the use of decisions made on a quantitative and scientific basis, tie methods of analysis have been very rapidly developed since 1946. In order to compensate for tho additional variables, certain restraints are placed upon them, commonly that they be positive, or integers or be bounded in range. Finite aleorithms for solving certain of these linear problems have been derived and prepared for computer use and a wide variety of problems have been solved. A typical example is that of supplying a number of different stores from a group of warehouses so that transportation costs are minimized while never allowing roturn shipments from the stores nor the capacity of any warehouse to be exceeded.

In geophysics there are possibilities of applying this method of analysis to dita fitting in a variety of interpretation problems. In gravity prospecting it would be possible
to assume a backeround density value sufficiently low so that all density contrasts would be positive and bounded in magnitude. The limits and backeround values would be based upon independent geolofical informetion about the area of interest and an assumption made regardine the geonetry within tho area. In any application adoquate consideration must always be fiven to the basic phosical principles underlying the phenomenon. The fact that the total mass of the disturbing body can be computed fron the anonsly without knowledge of the geometry and the fundamental non-uniqueness of gravity interpretation must be realized. The decrease in the resolving power of gravity anomalies as the depth to the source body is Incroased must be included by increasing the scale for deep anomalies.

Wita regards to resistivity interpretation, the conductivity contrasts for a given geonetry of subsurface regiona could all be bounded in magnitude and a solution obtained. Bounding the contrasts would simulate the saturation phenomenon whica must occur and whicn at present is not evidonced In either first approximations.

Both of these interpretation problems nave beon linear in troir dependence upon the variables of density and conductivity contrast but there certainly are also non-linear problems. Phere is however a more basic consideration to be given geophysical data fitting by any 'programing' technique.

Usually there is surplus of data relative to the amount of information that is desired. Seldom is there ever a lack of enough data, more often it is a lack of sufficientiy good data that hinders the interpretation problems in most of geophysics. However, the fact that theoretical and numerical work on these 'programming' approaches has made them available as useful methods may lead to their utilization in certain problems of geophysics where the scarcity of data is the major difficulty.

3.3 Least Squares Pormulation and Inclusion of Background

There has not been any numerical attompt in this thesis at using a 'programming' approach to the data fitting for the interpretation of apparent reaistivity prospecting. The main effort has been to use a fitting by least squares to determine the conductivity contrasts and the background resistivity. It is necessary to determine the contrasts since the induced sources are dependent upon the relative conductivity of the regions and not their absolute value. The following presentation will be valid for finite number of regions in the subsurface of any geometrical shape and for any electrode array. It will indicate explicitly the particular procedure used in this research to determine an effective resistivity interpretation scheme. Moreover, this formulation will also be valid for the case in which the number of data points is
is exactly equal to the number of variables.
Vozoff suggested that in the finite-region forward problem the secondary potential due to the various regions be calculated and employed in the data fitting.

$$
\varphi_{s}=\int\left[\frac{\nabla \sigma}{\sigma} \cdot \nabla \varphi_{0}\right] G d V_{0} l_{p}
$$

This form of the data variable requires that the field data as measured in apparent resistivities be transformed into potential data before initial computation begins. Any such operation on the initial field data should be avoided and in this particular case an integration of the data must bo made twice to field the desired form for the analysis. The amount of error involved in such a procedure may be great unless data observations are made at small spacing interval a and extended to large distances relative to the scale of the anomalous region.

Since the apparent resistivity measurements depend linearly upon the potentials, it is possible to utilize the resistivity data directly as a form for the data variable. Let $V_{j}^{i}(a)$ be the secondary potential at the $j^{\text {th }}$ receiver position due to the $i^{\text {th }}$ region when the source point is at a and let $V_{j}^{i}(b)$ be defined in a similar manner for the source point at b. Any four electrode measurement of apparent resistivity will depend upon the primary field plus the sum of the secondary fields due to the disturbing regions. Let
ΔV_{0} represent the voltage measured across the $j, j+1^{\text {st }}$ recelver electrodes due to the primary field and let ΔV_{s} be the secondary voltage difference across the same sot so that the apparent resistivity is derived from:

$$
\rho_{A}=g\left[\frac{\Delta V_{0}+\Delta V_{s}}{I}\right]
$$

Here g is a geometrical factor necessary to transform the mutual resistance to the resistivity and I is the magnitude of the current. The ΔV_{s} is equal to the sum of the secondary potentials due to the different regions. Considering the source at (a) to be positive and that at (b) negative it can be written for N regions as:

$$
\Delta v_{s}=\sum_{l=1}^{N}\left[v_{j}^{\frac{1}{j}}(b)+v_{j+1}^{1}(a)-v_{j}^{1}(a)-v_{j+1}^{\frac{1}{j}}(b)\right] \quad 3.3 .3
$$

Now the V_{j}^{1} are linearly dependent upon the strength factors of the induced sources on the surfaces of the regions. Let K_{i} be this value and let $A_{i j}$ represent the normalized secondary potential at j due to the $1^{\text {th }}$ region so that:

$$
v_{j}^{1}(a)=K_{1} A_{i j} \quad 3.3 .4
$$

If there were no conductivity contrasts then the apparent resistivity would be equal to the specific resistivity of the entire region. Let ρ_{0} be this value and hence ΔV_{o} must be given by the expression:

$$
\Delta V_{0}=\frac{\rho_{0} I}{g}
$$

Substituting Equations 3.3 .5 and 3.3 .4 into 3.3 .2 gielda:

$$
p_{A}=\rho_{0}+\sum \frac{K_{i}}{I}\left[\left(A_{i, j+1}^{a}-A_{i j}^{a}-A_{i, j+1}^{b}+A_{i j}^{b}\right) g\right]
$$

The term in brackete is dependent only upon the geometry of the regione and relative electrode positions. Hence it may be determined once a choice of these paremeters is made.

Kederine $A_{i j}$ by the following equation so that it now represents the normalized fractional effect on the apparent resigtivity measuroment at the $j^{\text {th }}$ sourcereceiver combination due to the $1^{\text {th }}$ region per unit current:

$$
A_{1 j}=\frac{B}{I \rho_{0}}\left(A_{1, j+1}-A_{1}^{a}-A_{1, j+1}^{b}+A_{1}^{b}\right) \quad 3.3 .7
$$

Finally the explicit expression of the apparent resistivity as a linear function of the X_{i} is given as:

$$
P_{A_{j}}=p_{0}\left[1+\sum_{l=1}^{N} A_{i j} K_{i}\right]
$$

The transforaation of the data variable from potential to apparent resistivity eliminates the necessity of integrating the field data and the orrors introducod by such as operation. This procedure is valid rogardless of the particular K_{1} used as long as the potantials are lineariy dependent upon them. Thepajare the predicted values of apparent resiativity and aro to be fitted by a least squares analysis to the
observed apparent resistivities P_{j} -
Assume that there are M data values and N regions and that $M \geq N+1$. The error in the prediction of the $j^{\text {th }}$ apparent resistivity is:

$$
\epsilon_{j}=P_{A j}-P_{j}=\rho_{0}\left[1+\sum_{i=1}^{N} A_{i} K_{i}\right]-\rho_{j}
$$

so that the aggregate squared error of the fitting is defined

$$
\left\{\epsilon^{2}\right\}=\sum_{j=1}^{M} \epsilon_{j}^{2}=\sum_{j=1}^{M}\left[\rho_{j}-\rho_{0}\left(\sum_{i=1}^{N} A_{i j} K_{i}+1\right)\right]^{2}
$$

The variables are the X_{1} and the background resistivity ρ_{0} although it is preferable to use the background conductivity σ_{0} so that a completely linear set of equations will result from the least squares analysis. In order that aw minimum of 3.3 .9 be obtained it is necessary that:

$$
\begin{array}{ll}
\frac{\partial}{\partial K_{k}}\left\{\epsilon^{2}\right\}=0 & \text { for } k=1 \text { to } \mathrm{E} \\
\frac{\partial}{\partial \sigma_{0}}\left\{\epsilon^{2}\right\}=0 & 3.3 .10
\end{array}
$$

The solution to these equations is best obtained by rewriting the form 3.3 .9 as follows:

$$
\begin{aligned}
\epsilon_{j} & =\rho_{0}\left[\sigma_{0} \rho_{j}-\left(1+\sum_{i=1}^{N} A_{i j} K_{i}\right)\right] \\
\left\{\epsilon^{2}\right\} & =\rho_{0}^{2} \sum_{j=1}^{M}\left[\sigma_{0} \rho_{j}-\left(1+\sum_{i=1}^{N} A_{i j} K_{i}\right)\right]^{2}
\end{aligned}
$$

Since whatever value of ρ_{0} is determined will only scale the aggregate squared error, it is possible to cancel the term ρ_{0}^{2} and minimize the following form:

$$
\sum_{j=1}^{M}\left[\sigma_{0} P_{j}-\left(1+\sum_{i=1}^{N} A_{i j} K_{i}\right)\right]^{2}
$$

according to 3.3 .10 , a minimum occurs when:

$$
\begin{aligned}
& \sum_{j=1}^{M}\left(\left[\sum_{i=1}^{N} A_{i j} K_{i}+1-\sigma_{0} \rho_{j}\right]\left[A_{k j}\right]=0 \quad \text { for } k=1 \text { to } \mathrm{n}\right. \\
& \sum_{j=1}^{M}\left(\left[\sum_{i=1}^{N} A_{i j} K_{i}+1-\sigma_{0} \rho_{j}\right]\left[\rho_{j}\right]=0\right.
\end{aligned}
$$

These $N+2$ equations in the $N+1$ unknowns are best solved through the use of matrix notation and operations as follows:

Let [A] be the M-row, N-column matrix of the $A_{j 1}$
[K] be the N-row, l-columan matrix of the K_{1}
$[\rho]$ be the M-row, l-column matrix of the
[S] be the M-row, l-column matrix with all

$$
\text { elements= } 1.0
$$

Also indicate the transpose of a matrix by the superscript T and an augmented matrix by a vertical or horizontal line separating the original two matrices. It will be necessary to consider $\left[\sigma_{0}\right]$ as a 1 -row, l-column matrix in the equations. Equations 3.3 .12 can now be compactly rewritten as:

$$
\begin{aligned}
& {\left[A^{T}\right][A][K]-\delta_{0}\left[A^{T}\right][\rho]=-\left[A^{T}\right][S]} \\
& -\left[\rho^{T}\right][A][K]+\sigma_{0}\left[\rho^{T}\right][\rho]=\left[\rho^{T}\right][S]
\end{aligned}
$$

Combining these two matrix equations by the use of augmented matrices yields:

$$
\left[\frac{A^{T}}{-\rho^{T}}\right][A \mid-\rho]\left[\frac{K}{\sigma_{0}}\right]=-\left[\frac{A^{T}}{-\rho^{T}}\right]\left[\begin{array}{l}
\delta
\end{array}\right]
$$

The solution is obtained by promultiplying both sides of this equation by the inverse of $\left[\frac{A^{T}}{-\rho^{T}}\right][A \mid-\rho]$ as:

$$
\left[\frac{K}{\sigma_{0}}\right]=-\left(\left[\frac{A^{T}}{-\rho^{T}}\right][A \mid-\rho]\right)^{-1}\left[\frac{A^{T}}{-\rho^{T}}\right][S]
$$

Each time a new set of data is obtained this entire set of operations must be repeated, and this is only sensibly possible with the use of a high speed computer. However, many
of the operations involved in the limited interpretation problem of assuming the background resistivity and only determining the N values of the K_{i} can be done without knowledge of the data.

Indeed, in this case it is posible to reduce the entire interpretation procedure to a single matrix maltiplication. In this case it is necessary to introduce the parametor B_{j} defined as:

$$
B_{j}=\left[\frac{\rho_{j}-\rho_{0}}{\rho_{0}}\right]
$$

and also the M-row, 1-column matrix [B] it forms. The analysis by least squares leads to a linear set of equationa ropresented by:

$$
\left[A^{\top}\right][A][K]=\left[A^{\top}\right][B]
$$

The solution is obtained as:

$$
[K]=\left(\left[A^{T}\right][A]\right)^{-1}\left[A^{T}\right][B]
$$

and here it is seen that the matrix $\left(\left[A^{T}\right][A]\right)^{-1}\left[A^{T}\right]$ and be considered as an operator which when post-multiplied by the matrix [B] derived from the field data will yield the K_{1}. Since this operator is independent of the field data it
need be computed only once after the geometry and array ars chosen and this can be cine on high sped machine.

This limited interpretation problen actually is vory useful since an experienced geophyelcist can often wado a reasonable estiwate of the background resistivity and a simple matrix multiplication will yield the entire interpretation of the K_{1} values. It is this limited problem approach Which is to be used by the ileld personnel when doing preliminary interpretations. The complete problem of actually detomining the oackground is only attempted when the final results of an area's survey are avallable and neod to be incarpreted in a more sopaisticated manner.

3.4 Formulation of Rectangular glocke and Resolvine fower

The prospecting of an area in many coophysical netiode is done with the aid of a erid-work of lines covering the arsa of interest. Pais grid is either rectangular or square In the shaps of the individual smaller aroas whicn it foms and is utilizod so that a systematic invostigation of the area may be made. The four-electroce resistivity methods often use such a erid and measurement are made alone one of the neries of parallel lines thue formed. That is, both the scurce and receiver circuits are moved along one line at a time, yarying both their exact position within the frid and also
their relative distances to one another. This procedure allows a profile of the subsurface conditions to be conatructed from the interpretation of the measurements.

There are two properties of any geophysical prospecting method other than the ohysical parameter measured which are of prime importance in determining its specific applications. It is not really possible to completely separate these two properties but there is a difference in what each may accomplish. One is the ability to detect an anomalous subsurface region and the other is the ability to resolve the anomaly into a set of values describing its position, size and physical parameter. The success of much geophysical prospecting is often based only on its ability to detect anomalous regions. There are certain minimum geometries and contrasts which may be detected with any method and hence there is some overlap in these two properties. In general, present day prospecting techniques have no problem detecting anomolous regions since the instrumen tation of basic physical concepts to measure different parameters is highly developed. The greatest failure is in the interpretation or resolution of these anomalies, and it is this resolution of resistivity messurements with which this thesis is concerned.

Profiling for the modified Eltran array is operationally quite rapid as the vertical variations of resistivity are
measured as the distance between the two circuits is increased while the lateral variations parallel to the line are determined as the entire array is moved along the line. A similar procedure is used for the Wenner array, movement along the line for a given spacing interval sensing the lateral variations to a certain depth. Then by going back over the same line additional times for larger spacing intervals the vertical variations of resistivity are detected.

Although the profiling is in a sense only two-dimensional, it does detect changes in conductivity which occur perpendicular to the profile line. However, it is not possible fer the measurements to determine on which side of the profile line these changes occur. The effect of changes oither at depth or to one side or another cannot be separated and both possibilities are only capable of interpretation as being associated with a change in conductivity an approximate distance away. Nothing can be said about the distance being to the side or vertical from the single profile line. By profiling over a series of parallel lines however the possibility of the changes occuring laterally can actually be investigated and final interpretations sbout the subsurface based on this added information.

The ability of surface resistivity measurements to detect changes in subsurface resistivity is dependent upon the actual conductivity contrasts but most strongly upon the geometry of the anomalous region. As the distance of the region from the profile line increases so must the size in order that its effect for measurements along the profile Ine remain the aame. If the scale of the measurements is not large enough they may never detect certain very large anomalous regions which are effectively too far away.

Rectangular blocks which are symmetric about the profile plane have been choser to form the finite-sized subsurface regions. The choice of regions which are symmetric about the profile plane eliminates the problem associated with the failure of the line measurements to resolve certain geometries as indicated. It forces the variations to be essentially two dimensional for each profile line but by using a series of parallel profile lines the three-dimensional character of the subsurface resistivity may be determined. The ability to predict the vertical and lateral variations along the line of measurements in a quantitative method is an improvement of the empirical method of comparison with known responses for a few geometries and contrasts. While the approximation used to determine the $A_{i j}$ introduced in Section 3.2 is limited in its validity, this
approach does represent a direct method of interpretating resistivity data on the basis of two and three dimensional variations of the subsurface conductivity.
3.5 Final Blocks and their Resolution

Model results have indicated that the limits to which the modified Eltran array can detect anomalous regions is approximately 3 units, when using a maximum separation of 5 units between source and receiver. A highly conducting horizontal block (4 units parallel to the line, 1 unit in thickness and 4 units extent on oither side of the line) centered at a depth of $3 \frac{2}{\text { z }}$ units was not detectable in an otherwise homogeneous half-space. That the body was not detected is due to the rapid decrease in the strength of the secondary sources created as the region recedes from the source, proportional to the inverse distance squared. The effect of the block at this depth is masked in the experimental error of approximately 10%. A similar error is anticipated in field operations and thus this block represents the limit of the detection power of the array.

Because of the fixed separation of each sot of electrodes in the modified Eltran array the primary field is essentially dipolar and its strength falls off as the inverse distance squared. Also the receiver makes essentially a dipole measurement, hence measures the rate of change of the potential. The primary field is then measured as depending upon
the inverse cube of the distance separating source and receiver. The very rapid decrease of response to a subsurface region which is observed in model experiments for finite regions is of great holp in resistivity proppecting for near surface features such as usually ocours in mining geophysics. It indicates that only those regions immediately next to the profile line need to be considered as the cause of the observed secondary electrical fields.

Although explicit model results for bodies displaced to oither side of the profile line have not been obtained it seems quite reasonable to assume that their maximum detection range is also the 3 units limit. Hence any regions which lio outside these limits need not be considered as being the cause of the secondary fields and in the application of the modified first approximation this will in general be true. It is important to realize that the presence of conducting regions within this limited volume around the profile ine will yield a much larger field than similar or oven larger regions outside. In a sense this is a shielding phenomenon In which the near surface variations completely dominate the creation and behavior of the secondary fields.

The choice of the dimensions for the final blocks to be used in a finite region interpretation scheme has been strongly influenced by the previous considerations and also various trial sizes. The modified first approximation forward problem response for blocks that extend 3 units on
-ither side of the line are almost identical with blociss that extend 4 units on either side. Thus it appears that the optinum length of the blocks perpendicular to the profile plane is three units since any greater lengths will yield the same effect. Parallel to the line it has bean found that the dimensions must not be less than anit or the resolution of these endividual regions will fail. Finally the vertical dimensions must not be less than a unit unless the regions are close to the aurface, in which oase they may be approximately $\frac{1}{\text { unit }}$ and still be resolved individually.

The dinensions of each region must be chosen so that the magnitude effects are approximately equal in order that a stable interpretation operator will be developed. That is, the regions must increase their lateral and/or vertical dimensions as their depth is increased. The type of stability reforred to is that sifeht changes of the resistivity measurements, auch as arise in the orrors present in the field data will not greatly alter the resistivity interpretation.

There is a difference in the accuracy of the firet approximation forward solution when compared to the model results for rectangular blooks of oertain geometries. It appears that if the vertical surfaces whica bound the block lie directly under a source and/or receiver position alone the profile line, the comparisons are less valid for certain
sourcerreceiver positions. This no doubt is due to the fact that the interactions between surfaces are important in effecting the final distribution of induced sources in the real system and the first approximation yields zero induced sources on such surfaces for those positions directly above them. Thus, bodies with surfaces which when projected to the profile line intereect it at station positions should be avoided. Basically the idea is to use those blocks for which the first approximation presents a fairly accurate representation of the true response.

It has already been noted that the modified bitran array presents a system that is symmetric with respect to an interchange of source and receiver circuits. This is extremely useful not only in field operations but also in the interpretation of resistivity measurements since it allows any existing subsurface symmetries to be accurately displayed. For those regions not symetrical it permits good estimates of the existing orientation to be made since the symetric measurements will not distort the relative geometry of these regions.

In order to preserve this very useful property of symetry in the interpretation the blocks as well as the resistivity data measurements should be chosen symetrically about the center of the composite configuration. Thus if any
symetriea in the data aotually or approximately occur the subsurface is capable of modelling this geometry satisfactorily. The forced symetry of the modified first approximation as well as the symmetry in the blocks and data points lead to a consistent develepment in which the very useful and necessary property of aymotry is preserved.

The diagram on the following page illustrates tho final choice of blocks used in developing the interpretation operators. It will be appropriate to consider the group of blocks, their responses and the least squares fitting as being an operator on the resistivity data which directly determines the conductivity variations once the geometry is chosen. Only three blocks have been utilized in forming the different operators and their dimensions and relative positions have been chosen so as to approximately model either mainly horizontal or vertical oriented structures. Each block oxtends thre units on each side of the profile plane consistent with the resolution possible using the modified eltran array. The forward problem solutions for these blecks as determined by the wodified first aperoximation are presented, for which the eeneral format employed in the tabulation of the results is explained on page 75 - The values given are the $A_{1 j}$ parameters multiplied by 100 so that they represent the $\%$ changes from the background resistivity.

Blocks Employed in Operator Formation

(1) $A=1.0 \quad B=6.0 \quad C=0.6 \quad D=10.0 \quad H=0.7$
(2) $A=1.0 \quad B=6.0 \quad C=2.0 \quad D=10.0 \quad H=2.0$
(3) $A=2.0 \quad B=6.0 \quad C=1.0 \quad D=10.5 \quad H=1.5$

Cross Sectional View

Figure 1 General Diagram of Rectangular Blocks

Format Description

The results of the computer have been programmed to be presented in final semi-graphical form. The results for the dipole-dipole array are plotted in conformance with the format on page 29. The pole-dipole results ropresent the response of the array for which the scurce is a point and the receiver a pair of electrodes one unit apart.

On page 77 are presented the results for block (1) centerea at $x=10.0, z=0.70$. All the blocks are symetrical about the profile plane so that the coordinate of the center is always $y=0$. The spatial increments defire the number of $\Delta x_{0} \Delta y$ and Δz increments used in the numerical integration discussed in Appendix I. The dimensions of the block are in the order ($A, B, C)$.

For the dipole-dipole array on page 77, with the source sectrodes at stations 6-7 and the receiver electrodes at 10-11, there is an 18\% decrease from the background value in apparent resistivity measured. For the pole-dipole array, the effect for a source at station 8 and receiving at $12-13$ is a 4% increase in apparent resistivity.

$$
\begin{aligned}
& \text { POLE-DIPOLE }
\end{aligned}
$$

the date is may 11,1959. the time is 2117.8

3.6 Compositing of blocks and Shifting of the Operators

In order to treat general problems of resistivity interpretation, it is necessary to combine blocks of small homogeneous regions so as to form a larger subsurface region of effectively variable conductivity. It is more convenient to discuss the large regions as being mainly horizontal or vertical in the orientation of the blocks and also their associated operators. Different configurations of blocks and the associated resistivity measuroments can be constructed and lead to a large wet of combinations. Moreover the actual number of regions and measurements used to form an operator can vary so that a great deal of fresdom appears to be available in forming such operators.

Those operators presented here have utilized the blocks of Section 3.4 and have been chosen both with consideration given to the desired resolution power and symmetry property of this interpretation scheme and also the field procedures commonly employed to prospect an area. Previous empirical methods of interpretation heve been capable of yielding 3 pieces of information regarding the subsurface conductivity variations:

1) Determining whether features near the surface or deep are causing the anomaly,
2) Approximate lateral extent of the region and
3) Significance of the conductivity contrast

These also represent the basic values which the finite region
concept will predict, but with greater detail possible because of the large number of regions used to model the subsurface. Also the relative conductivity contrasts of these regions will be determined on quantitative basis.

In general, a profile line of meacurements using the modified eltran array is made lone enough to cover the entire anomaly measured so that its lateral extent may be accurately determined, and also a value assigned to the backeround resistivity. It is possible to construct operators that use exactly as many resistivity measurements as the field profiles do, but since the length is variable every new line might necessitate construction of a new operator. A solution to this problem of reformulating an entirely new set of regions and data points is to form an operator of a length corrosponding to the minimum length line usually employed, and to shift this operator along any longer linea so that there will be some overlap in the regions modelled and the data valuesi used. inis shiftine of basic operators along lines when combined with the determination of background resistivity provides a hignly fiexible scheme of interpretation which allows for the examination of different sections of a profile for slightly different geometries. For those operators which overlap in both their data points and blocks modelled, a comparison of those matching blocks and also the background resistivity can be made to determine the correlation of both
the eeology of the subsurface and the interpretation derived from the field data.

Whon using the limited interpretation procedure and assuming the backeround resistivity, the success of shifting the operator along the line may possibly be less. There mast be an assumption made regarding the background resistivity and while the complete interpretation problem determines this only from the data, the $11 m i t e d$ proilem must rely upon the experience and ability of the individual doing the interpretation.

Pages 83-87 present the cross-sectional views of the different operators which have been constructed from the basic blocks, and the convention for numbering the blocks and the resiativity measurements. The code used to identify the operators is: $1^{\text {st }}$ digits number of blocke, $2^{\text {nde }}$ Horizontal or Vertical struoture, L S=least aquares and the final digits the number of data points utilized.

4.2 Comparison of Porward Problem Results with Models

A completely quantitative analysis of the error in the modified first approximation forward solution is not possible for all subsurface geometries and conductivity variations. In order to determine the error it is necessary that the exact solution be known so that comparison can be made and the rolative error determined. Belluigi and Maaz (1956) have

1	2		3		4		5		6	
		9		10		11		12		13

BLOCK AND DATA DOINT IDENTIFICATION FOR OPERATOR 9HLSZO

critically examined the first approximation of Stevenson for an exponential variation of conductivity with dopth. They have shown that only the first term in the series expansion of the exponential is exactly prdeicted in the Stevenson method. This particular example might seem to indicate that any first approximation solution and derived interpretation procedure would not be very accurate. However; this turns out not to be true when considering finite regions of conductivity variation.

It should be noted that when only vertical variations of conductivity occur, the modified first approximation reduces exactly to the approximation of Stevenson. For rectangular regions exact solutions are not possible and recourse must be made to the results of model experiments. The use of model results will allow a comparison of not only the forward problem solutions but also the interpretations obtained based upon the modified first approximation. In this section a comparison of the forward problem solutions and model results for a number of different geometries will be made.

Previous methods of interpretation of the apparent resistivity data obtained from the modified eltran array have utilized contours of the data on a logarithmic scale. The shape of the contours has been found to be very characteristic of the subsurface structure and a fair degree
of accuracy has been possible in predicting the lateral extent of anomalous regions. However, the depth determination was rather qualitative and unless the anomaly was rather 'sharp' so that interpretation was straightforward littie could definitely be said about it. The interpretation was accomplished by personnel familiar with the method of obtaining and contour plotting the profile data and model results were often used as guide and reference for the final interpretation.

The forward problem solutions are based upon the assumption that the induced sources are bounded in magnitude and that for a finite jump in the conductivity they are determined from:

$$
K_{i}=2\left[\frac{\rho_{0}-\rho_{i}}{\rho_{0}+\rho_{i}}\right]
$$

$$
4.1 .1
$$

which is exactly the factor inferred to be correct in section 2.7. The solutions for the rectangular homogenoous blocks used in the modelling and also for those blocks used in form. Ing the composite interpretation operators of this thesis were obtained by numerical integration of :

$$
\bar{\varphi}(\alpha \mid \xi)=\left.\frac{1}{2} \int \frac{\nabla \sigma}{\sigma} \cdot\left[\nabla \varphi_{0}(\alpha)+\nabla \varphi_{0}(\xi)\right] G d V_{0}\right|_{p} \quad 4.1 .2
$$

This was done on an electronic digital computer by consider-
ing the surface of the block to be divided into a number of small areas and an equivalent induced point source placed at the center of each area. That only the surfaces of the regions need be considered is due to the fact that the conductivity gradient is zero elsewhere. The complete mathematical formulation of this phase of the forward problem is presented in Appendix I.

The exact comparison of the apparent resistivity profiles obtained from the modelling with that predicted by the first approximation is not possible because of experimental errors in the actual model deta. The most striking feature being that the experimental results were seldom symetrical oven though the geometry of the block and array was such that they should be. This is interpretated to indicate that the positioning of the block relative to the surface electrodes was incorrect. The use of thedipole-dipole array which measures a second derivative of the primary and secondary dipole fielas makes the results very sensitive to relative location of surface electrodes and blocks. Any error in the positioning of the electrodes would then be ereatly magnified by the use of this array. However, if the results are averaged so as to empirically determine a set of symetrical values a numerical comparison can be effected.

Good agreement of the contoured model results and the
modified first approximation solutions have been obtained. The general character of the predicted solutions and the relative positioning of the contour levels in both horizontal and vertical blocks has been satisfactory. Moreover, the actual magnitude values of apparent resistivity predicted are In approximate agreement with the model results altered as indicated above. Four particular geometries have been chosen to be presented in this section as representative of the results of the modified approximation solutions. The format for their presentation closely parallels that of page 76 but the values given are apparent resistivity values assuming a background value of 450, which is the value assigned to the background in the modeling. The conductivity contrast of the model blocks to background has been very high or close to being 'saturated' so that the source strengths K_{i} have been set equal to 2.0. The presentation of pole-dipole results is made since extremely iittle computational effort is required to obtain them beyond that required to produce the dipoledipole results and some investigators have used this electrode array in field operations. It is not necessary to give the dimensions of the resistivity values since it is possible to assign the values proportional to the desired units of measurement. This is also to be done with the linear dimensions of the array and subsurface region. Effectively the
results are presented in a set of dimensionless variables which are only defined when the dimensions of both the resistivity and the electrode epacing are given.

In order that a comparison be made of the actual numerical Values a profile for each geometry has been derived from the model data but only for the dipole-dipole measurements which are the immediate concern of this thesis. As already indicated the numerical values of the actual model data are obtained by forcing symmetry in the model values. The diagram on the following page indicates the geometry of the four blocks whose results are presented in this section and a label that is indicative of the orientation and size of the block. The first character in the label (H or V) indicates whether the block is vertical or horimontal, the second digit the thickness of the block in units of electrode spacing and the tifird digit the depth to the top surface of the block in the units previousiy defined. This convenient manner of identifying the blocks has been in all the model work of Adler (1958). All the model blocks were 4 units long on either side of the profile plane. The conductivity contrasts between background and the block are indicated in the parenthesized ratio ie (1/200).

The following pages present the forward problem solutions and the model results for comparison of numerical values. These blcoks represent rather different geometries and hence allow an evaluation of the modified first approximation over

$$
\text { - } 93-
$$

PROFILE LINE 9 10 11 | 12 | 13 | 14 | 15 | 16 | 17 | SURFACE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PROF ILE LINE	9	10	11	12	13	14	15	16	17	SURFACE

*	*		
*	*		
*	*		
*	*		
*	*		
*	*	V-2-1	(1/215)
*	*		
*	*		
*	*		
*	*		
*	*		

PROFILE LINE	9	10	11	12	13	14	15	16	17	SURFACE

PROFILE LINE $9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad$ SURFACE

*	*		
*	*		
$*$	*	H-2-2	(1/155)
*	*		

$$
\begin{aligned}
& \begin{array}{lllllllllllllllllllllllllllll}
450 & 450 & 451 & 452 & 457 & 461 & 418 & 374 & 373 & 374 & 418 & 461 & 457 & 452 & 451 & 450
\end{array} \\
& \begin{array}{lllllllllllllllllllll}
451 & 452 & 457 & 465 & 462 & 377 & 271 & 178 & 178 & 271 & 377 & 462 & 465 & 457 & 452
\end{array} \\
& \begin{array}{lllllllllllllllllll}
454 & 461 & 471 & 460 & 355 & 258 & 157 & 65 & 157 & 258 & 355 & 460 & 471 & 461
\end{array} \\
& \begin{array}{llllllllllllllll}
464 & 476 & 458 & 343 & 263 & 202 & 147 & 147 & 202 & 263 & 343 & 458 & 476
\end{array} \\
& \begin{array}{llllllllllllllllllllll}
\text { JIPOLE-DIPOLE } & 479 & 455 & 335 & 269 & 233 & 231 & 290 & 231 & 233 & 269 & 335 & 455
\end{array} \\
& \text { IHE DATE IS MAY 11.1959. THE TIME IS 2128.2 }
\end{aligned}
$$

rather wide limits. In general the results are good, the best obtained for the deepest block with the least interactions of induced sources, the H-2-2 model. The poorest ore for the V-1-1 model, which shows that the approximation is not good when the vertical surfaces of the rectangular regions project to the profile line at an elactrode position. This failure is asscciated with the relative importance of the interactions of induced scurces for the particular geometry. This is the reason discussed in section 3.5 why blocks whose surfaces do not project to an electrode position have been chosen for the interpretation operators.

The last page of this set of results is the predicted forward solution for a block corresponding to one of those used in the operators of section 3.5. However, the length of the block perpendicular to the profile plane was 4 units on either side rather than 3. The results are hardiy different and cortainly within the experimental accuracy of the $5-10 \%$ of field operations. This points out the reason for using blocks In the interpretation operators which extended 3 units on each side. It is essentially a numerical demonstration of the resolution limits of both the pole-dipole and dipole-dipole apparent resistivity measurements.
4.2 Prediction of IP Effects from Model and Ist Approximation

Results

It has been possible to obtain a reasonable estimate of the
apparent resistivity profile using the modified first epproximation. As mentioned being closely associated with the resistivity prospecting method is the recently developed method of induced polarization. The IP effect depends upon the change in conductivity of earth material for a change in the frequency of the source current. Thus it should be possible to predict the induced polarization effects by calculating the apparent resistivity profile for two different values of the conductivities of the regions causing the polarization phenomena. The normalized difference in apparent resistivity $\Delta P_{A j} / P_{A j}$ will then be a measure of the polarization properties of the subsurface recion. It is not the intent of this thesis to discuss the relative merits of the frequency or time methods of prospecting and interpreting the IP offects.

As pointed out in section 1.8 the IP offect in the frequency domain can be measured as a decrease in ρ_{A} as the frequency is increased. However, the \% change in PA from low to high frequencies when normalized by the background value may be very sinall and within the experimental error so that accurate determinations of $\Delta \rho A$ are not possible. For example, with a background resistivity of 100 and a measured P_{A} of 5, a 25\% decrease in PA from 5 to 4 would only correspond to a 1% change when normalized by the background. This 1% is what any model experiment would have to measure in order to determine the IP effects. Thus the $5^{\circ}-10 \%$ errors of model experiments
may often be much too large to use for the accurate prediction of $\Delta P_{A j} / P_{A j}$.

This section will indicate how model results can be combine with the approximate results to predict the magnitude of the If effects. The non-linear behavior of the final current flow may be important because of strong interactions of induced sources. In these cases the linear approximation prediction of
P_{A} would be less accurate than the model results even considering the experimental error. The approach will be to use the model results to indicate the low frequency apparent resistivity profile and then to utilize the approximate results for the same geometry to calculate the change in apparent resistivity as the frequency and effectively the conductivity of the regions is increased. It may be necessary to symmetrize the model results when the geometry dictates that this should be the case.

The assumption is made that the low frequency values have been obtained for the P_{A} profile for a certain geometry and conductivity contrast. It is shown in Appendix III that the apparent resistivity is a homogeneous function of the degree 1 in the specific resistivities. This means that if all the specific resistivities are multiplied by the scalar value t then the apparent resistivities will be multiplied by t also. That is, letting ρ_{i} represent the specific resistivity of the $1^{\text {th }}$ region

$$
\rho_{A}\left(t \rho_{l}\right)=t \rho_{R}\left(\rho_{i}\right)
$$

As a result of this homogeneity of P_{A} the following equation can be written for $N+1$ regions, assuming ρ_{0} the background:

$$
p_{A j}=\sum_{i=0}^{N} p_{i} \frac{\partial p_{A j}}{\partial p_{i}}
$$

$$
4 \cdot 2.2
$$

This relates the specific resistivities to the apparent resistivities by their effect on each maj measurement. This equation is exact but relates the apparent resistivity to the specific resistivities.

It is desired to obtain an exact relation between the change in $P_{A j}$ to the change in P_{i}. This can be derived as follows: take the total differential of 4.2 .2 and obtain:

$$
d \rho_{A_{j}}=\sum_{l=0}^{N}\left[p_{i} \frac{\partial \rho_{a_{j}}}{\partial \rho_{i}}+\rho_{i} d\left(\frac{\partial \rho_{a_{i}}}{\partial \rho_{i}}\right)\right]{ }_{4.2 .3}
$$

thus

$$
d \rho_{a_{j} j}=\sum_{i=0}^{N}\left[d \rho_{i} \frac{\partial \rho_{a j}}{\partial \rho_{i}}+\rho_{i} \sum_{k=0}^{N}\left(\frac{\partial^{2} \rho_{a j}}{\partial \rho_{i} \partial \rho_{k}}\right) d \rho_{k}\right]
$$

Differentiating the exact expression 4.2 .2 with respect to ρ_{R} and holding the remaining ρ_{i} constant then

$$
\frac{\partial \rho_{A j}}{\partial \rho_{k}}=\frac{\partial \rho_{A j}}{\partial \rho_{k}}+\sum_{i=0}^{N} \rho_{i}\left(\frac{\partial^{2} \rho_{A j}}{\partial \rho_{i} \partial \rho_{k}}\right)
$$

4.2 .4

This implies however that:

$$
\sum_{i=0}^{N} p_{i}\left(\frac{\partial^{2} \rho_{A j}}{\partial p_{i} \partial \rho_{k}}\right)=0
$$

$$
4 \cdot 2.5
$$

and thus interchanging the summations in 4.2 .3 and using 4.2 .5 the exact relation desired is derived:

$$
d \rho_{A j}=\sum_{i=0}^{N} \frac{\partial \rho_{a i}}{\partial \rho_{i}} d \rho_{i}
$$

This equation will be useful for small changes in the as:

$$
\Delta \rho_{a_{j}} \approx \sum_{i=0}^{N} \frac{\partial \rho_{a j}}{\partial \rho_{i}} \Delta \rho_{i}
$$

In order to utilize this equation it is necessary to determine $\left(\frac{\partial P_{A}}{\partial P_{i}}\right)$ from the modified first approximation forward problem solutions.

Instead of using the logarithym of the conductivity contrast between the region and background for K_{i}, the definition of K_{1} in $E q$. 4.1 .1 is assumed to be correct for the induced source strength. Thus it is possible to write:

$$
\frac{\partial \rho_{A j}}{\partial \rho_{i}}=\left(\frac{\partial K_{i}}{\partial \rho_{i}}\right)\left(\frac{\partial \rho_{A j}}{\partial K_{i}}\right) \quad 4.2 .8
$$

and using ka. 4.1 .1 this is equal to:

$$
\frac{\partial \rho_{A j}}{\partial \rho_{i}}=\frac{-4 p_{0}}{\left[\rho_{0}+\rho_{i}\right]^{2}}\left(\frac{\partial \rho_{A i}}{\partial K_{i}}\right) \quad \text { 4.2.9 }
$$

How the values $A_{1 j}$ introduced in Section 3.3 represented the normalized effects on the $f^{\text {th }}$ apparent resistivity measurement due to the $1^{\text {th }}$ region and thus can be interpreted as

$$
\frac{1}{p_{0}}\left(\frac{\partial p_{A j}}{\partial K_{i}}\right) \approx A_{i j}
$$

$$
4.2 .10
$$

This will determine the values of $A_{i j}$ for $i=1$ to N but an interpretation and evaluation of A^{A} m mast be made.

Recalling that the linear approximation effectively ignores the presence of other regions when computing the effect for a particular region, consider the case of a homogeneous region with no conductivity contrasts so that $N=0$. Then in this case from 4.2.?

$$
\rho_{A j}=\rho_{0} \frac{\partial \rho_{A} i}{\partial \rho_{0}} \equiv \rho_{0}
$$

but this must also be given by:

$$
\rho_{A j}=-\left(\frac{\partial \rho_{A j}}{\partial K_{i}}\right)
$$

and these two equations lead to:

$$
\frac{1}{\rho_{0}}\left(\frac{\partial \rho_{A j}}{\partial K_{i}}\right)=-1=A_{0 j}
$$

Notice that this last result is valid only for the first approximation in which the linearity of the solution in the
regions is correct.
Thus with a knowledge of the modified first approximation factors $A_{1 j}$ the change in $P_{A j}$ can be computed from a change in the P_{i} as:

$$
\Delta \rho_{A_{j}} \approx \sum_{i=0}^{N}\left[\frac{-4 \rho_{0}^{2}}{\left(\rho_{0}+\rho_{i}\right)^{2}} A_{i j}\right] \Delta \rho_{i}
$$

This result is valid only when the change in specific resistivity is small as indicated in equation 4.2.7. Finally the high frequency $P_{A j}{ }^{H}$ is determined from:

$$
\rho_{A j}^{H}=\rho_{A j}^{h}+\Delta \rho_{A j}
$$

where $P_{\text {dj }}^{L}$ represents the model apparent resistivity measurement.

It is very important to note that in 4.2 .12 when $\rho_{0} \gg \rho_{i}$ then the equation approaches:

$$
\Delta \rho_{A_{j}} \approx \sum_{i=0}^{N}\left[-4 A_{i j} \Delta \rho_{i}\right]
$$

and this indicates that oven when the conductivity contrasts between P_{0}, P_{i} for low frequency measurements are very large, the high frequency measurements can still detect the changes in the P_{i}. This is true provided that the $A_{i j}$ parameters are sufficiently large, which implies that the region to be sampled for polarizability must be capable of
detection in s normal resistivity survey even if its contrast or strength factor is not great. Eiq. 4.2 .14 explains what has always been one of the very powerful but previously inexplicable properties of IP prospecting: regardless of the existing low frequency conductivity contrasts, the high frequency measurements always have been capabie of detecting end resolving a polarized subsuriace region. This property has proven to be one of the most fortunate attributes that has been essentially built right into the IP prospecting method.

4.3 Interpretation Results for Model Data

The initial attempt at interpretation of resistivity profiles was made on model data for rectangular blocks, including those models used in section 4.1 for comparison of the forward problem solution. This section presents some of the results of the interpretation operators using anparent resistivity data from model experiments. The method of presentation of the results has been to graphically represent the profile plane and the outlines of the rectancular blocks and to insert within each block the numerical value of the determined K_{i} value. In addition the actual data used in the interpretation have been reproduced in the familiar two. dimensional plot introduced in section 1.10.

The labels are for the most part self-explenatory, but one important point is that the stations indicated on the
profile lines go from 1 to 10 for the data utilized. Thus if the label states that the stations used were $7 / 16$ then 7 in the model corresponds to 1 in the plot and 8 to 2 etc.. In all the model experiments the blocks were centered about station 12.5 so that data for stations $8 / 17$ are symmetrical as are the interpreted results while those sets of data for stations $7 / 16$ represent a shifting by one unit to the left of the model data. The RMS ERROR represents the fractional root mean square error of the apnarent resistivity fit: that is

RAS BRROR= $\frac{1}{\rho_{0}} \sqrt{\frac{1}{M} \sum_{j=1}^{M}\left(\rho_{A_{j}}-\rho_{j}\right)^{2}} \quad 4.3 .1$ where $P_{A j}$ is predicted and ρ_{j} measured.

A plot of the factor K_{i} in Equation 4.1 .1 is presented on the following pace as a function of $\left(\sigma_{i} / \sigma_{0}\right)$ and $\left(\rho_{i} / \rho_{0}\right)$. K_{i} is positive for a conducting region relative to background and negative for a resistive region. The following pages present the resuits of the operators 6HLSI6, $9 H L S 16$ and 8 V , 516 . The model results treated by these operators have all had background values of 450 and the operators have had to determine a background value from the 16 data points eiven. The results for the most part are strikingly good for example the $9 H L S 16$ result for the $H-2-1 A(1 / 13)$ model on page 121 and the 8VLSI 6 result for the V-2-1A ($1 / 3.8$) model. As anticipated the best results occur for blocks with small conductivity

LINE NO $=H-1-1 A$	$(1 / 200)$	BACKGROUND $=388$
STATIONS $=8 / 17$		OPERATOR= $6 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.11$	DATE $=3 / 23 / 59$

	*		*		*	
	*		*		*	
	*		*		*	
	*		*		*	
	*		*		*	
3.96	*	0.01	*	0.01	*	$3 \cdot 96$
	*		*		*	
	*		*		*	
	*		*		*	
	*		*		*	
	*		*		*	

LINE NO $=4-1-1 A$	$(1 / 200)$	BACKGROUND $=418$
STATIONS $=8 / 17$	OPERATOR=	
LOCATION $=~ M O D E L ~$	RMS ERROR $=0.07$	DATE=

LINE NO $=H-1-1 A$	$(1 / 200)$	BACKGROUND $=408$
STATIONS $=7 / 16$		OPERATOR $=6 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.12$	DATE $=3 / 23 / 59$

LINE NO $=H-1-1 A$	$(1 / 200)$	BACKGROUND $=440$
STATIONS $=7 / 16$		OPERATOR $=9 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.08$	DATE $=3 / 23 / 59$

LINE NO $=H-2-1 A$	$(1 / 13)$	BACKGROUND $=483$
STATIONS $=8 / 17$		OPERATOR $=9 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.03$	DATE $=$

LINE NO= H-2-1A (1/13)
BACKGROUND $=429$
STATIONS $=8 / 17$
OPERATOR $=$ 8VLS 16
LOCATION= MODEL
RMS ERROR $=0.06$
DATE $=\quad 3 / 23 / 59$

LINE NO $=H-2-1 A$	$(1 / 13)$	BACKGROUND $=414$
STATIONS $=7 / 16$		OPERATOR $=6 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.10$	DATE $=3 / 23 / 59$

LINE NO=	H-2-1A	(1/23)				BACKGROUND $=417$		
STATIONS=	7/16					OPERA		8VLS 16
LOCATION=	MODEL		RMS	ERROR=	0.07	DATE=		/23/59

| LINE NO $=H-2-1 B$ | $(1 / 190)$ | BACKGROUND= 395 |
| :--- | :--- | :--- | :--- |
| STATIONS $=8 / 17$ | | OPERATOR $=6 H L S 16$ |
| LOCATION $=$ MODEL | RMS ERROR $=0.11$ | DATE $=3 / 23 / 59$ |

LINE NO=	H-2-1B	(1/190)				BACKGROUND $=$		483
STATIONS $=$	$8 / 17$					OPERATOR=		9HLS 16
LOCATION=	MODEL		RMS	$E R R O R=$	0.03	DATE $=$		/23/59

| LINE NO $=H-2-1 B$ | $(1 / 190)$ | BACKGROUND $=425$ |
| :--- | :--- | :--- | :--- |
| STATIONS $=8 / 17$ | | OPERATOR $=8 V L S 16$ |
| LOCATION $=~ M O D E L ~$ | RMS ERROR $=0.08$ | DATE $=3 / 23 / 59$ |

LINE NO $=H-2-1 B \quad(2 / 190)$
STATIONS $=7 / 16$
LOCATION $=$ MODEL
RMS ERROR $=0.08$
DATE $=\quad 3 / 23 / 59$

LINE NO $=~ V-1-1$	$(1 / 150)$	BACKGROUND $=522$
STATIONS $=8 / 17$	OPERATOR $=6 H L S 16$	
LOCATION $=~ M O D E L ~$	RMS ERROR $=0.08$	DATE $=03 / 30 / 59$

LINE NO $=V-1-1$	$(1 / 250)$	BACKGROUND $=472$
STATIONS $=8 / 17$	OPERATOR $=8 V L S 16$	
LOCATION $=$ MODEL	RMS ERROR $=0.05$	DATE $=3 / 30 / 59$

LINE NO $=V-2-0$	$(1 / 160)$	BACKGROUND $=650$
STATIONS $=8 / 17$		OPERATOR $=9 H L S 16$
LOCATION $=$ MODEL	RMS ERROR $=0.10$	DATE $=3 / 30 / 59$

LINE NO $=V-2-0 \quad(1 / 160)$
STATIONS $=8 / 17$
LOCATION $=$ MODEL
RMS ERROR $=0.10$
BACKGROUND $=508$
OPERATOR $=8 \mathrm{VLS} 16$
DATE $=3 / 30 / 59$

LINE NO $=V-2-1 A$	$(1 / 3.8)$	BACKGROUND $=449$
STATIONS $=8 / 17$		OPERATOR $=6 H L S 16$
LOCATION $=~ M O D E L ~$	RMS ERROR $=0.03$	DATE $=$

LINE NO $=V-2-1 A$	$(1 / 3.8)$	BACKGROUND $=438$
STATIONS $=8 / 17$	OPERATOR $=4 H L S 16$	
LOCATION $=~ M O D E L ~$	RMS ERROR $=0.02$	DATE $=$

LINE NO $=V-2-1 A$	$(2 / 3.8)$	BACKGROUND $=431$
STATIONS $=8 / 17$	OPERATOR $=8 \mathrm{VLS} 16$	
LOCATION $=$ MODEL	RMS ERROR $=0.01$	DATE $=$

LINE NO $=~ V-2-1 B$	$(1 / 215)$	BACKGROUND $=486$
STATIONS $=8 / 17$		OPERATOR $=6 H L S 16$
LOCATION $=~ M O D E L ~$	RMS ERROR $=0.06$	DATE $=03 / 30 / 59$

contrasts when the linear approximation neglecting interactions is valid. The background values are close to 450 or within 10% for the marity of them. a relatively large number of model results has been included so that a fairly complete evaluation of the interpretation operators can be made for known geometries. As indicated the strength factor which has been suggested is that of Eq. 4.1.1 and that thore are very few interpretations wich yield strength jactors much greater than this. See pagel28 for an interpretation by 8VLSI6 which demonstrates this. There are analytic solutions such as the sphere in a plane field for which the Ki is bounded by 3.0. In general it appears that the interpretation of the K_{i} must be made on the basis of an equation showing saturation.

Certain patterns of behavior of the operators is readily evidenced from the results. If there is a deep region which in reality extends over or into 3 or more of the lower blocks such as H-1-1A, stations $8 / 17$ for operators 9 HLS 16 or 8 VLSI 6 then the interior block's K_{i} is always depressed in value while the exterior K_{i} which contain the actual boundary of the block are increased. See pages $112,113,119,124$ and also 125 for examples of this bshavior. This property of the interpretation scheme is evidenced in all those pertinent examples and is probably representative of the final dis-
tribution of sources after interaction has taken place. The fodified firgt approximation appears to be able to fit the dats best when it over-and under-compensates certain blocke avch as on page 116. The amount of such compensation depends Girectly upon the actual strength of the region. Since the operators appear to always operate in this vary predictable manner, due account can be taken in utilizing their interpretstions on field data.

The interpretation results for the K_{i} when considered from the point of view of a bounded strength factor are extremely good in picking out the conducting regions even when the modol and operator blocks did not have correspondance of boundaries. Pages 114 and 120 represent such cases. Moreover, the use of vertical and horizontel operators on regions that were the exact opposite in structure did not jield necessarily poor results although the megnitude of the K_{i} in this case greatly exceeded the assumed bound of 2.0. Refer to pages 113 ard 130 for examples of this type of interpretation result.

The RuS error does not appear to be as useful an indication of appropriate fit and operator as does the inspection of the magnitude of the K_{i}. For those results which represented shifting of the operator along the line so that results were not symetrical but the block corresponded better a significant improvement in the interpretation was nade. Pages 115 and 121 1llustrate this improvement of the interpretations.

Hegin the WhS error did not prove to ve a good figure of merit to evalueta the operator. Although the fiss error is not a unique factor that will allow ar ovaluation of the validity of the interpretation to be made, a tertain idea of the machitude of fitting error is obtained from these results wrich will be useful as a reference in the interpretations on actual field data.

4.4 Interpretation Resulta for thooretical solutions to vertical layera

Additional comparisons of the interpretation reeults using the $8 v i s 16$ operator have been made on taeoretical solutions for vertical layers. The profile line was oriented peroendicular to the vertical surfaces soparating the howom gereous regions and a conducting midale iayer in a uniform background $\rho_{0}=100$ has been the target. The actual locstion of the middle layer is well detected for thicknesses greater than or equal to one unft of the electrode spacing interval. See pages 145 and 143 for such interprotations. When the midale layer in thiner than one unit there is a problem of resolution that the blocks and measuremente cannot hope to correctly delineate, but the interprotation doss pick out the appropriate blocks. A very thin vortical. layer is interproted propaly on pace 149 . In these cases the middle layer extended from etation 5.5 to the right $0.1,0.2$ or 0.4
units as the individual geometry specified. The remaining cases all represent vertical layers with bounding surfaces at points midway between stations. That is, the layer 4 units thick on page 153 extended from stations 3.5 to 7.5 .

As in section 4.3 the interpretation results are good, although the magnitude of the K_{i} often exceeds the proposed limit of 2.0. This is no doubt associated with the fact that the theoretical P_{A} results are for infinite regions rather than finite regions and the first approximation forward solutions for vertical layers are very poor because of the particular geometry. It is not to be expected that the vertical operators for vertical regions will be as good as the horizontal operators for horizontal regions. A comparison of the interpretation results for the model V-2-0 on page 134 and the vertical layer two units thick on page 151 is remarkably similar. This fact is an example of the limits of the resolution power of the dipole-dipole array regarding regions that extend outside the immediate volume of the profile ine. Moreover the over-under compensation result for the deeper blocks is again well ovidenced (see page 152) in all those cases for which a conducting region actually extended over or into 3 or more blocks.

The following pages present the results for few of the vertical layers which were tested by the 8VLSI6 operator and essentially display the range of results obtained. Included is a set of results for the same geometry (1 unit thick midde

LINE NO $=$ VERT LAYER $(1 / 20)$	BACKGROUND $=113$	
STATIONS $=$ THICKNESS $=1.0$	OPERATOR=	
LOCATION $=$ THEORETICAL	RMS ERROR $=0.07$	DATE $=0$

LINE NO $=$ VERT LAYER $(1 / 40)$	BACKGROUND $=115$	
STATIONS $=$	THICKNESS $=1.0$	OPERATOR=
LOCATION= $=1 H E O R E T I C A L ~$	RMS ERROR $=0.08$	DATE $=0$

LINE NO $=$ VERT LAYER $(1 / 10)$	BACKGROUND $=$	104
STATIONS $=$ THICKNESS $=0.1$	OPERATOR $=8 V L S 16$	
LOCATION $=$ THEORETICAL	RMS ERROR $=0.05$	DATE $=3 / 30 / 59$

LINE NO= VERT LAYER $11 / 101$	BACKGROUND=	114
STATIONS $=$ THICKNESS $=2.0$	OPERATOR= 8VLS 16	
LOCATION= THEORETICAL	RMS ERROR $=0.11$	DATE=

LINE NO $=$ VERT LAYER $11 / 101$	BACKGROUND $=$	95
STATIONS $=$	THICKNESS $=4.0$	OPERATOR $=8 V L S 16$
LOCATION $=$ THEORETICAL	RMS ERROR $=0.15$	DATE $=$

Isyer) with different conductivity contrasts. The operator has modified the interpreted $K_{\mathcal{1}}$ values in a consistent manner ss the conductivity contrast increases although the magnitude of the K_{i} are greater than 2.0. It appears that the vertical operator is capable of resolvine the geometry of the subsurface with approximately the same success 28 the horizontal operator but that the K_{1} values are less susceptible to interpretation by Eq. 4.1.1. There is however a strong indication that the results should still be interpretated on the basis of a bounded scurce strength so that the relative sienificance of the K_{i} is not linearly dependont upon their values.

In concluding this section it is useful to point out that there are certain properties which the operators possess which require a familiarity with their results for known eemetries This is necessary in order that results obtained for field data be properly interpreted with regards the tencency of the Iinear approximation to compensate for the non-linear data With which it must work by modifying adjacent blocke' K_{1} values so as to best fit the data. Also there is a possibility that the apoarent resistivity values which are predicted from the final interpretation K_{i} and fo may be negative. This Lmplies an over-shoot in the first poroximation which is a result of the compensation necessary to best fit the data by the linear tneory. A negative apparent resistivity implies that there would also be a certain configuration of source
and receiver which would lead to a zero value or PAj. This property of the linear theory iampresentative of the importance of non-linear interaotions of induced sources whioh determine the final current Llow.

4.5 Intorpretation of Field Date with Rarisontal Operators

The success of the interpretation scheme developed on the basiz of finite sized homogeneous regions in the absurface and tested on both medel and theoretical solutions has lead to application on actual field data. The eveluation of the results of such an interpretation depend critically upon the amount of goelogical control which is available and ala the experience of the personnel doing the empirical interpretation in imilar geological areas. This seotion presents the results of a resistivity survey in one area using the 6 HLsi6 and $9 H 1816$ operators. The plan view on the following page indicates the relative location of the profile ilnes and stations so that correlation of the operator resulta an be made. There are essentially two smaller areas within the large area of interest and these heve been prospected somewhat differently. Field Data 1 represents the area which was survejed with the aid of systematic erid of lines and tations while Field Data 3 refors to the area with no grid but simply three related lines. These vere profiled in the sequence A then B and C as it became ovident as the result were obtained that larger apacing intervals would be required to deteot the deep

Figure 3 Plan View of Profile Lines for Field Data Number I and 3
anomalous region. For the erid lines $(88,72,56,40,24$ and -8) and line A the spacing intervals were the same while for B and C the interval was doublod.

Both operators were applied to the entire set of resistivity data in order to test their relative merits. All of the lines but -8 were longer than the length of the basic operators and thus required a shifting along the lines to cover them completely. The 6HLs 6 and 9HLSI6 interpretation results are very satisfactury and are in close agreement with each other and the known geolofical infomation available. The anomalous region is somewhat oval shaped and in general is approximately one unit deep or more but risee to the aurface in the vicinity of lines 24,8 and -8 .

The complete set of results for the $9 H L S 16$ operator are presented and a summary of the shifting of the operator along each line has also been prepared. 'ihose blocks which overlap are seen to correlate fairly well with each other and the shifting of the operator reproduces consistently the resistivity structure of the subsurface. An example of this for $9 H L S 16$ is seen on page 175 . A summary of the results for the 6HLSI6 operator over the same lines has also been prepared and a comparison with those of the $9 H L S l 6$ results are in complete accord. Compare pages 175 and 178 . The manner of presenting the sumary results has been to use separate

LINE NO $=88$	BACKGROUND $=$	187
STATIONS $=-25 / 20$	OPERATOR $=9 H L S 16$	
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.14$	DATE $=$

LINE NO $=72$	BACKGROUND $=295$	
STATIONS $=-30 / 15$	OPERATOR $=9 H L S 16$	
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.05$	DATE $=3 / 23 / 59$

190	128		91		121	220		158 1	150
	154	90		44		144	146	155	
	101				113			132	
LINE NO=	72							BACKGROUND $=$	$=222$
STATIONS $=$	-20/25							OPERATOR $=$	9HLS 16
LOCATION=	FIELD	DATA 1		RMS	ERROR $=$	0.10		DATE $=3$	3/23/59

LINE NO $=56$	BACKGROUND $=146$
STATIONS $=-30 / 15$	OPERATOR $=9$ HLS16
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.10$

LINE NO $=40$	BACKGROUND $=$
STATIONS $=-25 / 20$	OPERATOR $=9 H L S 16$
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.11$

LINE NO $=40$	BACKGROUND $=114$
STATIONS $=-15 / 30$	OPERATOR $=9 H L S 16$
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.12$

*	*		*		*		*		*	
*	*		*		*		*		*	
* -0.23	*	0.03	*	$1 \cdot 38$	*	1.90	*	1.30	*	$2 \cdot 37$
*	*		*		*		*		*	

*	*		$*$		*
*	*		*		$*$
*	*		*		*
* 2.70	*	0.70	*	$1 \cdot 67$	*
*	*		$*$		*
*	*		*		*

LINE NO $=24$	BACKGROUND $=$	80
STATIONS $=-35 / 10$	OPERATOR $=9 H L S 16$	
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.16$	DATE $=$

LINE NO $=24$	BACKGROUND $=91$
STATIONS $=-15 / 30$	OPERATOR $=9 H L S 16$
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.17$

LINE NO $=8$	BACKGROUND $=$	74
STATIONS $=-30 / 15$	OPERATOR $=3 H L S 16$	
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.13$	DATE $=$

LINE NO $=-8$	BACKGROUND $=957$
STATIONS $=-15 / 30$	OPERATOR $=9 H L S 16$
LOCATION $=$ FIELD DATA 1	RMS ERROR $=0.22$

BACKGROUND $=$	187	178
RMS ERROR $=$	0.14	0.13

[^0]

BACKGROUND $=$	295	222
RMS FRROR $=$	0.05	0.10

$$
\text { LOCATION = FIELD DATA } 1
$$

STATIONS = $-30 / 25$
LINE
$\mathrm{NO}=$
72
OPERATOR $=9$ HLS 16

	3		4		5		6		7		8		9		10			
＊		＊		＊		$*$		＊		\because		艺		关		＊	\ldots	＊
＊	-0.89	＊	0.46	$*$	$1 \cdot 31$	＊	1.53	＊	$0 \cdot 55$	＊	0.87	＊		\％		＊	＊	＊
＊		＊		＊		＊		＊		\cdots		$*$		＊		＊	＊	＊
＊		$*$		＊	1．28	$*$	1． 26	＊	0.68	\cdots	0.83	＊	0.14	$*$	－0．11	＊	关	关
＊				＊				$*$				＊				＊		长
＊		0.79		＊		－0．		$*$		1.		$*$				＊		＊
$*$				＊				\＃				$*$				＊		＊
＊				$*$		0		\because		0		\％		1.		＊		＊
＊				＊				＊				\cdots				$\%$		＊

BACKGROUND $=$

RMS ERROR＝

146
0.10

132
0.09

STATIONS＝$-30 / 25$
LINE
$\mathrm{NO}=$
56
OPERATOR＝
9HLS 16

	3		4		5		6		7		8		9		10		11		12	
＊		$*$		＊		\＃		关		＊		＊		\cdots		＊		＊		关
＊	-0.48	＊	－0．20	\cdots	0.72	＊	0.43	\cdots	1.18	＊	1.21	兴		＊		＊		\％		＊
＊		＊		＊	－0．75	＊	－0．39	＊	1.55	$*$	0.56	\cdots	0.41	＊	0.84	＊		关		＊
＊		＊		＊		＊		＊	1.71	\cdots	0.69	＊	0.97	＊	1.32	3	0.62	＊	－0．21	\cdots

＊	$*$		＊		＊		$*$		谷
＊ 1.97	$*$	1．19	$*$	2.68	＊		＊		为
＊	关	$2 \cdot 44$	为	1.64	＊	$2 \cdot 18$	＊		\％
＊	\％		＊	$2 \cdot 22$	＊	1．33	＊	0.14	＊
$*$	＊		关		＊		＊		\％

BACKGROUND＝

RMS FRROR＝

119
0.13

76
0.11

114
0.12

LOCATION＝FIELD DATA 1
STATIONS $=-35 / 30$
LINE $N O=40$
OPERATOR $=9$ HLSI6

BACKGROUND $=$	74	50
RMS FRROR $=$	0.13	0.12

LOCATION= FIELD DATA 1 STATIONS = $-30 / 25$ LINE NO $=8$ OPERATOR $=9 H L S I 6$

	3		4		5		6		7		8		9		10		11		
＊		＊		$*$		$*$		＊		＊		＊		寿		兴		长	＊
\cdots	-0.03	$*$	1．10	＊	1.50	＊	1．20	＊		＊		＊		$*$		＊		$\%$	＊
＊		$*$		＊		$*$		＊		＊		＊		$*$		$*$		＊	＊
$*$		＊		＊	1．73	＊	0.58	＊	0.40	长	－0．54	$*$		\％		$*$		＊	＊
＊				＊				＊				＊				$*$			＊
＊		$0 \cdot 34$		＊		1		＊				$*$				＊			\％
$*$				＊				＊				＊				$*$			$*$
＊				＊		0.5		\cdots		1		$*$				长			＊
＊				$*$				＊				＊				H			米

RACKGROUND $=$	140	106
RMS ERROR $=$	0.19	0.1

LOCATION＝FIELD DATA 1
STATIONS＝$-30 / 25$
INE $N O=$
56
OPERATOR＝
6HLS 16

	3		4		5		6		7		8		9		10			
＊		＊		＊		\cdots		\cdots		＊		$*$		＊		\cdots	＊	$\stackrel{\square}{\square}$
＊	-1.16	＊	0.22	＊	0.04	＊	1.77	＊		＊		＊		＊		＊	$*$	\cdots
＊		＊		\cdots	－1．23	＊	1.33	＊	0.38	＊	0.64	＊		＊		＊	\cdots	\％
＊		＊		＊		＊		＊	1.52	＊	0.96	＊	1.19	＊	0.01	\cdots	$*$	＊
＊				＊				＊				＊				＊		
＊		2.09		＊		2.78		＊				＊				＊		
＊				\ldots		2.80		\cdots		2.35		＊				＊		
＊				\cdots				＊		2.52		＊		0.55		＊		
＊				\％				光				＊				＊＊		

BACKGROUND
95
64
103
RMS ERROR＝
0.24
0.19
0.24

LOCATION＝FIFLD DATA 1
STATIONS $=-35 / 30$
LINE
$\mathrm{NO}=$
40
OPFRATOR＝
6HLS 16
\qquad

*		*		*		$*$		*		\%
*	1.81	*	2.75	*		*		*		关
*		\cdots	2.64	*	1.28	*		*		\%
*		$*$		*	$1 \cdot 23$	*	0.95	*		*
*		$*$		*		*	1.18	$*$	2.02	\cdots

BACKGROUND $=$
89
61
34
61
RMS ERROR $=$
0.33
0.32
0.31
0.31
LOCATION = FIFLD DATA 1
STATIONS $=-45 / 30$
LINE NO=
24
OPERATOR =
6 HLS 16

*		*		*		$*$	*
$*$	1.89	*	$1 \cdot 37$	$*$		*	$*$
*		长		*		$*$	$*$
*		$*$	0.92	$*$	1.77	*	$*$
*		$*$		*		$*$	*

BACKGROUND $=$
68
35
RMS FRROR=
0.26
0.26
LOCATION = FIELD DATA 1
STATIONS = $-30 / 25$
LINE NO $=8$
OPERATOR=
5HLS 16

LINE NO=	A			BACKGROUND $=187$	
STATIONS $=$	0/45			OPERATOR=	9HLS 16
LOCATION=	FIELD DATA 3	RMS ERROR =	0.06	DATE $=$	3/25/59

LINE NO=	C			BACKGROUND $=97$	
STATIONS=	20/110			OPERATOR=	9 HLS 16
LOCATION=	FIELD DATA 3	RMS ERROR =	0.06	DATE $=$	3/25/59

BACKGROUND $=$		187			151						
Rins	FRROR =	0.06			0.13						
	LOCATION=	FIFLI	DATA	3	STATIONS $=$	$0 / 55$	LINE	$N \mathrm{O}=$	A	OPERATOR=	9HLS 16

BACKGROUND $=$
RMS ERROR

126
0.09

FIELD DATA 3
LOCATION＝
$4 \quad 5$
56
6

7

8

9
10

＊		前		＊		＊		\because		＊		\cdots		关		$*$	＊	＊
＊	-0.80	$*$	-0.16	＊	0.16	\cdots	$0 \cdot 48$	$*$	0.96	$*$	1． 01	＊		＊		＊	＊	\cdots
＊		＊		＊		＊		兴		\cdots		$*$		$*$		$*$		＊
＊		＊		$*$	－0． 57	＊	$0 \cdot 12$	＊	1.19	$*$	$0 \cdot 82$	$*$	$0 \cdot 44$	＊	1．14	＊	$\%$	＊

＊		\cdots		＊		＊		＊	＊
＊	$2 \cdot 27$	＊	1．25	＊	0.96	＊		＊	关
3		＊		＊		＊		＊	$*$
＊		$*$	$2 \cdot 52$	＊	-0.34	长	$0 \cdot 81$	＊	＊
＊		＊		＊		＊		＊	＊

BACKGROUND $=$	113	97
RMS FRROR $=$	0.07	0.06

LOCATION＝
FIFLD DATA 3
STATIONS＝ $0 / 110$
LINE NO＝
c
OPERATOR $=$
9HLS 16

RACKGROUND $=$	172	146
RMS ERROR $=$	0.25	0.21

LOCATION = FIELD DATA 3 STATIONS $=0 / 55$ LINE NO $=$ A OPERATOR= $6 H L S 16$
\qquad 4

＊		$*$		$*$		米		$\%$		\cdots		＊	\cdots	＊	关	＊
＊	-0.17	＊	0.61	＊	$1 \cdot 34$	＊	$-0 \cdot 01$	＊		\％		＊	＊	$*$	＊	＊
＊		范		关		＊		$*$		H		＊	＊	＊	䛔	米
苂		K		$*$	0.93	$*$	－0．48	＊	-1.53	长	－0．96	$*$	＊	\％	＊	＊
＊				$*$				＊				＊\quad 令		光		
＊		$2 \cdot 62$		$*$		0		＊				＊＊			\cdots 娅	
$*$				H				米				＊＊		＊＊		
＊				＊		1		＊		1		＊＊		＊$\quad *$		
＊				＊				\cdots				\＃		寿		

BACKGROUND＝

121
0.15

FIELD DATA 3
0.25

STATIONS $=0 / 110$

LINE NO＝B
OPERATOR＝
6HLS 16

3		4		5		6		7		8		9				12	
＊	＊		＊		\cdots		＊		＊		$*$		＊	＊	＊		\cdots
＊－0．68	＊	－0．06	＊	0.29	＊	1.23	＊		＊		＊		$*$	＊	＊		＊
$*$	＊		$*$		＊		＊		＊		$*$		＊	＊	＊		\cdots
＊	＊		\cdots	－0．41	＊	0.74	＊	0.48	＊	0.71	＊		＊	＊	＊		＊

＊		＊		＊		＊	＊	关
＊	2．22	\cdots	1．29	＊		＊	＊	$\ddot{ }$
＊		＊		＊		＊	＊	＊
＊		＊	1.81	＊	-0.10	＊	＊	$*$
＊		＊		＊		＊	＊	\％

ACKGROUND $=$

100
79

RMS FRROR＝
0.16
0.16

LOCATION＝FIELD DATA 3 STATIONS＝ $0 / 110$ LINE NO＝C OPERATOR＝6HLSI6
horizontal lines within the blocks for the results along different segments of each line.

The overall results of the interpretation operators are excellant and certain additional details of the resistivity structure are obtained which were not capable of resolution by empirical interpretation by skilled personnsl. The aharp cut-ofi in the anomaly to the right on line 40 summarized on page 175 was not predicted in the original interpretation. There sppears to be no dount that the interpretaticns by either operator are consistent with the wown geolocy and that the Interpretation operators have fielded valid results. It should be noted that in general the area is a rather straight forward problem for a skilled interpretor and that the evaluation of the operator resulta has beon made partially on the basis of this empirical interpretation.
4.t Interpretation of Field Data with Vertical Operator

The great success of any interpretation scheme is not to slmply yield correct results for those areas in which the skilled interpretor is sufficiently good but to be able to properly interpret those areas in whicn ne would fail. Fortunately field results were readily avallsble for such an area which had geological control. It was known that the regional structure consisted of a number of parallel layers dipping almost vertically so that it indicated a vertical operator should be employed. Attempts to empirically intorpret the field
data were rather indefinite and an interpretation with the 8VLS16 operator was made.

The following page presents the plan view of the profile lines and atations omployed in the set of data referred to as Field Data 4. Only two lines were available for study in this immediate area but they wer sufficiently long so that a toted of 7 applications of the operator could be made. 4 ammary of the resuits of both lines is also presented on pages 200-1 and the results are extremely good. As seen on both lines there are two thin highly conducting zones dipping to the Northwest at approximately 45°. The first intersects the surface around station IE while the second intersects the surface around 4 . The correlation of the results along each ine and the consistency from one line to the other clearly shows the exact location and orientation of the two regions.

The geological information available states that acne approximately 1 unit thick aips to the Northwest at 35° and intersects the lines at station 1E. In addition there is poseibly accond zone parallel to this first one but to the Sast. Certainly the agreement between the geology and predicted resistivity structure is very good. It is seen that there may woll be an indication of third or fourth zone intersecting the lines at stations $6 \mathbb{E}$ and 0 but there is insurficient data to definitely interpret the eastern extremity of the lines.

Figure 4 Plan View of Profile Lines for Field Data Number 4

LINE NO $=6$	BACKGROUND $=410$
STATIONS $=0 / 9 E$	OPERATOR=
LOCATION= FIELD DATA 4	RMS ERROR $=0.19$

LINE NO $=6$	BACKGROUND $=549$
STATIONS $=4 W / 5 E$	OPERATOR $=8 V L 520$
LOCATION $=$ FIELD DATA 4	RMS ERROR $=0.25$

LINE NO $=6$	BACKGROUND $=$	564
STATIONS $=0 / 9 E$	OPERATOR $=8 V L 520$	
LOCATION $=$ FIELD DATA 4	RMS ERROR $=0.20$	DATE $=$

	3		4		5		6		7	8			9		10		11		12	
＊	－0． 23	＊	1．18	＊	2．37	＊	－0．80	$*$	＊			$\stackrel{y}{x}$	＊		＊		＊		＊	
＊		＊		\cdots	$2 \cdot 34$	＊	-0.19	\because	0.20	兴	1.97	＊	＊		＊		$\cdots \quad *$			
＊		＊		$*$		关		＊	-0.73	＊	1.60	$*$	$0 \cdot 84$	$*$	$\begin{aligned} & 0.25 \\ & 0.76 \end{aligned}$	＊	0.03	$*$	＊	
$*$		＊		＊		＊		芥		＊	1.12	＊	0.82	$*$		＊		关	\％ 1	
＊		＊		＊		＊		＊		长		＊		＊		\cdots		$*$	\％	\bigcirc
＊		＊		＊		$*$		\％		＊		＊		＊		$*$		＊	＊	
＊	$1 \cdot 70$	＊	0.57	＊	-2.37	＊	2.79	＊		＊		＊		＊		＊		＊	\％	1
\％		＊		＊		\％		＊		＊		$*$		＊		$*$		长	\cdots	
＊		＊		$*$	-2.20	＊	0.07	＊	2.90	＊	$-1 \cdot 11$	＊		＊		＊		\because	＊	
＊		＊		$*$		只		$*$		＊		＊		＊		＊		关	兴	
＊		＊		＊		＊		＊	1．35	＊	-2.03	\cdots	0.78	＊	-0.10	＊		＊	爰	
＊		$*$		＊		＊		＊		\ldots		＊		$*$		$*$		＊	$*$	
＊		＊		＊		＊		＊		$*$	-1.72	＊	1.24	＊	$-2 \cdot 26$	$*$	$2 \cdot 15$	＊	＊	
＊		\cdots		＊		＊		＊		＊		＊		＊		$*$		＊	＊	
＊		＊		＊		苂		关		＊		＊		＊		长		关	爰	

BACKGROUND $=$	654	630	410	411
RMS ERROR $=$	0.32	0.25	0.19	0.14
LOCATION $=$ FIFLO DATA 4	STATIONS $=$	$4 N / 10 E$	LINE NO $=$	C

	3		4		5		6		7		8		9		10		11			
$*$		长		＊		只		＊		＊		＊		＊		＊		＊	＊	
＊	0.66	＊	0.14	＊	1．76	\cdots	$-2 \cdot 22$	＊		＊		＊		$*$		＊		＊	＊	
\cdots		＊		$\stackrel{\square}{*}$	$1 \cdot 37$	＊	-2.08	＊	0.18	＊	0.86	＊		\cdots		＊		＊	兴	1
\cdots		＊		＊		＊		$*$	－0．28	＊	1． 26	屰	0.42	\cdots	0.81	＊		＊	＊	
																				\bigcirc
＊		＊		＊		＊		＊		＊		＊		\cdots		\cdots		\cdots	\％	1
$*$		＊		$*$		＊		$*$		＊		＊		\cdots		＊		＊	\％	1
$*$	$2 \cdot 17$	＊	0.40	$*$	$-4 \cdot 14$	\cdots	$4 \cdot 24$	＊		长		＊		＊		$*$		＊	＊	
$*$		＊		＊		＊		＊		\％		＊		\cdots		＊		＊	兴	
＊		$*$		＊	$-4 \cdot 35$	$*$	$3 \cdot 30$	长	1．37	＊	-0.18	＊		＊		＊		$*$	＊	
$*$		＊		$*$		＊		\cdots		$*$		$*$		＊		$*$		＊	\cdots	
＊		$*$		＊		＊		光	$1 \cdot 95$	＊	$-1 \cdot 23$	＊	1.43	＊	$0 \cdot 14$	$*$		＊	＊	
＊		＊		＊		＊		＊		关		＊		＊		＊		＊	兴	
＊		\％		$\%$		\cdots		＊		＊		\cdots		$*$		$*$		＊	关	

There is ilttle doubt that the interpretation operator has proven to be very helpful in interpreting a rather complieated strueture.

4.7 Final Conclusions Regarding Besistivity Intorprotation

The suceess of the interpretation operators developed in this research has been tested for a wide varioty of subsurface tructures. In all eases the results have been consistent with the information evailable regarding the actual resistivity structure. The Iinear approximation requires that some 'over-shooting' of the apparent resistivities predicted occur to best fit the PA data by least squares analysis. This is due to the non-iinear interactions of the induced sources which the real data represents and which the approximation must fit as best it can. It has been observed that if the real structure at depth extends horizontally into 3 or more blooks then a depression of the K_{i} values for the deep interior blocks occurs while the $K_{1} s$ of the doep oxterior blocks are increased. This is a predictable behavior which can be partially eliminated by the use of either shorter operator and/bra hifting of the operator being used. The 1dea of a shorter operator would be to use the 6HLS16 rather than the 9HLS16 for the same data.

The ability to properly interpret complicated apparent
resistivity profiles is of great help in the possible applications of theresistivity prospecting method for it allows not only a detection but also a resolution of the structure to be made. The results presented have all been obtained for the complete interpretation operator wich detormines the background P_{0} in addition to the K_{1}. Work has aldo been done on applyine the limited operators which necessitate that the background be estimated by the individual responsible for the final interpretation. The operators ([$\left.\left.A^{\top}\right][A]\right)^{-1}\left[A^{\top}\right]$ for 6HLS16, 9HLSl6, $9 H L S 20,8 V L S 16$ and $8 V L S 20$ are presented in Appendix II. Their results are in good agreement with the ones herein presented and the final conclusion reached regarding this method of interpretation is that it is a valid quantitative approach to the direct interpretation problem. The results obtained still require the evaluation by adequately trained personnel but much greater detail is possible in delineating the sabsurface structure.

There is no question that this procedure is an approximate one but the results are sufficiently good so that practical apolications can be made. The results have been obtained only for the dipole-dipole array but the concept can be applied to any other electrode array. Because of the success of this interpretation procedure it is anticipated that resistivity methods will be of much prester help in geophysical prospecting in the future. This is basically a direct method of interpre-
tation after the operator has one been chosen. The choice of operator shoula be based on the available geological control about the general structural relations in the area. However, the use of an operator that sioes not correspond to the general trends of the subsurface will not lead to erroneous conclusions. It will however be readily apparent from the magnitudes of the K_{1} that a different operator should possibly be smployed.

Because of the speed and eoonomy with which an electronic computer ean proceas field data there 18 no reason why a number of different operators cannot be used for the same data. This will lead to set of interpretations which can be compared with each other and the best subsurface representation determined. The RMS Error does not appear to be as good a figure of merit to judge the applicability of an operator as the overall range of the K_{1}. It is suggested that the K_{i} determined be interpreted on the basie of bounded source strength such as 4.1 .1 and that more than one operator be employed in areas of iittle geological control. Finally it must be realized that the sesults obtained refer to the subsurface resistivity tructure and this may depart from the conzentional geological structure. In all interpretations obiained with these operators due account must be made of the geological information available as an independent check on the tentative structures inferred.

4.8 Applicability of Interpretation for if Data

An attempt has beon made to extend the linear approximation approach of resistivity interpretation to determining the subsurface polarizable regions from induced polarization measurements. The results however have not been succossful and it is concluded that the intermetation of induced polarization aurveys may not be made by any direct method of interpretation basod on linear approximation theory. As already pointed out although P_{A} may change by 25% at a Qiven station configuration this may only represent a 1% cnange when referred to the backeround ρ_{0}. Thus any method which uses effectively the high frequency faj profile $_{H}$ to determine the corresponding K_{i} or ΔX_{1} would only 111ustrate the siaililty of the operator to sifght changes in the Paj from the low frequency value.

It is neceseary to develop a method which works directly with the change in $P_{A j}$ and relates this to the Δp_{i} for each of the subsurface regions. Eq. 4.2 .12 is one form of such an equation but as might be expected it requires the knowledge of the individusl P_{i}. Since the strencth iactor in 4. 1.1 used to form 4.2 .12 is bounded by 2.0 there is no way of properly interpreting the f_{i} from those K_{I} greater than 2.0 and some manner of scalling them must be introduced so that an actual finite P_{i} may be abstracted from each K_{1} determined.

Then a losst squares fitting of the $\Delta \rho_{A j}$ knowine the $A_{i j}$ and P_{i} would yield the $\Delta \rho_{i}$. However, thite entire procedure has required the introduction of a non-innear strength factor which is bounded and stows saturation. At present the linear intermetation procedure doos not adequately treat tisis nonlinear streneth factor and this difficulty must be properiy resolved before any advance on the IP interpretation by direct methods car be made.

4.9 Suggestions for further work and Sumuary of assumptions

The interpretation system developed has been based upon the concept of subsurface region consisting of a number of finite sized homogeneous volumes. The peonetry and relative location of these regions has beon fixed prior to the interpretation by least squares fitting of the modified first approximation forward solutions. The compositing of the volumes by linear superposition has beon possible because the spproxination used is linear in the effoct of each volume on the measured data. A transformation of the variable to be fitted from potential to apparent resistivity has eliminated the need to integrate field data and any errors introduced by such operation.

The modified first approximation has precerved the vary essential property of symetry which mist be nresent in the meanurements and utilization of smmetric sets of data points
and subsurface regions has maintained this symmetry. It is very important that this property be consistently contained within the interpretation procedure so that correct interpretations of subsurface geometrical relations can be made. There is good reason to interpret the resistivity measurements and interpreted K_{1} on the basis of the bounded strength factor and especially on such as 4.1.l. However, if such a factor is used then due account must be made of the error introduced at adjacent surfaces of the homogeneous regions if simple linear compositing of the rggions is done. Finally the induced polarization direct interpretation must await the development of the satisfactory treatment of the strength factors so that the P_{i} may be properly determined for each region in order that Equations 4.2 .7 and 4.2 .8 be utilized.

Certainly additional work must be done on applying this method of resistivity interpretation to more field data and preferable some with greater geological control. The author feels that the method is sufficiently well developed to apply practically to resistivity interpretation and that a good place to begin would be the already available field data. There is nothing unique about the array nor data point distribution that has been utilized but it has been consistent with past field operational procedures. The array, block configuration, data points and their number can be varied to specifically satisfy a particular geometry. The resolution
limits must always be kept in mind and too much detailed information must not be the goal of the interpretation.

The saturation phenomenon for induced sources which is evidenced in the bounded strength factor for the regions can only adequately be treated in the interpretation operators by the solution of a non-linear set of equations. The procedure would be to calculate the effect of each surface bounding the homogeneous subsurface regions rather than the effect of the region. Then by fitting the data to these effects it would be possible to include the correct strength factor between adjacent surfaces of neighboring regions. That is, if simple linear superposition of the regions effocts are made then an error in the equivalent induced source at such an interface arises. Let σ_{1} represent the conductivity of region 1 and σ_{2} that of the neighboring region. The strength factor to utilize if assuming 4.1 .1 to be correct would be:

$$
K=2\left[\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}+\sigma_{2}}\right] \quad 4.9 .1
$$

However linear superposition places the sum of the two sources computed when each region is considered independently:

$$
\Delta K_{L}=\frac{4\left(\sigma_{1}-\sigma_{2}\right)}{\left(\sigma_{1}+\sigma_{0}\right)\left(\sigma_{2}+\sigma_{0}\right)}
$$

Thus the error is equal to the difference between 4.9 .1 and 4.9 .2 and is given by:

$$
\Delta K-K=\left[\frac{\sigma_{0}\left(\sigma_{1}+\sigma_{2}\right)-\sigma_{0}^{2}-\sigma_{1} \sigma_{2}}{\left(\sigma_{1}+\sigma_{0}\right)\left(\sigma_{2}+\sigma_{0}\right)}\right] K^{4.9 .3}
$$

It is seen that this error is zero only when $\sigma_{1}=\sigma_{2}$ or either σ_{1} or σ_{2} is equal to the background.

In this treatment of the saturation phenomenon the variables become the actual conductivities once an assumption regarding the correct form of K_{i} has been made. The set of equations relating the apparent resistivity effects to the $A_{i j}$ will not be linear in these variables and it may prove to be a difficult task to solve such a set of equations. Possibly an iterative procedure which utilized the linear solution for the K_{i} considering the regions as a unit would lead to a method of solving the set of equations. Starting from this Initial solution for the P_{i} modifications would be made so that a better fit of the data would result. The effects of -asch surface would be used as the influence parameters taking into account the strength factor. Eq. 4.9.1, for adjacent regions. as yet this approach has not been tried.

Some effort has been made on investigating numerically the convergence of the stevenson eris expansion solution for the forward problem. A complete development is not available but preliminary results indicate that the convergence of the solution may be rather slow. The higher order terms in the expansion Eq. 2.3 .3 were calculated from the interactions of
the induced proimary sources on the conducting region. The amount of computation necessary to effect such solution is an order of magnitude greater than that required for the initial linear solution. The results have been evaluated on the basis of whether or not symmetry of the solution is improved by including the higher order terms. Symmetry does not appear to be improved for the one geometry considered to second order, but this question has not been completely resolved. The question of convergence of the forward solution of Stevenson has not been capable of analytical treatment and any numerical work along this line will prove very helpful in justifying the mothod implied. It appears on the basis of intuitive arguments that the convergence of the series must occur and how rapidly this convergence takes place and when does symmetry appear may be treated in this numerical approach.

Appendix I Numerical Evaluation of Forward Problem
The numerical solution of Eq. 4.1 .2 is obtained by an approximate integration over the surface of the homogeneous subsurface region. The surface is conetdered to be subdivided into a large number of small areas and the induced suriace source due to the primary point source calculated. An equivalent point source is then placed at the center of the area and the secondary potential resulting from these induced point sources determined. The surface integral is thus replaced by a double summation which is developed in the following paragraphs.

Feference to the general diagram of rectangular blocks on page 75 will be made. Cartesian coordinates are chosen with the x axis coinciding with the profile line, the y axis horizontal and symetrical about the profile plane and the positive z axis directed vertically down-wards with $z=0$ the surface of the half-space. The center of the body is assumed to be at depth H below the surface of the halfspace and at $x=D, y=0$. Also for simplicity in the formulation fet the half-lengths of the body be defined as: $a=A / 2, b=B / 2$ and $c=C / 2$. Thus the surface integral has to be computed over the 6 surfaces $x=D \pm a, y= \pm b$ and $z=K \pm c$ and it proves economical in both the expressions and actual computation of the surface integral to consider these surfaces two at a time in the sequence $1,2,--6$.

Let ξ represent the source position and α the point at which the potential is measured, both points on the profile line so that the coordinates $y=z=0$. Now the surface is considered to be subdivided into a number of small rectangular surface areas with L, M and N representing respectively the number in the x, y and z directions. Thus $\Delta x=A / L, \Delta y=B / M$ and $\quad \Delta z=C / N$. K represents the magnitude of $\nabla \sigma / \sigma$, or any other expression assumed to be correct for the strength of the induced sources.

Normalize the primary potential φ_{0} so that $\varphi_{0}=1 / R$ where R represents the distance from the source point to the point (x, y, z). Finally $1, m$ and n will represent the positions of the small areas in a sequential numbering in the x, y, z directions. Thus the secondary potential due to surfaces 1
 $\sum_{n_{i}=1}^{\infty} \sum_{m=1}^{1 / 2}\left\{\frac{ \pm K(\pm a+D-\xi) \Delta y \Delta z}{\left[(\pm a+D-\xi)^{2}+\left(m \Delta y-\frac{1}{2} \Delta y\right)^{2}+\left(H-c+n \Delta z-\frac{1}{2} \Delta z\right)^{2}\right]^{3 / 2}}\right.$ $\left.\frac{1}{\pi}\left[\frac{1}{\left.(a \mp a-D)^{2}+\left(m \Delta y-\frac{1}{2} \Delta y\right)^{2}+\left(H-\operatorname{cin} \Delta z-\frac{1}{2} \Delta z\right)^{2}\right]^{1 / 2}}\right]\right\} \quad 1.1$

The secondary potential due to surfaces 3 and 4 are given by:

$$
\begin{aligned}
\sum_{1}^{L} & \sum_{1}^{N}\left\{\frac{+K(b) \Delta x \Delta z}{\left[\left(-a+D+1 \Delta x-\frac{1}{2} \Delta x-\varphi\right)^{2}+b^{2}+\left(H-c+n \Delta z-\frac{1}{2} \Delta z\right)^{2}\right]^{3 / 2}}\right. \\
& \left.\frac{1}{\pi}\left[\frac{1}{\left[\left(a+a-D-1 \Delta x+\frac{1}{2} \Delta x\right)^{2}+b^{2}+\left(H-c+n \Delta z-\frac{1}{2} \Delta z\right)^{2}\right]^{1 / 2}}\right]\right\}
\end{aligned}
$$

and those of surfaces 5 and 6 by:
$\sum_{1}^{L} \sum_{1}^{M / 2}\left\{\frac{ \pm K(H \pm c) \Delta y \Delta x}{\left[\left(-2+D+1 \Delta x-\frac{1}{2} \Delta x-\xi\right)^{2}+\left(m \Delta y-\frac{1}{2} \Delta y\right)^{2}+(H \pm c)^{2}\right]^{3 / 2}}\right.$.
$\left.\frac{1}{\pi}\left[\frac{1}{\left[\left(\alpha+a-D-1 \Delta x+\frac{3}{2} \Delta x\right)^{2}+\left(m \Delta y-\frac{1}{d} \Delta y\right)^{2}+(H \pm c)^{2}\right]^{1 / 2}}\right]\right\}$
The net effect is the sup of these 6 summations and represents the normalized secondary potential due to the subsurface rectangular block.

The errors involved in approximating the surface integral by the discrete summation cannot bo determined accurately. Exact solutions cannot be found analytically for the error terms. They are proportional to the product of second derivatives of the functional being integrated and the spacing intervals chosen as:

$$
E \approx h k\left[\left.m h^{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}\right|_{q_{1}, n_{1}}+\left.n k^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}\right|_{q_{2} n_{2}}\right]
$$

where h and k represent the spacing intervals and m and n the number of the intervals respectively in the x_{1} and x_{2} directions. Numerical computation of the secondary potentials for a range of L, M and N however led to certain conclusions regarding the
relative size of the intervals which would lead to the proper answer. As the spacing decreased to half the electrode interval spacing the results asymptotically approached a constant value. Although the dimensions of the small areas have boen half the electrode intervals it is necessary to refine the spacing when blocke are near the surface.

The computer progran utilized carised approximataly 8 dieit acouracy in floating point form. The effects of the individual contributions range only over a few orders of magnitude so that roundoff errors ase not important and the results are accurate within the truncation error of the disorete surenation. As previously indicated this possibility has been numericaliy investicated and results indicate that this error will be lesi than $\frac{1}{2}$ bas lone as the spatial dimensions of the small areas are on the on the order of half the electrode intervals.

The computation of the higher order terms in the series expansion of Stevenson are calculated by considering each induced point source as a 'primary source'. The effects of these 'primary sources' are to modify the existing induced sources. This interaction can be continued to as high an order desired.

The ΔV_{s} for any electrode array usine point sourcee is then readily calculatad by appropriately combining the primary plus eecondary potentials. Multiplication by the necessary ceo. metrical factor leads to the $P A$ for the subsurface region under consideration.

Appendix II Numerical Evaluation of the Inverse Problem

The numerical solution to the interpretation problem in resistivity prospecting which utilizes the concept of finite sized homogeneous subregions is most easily effected with the use of matrix notation and manipulations. The following pages present the results of machine calculation of the matrix cperator for the interpretation operators 6illsl6, 9HLS16, 9HLS20, 8 VLSI 6 and 8VLS20. The operator matrix is given by:

$$
\left(\left[A^{T}\right][A]\right)^{-1}\left[A^{T}\right]
$$

The convention to be followed in determining the fingl results.of the K_{i} from the B_{j} has already been defined in the block and data point definitions on pages 83-87. The necossary explanatory material for the use of these matrices is presented in the text. In order to present the result in a convenient form, the matrices have been compressed in the horizontal direction so that data points $1-8$ then 916 for block 2, etc. for the 16 data point operators. The 20 data point operators have been compressed as 1-7, 8-14, and 15-20.
$-7.681 E-02 \quad-1.604 E \quad 00 \quad-1.385 E 00$

$6.309 E-01$	$-5.358 E-01$
$9.206 E-02$	$4.333 E-02$
$-5.325 E-01$	$1.274 E 00$

2.344E-01
-5.
$-4.412 E-02$ $1.432 E-01-1.604 E 00$

$7.211 E-03$	$4.726 E-02$	$4.580 E-03$
$2.813 E-02$	$2.344 E-01$	$-5.358 E-01$

$-4.268 E-03$
$-1.333 E \quad 00$
$1.656 E-02$
$4.401 E-01$ $2.177 E-02$
$8.129 E-01$
-3.491F-02 $4.580 E-03$
$-3.491 E-02 \quad 4.580 E-03 \quad 4.726 E-02$
2.813E-02 $-3.749 E-02$ 1.273E 00
$-1.117 E \quad 00 \quad 5.356 E-01 \quad-4.865 E-02$
$1.432 \mathrm{E}-01$-2.574E-02 -1.039E-01
$\begin{array}{rrrr}-1.117 E 00 & -1.645 E & 00 & 4.333 E-02 \\ -5.325 E-01 & 1.870 E-01 & -5.582 E-02\end{array}$
$-3.491 E-02 \quad-1.385 E 00 \quad-1.604 E 00$ 6.309E-01 -1.117E 00
7.560E-01
-1.187E-01
7.560E-01 1.652E 00
$-1.333 E 00 \quad 1.412 E-01$
7.211E-03-1.117E 00
$-8.141 \mathrm{E}-02$ 1.962E-02
$-4.412 E-02 \quad 1.870 E-01$
9.133E-01 -5.582E-02
9.206E-02 -2.574E-02
9.133E-01 -1.039E-01
$-7.681 E-02 \quad-3.749 E-02$
$-8.141 E-02 \quad 1.273 E \quad 00$
1.656E-02 1.412E-01
6.160E-01
2.694E-01
$-2.179 \mathrm{E} 00$

-2.301E 00	-1.398E 00	5.773E-01	-1.446E-02	2.124E-02	7.086E-03	$2.431 \mathrm{E}-03$	1.087E 00
-1.203E 00	2.429E-01	-4.041E-01	-3.330E-02	2.238E-01	$8.856 \mathrm{E}-01$	1.441E-01	-1.189E-01
6.819E-01	-1.061E 00	-1.734E 00	1.136E-02	2.152E-01	3.349E-02	-1.168E-01	-8.377E-01
1.015 E 00	-9.413E-01.	3.438E-01	2.828E-02	-4.724E-02	1.164 E 00	-3.663E-01	1.582E-01
1.631E-01	1.093E-01	$-1.786 \mathrm{E} 00$	-1.113E 00	3.962E-01	-1.173E-01	7.688E-02	$2.313 \mathrm{E}-01$
-8.181E-01	1.245E 00	-1.073E 00	2.164E-01	-5.012E-01	-2.978E-01	1.023 E 00	5.627E-02
7.688E-02	-1.173E-01	3.962E-01	-1.113E 00	-1.786E 00	$1.093 \mathrm{E}-01$	$1.631 \mathrm{E}-01$	-5.012E-01
2.164E-01	-1.073E 00	1.245 E 00	-8.181E-01	2.313E-01	5.627E-02	1.023 E 00	-2.978E-01
-1.168E-01	$3.349 \mathrm{E}-02$	2.152E-01	$1.136 \mathrm{E}-02$	-1.734E 00	-1.061E 00	6.819E-01	-4.724E-02
2.828E-02	$3.438 \mathrm{E}-01$	-9.413E-01	1.015 E 00	-8.377E-01	$1.582 \mathrm{E}-01$	-3.663E-01	1.164 E 00
2.431E-03	7.086E-03	2.124E-02	-1.446E-02	5.773E-01	-1.398E 00	-2.301E 00	$2.238 \mathrm{E}-01$
-3.330E-02	-4.041E-01	2.429E-01	-1.203E 00	1.087E 00	-1.189E-01	$1.441 \mathrm{E}-01$	$8.856 \mathrm{E}-01$
8.021E-01	$8.476 \mathrm{E}-01$	$1.173 E 00$	$4.824 \mathrm{E}-01$	-7.912E-01	-1.425E-01	2.733E-01	-2.336E 00
-9.281E-01	2.641E-01	1.480 E 00	-1.730E-02	-6.662E-01	-2.533E 00	-1.554E-01	1.052E-01
-6.291E-01	4.545E-01	1.380 E 00	7.204E-01	1.380E 00	4.545E-01	-6.291E-01	1.897E 00
2.806E-102	-1.741E 00	-1.741E 00	2.806E-02	1.897E 00	-1.885E-01	-2.194E 00	-1.885E-01
2.733E-01	-1.425E-01	-7.912E-01	4.824E-01	1.173 E 00	$8.476 \mathrm{E}-01$	$8.021 E-01$	-6.662E-01
-1.730E-02	1.480E 00	2.641E-01	-9.281E-01	-2.336E 00	1.052E-01	-1.554E-01	-2.533E 00

OPERATOR MATRIX
-2.035 E 00
1.055 E 00
-7.750E-01
$4.304 \mathrm{E}-01$
$-7.821 \mathrm{E}-01$
$6.474 \mathrm{E}-01$
$-5.418 \mathrm{E}-02$ 9.619E-02
$5.828 E-01$
1.804E-01 -1.763E-01 -1.637E-01
-1.229E-01 2.432E-01 7.403E-02

$$
\begin{array}{r}
9.373 \mathrm{E}-02 \\
-6.771 \mathrm{E}-02 \\
-6.863 \mathrm{E}-01
\end{array}
$$

$$
-6.863 \mathrm{E}-01
$$

$$
3 \cdot 223 E-02
$$

1.506E-01
-9.158E-02
-4.870E-02
4.672E-02 2.850E-01
1.031E 00
$-2.125 E 00$
8.142E-01
-8.665E-01
-1.889E-01
-3.451E-01
1.405 E 00
-9.737E-01
$6.680 E-02$
$6.240 E-01$
-9.821E-01
8.392E-02
-9.779E-01 4.455E-01
$\begin{array}{rr}-1.299 E .00 & 3.916 E-01 \\ -9.133 E-01 & 3.097 E-01 \\ 2.850 E-01 & -9.158 E-02\end{array}$
$-3.809 \mathrm{E}-02$
$-3.657 \mathrm{E}-01$
$-1.874 \mathrm{E}-02$

$$
\begin{array}{rr}
-4.733 \mathrm{E}-02 & -4.870 \mathrm{E}-02 \\
4.672 \mathrm{E}-02 & 1.506 \mathrm{E}-01
\end{array}
$$

-4.733E-02

$$
5.896 E-01-1.034 E-01
$$

$5.998 \mathrm{E}-02$	$2.517 \mathrm{E}-03$	$9.373 \mathrm{E}-02$	$-1.229 \mathrm{E}-01$
$3.368 \mathrm{E}-01$	$-6.771 \mathrm{E}-02$	$2.432 \mathrm{E}-01$	$7.874 \mathrm{E}-01$
$8.312 \mathrm{E}-02$	$3.317 \mathrm{E}-01$	$-2.060 \mathrm{E}-02$	
$-1.093 \mathrm{E}-00$	$-2.183 \mathrm{E}-01$	$-9.843 \mathrm{E}-02$	$1.804 \mathrm{E}-01$
$-8.227 \mathrm{E}-01$	$2.031 \mathrm{E}-01$	$-1.763 \mathrm{E}-01$	$-7.769 \mathrm{E}-01$
$1.638 \mathrm{E}-01$	$6.715 \mathrm{E}-01$	$-2.342 \mathrm{E}-01$	
$-1.093 \mathrm{E}-00$	$-8.741 \mathrm{E}-01$	$2.535 \mathrm{E}-01$	$-5.418 \mathrm{E}-02$
$7.017 \mathrm{E}-01$	-1.059 E 00	$9.619 \mathrm{E}-02$	$1.638 \mathrm{E}-01$
$-7.769 \mathrm{E}-01$	$-2.342 \mathrm{E}-01$	$6.715 \mathrm{E}-01$	
$5.998 \mathrm{E}-02$	-1.094 E 00	$-9.866 \mathrm{E}-01$	$4.304 \mathrm{E}-01$
$-1.384 \mathrm{E}-00$	$7.670 \mathrm{E}-01$	$-7.821 \mathrm{E}-01$	$8.312 \mathrm{E}-02$

$7.874 \mathrm{E}-01$

$$
-2.060 E-02
$$

$$
3.317 \mathrm{E}-01
$$

$$
\begin{array}{r}
-3.809 \mathrm{E}-02 \\
3.097 \mathrm{E}-01 \\
9.710 \mathrm{E}-01
\end{array}
$$

$$
3.916 \mathrm{E}-01
$$

$$
-1.299 E 00
$$

$4.577 E-01$
$1.027 E 00$
1.730E-01

$$
-4 \cdot 201 \mathrm{E}-02
$$

$$
-9.779 \mathrm{E}-01
$$

$$
6.033 E-01
$$

$\begin{array}{rr}-4.201 E-02 & 1.730 \mathrm{E}-01 \\ -1.703 \mathrm{E}-01 & 1.027 \mathrm{E}-00 \\ -1.889 \mathrm{E}-01 & -4.445 \mathrm{E}-01\end{array}$
6.680E-02
1.405E 00
-9.829E-01
8.142E-01
-577E-01
$-2.134 E 00$
$6.138 \mathrm{E}-01$
-1.003 E 00
$6.561 E-01$
$6.240 E-01$
$-9.829 E-01$
$-2.125 E 00$
$-6.704 E-01$
-2.035E 00
$-1.874 E-02$
1.031E 00
3.223E-02
$9.710 \mathrm{E}-01$
$-1.229 E-01$
7.874E-01
1.804E-01
8.312E-02
8.392E-02
$-2.134 E 00$
-3.451E-01
6.254E-01
$-2.241 E-01$

OPERATOR MATRIX
$-3.125 E-01-2.061 E 00 \quad-2.039 E 00$ 1.202E $00-1.664 \mathrm{E} 00 \quad 4.926 \mathrm{E}-01$ $\begin{array}{ll}3.517 E-01 & 6.897 E-01 \\ -1.305 E 00 & 2.289 E 00\end{array}$
$-2.725 E-01$-6.505E-01
$-8.177 E-01$

3.665E-02	7.767E-01	5.673E-01	2.091E-01	1.151E 00
-8.290E-02	-1.505E 00	7.937E-01	-1.319E-01	7.877E-01
$-1.057 \mathrm{E} 00$	-2.918E-01	-6.505E-01	-2.725E-01	-2.212E 00
$2.785 \mathrm{E}-01$	$1.681 E 00$	3.105E-01	8.571E-01	-8.152E-01
-1.057E 00	-8.177E-01	6.897E-01	3.517E-01	1.681 E 00
$-1.305 E 00$	-2.212E 00	-8.152E-01	8.571E-01	$3.105 \mathrm{E}-01$
3.665E-02	-2.039E 00	-2.061E 00	-3.125E-01	$-1.505 \mathrm{E} \quad 00$
1.202E 00	$1.151 E 00$	7.877E-01	-1.319E-01	7.937E-01
5.134E-01	-3.280E 00	-2.072E 00	-7.421E-01	-9.528E 00
2.516E-01	$5.224 E 00$	-5.992E-01	$-1.126 E 00$	-2.602E 00
6.045E-01	$4.393 E 00$	3.180 E 00	1.208 E 00	1.285 E 01
-4.006E-01	-8.647E 00	-4.299E 00	-1.248E 00	4.499 E 0
6.045E-01	-2.723E 00	-2.308E 00	-1.364E 00	-8.647E 00
$2.650 E 00$	1.285 E 01	4.499E 00	-1.248E 00	-4.299E 00
5.134E-01	4.114 E 00	$2.755 E 00$	$9.532 \mathrm{E}-01$	$5.224 E 00$
-4.258E 00	-9.528E 00	-2.602E 00	-1.126E 00	-5.992E-01

OR M						
-1.844E-01	-1.495E 00	-7.955E-01	5.148E-02	-3.327E-01	$1.233 \mathrm{E}-01$	7.997E-02
-1.803E-02	9.192E-01	-1.986E 00	5.464E-01	$1.605 \mathrm{E}-01$	-1.449E-01	8.567E-01
7.226E-01	-2.790E-01	-3.071E-01	5.416E-01	$6.225 \mathrm{E}-01$	-5.604E-01	
2.712E-01	$4.814 \mathrm{E}-01$	-1.420E 00	-1.027E 00	5.381E-01	-2.441E-01	-1.965E-01
-1.258E 00	-1.150E 00	2.163E 00	-2.229E 00	$1.134 \mathrm{E}-01$	1.095 E 00	$8.669 \mathrm{E}-02$
-1.884E-01	6.264E-01	4.413E-01	-8.511E-01	-1.035E-01	$6.136 \mathrm{E}-01$	
-1.965E-01	-2.441E-01	5.381E-01	-1.027E 00	-1.420E 00	4.814E-01	2.712E-01
1.095 E 00	1.134E-01	-2.229E 00	2.163 E 00	-1/150E 00	-1.258E 00	-8.511E-01
4.413E-01	$6.264 \mathrm{E}-01$	-1.884E-01	8.669E-02	$6.136 \mathrm{E}-01$	-1.035E-01	
7.997E-02	$1.233 \mathrm{E}-01$	-3.327E-01	$5.148 \mathrm{E}-02$	-7.955E-01	-1.495E 00	-1.844E-01
-1.449E-01	$1.605 \mathrm{E}-01$	$5.464 \mathrm{E}-01$	-1.986E 00	9.192E-01	-1.803E-02	5.416E-01
-3.071E-01	-2.790E-01	7.226E-01	8.567E-01	-5.604E-01	6.225E-01	
4.496E-01	1.004E 00	-2.033E-01	5.799E-01	1.487 E 00	$5.765 \mathrm{E}-02$	-2.511E-01
-4.214E 00	-3.186E 00	4.099E 00	-5.337E-01	-7.574E-01	$7.005 \mathrm{E}-01$	-1.396E 00
-2.332E 00	-1.554E 00	2.179E 00	-2.244E 00	-1.207E 00	2.798 E 00	
-7.231E-01	-3.522E-01	2.447 E 00	4.517E-01	-1.943E 00	2.067E-01	5.893E-01
5.707E 00	1.383E 00	-6.530E 00	4.324 E 00	9.315E-01	-3.382E 00	-2.881E 00
1.951 E 00	-6.097E-02	-3.373E 00	4.426 E 00	1.490 E 0	-3.992E 00	
5.893E-01	2.067E-01	-1.943E 00	4.517E-01	2.447 E 00	-3.522E-01	-7.231E-01
-3.382E 00	9.315E-01	4.324 E 00	-6.530E 00	1.383 E 00	5.707 E 00	4.426 E 00
-3.373E 00	-6.097E-02	1.951 E 00	-2.881E 00	-3.992E 00	1.490 E 00	
-2.511E-01	$5.765 \mathrm{E}-02$	$1.487 E 00$	5.799E-01	-2.033E-01	1.004 E 00	4.496E-01
7.005E-01	-7.574E-01	-5.337E-01	4.099 E 00	-3.186E 00	-4.214E 00	-2.244E 00
$2 \cdot 179 \mathrm{E} 0$	-1.554E 00	-2.332E 00	-1.396E 00	2.798E 00	-1.207E 00	

Appendix III Homogenoity of Apparent Resistivity in the

 spocific resiativitiesThe fact that the apparent resistivity is a homogeneous function of degree one in the specific resistivities wa first brought to the attention of the author in an oral presentation (1958) of Dr. Harold Seigel. A modified proof of thet given by him is presented in the following.

The apparent resistivity measurement is derined as:

$$
P_{A}=\frac{V}{I} F
$$

where F is geometrical factor depending only upon the - lectrode array omployed and I is the ourrent inserted into the ground with V the voltage measured. The voltage cen be writton as the line integral of the electric field between the two points of measurement:

$$
\begin{equation*}
V=\int \vec{E} \cdot d \vec{s} \tag{III. 2}
\end{equation*}
$$

Now equation 4.1 .2 governs the flow of current within the region and is reproduced here as:

$$
\sigma \nabla \cdot \bar{E}+\bar{E} \cdot \nabla \sigma=q
$$

A scalar multiplication of the $\overrightarrow{\mathrm{E}}$ field by t and a corresponding division of the conductivity by tretains the same form of this

25:

$$
\begin{equation*}
(\sigma / t) \nabla \cdot(t \vec{E})+(t \vec{E}) \cdot \nabla(t / \sigma)=q \tag{III. 3}
\end{equation*}
$$

Thus the current flow Ines will be exactly the same but the effective conductivity will be σ / t and the effective electric field $t \vec{E}$. Hence any multiplication of the specific resistivities will be accompanied by a multiplication of the electric field by the same value. Finally, considering the case of apparent resistivity for a given resistivity distribution and that for a resistivity t times as great leads tor

$$
\begin{aligned}
& \rho_{A}\left(\rho_{i}\right)=\frac{F}{I} \int \vec{E} \cdot d \vec{s} \\
& \rho_{A}\left(t \rho_{i}\right)=\frac{F}{I} \int t \vec{E} \cdot d \vec{s}
\end{aligned}
$$

III. 4
III. 5

Combining equations III. 4 and III. 5 the final result is symbolically represented as:

$$
\begin{equation*}
p_{A}\left(t p_{i}\right)=t p_{A}\left(P_{i}\right) \tag{III. 6}
\end{equation*}
$$

Appendix IV. Remarks concerning the use of computors

Throughout this entire thesis the use of a iligh-speed digital electronic computer, the IBM 704, has been made. It is only recently that such machines have been produced for general use by industrial organizations. The speed of these machines is phenomenal and the costs have rapidy spiralled downwards. This thesis investigation would not have been possible without the use of these machines, not because they are capable of onerations that humans with desk calculators cannot perform but because of their speed and accuracy in performing the immense number of very routine computations necessary.

It is to be noted that the machines of today serve in a Ereat variety of ways. Frimarily they are computational devices but certain operations 2120 them to be instructed to translate from one language to another. Thus a sequence of comands can be written in a rather aymbolic form and the machines used to translate them into the vary basic instructions which any machine must eventually use. In addition to this added phase of application the manner of presenting the results may also be automated. Some machines have cathode ray tubes as a part of the output equipment and graphical or numerical data and results may be displayed and photographed.

In this particular thesis the actual printing of the results has been controlled by a special format which requires
no further drafting or tabulation to use as a final form for presentation. The output devices and translation ability form oxtremely flexible and useful additions to the basic hardware of the computers.

For speciflc examples of the time and costs involved in the use of the 704 on certain phases of this thesis the following tabulation is made:

These costs are oxtrenely low and represent somewhat conservative estimates of the actual time required.

There has been a tremendous growth of the computer industry and also the applications of them to a wide variety of problems. For problems of interpretation and also forward problems in Geophysics the computers will allow treatments and approaches to be toisd that heretofore have been prohibitive because of the man-hours required. There is no doubt that the areas of possible applicetion is geophysics are as great, if not ereater, than in any other discipline. A word of warning for forward problem solutions: an extremely laree collection of exact solutions will not be of asaistance in interpretation but only a hinderance in their use simply because of the quantity. The fact that machines can solve
problems is not sufficient justification for obtaining a large set of such results.

In conclusion it should be noted that throughout the country many organizations unable to finance such computers are readily able to rent a varying amount of time from those larger firms able to carry such a large snvestment in these machines. This essentially provides a supply of computer time for all those parties interested in using these machines in their particular problems.

BIBL,IOGRAPHY

Note: A volumincus literature on resistivity prospecting exists and only those especially pertinent to this thesis have been included here. The transactions AIMB includes five volumes on Geophysical Prospecting (81, 97, 110,138 and 164) which contain many of these papers and also references to other work in the field of electrical measurements.

ADLER, P., 1958, Apparent Resistivity Cross Sections Model Fiosults Dipole Dipol Coupling, MIT Dept. Geology report.

BELLUIGI AND MAAZ, 1756, Die Me thode Stevenson zur Frmittlung cer olektrischen Leitfahigkeit aus der Potentialverteilung auf cier Begrenzungsebene eines Halbraumes, Gerland's Beitrage zur Geophysik 263-272.

GISH AND ROONEY, 1925, Measurement of Hesistivity of Large Masses of Undisturbed Earth, Terr Mag and glec 30,161.

HALLOF, P.G., 1957, On the Interpretation of Fesistivity and Induced Polarization Results, Ph D Phesis, MIT Dept. Geology.

HILDERRAND, F.B., 1956, Introduction to Numerical Analysis, Mc-Graw Hili.

HOUGH, J.M., 1948, Interpretation of Data from Electrical Resistivity Geophysical Surveys, Nature Vol 161, 812-813.

HUMEL, J.N., 1932, A Theoretical Study of Apparent Kesistivity in Surface Potential Methods, Trans Aime 97.

KECK AND COLBY, 1942, The Depth Dependence of Earth Conductivity upon Surface Potential Data, Jour. Appl. Phys. Vol 13, No 3, 179-188.

KING, L. Ve, 1933, On the Flow of Electric Current in SemiInfinite Stratified Media, Proc foy Soc A139, 237.

KIHG, L.V., 1934, on the Flow of Electric Current in a SemsInfinite Nedia in which the Specific Resistance is a Function of the Depth, Royal Soc London Fhil Trans A 233. 327-359.

LANCASTEF-JCNES, 1930, The Earth Resistivity Method of Blectrical Prospecting, Min Mag 42,352-355; 43,19-29.

LaNGZOS, G., 1956, Applied Analysis, Prontice-Hall, Inc..
LaNGEF, R.E., 1933, an Inverse Problom in Differentials Equations, Bull an hath Soc-2,39, 814-820.

LANGER, Fi.E., 1936, On the Determination of Earth Conductivity from Observed Surface Fotentials, Bull Am Nath Soc-2, 42, 747-754.

MADDEN, T.F., 1953. Personal Comunication.
MADDEN, T.R., 1956. Inverse Boundary Value Problems in Goophysics, MIT Geol and Geop. Dept., Geophysics Sominar.

MOORE, R.W., 1945 , an Empirical Method of Interpretation of Earth Resistivity Messuroments, Trans AIME Vol 164.

MUSKAT, M., 1945, The Interpretation of Earth Resistivity Moasurements, rrans AlPA Vol 264, 224-231.

NeSS, N.F., 1956, Vertical Layering in Geophysical Prospecting, MIT Term foport for IBN 650 Computer.

PEKARIS, C.L., 1940, Direct Method or Interpretation in Roeistivity Prospecting, Geophysics 5-1, 31-42.

ROMAN, I., 1931, How to Compute Tables for Determining Resistivity of Underlying Beds and Their Application to Goophysical Problems, US Bur Mines Tech Paper 502,22.

RONAN, I., 1951, Resistivity Reconnaissance, all SOC TeST HAT Speo Pub? 122,171-220.

FOSENZNEIG, I.E., 1940, A New Method of Depth Determination in Apparent Rosistivity Moasurements, Trans AIME 138.

RUEDY, R., 1945, The Use of Cumulative Resistance in Earth Rosistivity Surveys, Canad. J. Res Vol 23, 57-72.

SLICiltait, L. 3. 1:33, The Interpretation of the Resistivity Prospecting Hethod for Horizontal Structures. physics 4,307-322.

STBUBNSON, A.F., 1934, On the Theoretical Determination of Barth Resistivities from Surface Potential Measurements, Physics V,114-124.

STEVENSON, A.F., 1935, On the Theoretical Determination of Sarth Resistivity from Surface Potential Measurements, Phil Mag 19-125, 297-306.

SUNDE, E.D., 1949, Earth Conduction Effects in Transmission Systems, Van Nostrand Co..

TAGG, G.F., 1930, The Earth Fesistivity Method of Goophysical Prospecting. Some Theoretical Considerations, Min Mae 43,150.

TAGG, G.F., 1934, Interpretation of Resistivity Measurements, Trans AIME 110.

TaGG, G.F., 1940, Interpretation of Barth Resistivity Curves, Trans AIME 138.

VOZOFF, K., 1956, Quantitative Analysis of Earth Kesistivity Data, Ph D Thesis, MIT Dept. Geology.

WATSON AND JOHNSON, 1938, On the Extension of the 2-Layer Method of Interpretation of Apparent Resiativity to 3 and more Layers, Geophysics Vol 3,7-21.

WENNER, F., 1915, A Method of Mossuring Earth Rosistivity. US Bur STDS Sci Paper 258.

BIOGRAPHICAL NOTE

The author was born in Springfield, hassachusetts on duril 15, 1933 and moved to Meriden, Connecticut a few years later. Graduating fron the meriden High School in 1951 he ontered MIT the same year. He received the E.S. degree in Geophysios in June 1955 and ontered the MIT Graduate School that fall. Daring the sumners between school years the author has been employed by industrial concerns in both petroleum and mining geophysical exploration and research.

[^0]: LOCATION = FIELD DATA 1
 STATIONS $=-25 / 30$
 LINE NO $=88$
 OPERATOR=
 9HLS 16

