

XVI International Workshop on Deep-Inelastic Scattering and Related Subjects, 7. – 11. April 2008, London

Searches for GMSB at the LHC

Mark Terwort (Univ. of Hamburg/DESY)
on behalf of the ATLAS and CMS collaborations

Outline

- GMSB Model
- GMSB signatures and discovery potential
 - Photon final states
 - Heavy stable charged particles
- Summary

GMSB - Model I

- SUSY is a good candidate for BSM physics
- SUSY breaking: mediated via gravity, gauge interactions, ...
- GMSB described in renormalizable framework (in contrast to mSUGRA)

Par.	Description
Λ	SUSY breaking scale
M	Messenger mass scale
tanβ	Ratio of Higgs VEVs
N	Number of messenger multiplets
sign(µ)	Sign of Higgs mass parameter
$\mathbf{C}_{ ext{grav}}$	Scale factor of Gravitino coupling (~1/C ² _{grav})

Present GMSB limits from TeVatron searches:

Par.	Λ	$m_{ m Neutralino}$	m _{Chargino}
Limit	> 80 TeV	> 110 GeV	> 200 GeV

Features:

- Lightest SUSY particle (LSP): Goldstino/Gravitino (m ≤ keV)
- 2nd lightest SUSY particle (NLSP): Neutralino or Slepton
- Missing energy from Gravitino
- Final state: hard photons, leptons

GMSB - Model II

- LHC will probe new energy range in pp@14 TeV
- Squarks and gluinos will be produced (cross section: a few pb) e.g. via

Different final states compared to mSUGRA

→ This talk: Results of simulation studies of ATLAS and CMS

GMSB - Model III

- 4 main topologies in GMSB (red covered in this talk):
 - Neutralino NLSP:
 - -Prompt decay: di-photon events (e.g. N = 1, $C_{grav} = 1$)
 - -Non-pointing photons (e.g. N = 1, C_{grav} = 55)
 - Slepton NLSP:
 - -Prompt decay: di-lepton final state (e.g. N = 3, $C_{grav} = 1$)
 - -Long lifetime sleptons: quasi stable sleptons (e.g. N = 3, C_{grav} = 5000)

Prompt photon selection (1fb⁻¹)

Prompt photon scenario (7.8 pb)

"Standard" SUSY cuts:

- E_Tmiss > 100 GeV
- $\bullet \quad \mathsf{E}_\mathsf{T}^\mathsf{miss} > 0.2 \; \mathsf{M}_\mathsf{eff}$
- N_{iets} > 4
- p_⊤(jets) > 50 GeV
- p_⊤(leading jet) > 100 GeV

- Cuts on missing energy and effective mass reject BG (full simulation, ALPGEN).
- Striking feature in GMSB1: Prompt photons with high momentum.
- Additional requirement of 2 photons:

→ 252.9 signal events, 0.1 BG events

Di-photon discovery potential (1fb⁻¹)

- Discovery potential in di-photon channel?
 - → Scan of GMSB parameter space using a fast simulation.

Contour lines with 5 signal events.

Decrease of cross section with Λ

→ Decrease of significance

CMS has performed similar studies with comparable reach.

→ Large discovery potential of diphoton signature in part of parameter space.

Heavy stable charged particles (HSCPs)

- In some GMSB scenarios: NLSP = Slepton (e.g. N >1, large tanβ).
- \tilde{g}, \tilde{q} $\tilde{\chi}_1^0$ $\tilde{\tau}$ \tilde{G}

- Sleptons that couple weakly to Gravitino have long lifetime:
 - Heavy stable charged particle with β < 1.
 - For β ~ 1 not distinguishable from ordinary muons
 → use muon triggers (besides missing energy triggers).
 - For β < 1 bunch crossing identification challenging, but most events contain a high β slepton.

HSCP β measurement

- 2 strategies for measurement of β:
 - 1. β from time of flight (muon system)
 - 2. β from ionisation (dE/dx) in tracker (CMS) β from time over threshold in transition radiation tracker (ATLAS)
 - Combination of methods allows good BG rejection (see talk from L. Quertenmont).

- Use of hits from next bunch crossing improves efficiency from 65% to 97% for $\beta = 0.6$.
- Combination of different muon detectors improves accuracy.

HSCP mass measurement

Stau mass can be estimated from β and p

$$m = p\sqrt{\frac{1}{\beta^2} - 1}$$

Example GMSB scenario (CMS):

$$M_{gen}$$
 = 152.3 GeV

$$M_{est} = [153.2 \pm 1.6 \text{ (stat.)} \pm 0.9 \text{ (syst.)}] \text{ GeV}$$

- Slepton mass measureable already at trigger level:
 - β from time of flight in resistive plate chambers (ATLAS)
- Selection:
 - β < 0.97
 - p_⊤ > 40 GeV
 - m > 40 GeV

HSCP selection (1fb⁻¹)

- Selection cuts (Λ = 80 TeV):
 - Pre-selection: single muon trigger ($p_T > 80 \text{ GeV}$)
 - Quality requirements (muon system)
 - Selection: Muon pair with $p_T > 60$ GeV, $M_{\mu\mu} > 110$ GeV $M_{eff} > 360$ GeV
 - β cut

→ 12 signal events, 0.05 background events

Summary

- GMSB possible model for SUSY breaking.
- Striking signatures expected at the LHC:
 - Di-photon (prompt)
 - → Clean signal, low background.
 - Quasi stable staus
 - → Promising results in selection, mass and velocity measurement.
- Discovery possible already with early data!
- Be prepared for first LHC collisions scheduled for this year!

ATLAS and CMS detectors

A Toroidal LHC ApparatuS

Compact Muon Solenoid

Total weight
Overall diameter
Barrel toroid length
End-cap span
Magnetic field

7000 t
25 m
26 m
46 m
2 Tesla

Total weight	12 500 t
Overall diameter	15 m
Overall length	21 m
Magnetic field	4 Tesla

GMSB1 distributions

 Various distributions of cut variables in the prompt photon case.

