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ABSTRACT

An experimental investigation of the transition of a free shear
layer from laminar flow to turbulent breakdown is described. Primary
emphasis is placed on the non-linear stages of transition. Both the
natural and forced transitions are studied. Hot-wire anemometry
techniques are used, and controlled perturbations are introduced by
sound excitation techniques.

The effects of single and dual frequency excitation are investi-
gated. Experimental interest is centered on the transition triggered
by single frequency excitation. The forced transitions are found to
differ from the natural transition. For example, the downstream evo-
lution of the mean flow is dependent on the scale of the particular
forced disturbances present.

The overall transition from laminar instability to turbulent
breakdown covered about five wavelengths of distance. The transition
encompassed six distinct regions of activity. Harmonic and sub-harmonic
modes were present in both the single and dual frequency experiments.
However, the latter was dominated by non-linear combination modes,
and was sensitive to the relative phases of the two excitation signals.

The results show that linear stability theory does predict the
basic instability. The fundamental mode grows as predicted by linear
theory even after non-linear modes are generated. Downstream varia-
tions predicted by a quasi-uniform model did not appear. However,
quasi-uniform calculations do give an indication of which fundamental
modes are favored by local mean conditions for non-linear activity.

Fundamental mode growth rates deviated from exponential values



- 3 -

at amplitudes of order 4%. No specific critical amplitude was found
for the onset of non-linear activity. In general, non-linear modes
appeared before the disturbance amplitude reached 2%.

The importance of non-linear modes in organizing the transition
was demonstrated. The existence of critical Reynolds numbers for
the onset of new finite amplitude instabilities, and bands of Reynolds
numbers over which finite amplitude equilibration occured, gave addded
reinforcement to Landau's original concept of successive instabilities.
The final breakdown to turbulence was found to involve a three-dimen-
sional longitudinal vortex structure. The influence of the discrete
upstream spectra was found to persist into the turbulent breakdown
regions. Weak secondary instabilities were also observed.

A critical disturbance amplitude of 2% was found for the break-
down of linear superposition theory in the mixed frequency experiments.
Non-linear mode competition was observed between the growing funda-
mentals, and the added presence of combination modes caused a redistri-
bution of disturbance energy and not an increase. The phase of the
excitation field was found to a factor in the preferred generation,
of combination modes.

Thesis supervisor : Erik Mollo-Christensen
Title : Professor of Meteorology
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FOREWORD

"It is the instability of the atmosphere which
makes it less predictable than tides and eclipses. It
is instability which renders empirical methods of pre-
diction only moderately successful."

Edward N. Lorenz (1969)

Although studies of oceanic and atmospheric motions have attained

a reasonable degree of achievement, our knowledge of the governing

physical laws is still incomplete and a proper modeling of nature is

presently beyond reach. Scaling arguments and linearization schemes

have been used with great success to isolate given oceanic or atmo-

spheric phenomena from the wealth of other motions which occur simul-

taneously in nature. However, all scales of motion communicate with

each other to one extent or another, and energy is transferred both

up and down the spectrum of disturbance motions. For example, the

small scale surface mixing of atmospheric momentum provides the source

of energy for the global wind driven circulation, and baroclinic mech-

anisms can generate internal waves which may interact and exchange

energy with surface gravity waves or inertial oscillations. Unstable

small scale atmospheric disturbances often derive their energy from

the mean state and in growing in intensity they in turn interact with

and alter the global or hemispheric weather patterns.

As in all fluid systems, the mechanics of interaction are deter-

mined by the Reynolds stress terms which express the exchange of momen-
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tum by disturbance motions. Scaling techniques essentially eliminate

the non-linear influence of other motions by breaking the Reynolds

stress into two parts. One part expresses an average influence of

other scales of motion and is commonly referred to as an eddy stress,

or turbulent viscosity. The eddy stress term tacitly acknowledges

the presence of phenomena of other scales without being specific a-

bout their structure or influence. The remaining portion of the Rey-

nolds stress term is contained within the scaled equations themselves

and expresses the interaction of the considered scale of motion with

itself or with other motions of a similar scale. For lack of a better

name they can be referred to as the "scaled Reynolds stress" terms.

It has been common practice to parameterize the non-linear ex-

change mechanisms represented by the eddy stress. However, we do not

understand the physical laws governing these terms and it is not ap-

parent that they may be appropriately accounted for by using average

values to express their effect. To further increase the analytic

tractability of scaled models, the scaled non-linear terms are usually

eliminated by linearization schemes.

The inherent non-linear behavior of fluid systems make the use

of such linearization schemes an often implausible artifice when mo-

deling the real world, and a lack of knowledge regarding non-linear

exchange mechanisms make parameterization of the eddy stress term very

difficult and suspect in most cases.

An obvious two-fold problem exists in the atmospheric sciences.

Not only can present theories not adequately assess the importance and
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influence of other scales of motion on a given phenomenon but the

characteristics of the non-linear behavior of the desired scale of

motion cannot be satisfactorily taken account of.

Efforts have been made to measure at least some of the in situ

non-linear behavior and interactions of oceanic and atmospheric mo-

tions, (i.e. Starr, 1968). However, the complexity and diversity of

scales involved make a prior knowledge of the more general physical

aspects of non-linear behavior essential for any meaningful interpre-

tation. Although recent advances in non-linear mechanics have esta-

blished many promising theories, a dearth of confirming experimental

information exists. Theoretical models are by necessity abstract and

idealized. In situ confirmations are hard to achieve since controlled

conditions approximating those required by theory cannot be established.

A logical alternative is to conduct controlled laboratory experiments

which can isolate specific non-linear phenomena. Ideally these experi-

ments should be initially concerned with the study of non-linear be-

havior in general, and not with generating spurious and misunderstood

Reynolds stress data. One cannot hope to understand Reynolds stresses

until the fundamental non-linear mechanisms which form the building

blocks for this term are understood.

The majority of oceanic and atmospheric motions are not what are

normally referred to as boundary layer flows. The boundaries do act

as constraints for certain scales of motion, but the dynamic processes

involved are often those characteristic of free shear layers, and this

is a logical area for laboratory investigation.
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Although baroclinic effects are extremely important in nature,

it is felt that a reasonable understanding of the barotropic problem

must be achieved before the complicating influence of stratification

can be effectively studied. However, in order to be able to meaning-

fully investigate the effects of stratification once the homogeneous

problem is at least partially understood, the experiment conducted

here was designed so that a thermal stratification could be impressed

on the free shear layer at a later date. In this way, future work on

non-linear baroclinic effects can be made relative to a base problem

established in the same apparatus. Variations due to stratification

can then be hopefully identified with certainty. All too often, seem-

ingly significant variations in the work of two researchers can be

belatedly traced to spurious differences in the experimental apparatus

used, and not to phenomenological differences in the problems being

studied.

The purpose of this thesis has been to conduct an experimental

study of the non-linear behavior of a homogeneous free shear layer

from the viewpoint of stability theory and transition. Emphasis has

been placed on determining the important non-linear mechanisms which

are involved in the transition of an initially laminar free shear layer

to a quasi-turbulent state. Direct measurement of Reynolds stresses or

baroclinic effects will be left for future work. It is hoped that the

information obtained will provide direction for further advances in the

area of non-linear interactions, the influence of which is so germane

to all fluid systems.
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Experiments on Free Shear Layer Transition
SUMMARY

The stability and transition of a laminar, two-dimensional free

shear layer is studied. The basic flow is formed by the merging of

two laminar boundary layers in the wake of a separating splitter

plate. The resulting mean flow is an asymetric shear layer with two

inflexion points and hence vorticity peaks. The upper layer vorticity

is an order of magnitude greater than that of the bottom layer and

dominates the transition.

Natural Transition:

The natural transition was excited by a clean quasi-white noise

disturbance field. It was dominated in the initial stages of tran-

sition by a broad band of amplifying disturbances, which were centered

about the maximally unstable mode predicted by a linear parallel flow

stability model. This model was based on the mean velocity at the

initial point of instability. However, the non-linear modes which ap-

peared downstream were not multiples of the initially most unstable

fundamental mode. They were found to be multiples of the fundamental

mode which best fit the local mean conditions at the downstream loca-

tion where the disturbances reached finite amplitudes. In general,

the natural transition revealed the following basic points:

(i) Even though the scale of the mean flow changes with down-

stream distance, the dominant fundamental mode over the entire linear

zone of transition was that mode preferred by the mean velocity field

at the initial point of instability.
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(ii) The non-linear mechanisms involved in the transition are

sensitive to the local scale of the mean flow at the point where finite

amplitude effects become important.

(iii) The non-linear modes may not receive their energy directly

from the fundamental mode. The fundamental may act as a catalyst which

allows the non-linear modes to obtain energy directly from the mean

flow.

(iv) The natural transition involves amplifying disturbances which

have randomly shifting phases.
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Natural vs. Forced Transitions

The most dramatic aspect of the forced transitions is the strong

organizing effect that a slight but continuous disturbance input can

exert on the transition. Instead of a broad band of intermittently

amplifying disturbances, only that frequency component picked out

for controlled excitation is observed to amplify. In several respects

the organizing effect of the excitation field prevented the forced

transition from being an accurate representation of the natural be-

havior of the flow. This was particularly true for the evolution

of the mean flow and the non-linear stages of transition.

Experiments with symmetric and asymmetric excitation fields

established the asymmetric phase structure of the naturally unstable

fundamental modes. Higher frequency non-linear modes were basically

symmetric in phase across the center line. Similar experiments demon-

strated that a symmetric forcing field could stimulate the direct

excitation of non-linear modes.

Forced Transitions

Three basic controlled experiments were conducted. Primary

emphasis was placed on the transition of oi the most unstable mode

of the initial laminar velocity field. The transition of fsl an

initially less unstable mode which was preferred by downstream mean

conditions for non-linear activity was also studied. Finally, some

experiments concerning the simultaneous transition of two excited



- 15 -

fundamental modes were also conducted. The three forced transitions

will be respectively referred to as the wI, Wfsl, and (wA + WB

transitions.

Specific data were taken to evaluate the applicability of exist-

ing theories concerning the linear and non-linear aspects of the

transition process. In general the forced transitionswere found to

exhibit a distinct sequence of instabilities which were similar in

character to the sequential instability concept of Landau (1944).

Critical Reynolds numbers for the onset of new instabilities were

found, and banc of Reynolds numbers were found over which disturbance

equilibration occurred. The behavior of the wII transition was of

greatest interest since the initial conditions for its existance

were well understood and verified by theoretical calculations. Also,

w11 underwent the most distinct sequence of transition processes,

many of which were describable by existing theories, and provided

a classic example of an evolving flow undergoing a "slow transition".

The mixed frequency experiments presented many interesting ques-

tions. Its results were used to investigate the bounds on the super-

position principle of linear theory, the phenomena of non-linear mode

suppression, the role of combination modes, and the effects of dis-

turbance phase on the transition. Its results will be summarized

last.

Single Mode Forced Transitions

The experimental results showed that the w transition en-
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compassed six basic stages of behavior: a linear region (i.e. obey distur-

bances linear theory), a weakly non-linear region, a region of finite

amplitude equilibration, a region of finite amplitude triggered instabi-

lities, a region of three-dimensional distortions, and a final stage of

turbulent breakdown. These stages will be discussed in order of down-

stream appearance for the w transition. In general the wfs1 transi-

tion exhibited a similar transition sequence.

Region I: Linear Transition (0.0 + 0.9 XI)

The linear region of transition extended for about one wavelength

of downstream distance. The amplified instabilities originated in the

laminar wake and not in the splitter plate boundary layers. Parallel flow

linear stability theory correctly predicted the basic instability of the

initial laminar flow. Even though the scale of the mean flow changed

with downstream distance, the dominant fundamental mode over the entire

linear region of transition was that mode preferred by the mean velocity

field at the initial point of instability. Downstream changes in growth

rate, etc., as preducted by a series of quasi-uniform stability calcula-

tions were not observed. It was concluded that the initial profile at

which instability first occurs acts as an energy centering device for later

downstream stations. The centering of energy at the frequency of the most

unstable upstream mode acts to suppress any subtle changes in disturbance

characteristics that might be introduced by downstream scale variations.

Cross-stream measurements of the disturbance phase and mean velo-
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city profiles showed that both the initial disturbances and the mean

flow were strongly two-dimensional.

Measurements also showed that the small geometry of the test section

led to the stabilization of long wave modes below ar = 0.175. This re-

sult was in reasonable agreement with a model proposed by Howard (1964).

Region II : Weak Non-Linear Behavior (0.9 -+ 1.8 X )

The generation of non-linear modes characterized this second region

of transition. Even after non-linear modes appeared the fundamental

mode continued to grow at its initial exponential rate. The generated

harmonic and sub-harmonic modes grew exponentially and often at rates

which exceeded that of the fundamental.

The first non-linear modes appeared within one wavelength of down-

stream distance. The amplitude of the w fundamental mode was of order

2% at this point. Second harmonics appeared first, while sub and 3/2-

harmonics were generated when the fundamental mode reached a slightly

larger amplitude of order 4%. Third harmonics and higher modes appeared

last.

In general it was found that lower frequency, larger scale modes

such as wfs could generate strong non-linear activity while at much

smaller amplitudes then w 1 1 . As verified by quasi-uniform calculations

the explanation involved the fact that the larger scale of Wfsl fit

in better with the local downstream scale of the mean shear. Since
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the Reynolds stress term governs transfer energy from the mean flow

to the disturbances it is clear that both the scale and amplitude of

the fundamental modes, which interact with the mean flow, must be

considered when defining a limit on linear behavior.

The sub and 3/2 harmonic modes were extremely intermittant in

this region and were of very small magnitude. These two facts may

explain why other investigators have not noticed as early an appearance

of sub-harmonic activity as this investigator did. The mechanisms

responsible for the sub-harmonic generation are not clear. However,

a heuristic model indicated that a weak parametric resonance effect

may be sufficient to trigger the sub-harmonic mode and cause it to

grow at the observed rates.

Region III : Finite Amplitude Equilibration (1.8 + 2.5 X11 )

Towards the end of region II all modes, including the fundamental,

were observed to deviate from their exponential growths and equili-

brate into finite amplitude oscillations. The equilibration reflected

the influence of non-linear bounds on disturbance energy growth. The

equilibration occurred at about two downstream wavelengths, and the

amplitude of the o11 fundamental mode was of order 12%. The equili-

bration amplitudes were found to vary inversely with frequency and

the longer wave fundamental modes along with their non-linear harmonics

grew to much larger amplitudes. The experimental data was used to

calculate the second Landau coefficients for various fundamental modes.
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The magnitude of the Landau coefficient, and hence the intensity of

the amplitudelimiting non-linear effects, was found to increase with

frequency. The Reynolds number range over which equilibration occurred

was found to vary inversely with frequency.

The equilibration amplitude was also found to be dependent on the

local Reynolds number and obeyed a relation similar to that put forward

by Stuart (1958) for plane Poi.seuille flow. A simple equilibration

model based on this result showed that the generation of harmonics and

sub-harmonics do not play an important role in the equilibration process.

The important effect is the feedback mechanism established by the distor-

tion of the mean flow by the fundamental mode Reynolds stress, and the

subsequent distortion of the fundamental by the distorted mean flow.

Region IV : Second Region of Sub-Harmonic Growth ( 2.5 + 3.2 X11 )

In many respects this region has a very unique character. Even

though the energy of the fundamental mode is still in equilibration,

the sub-harmonic mode starts a second region of very strong growth.

The existance of a distinct sub-harmonic equilibration zone between

the two-regions of sub-harmonic growth- indicate that the destabilizing

mechanisms differ in the two regions. Sub-harmonic growth in region

II was found to be due to either a parametric mechanism, or a weakly

non-linear interaction. In contrast, the second onset of sub-harmonic

growth is definitely due to finite amplitude effects.

The occurreace of a second region of sub-harmonic growth provided
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a classic example of Landau's concept of successive instabilities.

Here, a finite amplitude equilibrium oscillation due to an earlier

instability apparently causes the flow to be unstable for a new type

of disturbance; namely the sub-harmonic mode.

The overall features of the sub-harmonic growth were found to

be in agreement with the theoretical results of Kelly (967). A

fundamental mode threshold amplitude of 10 to 12% was found necessary

in both experiment and theory for the triggering of sub-harmonic

growth. The experimentally measured growth rates were roughly half

of that predicted by theory. This may be due to the dispersive and

intermittent nature of the spatially growing sub-harmonic modes.

Kelly's model considered a non-dispersive temporal flow.

A vortex model, which considered the mutual slipping of like

signed vortex pairs was found to give a physical explanation of sub-

harmonic generation. A series of smoke pictures taken in this region

supported the physical importance of vortex slipping. An extension

of this vortex model to a symmetric wake demonstrated how the symmetry

of the mean velocity field inhibits vortex slipping and hence sub-

harmonic formation.

Region V : Termination of Fundamental Mode Equilibration and the

Onset of Three-Dimensional Spanwise Behavior (3.2+ 4.75A)

The termination of fundamental mode equilibration at -3.2 X

was accompanied by the onset of three-dimensional spanwise distortions.

The distortions quickly organized into a longitudinal stream wise
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vortex structure similar to that discussed by Benney &Lin(1 960).

The spanwise wavelength of the vortex structure decreased with

growing three-dimensional activity.

Similar three-dimensional structures have been found in flows,

such as viscous boundary layers and symmetric wakes, which do not

exhibit sub-harmonic oscillations. Thus the presence of finite

amplitude sub-harmonic oscillations do not appear to be directly

responsible for the three-dimensional behavior of asymmetric shear

layers. The existence of a three-dimensional instability seems to

be a necessary precursor for the turbulent breakdown of shear layers

in general.

Region VI : Final Turbulent Breakdown (4.75 + 5.75 X1 )

The final breakdown of the organized structure of the transition

spectra is accompanied by a commensurate increase in three-dimensional

activity. All synchronization with the upstream oscillations was lost

and at about five downstream wavelengths the disturbance field

abruptly filled out into a broad band spectrum. The presence of weak,

intermittent secondary instabilities were observed at the upper edge

of the shear layer, but no evi-dence of high frequency turbulent bursts

was found.
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Mixed Mode Transition

The mixed mode transition was triggered by simultaneously exci-

ting the flow at two frequencies WA and wB where

WA ~"fsl

WB ~WII

The resulting transition was dominated by wB, the maximally unstable

mode of the linear region.

Sum and difference combination modes which were generated by the

interaction of WA and wB dominated the non-linear stages of transition.

In general, the difference frequency mode underwent the same transition

sequence as the sub-harmonic modes of the single frequency experiments

did. The sum f.requency mode paralleled the behavior of the harmonic

modes of the single mode experiments. The presence of addition non-

linear combination modes appeared to cause a redistribution of distur-

bance energy and not an increase. The preferred appearance of combi-

nation modes may have been due to the constant phase relation between

the excitation signals.

The excited fundamental modes grew simultaneously as predicted

by linear theory until wB reached an amplitude of 2%. This point

marked the upper limit of the region in which the disturbances obeyed

the linear superposition principle. The breakdown of superposition

was reflecting in the appearance of non-linear combination modes and

the suppression of the WA fundamental. Calculations based on the
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work of Stuart (1962) showed that the two fundamental modes competed

for energy. The non-linear coupling of the two modes explained

the suppression of WA. The coupling effects of WB on wA was an

order of magnitude greater than the non-linear effects of WA upon

itself. This was verified by comparing the mixed transition results

to the W fsl transition.

Arguments based on the presence of a few finite amplitude dis-

turbances with random or intermittantly changing phases were shown

to model many of the facets of shear layer breakdown.
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CHAPTER I

INTRODUCTION

"Although the turbulent motion has been extensively
discussed in the literature from different points of view,
the very essence of this phenomenon is still lacking suf-
ficient clearness. To the author's opinion, the problem
may appear in a new light if the process of initiation of
turbulence is examined thoroughly."

L. D. Landau (1944)

The formal problem of stability can be stated as follows: Given

an equilibrium state of a physical system, a departure from equilibrium

is considered, and the question is asked as to whether in the course

of time, or space, the system will tend towards its initial equilibrium

configuration. Departures from equilibrium are physically initiated by

random noise or by the introduction of known controlled disturbances.

Mathematically, a new composite flow field is postulated, consisting of

the initial equilibrium state and a disturbance of given functional form.

Requiring the disturbed equilibrium state to satisfy the non-linear

Navier-Stokes equations and proper boundary conditions serves to forma-

lize analytical stability theory. The relations governing the mean and

disturbance fields are obtained in this manner. The non-linearity of

the system manifests itself in the presence of terms representing the

inertial transport of momentum by the disturbance motions (the so-called

Reynolds stress). These terms couple the disturbances to each other,

and to the mean flow field, so that an exchange of energy may be effected
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between the mean flow and the disturbances of various scales. This

mutual interplay leads to a continual modification, and distortion of

the composite flow field, and a possible generation and subsequent in-

teraction of new fluctuations. It is apparent that on a physical basis,

the "mean part" of the flow field will not necessarily remain the ori-

ginal laminar flow, but must be so defined so that at all times it re-

presents the suitably averaged mean field in the presence of distur-

bances. Only in the classic linear limit, where the influencer of distur-

bance interaction is so small that it has a negligible effect on the

mean flow, will the original laminar profile give a good approximation

to the mean state. In fact, if the analytic system proves unstable,

the initial profile cannot truly exist in the real world and must be

considered as just a convenient possible idealized functioning of the

system.

The earliest analytic efforts were extensions of the well esta-

blished linear perturbation schemes of analytic mechanics. Since li-

near schemes cannot account for the distortion of the mean flow due to

disturbance growth, the validity of such schemes are limited to very

slight departures from equilibrium. They can only truly predict the

possible "onset" of instability due to an infinitesimal disturbance

and none of the subsequent effects. One need only observe a rising

filament of smoke to be convinced that the start of sinuous motion is

only the beginning of the overall process of transition to turbulence.

If all real world disturbances were infinitesimal, linear theories could

always give a Trediction of the onset of instability. However, many physi-
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cal systems which are predicted stable to infinitesimal disturbances,

are physically known to be unstable. The answer often lies in consi-

dering the non-linear finite amplitude behavior of systems subject to

large departures from equilibrium.

In general, linear stability theory can quite often predict the

possible occurrence of instability for infinitesimal departures from

equilibrium. It cannot establish the connection between laminar in-

stability and turbulence, nor can it predict the response to intense

deviations from equilibrium. The stability problem must necessarily

be considered from its more general non-linear viewpoint in order to

achieve an understanding of how, and under what conditions, turbulence,

or a possibly new equilibrium state may occur from an initial laminar

instability. Furthermore, a study of the non-linear aspects of tran-

sition can serve not only to expose the unique characteristics of a

given system, but also to elucidate some of the more general charac-

teristics of non-linear behavior of fluid systems in general. It is

perhaps this last aspect of non-linear transition that is most ap-

pealing and fascinating to physical scientists who study the bahavior

of atmospheric and oceanic motions.

Previous Literature

Stability experiments are really initial value problems which in-

volve the introduction and growth of arbitrary perturbations. However,

due to analytic difficulties, relatively little theoretical attention

has been expended on initial value stability analysis. Some general
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results do exist for the temporal behavior of certain systems. Howard

and Drazin (1965), and Betchov and Criminale (1967) have surveyed the

existing work and reconcile the normal mode approach usually taken,

with that of the continuous disturbance spectrum required in an ini-

tial value analysis or an arbitrary disturbance. Their results show

that the asymptotic solutions of the linearized integral relations gov-

erning the disturbance growths have singular wave like solutions which

grow exponentially with time. The singular solutions can be shown to

be equivalent to those obtained from a normal mode analysis of the li-

nearized, differential stability equations. The growth of the remain-

ing frequencies in the continuous spectra are found to decay as (1/t).

Asymptotically, only the discrete normal mode spectra will lead to ac-

tual instability and the remainder of the continuous spectra need not

be considered for a temporal stability analysis. Similar arguments can

presumably be made for spatial initial value problems, but rigorous jus-

tifications do not seem to be present in the literature.

Historically the experimental work of Reynolds (1883) and the theo-

retical analysis of Helmholtz (1868) and Kelvin (1871) marked the be-

ginnings of hydrodynamic stability theory. Reynolds' classic experi-

ments verified the causal relation between mean flow conditions and the

onset of disturbance growth. The extensive efforts of Rayleigh (1878-

1919) served to formalize the inviscid linear stability theory, and

with minor additions have served as the basis for most subsequent work.

Rayleigh established the analytic equations governing inviscid stability

and, in an extension of Kelvin's work on piece-wise continuous linear
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profiles, analyzed the stability of various symmetric and asymmetric

free shear layers. Rayleigh also proved that a necessary condition

for inviscid temporal instability is that the velocity profile should

have an inflexion point. Fjortoft (1950) proved the stronger neces-

sary condition that the absolute value of the mean vorticity must have

a maximum somewhere inside the flow domain. Tollmien (1935) showed

that in certain cases such as for symmetric velocity profiles in chan-

nel or boundary layer flows, the existence of an inflexion point is

also a sufficient condition for inviscid instability. Howard (1964)

has further shown that each inflexion point will introduce a separate

mode of instability.

Although Rayleigh attempted some discussion of viscous effects,

it was Orr (1907) and Sommerfeld (1908) who established the stability

equations for a viscous linear stability model. Taylor (1915) used

Reynolds' stress arguments to note how the presence of frictionless

boundaries prevented the transfer of momentum necessary to maintain

an unstable disturbance when the mean velocity profile did not have

an inflexion point. Taylor further concluded that viscosity may allow

momentum to be diffused from the boundaries and hence have a destabi-

lizing effect. This was later verified by Lin (1955). Tollmien (1929)

and later Schlichting (1933) obtained solutions to the viscous Orr-

Sommerfield equations for a parallel boundary layer. Schubauer and

Skramsted (1943) experimentally confirmed the existence of Tollmien-

Schlicting waves, and Lin (1955) showed that the instability mechanism

of shear layers which are not influenced by boundaries (i.e. free shear
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layers) is an inviscid one caused by vorticity interactions. Visco-

sity was found to act only as a damping influence. Calculations by

Lesson (1950) and Esch (1957) for viscous free boundary layers showed

that for large Reynolds numbers, the viscous solutions asymptotically

approached the inviscid values. Experiments by Sato (1960, 1961, 1966)

on symmetric and axisymmetric jets and wakes verified these results.

Most linear models assume a parallel and non-developing flow, and

consequently the expanding characteristics of strongly evolving flows

such as jets and wakes cannot be accounted for. Lanchon and Eckhaus

(1964) have used the growing boundary layer thickness to define new

non-dimensional coordinates in an attempt to model quasi-parallel flows.

The new coordinates implicitly contained the boundary layer growth and

the stability equations were derived in terms of these coordinates.

Viscous effects could be included for boundary layers. For free shear

layers, only an inviscid approximation which neglected viscous stresses

and terms in the expansion velocity normal to the layer was considered.

Recent attempts to model the developing aspects of the flow by

"quasi-uniform" temporal models have met with limited success. Quasi-

uniform models calculate the eigenvalues and growth rates at succeeding

downstream stations by using actual measured mean profiles. The results

are then compared to experiment. Mattingly (1968) used both spatial,

and quasi-uniform temporal theories to model a measured symmetric wake.

His results confirm Gaster's conviction that only for a very limited

class of slowly expanding flows will a group velocity transformation

model experimental results. In general, temporal, or quasi-uniform
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temporal theories unsuccessfully model spatially evolving flows.

Most stability models have considered the temporal growth of a

disturbance, rather than the spatial downstream growth normally pre-

sent in physical shear layers. In order to compare temporal results

with experimental data on spatially evolving flows the temporal growth

rates have been normally transferred to a spatial frome by either a

phase velocity transformation (Schubauer and Skramsted, 1947) for non-

dispersive systems, or by a group velocity transformation for disper-

sive disturbances as suggested by Gaster (1962). However, Gaster (1965)

has pointed out that group velocity transformations are valid only for

weakly amplified disturbances and will not give meaningful results for

rapidly expanding flows such as jets and wakes which exhibit strong

disturbance amplifications.

Sato (1956, 1959) used sound perturbations from a speaker to ar-

tificially excite disturbances and verified the exponential spatial

growth of disturbances in the initial stages of the free shear layer

transition. His growth rates were only in order of magnitude agree-

ment with temporal theory, and the phase reversals of the primary fluc-

tuation did not agree at all with theory. Contrary to theory, the

phase velocity was found to depend on frequency. Michalke (1964) used

a hyperbolic tangent profile to make a refined continuous profile tem-

poral analysis and found the same discrepancies. Freymuth (1966) made

a careful experimental study of a free shear layer shed from the edge

of a jet with a large ratio of diameter to boundary layer thickness.

The results were again unsuccessfully compared to existing temporal
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theories and Freymuth concluded that only a spatial stability analysis

could explain the initial stability of expanding flows. Michalke (1965)

made a numerical analysis of a hyperbolic tangent profile using a spa-

tial stability theory and computed the eigenvalues and eigenfunctions

for complex wave numbers and real frequencies. The results obtained

closely modeled the experimental results of Freymuth and Sato. Both

phase reversals and the dependence of phase velocity on frequency were

correctly predicted.

The inadequacies and peculiarities of linear theories can be dis-

cussed ad infinitum. Clearly a disturbance, however well described by

linear theory, cannot grow indefinitely. Nature will always act in one

way or another to reduce the increasing stress. One is led to expect

that non-linear mechanisms may impart at least a partial bound on the

disturbance growth and provide a release valve by means of which the

disturbance can shed some of its excess energy and so to speak "calm

down".

The introduction of non-linear bounds on disturbance growth has

been observed by many investigators. G. I. Taylor (1923) in studying

the instability of a flow between two rotating coaxial cylinders noted

that long before the onset of turbulence and well within the finite

amplitude range, several successive equilibrium states appeared as the

differential shear was increased. In each case, the disturbances had

a definite finite amplitude and the mean flow exhibited a definite de-

viation from the original laminar state. Taylor concluded that the

effect of the second order non-linear terms was to prevent the distur-
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bances from increasing indefinitely in activity.

The concept of non-linear equilibrium states for growing finite

amplitude disturbances was proposed by Landau (1944). In his classic

paper, Landau postulated that transition processes in general may in-

volve a passage through a series of equilibrium states as determined

by the mean flow parameters. This concept of successive instabilities

was summarized by Stuart (1958):

...The occurrence of instability in a flow may lead to the
replacement of the original laminar flow by a new laminar
flow, which consists of a mean flow with a superimposed fi-
nite disturbance. This flow may be expected to persist for
a certain range of Reynolds number above the critical value
and then to become unstable at some Reynolds number against
a new (second) type of disturbance. A new equilibrium flow,
consisting of a mean flow with two superimposed modes of dis-
turbance, is then conceivable for a range of Reynolds numbers
above the second critical value. As the Reynolds number is
raised still further, additional modes of disturbance may
appear successively until at sufficiently large Reynolds num-
bers the flow is so highly disturbed as to be considered tur-
bulent.

Coles (1965) has coined the expressions, "transition by spectral

evolution" and "catastrophic transition", to differentiate between what

appears to be two distinct types of transition sequences. Taylor's ex-

periments on rotating cylinders (where only the inner cylinder was ro-

tated) seem to fall into the "spectral evolution" class. Here, as the

differential shear is increased, an orderly sequence of finite ampli-

tude, equilibrium flows appears. As the shear is increased further,

small scale irregularities and turbulent structures gradually appear.

In this evolutionary process, the disturbance spectrum changes gradually

from a discrete form, to a continuous turbulent spectrum without the
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appearance of intermittent hehavior.

Evolving flows such as expanding viscous boundary layers seem

to fall into the "catastrophic transition" class. Here, disturbances

pass through different Reynolds number regimes as they proceed down-

stream. The flow evolves very quickly from laminar flow to turbulence

without the establishment of any regions of finite amplitude equili-

brium oscillations.

The basic difference between the two classes of transition is

really determined by the residence time a disturbance can spend at a

critical value of the flow parameter. In the Taylor flow, one can

maintain the Taylor number at any desired value. In boundary layers

a disturbance is convected without control from one value of critical

Reynolds number to another. rhe time scale of residence is too small

for the disturbance to equilibrate in any given Reynolds number band.

Physically this means that the critical Reynolds numbers are spaced

very close together, and the time scale necessary for equilibration

is much larger than the residence time in any given band.

However, some evolving flows such as jets and wakes do exhibit

distinct equilibration regions of finite amplitude oscillations. Here,

there is a wider band of local Reynolds numbers in which equilibration

can occur and the wake disturbances (in contrast to boundary layers

which seem to have narrow equilibration bands) effectively have a

longer residence time in which successful equilibration can occur.

In effect then, wake disturbances pass more slowly through an equili-

bration zone, and the terms "fast" and "slow" transitions have been

used to discriminate between these two types of evolving flows. A
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"slow" transition flow is really a hybrid of Coles' two classes.

Non-linear disturbances are normally referred to as existing under

"1supercritical" conditions if they appear at values of the local Rey

nolds numbers which are above the critical value for linearized insta-

bility, and as existing under "subcritical" conditions if they occur at

Reynolds numbers below the linear critical value. In the latter case

the initiation of instability is due to finite amplitude effects, and

although finite amplitude effects are important for some systems, only

the appearance of non-linear effects under supercritical conditions

will be considered here.

The development of non-linear stability theories for evolving flows

has proved extremely difficult. Even slight changes in the value of the

local Reynolds number or other mean parameters can produce strong non-

linear effects which have to be taken into account. Most of the de-

tailed theories have been developed for flows, such as plane Poiseuille

flow, which exhibit a constant Reynolds number throughout the flow.

Hence analytically, the Reynolds number can be varied at will in order

to search for possible bands of Reynolds number in which equilibration

can occur.

Stuart (1958) studied the non-linear behavior of plane Poiseuille

flow, and the flow between two rotating cylinders. An integral energy

balance technique was used which only took into account the mean flow

distortion due to the Reynolds stress action of the fundamental and the

consequent modification of the fundamental. The analysis produced an

equation first discussed by Landau (1944) governing the asymptotic
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finite amplitude of the fundamental disturbance oscillation. Stuart's

results showed that the method gave good agreement for flows, such as

that between two rotating cylinders, in which the overall or "integral"

properties are important. For plane Poiseuille flow and others governed

by the Orr-Sommerfeld relations, the precise spatial details of the flow

are important and the integral method had less validity and gave poor

quantitative agreement with experimental data.

In a later series of papers Stuart (1960a, b, 1962, 1967)often used

the analytic convenience of constant Reynolds number Poiseuille flow to

attack the problem from the viewpoint of the Orr-Sommerfeld equations

directly. The effects of harmonic generation were taken into account

and both subcritical and supercritical behavior were considered. The

nature of the limiting non-linear solutions of the equations as the Rey-

nolds number tended towards a critical value was considered. Again a

Landau relation, of more complicated form was found and the results

showed that equilibrium disturbances can exist under both subcritical

and supercritical conditions near a particular critical value of Reynolds

number.

Watson (1960) developed a valid perturbation expansion of the non-

linear, time dependent Navier-Stokes equations and obtained some formal

analytic solutions for Couette flow. The method of solution is si-

milar to that put forward by Stuart and essentially uses an undetermined

time dependent amplitude function in place of the exponential growth of

linear theory. Expansions in terms of the undetermined amplitude para-

meter are made and give rise to a Landau type equation. Disturbances
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were found to grow exponentially for small values of the amplitude

parameter. However at larger amplitudes an asymptotic equilibrium

oscillation of a definite finite amplitude, which was independent of

the initial disturbance amplitude, was found. This, as discussed ear-

lier, is very similar to the behavior of the laminar wake observed be-

hind cylindrical bodies for certain Reynolds number ranges. Liu (1969)

extended the work of Stuart and Watson and others to the case of spa-

tially growing disturbances.

Research on the non-linear transition of evolving flows achieved

a significant milestone with the experimental work of Klebanoff, Tid-

strom and Sargent (1962). Most of our present knowledge of non-linear

transitions is based on boundary layer studies; it proves useful to note

the important elements of the boundary layer transition process. Using

a vibrating ribbon to generate controlled two-dimensional and three-

dimensional disturbances, the nature of boundary layer transition from

laminar to turbulent flow was systematically explored. The sequence of

events in the boundary layer transition can be summarized as follows.

First, two-dimensional linear Tollmien-Schlichting waves developed in

the boundary layer at points beyond the critical Reynolds number. The

originally two-dimensional linear waves developed strong three-dimension-

al effects before any noticeable non-linear features were observed. As

the wave grew in amplitude, non-linear longitudinal vortex structures

evolved which then established local regions of high shear. Intermit-

tent bursts of high frequency oscillations appeared at these regions

and eventually formed series of randomly distributed turbulent spots
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that eventually became numerous enough to develop a fully turbulent

flow.

Klebanoff's work indicated that the three-dimensional effects

play a very significant role in the breakdown process of boundary la-

yers. Three-dimensional distortions appeared before noticeable non-

linear effects were observed, and seemed to be a necessary prelude to

the non-linear aspects of the transition. The importance of three-

dimensional effects was further illustrated by the theoretical work

of Benny (1961) and Lin and Benny (1964). They showed that the inter-

action of a two- and three-dimensional wave could produce a streamwise

vortex flow as experimentally observed. Klebanoff concluded that strong

development of the three-dimensional structure seemed to be an inherent

property of the transition which was independent of any external or

random excitation.

As pointed out earlier, however, in the context of "fast" and

"sLow" transitions experimental studies have shown that the character

of the non-linear transition and breakdown stages of free shear layers

are in many respects very different from that of viscous boundary layer

flows.

In considering free shear layer transition one must, at least in

principle, make a strong distinction between the behavior of symmetric

and asymmetric mean flows. As will be discussed, a symmetric wake (or

jet) tends to exhibit a more organized, non-linear behavior than an

asymmetric flow (such as a single separated shear layer). However,

many observed characteristics of free shear layer transition are found



- 38 -

to be common to both flows, and when studying a physical flow which is

not purely symmetric or asymmetric, it often proves useful to identify

those aspects of the transition which are characteristic of symmetric

wakes on one hand, and asymmetric free shear layers on the other.

Also the difference between "high" and "low" speed modes of wake

instability must be considered. In the high speed mode the instabili-

ties are due to vorticity concentrations shed from the unstable boundary

layers of the body forming the wake. These are often referred to as

bluff body experiments. In the low speed mode, the instability arises

in the wake of the body. The body only acts to establish the geometry

of the shear layer formed in its wake.

This thesis is concerned with the low speed mode of transition and

all following comments will pertain to free shear layers in which the

instabilities arise in the initially laminar wake.

The experiments of Sato and Kuriki (1961) and Sato and Okada (1966)

determined that the initial stages of transition in a symmetric wake

were characterized by the presence of two-dimensional, antisymmetric

disturbances which were described by linear theory. However the linear

region was limited in extent, and non-linear effects were found to do-

minate the major portion of transition. The primary fluctuation ob-

served in the linear region was also prominent in the non-linear zone,

although its growth was found to progressively deviate from its initial

exponential behavior as downstream transition proceeded. The appearance

of higher ordered harmonics was characteristic of the non-linear zone.
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and the flow was found to be highly two-dimensional. After the non-

linear, two-dimensional behavior was established, three-dimensional

non-linear distortions were noticeable, and the fluctuations gradually

developed into turbulence without any noticeable sudden breakdowns or

intermittent turbulent bursts.

Lin and Benny (1964) used various arguments based on the pos-

sible sources of secondary instabilities to explain the gradual break-

down of free shear layers in contrast to boundary layers. They con-

cluded that the strong expanding nature of free shear layers may pre-

clude any efficient organization of three-dimensional effects which

might otherwise give rise to intensive regions of local shear and hence

violent new instabilities.

Linear spatial amplification theories by Mattingly (1968) and

others have confirmed Sato's results that antisymmetric u' disturbances

are more unstable than symmetric disturbances for symmetric wakes. Ko,

Kubotu and Lees (1969) used the experimental data of Sato and Kuriki

to conduct a theoretical non-linear spatial analysis for a symmetric

wake. Using a two-dimensional antisymmetric disturbance and its harmo-

nic many of the important experimentally observed features were explained,

including the streamwise amplitude variation of the primary fluctuation.

The analysis was basically an extension of Stuart's equilibrium state

calculations.

Although a considerable body of theoretical knowledge exists on the

linear stability of asymmetric flows, very little theoretical or experi-

mental attention has been paid to the non-linear problem. Two basic



- 40 -

experimental approaches have been used to form separated asymmetric

free shear layers. Sato (1956, 1959) used the flow behind a rearward

facing step to form a single free shear layer, while others, such as

Wille (1963) have used the outer edge of plane and circular jets with

large core areas to study asymmetric free shear layers. For jets with

a large ratio of core diameter to shear layer thickness, the outer edge

shear layers can be considered as non-interacting free shear layers and

niot strongly coupled as in jet flows. For plane jets, the two edges

are independent while the behavior is more complicated and circumferen-

tially linked for circular jets with large cores. In at least one res-

pect, namely the appearance of sub-harmonic oscillations, the non-linear

behavior of asymmetric free shear layers differs quite dramatically from

that of narrow symmetric wakes (or jets) and boundary layers.

Several investigators, Sato (1956, 1959), Wille (1963), Browand

(1966), and Bradshaw (1966), have noted that the non-linear transition

regions of asymmetric free shear layers characteristically exhibit sub-

harmonic oscillations with a frequency one-half of the primary oscilla-

tion observed in the linear zone. In a series of experiments similar

to those on symmetric wakes Sato observed that with the exception of

the unexplained presence of sub-harmonic oscillations, the general char-

acteristics of the transition process mirrored that of symmetric wakes.

A laminar-linear-non-linear-three-dimensional+turbulent breakdown se-

quence was observed. As with symmetric wakes no pronounded presence of

intermittent turbulent bursts were observed and the transition to tur-

bulence was a gradual and irregular process. Wille (1963) observed sub-
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harmonic oscillations in the transition of jet-formed free shear layers,

and concluded they were due to the interaction and fusion of vortices

which were observed to develop in the late stages of transition. Models

which attempt to explain sub-harmonic development due to wake spreading

do not seem to be valid since no sub-harmonic response is observed in

similarly spreading symmetric wakes. Michalke (1965) used a linear

theory to explain the formation of vortices in a hyperbolic tangent pro-

file wake. Using the calculated linear results as a shape function for

Stuart's non-linear theory, the vorticity distributions obtained were

found to be similar to those experimentally observed by Wille. Aberna-

thy and Kronauer (1962) surveyed the prior work on non-linear interaction

of finite amplitude vortex sheets constructed from alternating points vor-

tices. The results indicate a finite amplitude tendency for an infinite

single vortex sheet to evolve into a row of concentrated vortices.

Browand (1966) investigated the non-linear transition region of a

separated free shear layer and experimentally determined that the sub-

harmonic appeared when the primary oscillation reached about 10% of the

free stream velocity. The sub-harmonic growth was observed to be inter-

mittent and the generation of third harmonics of the sub-harmonic was

observed. Browand used a model of a single row of alternating vortices

to qualitatively explain the generation of sub-harmonics. The model was

similar to one proposed earlier by Sato.

Browand's data indicated the presence of a secondary instability

in the final stages of transition. Limited measurements of

three-dimensional effects indicated that the flow was strongly two-
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dimensional in the initial region of sub-harmonic growth. However,

these were not extended to cover the actual region where the transi-

tion to turbulence occurred.

Kelly (1967) studied the non-linear behavior of a parallel, tem-

porally growing asymmetric free shear layer. His results indicate that

secondary instabilities associated with the finite amplitude behavior

of the primary fluctuation can act to selectively reinforce the sub-

harmonic frequencies. Kelly's results also indicate that the 3/2-

harmonic may be selectively reinforced by finite amplitude effects.

Using a hyperbolic tangent profile, reasonable qualitative agreement

with Browand's data was achieved.

Freymuth (1966) made a series of smoke pictures in a separated jet

wake and correlated the results with hot-wire measurements. The results

demonstrated that phase reversals occurred in the linear region long be-

fore smoke vortices appeared and concluded that the presence of vortices

cannot necessarily be inferred from the existence of phase reversals in

the velocity fluctuations. His pictures showed a tendency for "vortex

slipping" in the non-linear zone and he further conjectured that this

was the cause of the appearance of sub-harmonics.

Bradshaw (1966) has also observed the formation of sub-harmonics

and based on flow-visualization pictures, concluded that the final break-

down to turbulence may occur via the longitudinal vortices predicted by

Benny (1961). Benny's calculations, although discussed earlier in the

context of boundary layer transition, were rather general and applica-

ble to parallel flows in general. His actual calculations were in fact
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for a hyperbolic tangent free shear layer, and it is highly likely that

three-dimensional effects may play a more significant role in the tran-

sition process of free shear layers than previously considered. The

lack of experimental results on the spanwise behavior of free shear la-

yers render the subject an open area.
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CHAPTER II

EXPERIMENTAL APPARATUS AND INSTRUMENTATION

II.1 Wind Tunnel

The basic test apparatus is a low turbulence, open return wind

tunnel of wood construction, with facilities for generating velocity

and temperature gradients in the mean flow field. The main unit of

the tunnel (shown in figures 2.1 to 2.4) is square in cross section,

and is divided into two sections by means of a horizontal splitter

plate assembly. The splitter plate runs the entire length of the

tunnel, and extends to the test section entrance. Each section is ef-

fectively an independent wind tunnel, and consists of a variable speed

centrifugal blower, a baffle chamber to dampen blower induced pressure

oscillations, a wide angle diffuser, a setting chamber incorporating a

variable temperature heat exchanger, and a 11:1 contraction zone to

accelerate the flow into the test section. With this dual configuration

the top and bottom streams can be maintained at different speeds and

mean temperatures. A stratified, or non-stratified, free shear layer

can be generated by merging the two streams in the wake of the dividing

splitter plate.

The centrifugal blowers are two stage units with separate impellor

units for motor cooling and blower outputs. The blower outputs were

extremely stable; the operating r.p.m. varied by less than 1% over the

course of an experiment. Short term variations in blower output were

not noticeable; however, high frequency pressure fluctuations caused
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by irregularities in the eight bladed impellor were present. To

alleviate this condition barrel shaped baffle chambers with a honey-

comb and filter mat interior were used to isolate the blowers from

the wind tunnel. Several small openings were used to couple the cham-

bers with the ambient room. The impedance of the openings tended to

damp any low frequency resonances within the chambers.

The baffle chambers were connected to the tunnel diffusers by

6.35 cm flexible hosing. A dust filtration unit, consisting of sever-

al interspaced layers of fine mesh silk screening and Faber H. P. mi-

cron filter matting, was placed at the diffuser entrances. These were

then followed by a staggered series of coarse mesh wire screening which

were used to smooth the expanding flow. The micron filters have a mean

rated efficiency of 95% for 5 micron sized particles and larger. The

effectiveness of the micron filters decreased with use, and on final

data runs, the filter sections were renewed. This proved to be of con-

siderable importance in maintaining consistent hot-wire calibrations.

The heat exchange units were used to maintain the air temperature

of the incoming streams at a desired constant value. The units were

constructed from standard automobile radiator cores adapted with the

proper headers to fit the dimensions of the tunnel. The units were not

used for differential heating in these experiments, but were employed

to maintain the incoming top and bottom streams at the same uniform and

constant reference temperature. The importance of minimizing mean tem-

perature irregularities has been pointed out by Corrsin (1963). Slight

density variations due to temperature non-uniformities are accelerated
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at different rates in the contraction zone and can lead to noticeable

velocity irregularities. As noted by Corrsin, a 1*C hot spot can lead

to a 0.1% Velocity perturbation in the test section. The exchangers

also acted to thermally shield the hot-wire sensor from spurious tem-

perature loadings due to variations in the ambient or blower operating

temperatures. This helped to prevent changes in the probe calibration

during the course of an experiment.

The heat exchangers produced one drawback, however. The radiator

cores generated a mild large scale eddy structure in each stream. A

1.5 cm layer of Scot 30 PPI Fiter Foam, was placed behind the radiator

cores to damp the generated eddies. This is a porous, reticulated, po-

lyurethane foam, and proved very effective in reducing the intensity of

the radiator eddy structure to acceptable levels.

To further reduce flow irregularities, a series of six silk damp-

ing screens were installed. The mesh size of the screens was cascaded

from largest to smallest in the flow direction. The screens were placed

at 400 mesh length intervals to allow sufficient decay time of the fine

mixing eddy structure generated by the screens. An excitation loud

speaker was mounted on the roof of the settling chamber at a position

mid-way between the radiator core and the first silk screen. It is as-

sumed that the screens acted to distribute the induced velocity fluctua-

tions uniformly over the top stream.

The flow was accelerated from the settling chamber into the test

section through an 11:1 contraction stage. This ratio is on the margi-

nally low side of the values assumed necessary for low turbulence wind
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tunnels. Values greater than 10:1, and preferrably in the range of

20:1 are considered necessary to induce sufficient axial strain to

reduce the relative turbulence level of the acclerated flow. Care

must be taken to avoid boundary layer separation on the contraction

walls. A carefully designed contraction zone from a previous wind

tunnel was used. The effectiveness of this zone was demonstrated by

the low turbulence levels and uniform profiles of the exiting flows.

On leaving the contraction zone the exiting streams of air run paral-

lel for 15 cm, and then merge in the wake of the splitter plate.

The tunnel configuration as described, gave a usable test section

velocity range of 25 cm/sec to 500 cm/sec, and a differential tempera-

ture difference between the two streams of 10*C to 60*C. The free

stream turbulence levels measured two centimeters before the splitter

plate and were found to be 0.01% and 0.06% for the top and bottom

streams, respectively, when operating at their final mean speeds of

200 cm/sec and 38 cm/sec. The turbulence levels varied slightly with

time, but with judicious replacement of filters, the stated values could

be closely adhered to.

11.2 Test Section

The test section in which the experiment was conducted is shown

in figure 2.2. The walls, and non-structural elements of the tunnel

are made from 1.60 cm plexiglass. The initial cross-sectional area

at the splitter plate edge is 12 x 13.5 cm. The side walls of the

test section expand in the downstream direction in order to eliminate
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flow acceleration due to boundary layer growth on the walls. The

final downstream exit cross section is 20 x 12 cm. The main feature

of the test section is a multiple direction, traversing unit. This

unit can be viewed as three traverses, each moveable in a different

coordinate direction, mounted successively on top of one another.

The hot-wire, or pressure probes, are mounted on the traveler of

the vertical traverse. It is guided in its vertical movements by an

airfoil shaped collar. The probe-airfoil assembly (see figures 2.5

and 2.6) enters the test section through a 50 cm long slot, machined

in the test section roof. Two strips of silicon impregnated rubber

are mounted flush with roof and are butted together to meet mid-way

over the slot, and seal the opening. The airfoil shape of the guide

allows it to move longitudinally along the interface of the two rubber

strips without breaking the seal.

The vertical traverse unit is then mounted on the traveler of the

streamwise traverse as shown in figure 2.5. This allowed the probe to

be moved along the downstream axis of the tunnel while being maintained

at any desired height. The bed of the streamwise traverse formed the

roof of the test section. This bed is made of 1.9 cm plexiglass and

rests on two brass rails which allow the roof to slide in the cross-

stream direction. The roof is coupled to the traveler of the cross-

stream traverse by two vertical connecting rods. The cross-stream tra-

veler incorporates two linear ball-bearing bushings, which ride on paral-

lel steel shafts. The unit is advanced by a lead screw geared to a

variable speed D.C. motor. The vertical and streamwise traverse units
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also utilize the same basic linear bushing, parallel shaft, motor-

driven lead screw design. Each traverse can be operated independently

of the others.

The sliding roof of the tunnel is structually supported by the

cross-stream traverse connecting rods, and is shimmed to clear the top

edge of the side walls by 0.15 mm. The remaining air gap is sealed

by attaching a strip of silicon-impregnated rubber to the upper side

walls so that it rubs against the lower edge of the roof.

Each traverse is driven by a variable speed D.C. motor, powered

by an accurate voltage control unit. The vertical traverse speed can

be varied from 0.1 mm/sec to 2.0 mm/sec. The streamwise and cross-

stream traverses could be driven from 0.2 mm/sec to 5.0 mm/sec. Vernier

scale indicators were used to position the three traverses. The ver-

tical traverse could be repositioned to + 0.15 mm. The streamwise and

cross-stream traverses could be positioned to + 0.25 mm. Ten-turn

precision potentiometers were geared to each traverse drive. The vol-

tage output of these pots were converted to an F.M. signal by a multiple

channel, voltage-controlled oscillator. In this way a very accurate,

frequency modulated signal proportional to the spatial position of the

probe, could be continuously monitored with a digital counter and was

available in a convenient format for analog tape recording. The traverse

geometry allowed the probe to explore the last 8 cm of the splitter

plate in order to establish the initial flow conditions. The effective

total length of the test section that could be explored was 30 cm down-

stream of the plate, and 8 cm upstream of the plate. Several configura-
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tions were used for the trailing edge of the splitter plate. The most

satisfactory design was a 15-cm length of 0.165 cm expoxy-fiberglass plate.

This plate is commercially available with very precise tolerances on

the surface finish and levelness. This type of expoxy sheet is almost

impervious to nicks and scratches. The trailing edge was machined to

form a slowing tapering edge.

The air exited the test section through a 10-cm length of aluminum

honeycomb. The independance of the honeycomb acted to decouple the

test section from the eddy structure generated by the exhaust air as

it is dumped into the room. To further reduce this effect, and to also

decouple the test section flow from ambient room effects, a final baffle

chamber was installed. This chamber also served as a mounting platform

for the rear excitation loud speaker.

11.3. Hot-Wire Monometer System and Sensors

A Shapiro-Edwards, Model 50, Constant Current Hot-Wire Monometer

system (see figures 2.7) was used to measure the mean and fluctuating

characteristics of the flow. The system was modified to include a dif-

ferential, variable integration time, D.C. amplifier. When used in

conjunction with the standard, A.C. amplifier supplied with the unit

the instantaneous values of the mean and fluctuating flow could be

monitored, and simultaneously recorded. This allowed use of the optimum

dynamic ranges of the magnetic tape recorder, and associated analog

instrumentation. This proved necessary since the ratio of fluctuation

intensity to mean voltage level of the probe signal often approaches the



FIGUR E 2.7 FIGUR E 2.8



- 56 -

quoted dynamic signal-to-noise range of the tape recorder and other

analog equipment. The remainder of the anemometer system contains a

precision current control unit for providing current to the probe

sensor; bridge and potentiometer circuits for measuring sensor resis-

tance, current and voltage; a square wave generator and mean square

percentage meter for calibration purposes; and a low noise, variable

gain, A.C. amplifier with a useful frequency range of 1 Hz to 321 K Hz.

The probes are of the standard home-grown garden variety. Con-

siderable attention has been paid by numerable authors Isee Browand

(1966) for example] to their construction, and various idiosyncracies.

The probes used here were made from 3.05 mm stainless steel, hypodermic

tubing. The sensor supports were standard # 13 sewing needles, and

were soldered to wire leads connected to the current control unit.

The actual sensor was a 1.5 mm length of 3.8 micron platinum wire,

which was soldered across the needle tips to complete the circuit.

11.4 Auxiliary Instrumentation

Pressure Manometer System and Probes

An M.K.S. Baratron, Type 144, low pressure, capcitance manometer

was used to measure the distribution of the mean static, and stagnation

pressures. The linearity of the analog output was better than ± 0.1%.

The sensor head has an overall differntial pressure range of 0.0003 mm

Hg to 3.000 mm Hg. The 0.10 and 0.03 Hg scales were used in these

experiments.
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An N.P.L. modified Prandtl design pitot-static probe was used

for measuring dynamic pressure variations. The probe is shown in

figure 2.6. For measurements of static pressure variations, a second

reference static pressure probe was used in conjunction with the static

side of the Prandtl probe. The pressure probe had the same general

dimensions as the hot-wire probe and utilized the same airfoil guide

system.

Magnetic Tape Recorder:

An 8-channel, Precision Instrument, Model PI-6200 magnetic tape

recorder was used for recording of the experimental data. On final data

runs, the traverse position frequency, mean probe voltage, fluctuating probe

voltage, reference forcing frequency,and an audio identification of each

run and test station were recorded on individual channels. The data was

then played back as input into the normal analog reduction and data -

processing equipment.

Spectrum Analyzer:

The main bulk of data analysis and reduction was performed with a

Quan-Tech Model 304 Spectrum Analyzer. It has a frequency range of 1 Hz

to 5000 Hz, and three selectable pass bands of 1 Hz, 10 Hz and 100 Hz

at 3 db down. These are of the maximally flat 4 section Butterworth

type with 24 db slopes. The input sensitivity is 30 V to 100 volts

full scale in 10 db steps. The dynamic range is 70 db for Fourier

Analyses. The unit has an internal, variable speed, sweep oscil-

lator which permits automatic scanning of the entire or discrete

portions of the frequency spectra. The averaging time, analysis

bandwidth, sweep speed, sweep width and center frequency can be varied
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for optimum results. D.C. analog outputs are available which are linearly

proportional to the sweep voltage, instantaneous tuning frequency,

and r.m.s. meter outputs of the filtered signal. In addition, the

restored filtered input signal and B,F.O. tuning frequency of the he-

trodyne filter are available as sine wave outputs.

An extremely useful function of the analyzer was its ability to

be used as an "externally tuned", narrow band-pass filter. When tuned

with a stable external signal, virtually all center frequency drift

can be eliminated. This makes the use of the 1 Hz pass-band possible

for very accurate and maximally discriminating analysis.

The analyzer was used in conjunction with an x-y plotter to pro-

duce graphic plots of frequency spectra, modal amplitude envelopes,

frequency response functions, and phase information.

Function Generator: A Hewlett-Packard Model 202A Low Frequency

Function Generator was used to provide a stable forcing frequency to

the excitation speakers. The forcing signal was used as the reference

signal for phase and wavelength measurements.

Preset Counter: A Universal Preset Counter, Model 2019 was used

for various monitoring purposes. A multiple input switching network

was used so that the function generator forcing frequency, probe shed-

ding frequency, spectrum analyzer tuning frequency, and traverse volt-

age oscillator outputs could be monitored as desired. The period count

mode was used for greatest accuracy.

Phase Meter: A Technology Instrumentation Corporation Model 320-

AB Phase Meter was used to measure the phase angle between the reference

forcing signal, and the desired filtered fluctuating velocity signal.
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A multistep frequency divider/multiplier unit was used in conjunction

with the meter to compare the various harmonics with the standard re-

ference forcing frequency.

Oscilloscope: A Tektronix Model 520A Dual-Beam Oscilloscope was

used to monitor the instantaneous responses of the hot-wire and pres-

sure probes.

Digital Voltmeter: A Hickok, Model DP100, Digital D.C. Voltmeter

was used to monitor the various D.C. analog outputs.

Strobotac: A General Radio, Model 631-B Strobotac was employed

to monitor the speeds of the two centrifugal blowers during the course

of a run. It was also used as a synchronous light source for smoke

pictures by clocking the strobotac with the function generator forcing

frequency.

X-Y Plotter: A Mosley Model 703A X-Y Plotter was used as the last

stage in the analog data reduction. The various spectrum analyzer ana-

log outputs, traverse pot voltages, phase meter analog output, etc.,

were converted into graphical information with this unit.

X-Y Digitizer: A Wayne-George, Model T60/36/lO, X-Y Digitizer was

used in conjunction with an I.B.M. 526 Printing Summary Punch to con-

vert graphic information, obtained from the x-y plotter, into a digital

format for computer processing.



- 60 -

CHAPTER III

EXPERIMENTAL MEASUREMENTS AND TECHNIQUES

The stability characteristics of unstable flows are extremely

sensitive to the initial state of the flow, and the presence of spur-

ious disturbances. If measurements are made on a day to day basis,

considerable care must be exercised in repeating the exact same ini-

tial states and operational conditions each time. This necessarily

introduces an inherent uncertainty, as slight differences will always

occur between runs no matter how much care is taken. To avoid this

problem, each final experiment was run only once under established con-

ditions and all necessary information was obtained at the same time.

This approach eliminated any question of the relative validity of the

measured variables.

III.1 Data Collection

The approach taken here was to use in-line data reduction for the

preliminary experiments in order to establish the qualitative aspects

of the transition. Once satisfied that the correct conditions existed,

and armed with a general picture of the transition process, the experi-

ment was instrumented so that all necessary information was simultane-

ously recorded on an 8 channel magnetic tape recorder. The recorder

then served as a passive information storage interface in the normal

in-line data reduction scheme as shown in figure 3.1. The presence of

a storage interface will be implicitly assumed in the discussions that
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follow. The only data not processed from tape recordings were the

qualitative frequency spectra taken as preliminary information and

the dynamic and static pressure distributions which were of necessity

taken at a later data and processed directly.

The actual sequence of data taking in each experiment consisted

of making a series of continuous vertical traverses at successive down-

stream stations spaced 0.5 cm apart on the tunnel centerline. During

each traverse, the mean and fluctuating components of the probe volt-

age were recorded as continuous function's of the vertical coordinate.

When searching for the presence of three-dimensional, spanwise effects,

data was recorded as a function of the cross-stream ccordinate, z, for

various (x, y) stations. For each traverse, the data recorded and the

variables obtained by later data processing are listed below.

Recorded Data Processed Variable

1. V.C.O. Traverse Frequency E(x ) Traverse Coordinate, x

2. Audio Amplifier Forcing wf Wf

3. Fluctuating Wire Voltage u'rms (xi, t)

4. Mean Wire Voltage, E (x ) U (x )

5. wfsl -Reference Signal ofsl

6. w Reference Signal o y

7. Audio Identification Confidence

Since the total probe signal is recorded, one traverse record con-

tains all necessary information on the mean velocity and various spec-

tral components of the fluctuation velocities at the given downstream
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station. Each replay of the taped record corresponds to a physically

repeated traverse, taken under exactly the same experimental condi-

tions each time. The need for actual repeated traverses during an

experiment is eliminated. Figure 3.1 shows the overall data process-

ing scheme.
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Figure 3.1: Overall Data Processing Scheme

111.2 Coordinate Reference Frame

A coordinate frame, shown in figure 3.2, with origin at the center

of the splitter plate trailing edge was used for laboratory reference.

The (0, 0, 0) position was established by visually aligning the probe

tip with the surface of the plate. Half the measured plate thickness

was then subtracted from this reading and taken as the y-axis zero.

The x-axis zero was set by advancing the probe towards the plate edge

and noting the position where no light could be seen between the probe

tip and plate edge, when sighting along the edge in a bright light.
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The z-axis zero was taken as the tunnel centerline. The useful (x,

y, z) traverse space was: (-5 .00<x<25 .00 cm; -6.00<y<5.00 cm; -6.00

<z<6.00 cm).

Y

Figure 3.2 : Laboratory Coordinate Frame is Referenced to the Splitter

Plate Edge

111.3 Initial Conditions

The entrance mean speed, temperature, turbulence level, and forc-

ing disturbance intensity, were checked before and after each run in

the free stream of each section. Random checks of these parameters

were also made during the course of a run. Points 1 cm upstream of

the plate edge and 2.75 cm into the free stream were chosen as the ref er-

ence point for measuring entrance conditions for each stream. These

points verealso used as the reference point for free stream static pres-

sure measurements.

Entrance mean velocities were established by measuring the shedding

frequency of a cylindrical rod positioned in the top and bottom streams

respectively. Using the data of Roshko (1954), the mean speeds were

calculated as 202.50 + 2.00 cm/sec and 38.50 + .50 cm/sec. The over-
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all accuracy of the mean velocity data was important for reduction

equations and could be considered as + 2%.

The mean temperatures of the entering streams were measured be-

fore and after each run. A drift of + 0.5"C was observed during a

four hour period when the heat exchanges were used to maintain a con-

stant reference temperature. Erratic, random variations in stream

temperature were observed when the heat exchanges were not used.

This has apparently been a source of severe calibration errors for

past researchers.

Initial conditions on the natural, and forced disturbances were

determined from frequency spectra taken first without forcing to es-

tablish the natural disturbance input, and then with forcing to ana-

lyze the cleanness and intensity of the forced signal relative to the

natural level. These spectra are presented and discussed in Chapter

IV.

111.4 Generation of Controlled Disturbances

As indicated earlier, a crucial factor in this experiment was the

introduction of a suitable controlled disturbance. The success of

this procedure, and the characteristics of the generated disturbances

will be discussed in Chapter IV. The technical aspects will be touched

on here.

Two, 8 watt, 30 cm, low frequency speakers were positioned on the

tunnel so as to generate two distinct disturbance fields . The rear

speaker was mounted at the test section exhaust and introduced a uniform
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disturbance over the whole flow field. The front speaker was posi-

tioned over the top stream settling chamber and connected to the

chamber by a small hole. This speaker basically introduced distur-

bances into the top stream only. The transition characteristics of

the flow were found to vary with the location of the forcing speaker.

This required, especially for the mixed forcing mode (w A + W B ) that

only one speaker be used to excite the flow. Final data runs were

made using the upstream speaker. A comparison of the relative effects

of the two types of forcing fields was also made.
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Figure 3.3: Schematic of the Spearer Excitation Circuit

The speakers were driven by a low frequency audio oscillator

(see figure 3.3). In the mixed forcing mode, the output of the oscil-

lator was fed into a frequency multiplier-divider circuit (M-D) to

produce w. and w from the same reference frequency. The (M-D) cir-
A B
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cuits were built around Texas Instrument, integrated logic chips,

operational amplifiers, and Schmidt triggers. Buffer amplifiers were

used to isolate the output stages which were fed to the speaker through

a solid state audio amplifier.

The outputs of the M-D circuits were of the form

out = nw. /m n = 1, 3, 5 m = 1, 2, 4

and were also fed to respective channels on the tape recorder for refer-

encing purposes. The speakers were found to have excellent linear res-

ponse in the 15-90 Hz frequency range. Resonance points in the speaker

response were found at 10 and 110 Hz; the between region exhibited very

little non-linear distortion and was reasonably flat in amplitude res-

ponse.

111.5 Mean Flow Measurements

(a) Mean Velocity Profiles:

Graphic plots of the mean probe voltage were made simultaneously

as the data were being recorded on tape. The integrated mean probe

voltage was passed through a Voltage Controlled Oscillator (V.C.O.) and

recorded as an f.m. modulated signal on the direct record mode. When

played back on the f.m. mode, the tape recorder's internal V.C.O. pro-

duced a D.C. signal which could then be plotted and checked against the

in-line plot mode during the run. This provided an excellent overall

check of the storage interface analog reduction system.

Besides giving a systems check, direct in-line plotting of the
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mean voltage profiles provided a useful visual check of the appropriate-

ness of the time constants introduced by the probe traversing speed, and

the D.C. integrator. In traversing through space, the probe necessarily

averages the signal over a spatial volume proportional to the wire width,

wire diameter, and distance traversed in a unit time. The integrator

in addition adds a temporal averaging time to the already spatial aver-

aged signal. A judicious combination of the two must be used to avoid

distorting the recorded data. One technique, and in practice the most

effective, is to observe whether any hysterisis exists when the output

voltage on the down and return traverses are plotted over each other.

With an integrator time constant of 0.3 seconds, and a traverse speed

of 0.25 mm/sec, no hysterisis effects were noticeable. The two traces

overlay one another perfectly even in regions of sharp gradients where

time constant biasing would be most pronounced.

The data reduction circuitry for mean profiles is schematically

shown below. I01 - W '

I I
I R?.

Figure 3.4: Schematic of the Mean Flow Measurements Circuitry
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Since the calibration curves for the mean and fluctuating veloci-

ties depend critically on an exact knowledge of the mean wire voltage,

probe current and the hot and cold resistances, it was necessary to

measure these variables as initial and end conditions for each traverse.

The values at the start of each run were initialized with I = I =
0

30.00 ma. This gave the true mean voltage (and hence velocity) as re-

ferenced to the proceeding stations. Also, since the constant current

supply for the probe is really just a large ballast resistor in series

with the probe and a voltage source, changes in the probe resistance as

the wire passes into regions of different velocity alter the current

from its initial value. This variation will change the probe's over-

heat ratio, and hence the appropriate calibration constants at each

point. By using a digital computer to process the data in conjunction

with an iteration scheme for computing changes in wire current, the

calibration constants, and hence mean velocity for each point could be

easily, and cheaply computed. The measurements of the probe voltage,

current, etc., taken at the end of the traverse were used to check the

accuracy of the iteration scheme.

(b) Dynamic Pressure Profiles:

Plots of the vertical distribution of dynamic pressure were made

at several downstream stations to provide a cross-check on the hot-wire

velocity data. A standard, "N.P.L. Improved Form, Prandt'l Type",

pitot-static probe was used. Because of the difference in physical

size, and response time between the pressure probe and hot-wire, several

factors had to be considered in choosing an appropriate series of appro-
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priate stations for comparing the two techniques. The pressure probe

spatially averages the flow field over a very large volume compared

to the hot-wire. Regions of the flow field, where strong spatial gra-

dients of mean velocity existed, were often of a scale comparable to

the pressure probe geometry and could not be accurately measured. It

was finally decided to make the dynamic pressure measurements in a re-

gion 10 cm downstream where the flow was fully developed and exhibited

gradual vertical and streamwise gradients of velocity. The small size

of the static pressure ports ( 0.40mm) gave rise to a rather sluggish

response time, and a very slow traverse speed of 0.15 mm/sec was re-

quired to avoid hysterisis effects. Traverses were made at five suc-

cessive downstream stations from 9.50 cm to 11.00 cm. The circuit sche-

matic is identical to that for mean velocity profiles. An M.K.S. Bara-

tron capacitive pressure system was used to monitor pressure changes and

the plotted voltage is proportional to the difference between the stag-

nation and static pressures sensed by the probe.

(c) Static Pressure Distribution:

Two stagnation probes were used to measure streamwise accelerations

of the mean flow. A reference probe was located at the test section en-

trance, and was calibrated relative to ambient pressure as indicated by

a standard precision mercury barometer. The two probes were then aligned

at the same (x, y) location but slightly separated in the spanwise coor-

dinate. No pressure differential was observed between the probes at

this initial position. The second probe was then slowly traversed down-

stream at various vertical heights. The differential in static pressure
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between the two probes was recorded as a D.C. voltage and plotted

against the downstream coordinate.

111.6 Fluctuating Flow Measurements

(a) Frequency Spectra:

Considerable qualitative information was taken in the form of

disturbance frequency spectra. Sweep bands of 50, 100 and 500 Hz

were used to analyze the entire range of fluctuations present in the

transition zone. The schematic circuitry is shown below.
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Figure 3.5: Schematic of the Frequency Spectra Circuitry

Spectrum measurements were made using the internal sweep mode

and plotting the r.m.s. meter analog of the fluctuating wire voltage

against the sweep analog. Calibration plots were made by passing sine

and square waves through the unit and observing the amplitude and
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clearness of the sine wave spikes and harmonics of the square wave.

However, in analyzing real spectral data which had background noise

and no strong concentration of energy at any one given frequency, it

became clear that considerable attention must be paid to the proper

combination of bandwidth, sweep speed, and averaging time used. For

maximum discrimination, a bandwidth of 1 Hz (i.e. + 0.5 Hz @ 3 db

down) was used. For relatively clean signals such as the forced tran-

sition spectra, a sweep rate of 0.55 Hz/sec and a meter time constant

of 0.1 sec was found satisfactory. For rather confused signals such

as the natural transition spectra where the energy is randomly distri-

buted among the various unstable disturbance frequencies, a sweep time

of 0.55 Hz/sec and an integration time of 10.0 sec was required to show

the true average character of the natural transition. This choice es-

sentially corresponds to the criteria suggested by Bendat and Piersol

(1966) for random signal analysis.

(b) Spatial Distribution of Spectral Amplitudes:

The r.m.s. amplitude distributions of various significant spectral

components were plotted at each downstream station as shown in figure

3.6.

Plots were made as a continuous function of y by using the wave

analyzer as a tuned band-pass filter. Because of the closeness of the

various harmonics and sub-harmonics a bandwidth of + 0.5 Hz was used.

This required a very close control over the analyzer tuning frequency.

By tuning the analyzer with a stable external standard, drift in the

tuning center frequency was kept to within + 0.10% over the course of
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a traverse. The meter time constant and traverse speeds were again

chosen to eliminate hysterisis effects.
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Figure 3.6: Schematic of the u'rms Amplitude Distribution Circuitry

(c) Spatial Distribution of Spectral Phase Angles:

Measurements were made of the spatial variations in disturbance

phase angles as measured relative to a standard reference signal. Mea-

surements were taken as continuous functions of the vertical and stream-

wise coordinates. The schematic circuitry is shown below in figure

3.7.

The forcing signal of the audio oscillator was used as the refer-

ence input to the phase meter when analyzing the spatial phase changes

of the primary oscillation. In the mixed-mode experiment, the outputs
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of the multiplier-divider were used to give reference values for wfsl

and w respectively.
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Figure 3.7: Schematic of the Phase Angle and Wavelength Measurement
Circuitry

The phase meter was nulled with the driving signal at a reference

point in the entrance of the upper stream. By traversing the probe in

space, variations relative to this point were measured. This is the

same as having a second probe at the reference point, and measuring

phase shifts relative to the reference probe. Two distinct variables,

at least in name, can be obtained from these phase measurements. These

are phase angle and wavelength.

(d) Frequency Response Transfer Function:

The frequency response of a linear system is usually defined as the
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ratio of the phaser output to the phaser input, when the system is

driven by a sine wave input. In case of the wind tunnel, the sinu-

soidal driving input can be considered as the disturbance generated

by the excitation speaker, and the output as the induced instability

response in the linear region of transition. By incorporating the

tunnel as a black box element in a closed impedance circuit, the ef-

fects of varying excitation speaker location could be studied by ob-

serving the response in various regions of the transition. As shown

in figure 3.8 the speaker was driven by the B.F.O. output of the wave

analyzer and the forced disturbance response was fed back into the

analyzer to complete the loop. The amplitude of the forced response

at each frequency was then plotted against the sweep analog as the

analyzer was slowly swept through a frequency range. This technique

proved quite useful in analyzing the influence of the speaker location

on the forced transition process.
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Figure 3.8: Schematic of the Amplitude Response Circuitry
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111.7 Smoke Pictures

Smoke pictures were made to determine the qualitative aspects of

the transition. A dense, highly visible smoke was generated by blow-

ing air over titanium tetrachloride. Titanium tetrachloride is a hy-

groscopic salt which is liquid at room temperatures and when brought

into contact with air, it combines chemically with the moisture pre-

sent to form a vapor of high optical density. A small drop of liquid

will emit a dense cloud of smoke for several minutes.

In order to introduce the smoke into the test section without

placing any foreign bodies into the upstream flow, a modified version

of the original splitter plate was constructed (see figure 3.9 below):

Figure 3.9: Modified Splitter Plate for Smoke Pictures

A length of stainless steel hypodermic tubing was soldered to the edge

of a sheet of brass plate whose dimensions were identical to the ori-

ginal plate. The soldered joint was polished and smoothed to eliminate

any surface irregularities. The tube then formed the trailing edge of

the plate. One end of the tube was plugged, and a small hole was

drilled in the wind tunnel side wall so as to align with the open end

of the tube when the plate was installed in the tunnel. A small hole
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was drilled in the center of the tube to emit the generated smoke into

the wake immediately behind the plate. The smoke generating flask was

connected to the plate by a male insert which fitted into the open side

of the tubing through the tunnel wall. The configuration worked quite

well and did not alter the flow field in any noticeable manner.
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CHAPTER IV

NATURAL VERSUS FORCED TRANSITION

Stability experiments must be conducted with respect to the un-

avoidable level of disturbances which are intrinsic to the particular

apparatus used or system being studied. These intrinsic disturbances

determine the systems natural response to an input perturbation. Al-

though it is not possible in a physically realizable flow, one would

ideally like the natural input noise to consist of a wide-band of infin-

itesimal disturbances which have a relatively uniform power spectra

over all frequencies (i.e. nearly "white noise"). In this manner no one

frequency interval is singled out for a biased energy input and the sys-

tem can undergo its own natural selection process for disturbance ampli-

fication.

With adequate care, wind tunnels can be designed so that over the

frequency range of experimental interest the natural input spectra can

be made to approach a "quasi-white noise" character. Then each fre-

quency receives a relatively equal energy input on a random basis and

the disturbance spectra will be dominated by the modes preferred by the

instability process for maximum amplification. However, a quasi-white

noise input must be considered as an ultimate goal for any physical

system. Small variations in the character of the mean and input distur-

bance conditions inevitably occur, and often cause the observed maxi-

mally unstable mode to vary by as much as 10% from instant to instant.

No single, distinct, maximally unstable mode will normally appear.
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Rather, a band of highly amplified waves will appear. Since any one of

the modes in this band will be intermittently dominant, quantitative

measurements of natural transitions are extremely difficult.

To circumvent this natural intermittence, various techniques of

generating controlled artificial disturbances can be used to selective-

ly excite a desired mode. Because an artificial energy input can be

made continuous in the time domain, the continuously excited frequency

component will grow on a coherent basis relative to its intermittently

excited neighbors. In this manner, the preferred growth of any unsta-

ble mode can be triggered. Of course, in order to have the artificial-

ly forced mode correspond to the natural case, the qualitative struc-

ture of the forced excitation field must be similar to that of the

natural noise at that frequency (i.e. if the natural noise input is

localized, so should the forced input, etc.). The forced and natural

input should differ only in relative continuity of input and perhaps

slightly in magnitude. If these conditions are met (and they normally

are not), then the sole effect of the artificial excitation will be to

impart a selective bias (i.e. spike) on the input noise spectra. The

selectively excited mode can be expected to exhibit on a continuous

basis the same properties of growth and modal structure that on a

natural basis appear only instantaneously and intermittently.

This is really the name of the stability game since unlike many

mechanical systems, real life geophysical systems do not receive con-

tinuous and coherent energy inputs. What we really want to obtain is

an understanding of what the instantaneous natural characteristics of
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an unstable system are. Because our present investigatory tools do not

allow us to measure the natural transition in sufficient detail, we

must achieve an understanding via the back door and conduct controlled

experiments which, in the limit of satisfying all proper criteria, will

model the natural behavior of the system.

Some techniques of excitation such as vibrating ribbons (Kleba-

noff, 1962) can generate controlled disturbances on a local basis and

are useful in boundary layer experiments. However, the mechanical con-

figuration of the apparatus used here seemed to preclude the use of rib-

bon techniques, and as in past experiments on jets and wakes the genera-

tion of perturbation vorticity by radiated sound waves was chosen as a

means to excite the flow and trigger the transition.

Hindsight has shown, however, that a localized excitation field

would have been far more useful. Any difficulties that may have been

involved with the construction of a localized ribbon system would prob-

ably have been of far less magnitude than those problems encountered

with a sound wave forcing field.

As was conclusively demonstrated, the forced transition of the

sound excited flow could, and did, vary from the observed natural tran-

sition. In order to fully understand the implications of the forcing

techniques used, a careful investigation was made of the natural tran-

sition process and of the effects of using various techniques of sound

excitation.

In the work that follows, the qualitative character of the natural

and forced transitions will be discussed in order to establish the gen-
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eral scope of the problem. Conclusions will be drawn as necessary to

provide insight into just why certain experimental approaches were used.

A detailed quantitative presentation of the experimental results will

be left until Chapter V, and will be discussed in Chapter VI.

IV.l Characteristic Scales and Reference Parameters

The initial mean velocity profile immediately behind the splitter

plate at x = x , was used for establishing most reference scales,

U"

Figure 4.1: Schematic plot of the mean velocity
field just behind the splitter plate.

where x = 0.2 cm.
0

The overall character of the flow could be established by a length

scale based on 0 (x) the local momentum thickness, a velocity scale

based on the maximum free stream velocity UT, and the dimensionless ratio

U T-UB
UTB

y 1=
U T+UB
UT+B

which for the present experiments was y = .700. The ratio y = 0.700 dis-

tinguishes the flow studied here from the two limiting cases: y = 0 for

symmetric wakes (or jets), and y = 1.0 for single separated free shear
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layers where U B=0. The ratio y also expresses the fact that the fre-

quency of disturbance oscillation as observed in the laboratory frame

is dependent not only on the magnitude of the maximum shear, but also

on the mean convective speed at which the disturbances are carried

along by the mean flow.

The actual ratio of free stream velocities is

UB

U- 0.175

while the maximum velocity differences across the upper and lower shear

layers respectively are

U -U
T M

= 0.950 (upper layer)@ x = x
UT

U -UMUB~M
UT = 0.131 (lower layer) @x = x

The initial momentum thickness 0 (x ) was used when forming di-
m o

mensionless variables for comparison with theory. This was taken to be

the sum of the momentum thicknesses of the two entrance boundary layers.

O (x ) = 0.121 cm
m o

Since it is often convenient to refer to downstream distances in terms

of primary mode wavelength, the wavelengths X I and Xfsl

X I = 4.35 cm

X fs= 7.80 cm

of the maximally unstable mode and a preferred downstream free shear
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layer mode will also be used. These values were experimentally mea-

sured and agreed reasonably well with the results of a spatial stability

model based on the mean velocity profile at x . More interestingly,

the values also agreed with the characteristic scale of the shear layer

"cat's eyes" discussed in section V.5.

Considerable effort proved the futility of trying to establish a

single length scale for dimensionalization throughout the entire flow

field. The presence of downstream derivatives of all variables, the

existence of several regions of strong flow expansion (i.e. non-parallel

behavior),local variations in wavelength, and the lack of pure symmetry

or pure asymmetry of the initial profile precluded the use of any one

particular scaling variable.

In order to avoid a myriad of confusing scaling arguments, most

plots are presented with the length scale axis in dimensional form.

When it proves convenient, scaling arguments will be made for various

regions of the flow, but these will usually be in terms of the cat's

eye wavelength and will be expressly noted when used.

The initial Reynolds number of the wake, as based on the initial

momentum thickness and maximum free stream velocity, is

UT 0 (x )
R(x -a 0.20) = m o % 160

V

The Reynolds numbers of the splitter plate boundary layers, as based on

the local momentum thickness just prior to separation from the plate,

are of the order of 100 and are hence below the critical value for boun-

dary layer instability. The two results indicate that any amplifying
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disturbances observed in the wake are due to an instability of the

laminar wake and not of the plate boundary layers. The wake Reynolds

number is well within the inviscid range for free shear layers.

Note that the free stream speed of the fastest moving layer is

used for dimensionalization; any dimensional parameter based on UB

would be meaningless in the limit UB + 0. Also, any parameter based on

the overall velocity difference (U T-U B) would not be representative

since the initial instability is dominated by the upper shear layer dif-

ference (U T-UM ).

The disturbance oscillations are expressed in dimensionless form by

uI(xt) =2 u (x)e

27-26 (x )
m o

a =
r X

2w- 20 (x )
= Tm 0

r UT

i(a x - 8rt + $2 + 3) -a x
e

= dimensionless wavenumber

- dimensionless radian frequency

a. = a. 26 (x ) = dimensionless spatial growth
1 i m o

rate

* u
u m = dimensionless r.m.s. amplitude

rms UT

and $2 and $3 are the vertical and spanwise phase angles.

The experimentally observed frequencies ranged as follows:

(0.075 < Sr

(0.075 < Sr

< 0.32)

< 1.50)

initial linear modes

overall transition.

An asterisk denotes a dimensional variable.

where
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As indicated above, the correct length scale for comparing experi-

mental data to linear theory was found to be 20m (x '

IV.2 Qualitative Aspects of the Natural Transition

Previous investigations of shear layer transitions have often

identified the dominant unstable mode from frequency spectra made at

the earliest convenient downstream position where a clear and obvious

singly peaked energy spectrum existed. This practice can be both mis-

leading and incorrect.

In any unstable and spatially developing flow, the various growing

linear and non-linear modes evolve differently with downstream distance,

and consequently can have radically different vertical modal structures.

At best, frequency spectra taken in such flows can be considered only

as qualitative information whose proper interpretation is unhappily more

often an art than a science. For example, since non-linear effects can

appear quite suddenly and much earlier than usually suspected, one

could be easily lured into using a spectra dominated by non-linear

modes to demonstrate the existence of a purportedly linear mode.

Also, depending on the vertical modal structure of the frequen-

cies present (i.e. symmetric, asymmetric, etc.), one can easily assign

a given mode the wrong relative importance, or order of appearance. For

example, a flow comprised of a symmetric and asymmetric mode is schema-

tically illustrated below. Spectra taken at various heights in this

imaginary system clearly illustrate the pitfalls involved in being too

eager to attach great significance to any one particular piece of spec-
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tral information.

Y Y ~~~

iro
U

IA
4 VP 0

I I YWY.

CL-P (A)

Figure 4.2.

(a) Natural Input Spectra

The distribution of natural input noise was measured in the boun-

dary layers and free streams of both entrance sections. Most of the

natural disturbance energy was concentrated in the lower frequencies

(see figure 4.6) and no spurious spikes of input noise were present.

The distribution of disturbance energy closely approached a quasi-white

noise behavior. Erroneous spectral results could be obtained by choos-

ing too fast a frequency scan rate or too large a meter time constant.

The criteria established by Bendat and Piersol (1966) were found to give

repeatable and consistent results.

The free stream turbulence levels were measured in the upper and

lower streams and are given below

r.m.s. turbulence level = 0.01% top layer free stream
0.06% bottom layer free stream



Figure 4.5: Profiles of mean hot-
wire voltage at test section entrance
(x0 = 0.2 cm), and at various stations
over the splitter plate.

(b)
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(C)
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Figure 4.6: Natural input disturbance
spectra at test section entrance.
(a) upper layer freestream; (b) upper
plate boundary layer; (c) lower plate
boundary layer; (d) lower layer free-
stream.
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The r.m.s. turbulence level was somewhat higher in the slower bottom

stream. The average magnitude <u'> of the natural u' fluctuations in a

1.0 Hz frequency interval near the maximally unstable mode was of the

order of 0.0015%.

> u'r W ±0.5 Hz)

<u'> = rms * 100 n 0.0015%
UT

Although the input spectra were sensitive to ambient variations

and to external mechanical vibrations, repeated spectra taken at random

intervals during the course of the experiment indicated that the mea-

sured turbulence levels varied only slightly with time and the overall

distribution of natural input energy remained qualitatively constant.

Plots of the natural disturbance spectra in the top and bottom

splitter plate boundary layers were also made and are shown in figure

4.6. They have the same qualitative distribution as the free stream

spectra and show no evidence of disturbances due to possible boundary

layer instabilities. The entrance mean profiles over the plate were

checked and were found to be laminar and free of unstable fluctuations.

After separation from the trailing edge of the plate the boundary la-

yers coalesced to form an initially laminar and highly two dimensional

free shear layer.

(b) Mean Entrance Conditions

The mean flow profiles over the last 5 cm of the splitter plate

are shown in figure 4.5. The plots are of the mean hot wire voltage

and while they are not expressed in terms of velocity they do illustrate
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several important points. First, the free stream flow is very uniform

and parallel. The mean profiles are extremely flat in the free stream.

The mean flow is slightly accelerated near the edge of the top plate

boundary layer at x . However, this does not seem significant and is

probably due to the accelerative effects of the contraction zone. The

hot wire probe used to measure these profiles was broken before a pro-

per calibration could be made. However, a rough reduction scheme

which used typical calibration constants from previous wires indicated

that the top and bottom layers were characteristic of slightly acceler-

ated Blasius boundary layers.

The two dimensionality of the initial free shear layer (and input

disturbance spectra) was verified by making a series of spanwise tra-

verses at different vertical heights and measuring variations in mean

velocity and disturbance spectra. Both the mean and disturbance con-

ditions did not exhibit any significant spanwise variations in the cen-

tral 8 x 8 cm region of the test section entrance. Slight corner vor-

tices were found at the plate wall boundaries but were not of signifi-

cant intensity nor spatial extent to influence the central flow. Corner

vortices of approximately 1 cm. diameter did exist along the bottom

floor of the tunnel. These vortices tended to spread in spanwise ex-

tent with downstream distance and may have caused some three-dimensional

distortions of the later downstream profiles. However, they did not

exert any observable influence on the initial entrance profiles.

(c) Test Section Mean Velocity Field

The initial mean velocity field was formed by the two merging
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boundary layers and possessed two inflexion points of opposite sign

(i.e. two mean vorticity peaks). With progressive downstream distance,

the two layers coalesced to form a single inflexion point shear layer.

Static pressure measurement showed no free stream static pressure gra-

dients and to a good approximation the test section flow can be consid-

ered non-accelerated.

The evolution of the mean streamwise velocity U(x,y) is shown in

figure 4.7 for the unforced natural transition. The downstream mean

velocity field is presented in an isometric-orthographic three-dimen-

sional format. A contour projection is also shown and gives an indica-

tion of how the mean velocity field spreads with downstream distance.

The axis convention is shown below, in figure 4.3.

The mean velocity plot represents a series of vertical traverses

across the shear layer in the test section center plane. Each plot con-

tains 50 vertical traverses made at 0.5 cm downstream intervals and

covers roughly six primary wavelengths of transition.

Figure 4.3: Axis convention used in all contour and 3-D
isometric, orthographic data presentations.

Only the scale of the amplitude axis will vary
between plots of different data.



Figure 4.7: U(x,y) mean velocity profiles and
contours for the natural transition. U/UT
amplitude axis = 1.00; contour interval =
0.05.

M
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(d) Natural Transition Spectra

Several interesting aspects of the natural transition were evi-

dent from a series of spectra taken at 1 cm downstream intervals. Pre-

liminary measurements indicated that the activity of the majority of

frequency components could be observed at a vertical height slightly

above (2 mm) the plate center line. The spectra are shown in figure

4.8 and indicate that a wide band of unstable oscillations are initial-

ly excited by the natural input noise. These oscillations amplify with

downstream distance. The band of initially excited modes (5 to 48 Hz)

roughly coincides with the spectra of input disturbances in the top

stream.

In the initial stages of transition no one particular frequency

interval dominates the transition. However, within a wavelength WI of

downstream distance, a band centered at 32 Hz starts to dominate the

field, and within 1.5 wavelengths, this band evidently contains the

most amplified modes. The most unstable mode in the initial portion of

the natural transition (where the disturbance amplitudes are infini-

tesimal and hence linearized theory is valid) is clearly near 32 Hz.

A discrete band of higher frequency disturbances appeared at 6.00

cm and signaled the onset of finite amplitude behavior. The elements

of this higher frequency band were not centered at harmonic multiples

of the dominant 32 Hz fundamental band. Rather, they seemed to be cen-

tered about multiples of 40 Hz. This was entirely unexpected and

prompted further investigation.

In the early stages of transition spectra taken at different ver-
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Figure 4.8: Downstream frequency spectra of
the natural transition excited by a quasi-white
noise disturbance input (y = 0.2 cm).
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tical levels showed the same spectral content. However, after about

wavelength X of downstream distance the disturbance spectra taken at

different heights showed distinct variations in spectral content. Fig-

ure 4.9 shows a series of spectra taken at several vertical heights at

x = 7.00 cm. Near the center line, a very distinct band of distur-

bances centered at 45 Hz is present. Also present are some harmonic

and strong low frequency modes. The low frequency modes seem to be

sub-harmonics of the primary 32 Hz band.

The 45 Hz band merges with the 32 Hz band of fundamentals on

either side of the center line. This makes discrimination difficult at

any point other than the center line where the asymmetric fundamentals

die off. The apparent symmetry of the 45 Hz band and antisymmetry of

the 32 Hz band are in accord with the work of past researchers who have

found that the fundamental linearized modes are antisymmetric and non-

linear harmonic modes are basically symmetric.

Although it is clear, then, that the elements of the 80-90 Hz

band are probably harmonics of the 45 Hz band, the origin of the latter

band was still unknown. Initially it was thought that it may have repre-

sented the non-linear generation of 3/2-harmonics of the fundamental

32 Hz modes. The presence of sub-harmonics and the work of Kelly (1967)

suggested this as a weak, but distinct possibility. Another series of

spectra taken at different heights (figure 4.10) at a later downstream

position showed that the influence of the 32 Hz band died off with the

appearance of strong non-linear modes. The transition spectra was then

dominated by two bands centered at 20 Hz and 40 Hz. The decrease in
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center frequency of the 45 Hz band from 45 to 40 Hz can be shown

(section VI.1) to be due to the spreading of the mean flow.

Based on this second series of spectra, one may infer that the

20 Hz band may represent sub-harmonics of the 40 Hz modes (or in other

words, sub-harmonics of the 3/2-harmonics of the primary mode. This

however was later shown to be wrong. In fact a subsequent experiment

showed that the elements of the 45-40 Hz band were the second harmonics

of a latent band of 22.5 Hz instabilities centered about 22.5 Hz.

This latter behavior was evident during one series of preliminary

runs in which an upstream segment of the settling chamber splitter plate

assembly was misaligned and generated spurious disturbances in the 10 to

34 Hz range. The results of this series of measurements will often be

referred to as the natural transition induced by a non quasi-white

noise input spectra (or in other words a dirty input spectra). As in-

dicated in figure 4.11, the natural transition excited by a dirty input

spectra showed a pronounced preference for the simultaneous amplifica-

tion of two discrete fundamental modes. These modes were centered at

22.5 Hz and 29.5 Hz respectively. A careful investigation of the input

spectra showed slight concentrations of disturbance energy at 10, 15, 21,

24 and 34 Hz. These were apparently due to eddies shed by the protru-

ding lip of the plate. The intensity of these spurious inputs were only

slightly more pronounced than the normal input noise and were of the

*
same general order of magnitude . No concentrations appeared at the

* It is worth noting that the slightest level of coherent noise input can
cause the transition spectra to show distinct peaks. This is in direct
contrast to the broad band spectra excited by the clean input spectra.
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exact values of 22.5 Hz and 29.5 Hz. The strong downstream appearance

of a mode at 45 Hz (i.e. the second harmonic of 22.5 Hz) was evident

within one wavelength. A weak mode at 34 Hz also is present but this is

felt to be due to the input noise at that frequency.

It was still not clear, however, why the harmonic of the 22.5 Hz

mode should appear so strongly when the flow was excited by a clean

quasi-white noise input spectra. In the latter case there is certainly

no preferred energy input into or near the 22.5 Hz fundamental.

Analysis of a linear stability model (see section VI.1) based on

the initial asymmetric wake configuration at x = x showed that two dif-

ferent modes of instability (mode I and mode II) existed. The mode I

instabilities (due to the bottom inflexion point) were of extremely low

frequency and had such long wavelengths that they could not be detected

in the existing apparatus. The mode II instabilities were due to the

upper inflexion point, and the maximally unstable mode II oscillation

(i.e. w ) was found to correspond to the 29.5 Hz instability. The re-

sults of a later series of quasi-uniform stability calculations, showed

that as the mean flow lost its wake-like structure and evolved towards a

free shear layer configuration, the maximally unstable mode II oscilla-

tion approached the 22.5 Hz value at the point where non-linear harmonic

modes appeared. Since the 22.5 Hz instability is characteristic of the

basic free shear layer structure of the flow, it will be often referred

to as Wfsl'

It was evident from the calculations that with downstream distance

the evolving nature of the mean flow increasingly favored the presence of
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lower frequency fundamental modes. The larger initial growth rate of

o IIand its sizeable amplitude in the regions where wfs1 is favored pro-

bably explain why wII still dominated the downstream transition spectra

even though the local mean conditions favor the growth of fsl'

The fact that harmonics of w fsl rather than those of wIT are fav-

ored for non-linear reinforcement demonstrates the influence and impor-

tance of local mean conditions on the non-linear behavior of the transi-

tion.

It was interesting to note that the natural transition induced by

the dirty input spectra mentioned earlier showed a strong downstream

tendency for the w and ofsl modes to interact and produce not only

various harmonics and sub-harmonics of their respective frequencies, but

also non-linear combination modes. This behavior will be more thorough-

ly discussed in later chapters.

IV.3 Qualitative Aspects of the Forced Transition

Although the use of sound waves for disturbance excitation has

found considerable acceptance in the literature, the results presented

here clearly demonstrate that the character of the forced transition can

be altered from that of the natural case. In particular, it was found

that the location of the excitation speaker, and the manner in which the

sound waves are introduced into the test section, had a considerable in-

fluence on the transition. The exact mechanisms by which sound waves

generate vorticity perturbations in a shear layer are not clear. A

heuristic explanation is given in appendix A.2. However, only the quali-
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tative aspects of the problem will be touched on here.

Sound waves of the frequency range used in this experiment have

wavelengths of order 10 meters. This is several times the length of the

tunnel and, on a relative basis, sound perturbations are instantaneously

generated in a uniform manner throughout the length of the test section.

However, the characteristic wavelengths of the unstable shear layer modes

are several orders of magnitude smaller than that of sound waves, and it

is not at all clear just how sound waves trigger shear oscillations of

the proper wavelength.

One approach has been to assume that the sound field establishes

the time response (i.e. frequency) of the shear perturbations, but the

layer acts (in some unknown manner) to allow the existence only of

wavelengths which fit the system's dispersion relation for the given

impressed frequency. The other school of thought asserts that the

sound field may induce instantaneous shifts in the pressure distribution at

the edge of the splitter plate forming the wake. This may then produce

the appropriate smaller scale vorticity oscillations necessary to fit

the shear layer dispersion constraints. This is discussed further in

appendix A.2..

If a shifting of the pressure field is responsible for genera-

ting the proper scale oscillations, then the excitation can probably be

considered as being localized at the test section entrance. If so, only

the alteration of the input spectra need be considered when analyzing

the effects of the forcing field.

However, if mechanisms which can act throughout the entire flow
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field are responsible, then the influence of a volume excitation field

must be considered. Such a field will influence the downstream non-

linear regions of transition as well as the initial input spectra. In

this respect it can act as a possible constraint on the flow, and pre-

vent the disturbances generated in the linear zone from evolving in a

natural manner in the non-linear regions.

(a) Intensity of Speaker Induced Disturbances

Initial investigations showed that the lowest amplitude u' of

controlled excitation which would lock the transition into the desired

frequency was a disturbance whose total energy input was roughly equi-

valent to the total energy of the natural background noise (i.e. as

measured by the input turbulence level).

[u' f2  = 0[f u[ ( w) dw

Figure 4.9 shows the relative levels of disturbance r.m.s. values

when the flow is forced with an order [u' f] excitation.

The intensity of speaker excitation was measured at the entrance

free stream reference points over the splitter plate. Measurements made

at various other locations indicated that the excitation field had no

noticeable vertical modal structure and that the forced disturbance

field was uniform across each entering stream.

A careful check of the induced fluctuations showed the speaker dia-

phragm produced slight harmonics of the excitation signal. However, with

the exception of the mixed forcing case, the harmonic fluctuations were

always one to two orders of magnitude smaller than the fundamental, and
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below the average natural noise level. In the mixed mode experiments

where the speaker was simultaneously driven by two signals WA and W B'

a fairly noticeable component near ( B~ WA) was present in the input

spectra. This can be seen in figure 5.1 where the forced input spectra

are shown for each of the three cases studied here.

u'
rms %
T

10.0 maximum rms instability amplitude

1.0 rms value at linear transition limit

0.1
rms value of initial fluctuation in transition
zone

0.01 rms value of sound generated disturbances

rms turbulence level

0.001 'r - rms value of average natural disturbance in a
1 Hz interval near the maximum unstable mode

Figure 4.4: Relative r.m.s. values of significant disturbance

quantities. Many of the disturbance spectra are

presented in arbitrary units. The % r.m.s. scale

factors shown above can be used to obtain a rough

estimate of the relative r.m.s. velocity scale of

each plot.
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(b) Speaker Location and the Generation of a Symmetric or

Asymmetric Forcing Field

As indicated in figures 2.1 and 2.2, two speaker locations were

used for the final experiments. Actually, several speaker locations

were tried, but the results showed that the only basic difference lay

in whether the speaker induced excitations were in phase or somewhat

asymmetric and out of phase in different regions of the test section.

A symmetric excitation field was obtained by placing the speakers

at virtually any position or angle at a location downstream of the test

section. With this orientation the speaker projected disturbances dir-

ectly into the entire flow field. The excited disturbances were uni-

formly distributed and were basically in phase across the transition

zone.

An asymmetric forcing field was generated by orienting the speaker

upstream of the test section and in such a manner that it radiated dir-

ectly into the upper stream while leaving the bottom stream undisturbed.

The continuous upstream splitter plate isolated the two streams and

made the technique feasible. As later measurements were to show, this

phase asymmetry was a crucial factor in exciting the proper fundamental

modes.

(c) Amplitude Response Curves of the Forced Transitions

The role of the symmetry (or asymmetry) or the excitation field

was illustrated by measuring the amplitude response curves of the insta-

ble oscillations when the flow was excited with both types of forcing

fields. Amplitude response curves are experimentally made by position-
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ing the probe at a given location in the shear layer and then incremen-

tally increasing the frequency (but not amplitude) of forcing. The am-

plitude of the triggered mode of shear layer instability is noted, and

plotted against frequency to give the amplitude response portion of the

system's transfer function.*

The amplitude responses were measured for both asymmetric and

symmetric forcing and are presented in figures 4.12 and 4.13 respectiv-

ely. In the initial stages of transition, the asymmetric field tended

to excite the same band of disturbances that were found to be naturally

unstable. However, by x = 5.00 cm a tendency for lower modes near wf1

to be excited is evident, and by x = 7.50 cm lower frequency modes that

tend to fit the free shear layer geometry are preferentially excited.

This really says that if the upstream behavior had not been investiga-

ted we would conclude somewhat erroneously that the maximally unstable

mode of the system was near w f* What we have really found is that

Wfo is the locally preferred downstream mode. The second band of dis-

turbance responses at x = 6.00 cm are those of the second harmonics of

the free shear layer modes. Since this is a region of strong non-linear

interactions, it is not surprising that harmonics can be directly ex-

cited.

The response curves for symmetric forcing demonstrated an entirely

different behavior. Although a slight tendency for the excitation of

the 20-30 Hz band of naturally unstable fundamental modes is evident in

* Note: Amplitude response curves are not equivalent to frequency

spectra and will not make any sense if interpreted as such.
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Figure 4.12: Amplitude response curves at different

values of x when the shear layer is excited with an

asymmetric forcing field. ( y = 0.4 cm)
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Figure 4.13: Amplitude response curves at different

values of x when the shear layer is excited with a

symmetric forcing field. (y = 0.4 cm)
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the initial linear zone of transition, the maximum forced response is

elicited from two bands of higher ordered modes centered about 49 and

65 Hz respectively. By 6.00 cm downstream, a double peaked response

centered near the 2nd and 3rd harmonics of Wfsl is found.

In general, it was clear that the symmetric forcing field tended

to excite spurious higher order modes and not the modes preferred by

the natural transition. Conversely, the asymmetric forcing preferen-

tially excited the same instabilities that were observed in the natural

transition.

It is also worth noting that with both types of forcing the maxi-

mally excited frequencies tend to drop with downstream distance, (i.e.

note the gradual shift of the peak in figure 4.11 which at 7.50 cm is

centered at 65 Hz and at 12.50 cm is at 55 Hz).

(d) Role of Excitation Field Phase Symmetry

As mentioned earlier and as later measurements verified,higher or-

der non-linear modes have a greater tendency for symmetry of phase than

do the fundamental modes which were all characteristically asymmetric

in phase. One would intuitively expect then that the asymmetric forc-

ing field would be more efficient in reinforcing the fundamental modes.

This was verified by measuring the vertical phase and amplitude distri-

butions of W and W when the flow was excited by the upstream and

downstream speakers respectively. The results are shown in figure 4.14.

The phase distribution of the fundamental modes, when excited by

the downstream speaker, showed a tendency for asymmetry, but were not

strongly locked into phase with the forcing signal. Apparently, the fun-
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damental modes resist the impressed symmetry and intermittently try to

assert their asymmetric form; hence the noisy nature of the symmetric

field phase plots.

Similar measurements for higher order harmonic modes showed that

although they could be weakly reinforced by the asymmetric field of the

upstream speaker, they were preferentially excited by the downstream

speaker and showed a greater symmetry of phase.

The basic conclusion here is that the most unstable free shear

layer mode which is experimentally observed is strongly asymmetric in

phase. This agrees with the theoretical results for spatially growing

free shear layers. One would intuitively expect the transition process

may be altered if the preferred mode is not left free to seek its de-

sired phase configuration. The results show that the fundamental mode

exerts a strong tendency to establish an asymmetric distribution even if

the impressed force field is symmetric in nature.

Except when expressly noted, following discussions of the forced

transition will concern experimental data taken when the flow was ex-

cited by an asymmetric forcing field generated by the upstream speaker.
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CHAPTER V

FORCED TRANSITION (QUANTITATIVE RESULTS)

The results of chapter IV demonstrate that the evolving nature of

the shear layer exerts an influence on both the linear and non-

linear regions of transition. This stimulated a study of

the transition not only in terms of the most unstable mode w of the

initially asymmetric wake, but also in terms of the free shear layer

mode Wfsl whose harmonic modes seem to be favored for non-linear down-

stream reinforcement.

As will be evident from the data presented in this chapter, a com-

parison of the forced transitions of w and wfsl will demonstrate some

aspects of the influence of disturbance scale and local mean conditions

on the linear and non-linear mechanisms involved in the transition. It

will be seen that the w mode exhibits the most clearly identifiable

stages of transition as it passes from laminar instability to turbulent

*
breakdown . The overall transitions are similar in both forced cases.

However, in some respects both forced transitions differ from that of

the natural transition.

Pursuing these differences further, it was evident from the natu-

ral transition induced by a non-quasi white noise input that non-linear

*The term "turbulence" will only be used in the context of describing
the flow when all modes present have lost any coherent relation to the
excitation signal. Hence, it will be used as a euphemism for chaos and
not for any profound scientific description.
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combination modes play an important role. A controlled mixed mode ex-

periment in which the flow is simultaneously forced at two frequencies,

oA and wB, was conducted to study the importance of combination modes.

The results gave a more representative picture of real life systems

which are subjected to a multiplicity of disturbance inputs. The mixed

transition presented an order of magnitude increase in complexity and

only certain significant features were investigated.

In the material that follows the primary emphasis will be placed

on obtaining a clear overall picture of the general transition process.

The four experiments conducted here will be referred to as:

1. WN : Natural transition;

2. wfsl : Free shear layer transition;

3. w : Initial wake transition;

4. wA +wB : Mixed mode transition.

In each forced transition an asymmetric forcing field is used to

generate the initial disturbance field. The natural transition is as-

summed to be excited by a quasi-white noise disturbance input.

The specific details of the w transition will be investigated

more thoroughly than the other three cases, especially in terms of the

influence of the mean flow field on the transition process. The w II

transition will then be used as a vehicle for interpreting the wN' Wfsl

and (o +o ) transitions.
A B

To avoid descriptive repetition, the data of all three forced

transitions will be presented in this chapter en masse rather than in

three isolated units. Most comments will pertain to the w transition,
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and the second half of this chapter will be entirely concerned with the

details of the w transition.

V.1 Initial Growth Rates and Most Unstable Forced Mode

A series of growth rate measurements were made (for asymmetric ex-

citation) by setting the forcing oscillator at a given frequency and

then observing the downstream growth of the excited oscillations at that

frequency. Plots of the vertical variations of r.m.s. velocity were made

and the values of the maximum peaks were used as a measure of growth

rate. The experimentally determined growth rates, -a., are plotted in

figure 5.1 where:

u' (x, t) =F u' (x, r er r r i

Also shown in figure 5.1 are the growth rates predicted by a lin-

ear stability model based on the mean profile at x . The experimentally

determined maximally unstable mode was at Sr = 0.218 while linear spa-

tial and temporal theories predicted maximally unstable modes at

Sr = 0.2217 and 0.2090 respectively. The theoretically predicted growth

rates were in good agreement with experiment for small wave numbers, but

were normally %20% in error for the most unstable mode.

As the forcing frequency was extended beyond the most unstable

mode, the growth rates decreased as theoretically predicted until at

Sr = 0.296 when they started to increase again at much larger values

than noted for the primary modes. These points represent the direct ex-

citation of harmonic modes and are noted as darkened triangles. As indi-
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Figure 5.1: Spatial growth rates -o. of the unstable
fundamental modes in the linear region of transition.

Asymmetric forcing field used for disturbance excitation.
Darkened triangles are directly excited non-linear modes.

(d-experimental points;--results of a linear spatial
stability model;----results of a linear temporal stabilty
model.Theoretical calculations based on the mean velocity
profile at xA.
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cated, two additional maximums were observed. One was centered direct-

ly at r = 0.326 which is close to the 2nd harmonic of W ; the secondr fsl1

peak appeared to be growing such that a maximum would be occurring near

= 0.4350 which is near the 2nd harmonic of w,,.

An important point to note here concerns the observed location of

initial growth. For all modes below r = 0.296, growth started immediat-r

ely behind the plate, and continued to do so for at least 1.5 downstream

wavelengths of the particular mode considered. However, the modes above

= 0.296 did not appear nor start to grow until a wavelength or more

(again of the particular mode considered) of downstream distance had

elapsed.

It is not clear why harmonic modes can be directly excited. How-

ever the crucial point here is that the asymmetric field preferentially

excites the natural fundamental modes. The growths of these fundamental

modes are basically described by linear theory. The additional fact that

harmonic modes can be directly excited must be attributed to non-linear

effects and will be discussed further in chapter VI.

V.2 Downstream Evolution of the Forced Transition Spectrum

The input spectra with and without forcing are shown in figure 5.7

for each experiment. The forced energy input, as stated earlier was

just slightly larger than the overall natural r.m.s. turbulence level,

and was sharply centered at the excitation frequency, or frequencies.

The downstream evolution of the forced transition spectra are

shown in figures 5.9, 5.10, and 5.11 for the WII, Wfsl and (w A B) tran-
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sitions respectively. One is immediately struck by the organizing effect

of the forcing field on the transition spectra. Even the very slightest

forcing acted to phase-lock or synchronize the disturbance fluctuations

with the excitation field. With very slight forcing (i.e.<< r.m.s. tur-

bulence level) infrequent, but bothersome, phaseshifts would occur, and

the final forcing amplitude was chosen to be the smallest amplitude which

would eliminate most intermittent shifting.

(a) w fsl and w Forced Transitions

The ofsl and w transitions were characterized by their initial

single frequency growth, the early appearance of clear 2nd and 3rd har-

monics, and the later downstream emergence of intermittent sub- and 3/2-

harmonics of the primary mode. A slight downstream tendency for w fs1 to

exert itself even when the flow is forced at w was evident from x=2.0

to x = 6.0 cm. However, there seemed to be no tendency for w to ap-

pear in the early stages of the wfo forced transition spectra. It is

interesting to note also how the w forcing had a stronger organizing

effect on the downstream transition spectra.

Although the wfs1 spectra had more initial activity in the

sub-harmonic and 3/2-harmonic range, the w transition seemed more effect-

ive in generating strong 1/2 and 3/2-harmonics. In both cases, the exact

frequency of the 1/2 and 3/2-harmonics which were reinforced by the

transition constantly shifted in value. These modes were not as

strongly phase related to the primary frequency as the higher harmonics

were. Any attempt to measure the total energy content, or growth of the
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sub and 3/2 modes required the use of a much broader band-pass filter

(i.e. + 5 Hz) than the sharply centered higher harmonics did (i.e. + 0.5

Hz). The onset point of 3/2 and sub-harmonic generation could not be

accurately determined from spectra measurements alone.

Measurements in the 100 Hz - 200 Hz frequency interval indicated

the slight presence of 4th, 5th, and 6th harmonics in both transitions.

However these were of small energy content and appeared for only a

short distance (i.e. 7.0 to 13.0 cm) and quickly died away.

(b) (wA+wB) Mixed Mode Transition

For these experiments, the flow was excited simultaneously by W fsl

and w . The amplitude of the two excitation inputs were equal and

identical to the values used when the flow was singly excited. Both

excitation signals were derived from the same reference signal by means

of a solid state multiplier-divider circuit and had a constant phase

angle relation to each other (see figure 5.8).

The most striking feature of the mixed transition is its extremely

strong organizing effect. Instead of a shifting broad-band filling in

of the spectra, very sharply centered frequencies are excited and rein-

forced. Not only do non-linear nw/m (n = 1, 2, 3 ... ; m = 1, 2) modes

appear for each of the two primary modes, but non-linear combination

modes of the form (nwA /m + pw B/q) (n, p = 1, 2, 3 ... ; m, q = 1, 2) ap-

pear. When in apparent competition with a sub-harmonic or 3/2-harmonic

mode for energy input, these combination modes seem to win out and

dominate the transition.
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Growth rate measurements showed that wA and WB grow exponentially

in the initial wavelength of transition at the same rates that Wfsl and

W Idid in their singly forced transitions. It was also evident that

even though w fsl was found to grow to larger amplitudes than w in the

single experiments, wB II grew to much larger values than w t fsl did.

As with the singly forced experiments, non-linear modes did not appear

for at least a wavelength of downstream distance. The first non-linear

modes to appear in the spectra were (wA +wB ) and [wA+ (wA +WB) ], with the

spectrum quickly filling in after that with (w -W ) and various other

discrete modes. As shown in figure 5.12 higher frequency combination

modes were also generated in the 100 to 200 Hz range. However, their

spatial extent and energy contents were much less than the lower fre-

quency modes.

As a curiosity measurement, the transition sequence when the flow

was directly excited at (wB A ) was observed. As shown in figure 5.13

rather than causing the preferred growth of (wBW A), the excitation

caused wA and wB to grow instead.

(c) Summary of Observed Interactions with Asymmetric Field Forcing

Shown below are three representative spectra taken from the wfsl'

W Iand wA +wB transitions. The probable relation of the various non-

linear modes to the forced fundamentals are indicated. Although the

weak presence of some modes, such as wA/2, WA +WB/2, etc., were detected

in other regions of the flow, their activity was limited, and their

small energy content made a detailed search unrewarding. Table 5.1 lists

the significant interactions observed in the three forced transition ex-
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Table 5.1:

Maximum r.m.s. amplitudes and signal clarity for the

various modes observed in the w ,9 Wfsl and (A +B)

transitions.

o Transition

S

r

0.2183

0.1091

0.3273

0.4366

0.6549

Max u' (%)rms

12.5

1-3.0

4.0

5.0

2.0

Clarity

Very sharp

Intermittent

Intermittent

Very sharp

Sharp

w fsl Transition

Max u' (%)rms

15.5

13.0

3.0

7.0

3.5

Clarity

Very sharp

Intermittent

Intermittent

Very sharp

Sharp

Mode

o /2

3w /2

2w1

3w1

Mode

ofsl

wfs /2

3wfsl/2

2wf

3w f

r

0.1665

0.0833

0.2499

0.3330

0.4995
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Table 5.1:

(continued)

(WA + WB) Transition

Mode

WA

WB

(WB~WA)

W A/2

w B/2

WA + W B/2

3w B/2 or 2wA

W A + W B

2w B or 2w A~oB/2

3B 

A2wA +B

2wB + WA B
3

WAAw 
B

3wA + WB

2 (wA + WB)

etc.

r

0.1627

0.2170

0.05417

0.08133

0.10848

0.27114

0.3255

0.3796

0.4338

0. 4880

0.5423

0.5966

0.6509

0.7049

0.7592

Max u' (%)rms

3.5

11.0

15.0

8.5

3.0

1.2

2.0

4.6

1.25

1.1

1.2

1.25

1.0

0.75

Clarity

Very sharp

Very sharp

Sharp

Very intermittent

Intermittent

Sharp

Somewhat intermittent

Sharp

Very sharp

Sharp

Somewhat intermittent

Sharp

Sharp

Sharp

Somewhat intermittent
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periments. As will be evident from the r.m.s. velocity distributions

presented in the next section, some modes were more strongly reinforced

than others. As a precursor to the data that follow an indication of

the characteristic maximum amplitude and relative clarity of signal

(i.e. lack of intermittency and sharpness of energy concentration)

be noted for each mode.

WA 10A Btrasiti

(d) Transition Spectra with Symmetric Field Forcing

As discussed in chapter IV, when a symmetric excitation field is

used the maximally unstable forced mode was found to be 2w fsl, the sec-

ond harmonic of o fsl. A series of downstream spectra are shown in figure

5.14 for the transition excited by forcing directly at the second har-

monic of w .sl The excited 2w fsl mode did not start to grow until about

a wavelength of downstream distance had elapsed (i.e. X[2w fsl]'u 1.3 cm).

It was quite interesting to see that the flow followed the same sort of

transition sequence as it did when forced at a primary mode frequency
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such as ofsl or W H. Second and third harmonics of the forced 2wfsl

signal appear along with strong sub- and 3/2-harmonics; a later down-

stream preference for wfs /2 (i.e. the sub-harmonic of the sub-harmonic

of the forced 2wfs1 mode) is quite noticeable.

Shown in figures 5.15 and 5.16 are the w and wfsl transitions

excited by a symmetric forcing field. A notable degree of intermittency

is apparent.

V.3 Downstream Evolution of the Unstable Disturbance Field

(a) Evolution of the R.M.S. Velocity Field

The downstream variations of the r.m.s. values of the u'(x,y) vel-

ocity field amplitude distributions are shown in figures 5.22+5.26, 5.28+

5.32, and 5.34+5.41 respectively for the significant frequency compon-

ents observed in the o , Wfo and (w A+w B) transitions. Each plot is

the result of a series of continuous vertical traverses across the shear

layer. Traverses were made at 0.5 cm downstream intervals. The velo-

city fields of the wfs1/2, 3wfs /2, W1 1 /2, and 3w 1/2 modes were made

with a - 5 Hz filter band in order to compensate for their broad band

intermittency. A t 0.5 Hz filter band was used for the more sharply

centered modes. The amplitudes of the r.m.s. longitudinal fluctuations

are normalized with the free stream velocity of the top stream (i.e.

200 cm/sec) and are plotted in terms of percentage value (i.e. (u'/U )

100].

The plots are presented in an isometric orthographic form for

compactness. This format allows an immediate overall picture to be ob-
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tained for the downstream evolution of each mode in the transition

sequence. Because the plotted surface Is considered opaque and hidden

points (i.e. those behind a peak, etc.) are deleted, many interesting

features are lost from projections made from one viewing angle. Thus,

two projections, as noted below, are presented.

Figure 5.3: Coordinate viewing angles for the
contour and 3-D isometric-ortho-
graphic data plots.

The overall view provided from two viewing angles demonstrates

that other than in the initial stages of transition, it can be mis-

leading and very difficult to obtain a measure of disturbance growth

and evolution by following the growth of a given peak, or by measuring

the maximum amplitude at each section Ci.e. peaks appear, grow and decay

and new ones arise at many virtual origins). Also, even in the linear

zone of transition, the peaks of a given disturbance were found to grow

at different rates.
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(b) Maximum Values of the R.M.S. Velocities

Figures 5.42, 5.43 and 5.44 show the downstream evolution of the

maximum u' amplitudes of the various spectral components in each

forced transition. It was surprising to note that most of the non-lin-

ear modes grew exponentially in their initial stages of evolution(al-

though this was not completely clear for the 1/2- and 3/2-harmonics)

The non-linear modes all abruptly appeared at about one downstream wave-

length of the fundamental and grew simultaneously with the primary

mode. The 2nd and 3rd harmonics of fsl and LII grow to a finite equi-

librium amplitude , remain there for a while, and then decay. However,

the sub- and 3/2-harmonics seem to reach an initial equilibrium state,

and then start growing again. This same behavior is found in the

(W -w) and WB/2 plots for the mixed transition.BAB

(c) Evolution of the Vertically Integrated Disturbance Energy

The spreading of the disturbance model structures with downstream

distance made it clear that the total energy of a given spectral com-

ponent could increase even if the peak values did not. Also, some ver-

tical distributions have more peaks than others (i.e. different modal

structures) and hence can differ in total energy content from a similar-

ly distributed mode with less, or broader peaks (i.e. compare the four

distributions shown below).

igure 5.4: Four r.m.s. modal shapes that have the same
r.m.s. maximums but different energy contents.
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A meaningful way to compare the energy content of various modal

shapes is to use an integral measure to eliminate the precise spatial

details. An integral energy measure

EM (x, wi.) = y=Ix, u2 2  (x, W d
f Y=-4 U 2 20 (x )T m o

was used to compare the overall downstream growth of the various modes.

EM (x, w.) gives a measure of the u' energy content of a given
rms

disturbance whose frequency is centered at w..

As a measure of total u'rms disturbance energy, the integrated

energies of all modes present were summed at each downstream station.

E (x) = Z EM (x, w.)

This is a reasonable measure for a disturbance

field comprised mainly of discrete modes.

Figures 5.45, 5.46 and 5.47 show the growth of EM(x, w .) for the

various significant modes in the three experiments. The total distur-

bance energy E(x) is plotted in figure 5.48. These curves will be dis-

cussed in the next chapter. However, several points of interest can be

noted. One immediately notices that the vertical integral of distur-

bance energy does provide a useful measure of disturbance growth. The

scatter observed in the u'rms plots has been eliminated by the integra-

tion.

The energy plots exhibit the same basic behavior as the r.m.s. am-

plitude measurements. Equilibration zones and regions of exponential
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growth are present in both the r.m.s. and energy curves. As indica-

ted in figure 5.46, six basic stages of transition can be identified

for the w transition. These stages are identified as regions I

through VI and are extensively discussed in the next chapter.

The disturbance energy grows as the square of the disturbance

amplitudes, thus the downstream growth rate of disturbance energy will

be proportional to exp(-2t x). Both the r.m.s. and energy curves have

been used to calculate disturbance growth rates. The growth rates, re-

gardless of which curves were used, will always be stated in terms of

-t .,. the u'rms growth rate. To obtain energy curve growth rates one

need only multiply by a factor of two.

As has been pointed out by Stuart (1960a) and Kelly (1967) among

others, it is often convenient to consider the energy growth in terms

of odd and even multiples of the sub-harmonic. The total u'rms energy

contained in the odd and even disturbances are presented in figures

5.49 and 5.50 where

EM (odd) = E EM (x, -) (n = 1, 3,5 ... )
n 2

EM (even) = Z EM (x, -) (m = 2, 4, 6 ... )m 2

V.4 Downstream Evolution of the U(x,y) Mean Velocity Fields

The downstream development of the U(x,y) mean velocity fields are

shown in figure 5.17 for the W transition and in figures 4.7, 5.27,

and 5.33 for the WN fs and (WA+WB) transitions respectively. It isNq fs A B

quite clear from both the profile evolution and -the respective contour
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plots that the evolution of the mean flow is dependent upon the parti-

cular transition being studied and hence the disturbance modes which

are present. For example, the mean flow abruptly spreads at about

1.OX I and 1.0Afsl in the w and wfsl transitions, and at 1.OXB where

(XB XII ) for the mixed mode transition.

V.5 Further Details of the w Transition

(a) Additional Details of the o Transition Mean Flow

The mean vertical velocity field V(x, y) is shown in figure 5.18.

The amplitude scale has been stretched relative to the U(x,y) plots, so

for comparison's sake V(x, y) is emphasized out of proportion. A small

vertical velocity (V/UT %2-6%) is observable at the test section en-

trance and may account for the slow spreading of the initial wake. This

up-flow dies off within a wavelength and in fact the spreading of

U(x, y) at %l.OX is reflected in an outward (i.e. away from the cen-

ter line) mean vertical velocity. The final transition to turbulent

motion at %5X II is also accompanied by a spreading of U(x, y) and a

strong outward vertical velocity field (i.e. V/U T2-12%). Note also,

that the equilibration region between x = 1.8X I and x = 3.20X is

marked by a slight (%2%) vertical inflow.

The alteration of the stability characteristics of the o I mean

flow due to the merging of the two layers and the subsequent downstream

re-distribution of mean vorticity can be seen in figures 5.19 and 5.20.

These figures show the evolution of the mean vertical shear profiles
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(i.e. spanwise vorticity) with downstream distance. The dominant in-

fluence of the upper shear layer (arbitrarily taken as positive vorti-

city) and the gradual elimination of the bottom layer inflexion point

(i.e. negative vorticity) are clearly evident. The maximum shear is

sharply centered and closely approximates a vortex sheet. The vertical

vorticity distribution spreads extremely slowly in the initial wave-

length of transition. The presence of rather odd appendages to the

contours in figure 5.20 are due to the approximation schemes used in

the computer contour program.

A useful indication of just how a shear layer is evolving is to

measure the downstream momentum gradients, or equivalently 3U/3x. The

downstream distribution of 3U/3x is given in exaggerated scale in fig-

ure 5.21.

(b) Downstream Phase Variations

As discussed more fully in appendix A.3, cyclic variations of

phase in the downstream flow direction (see figure 5.51) are normally

interpreted in terms of wavelength. Local variations in wavelength

were measured by graphically reproducing the standard experimental tech-

nique of wavelength measurement (i.e. pick a reference point, xr, note

the phase reading there, then move the probe downstream until the initial

phase angle is repeated). Graphically, this corresponded to picking a

given point, noting the phase angle and drawing a straight line parallel

to the x-axis. Where it intercepts the same value of phase on the next

sloping segment of the curve is 2ff radians, or one inferred wavelength

downstream. Figure 5.52 shows the downstream contours of phase for the
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o Itransition in the initial 15.00 cm of flow.

It is evident from the phase contours that a word or two of

explanation is in order. What are really shown are the contours of

downstream phase variation as observed by an observer riding with the

phase velocity of w . These are the famous "cat's eyes" of Kelvin

which are schematically illustrated below, and discussed further in

appendix A.3.

A

WjAUE SLOr-rY- = e

TZ~JLa.~ ~ T~t. UALia rL0CVtT%. Cr

Figure 5.5: Schematic representation of the Kelvin cat's eyes

seen by an observer moving with the disturbance
wave velocity.

It is felt that past researchers have not appreciated the true

meaning of their wavelength measurements (as made by phase repetition)

and apparently large scatters in their reported data may be due to the

cat's eyes effect (i.e. phase measurements near the critical layer,

ye c will yield smaller apparent wavelengths 
etc.).

It is interesting to note that the closed contours which should

represent the location of the critical layer are located near the plate
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center line rather than slightly above it where U(y ) = c . It seems
c r

that the cat's eyes in this asymmetric wake are centered at the point

where the average convective velocity of the two layers equals the dis-

turbance phase velocity (i.e.)

Y Vr

Cr

Q-&i EQUtAL-c C.

Figure 5.6: Location of the experimentally measured critical
layer and the theoretically predicted location Yc.

The wavelengths are seen to vary with downstream distance and ver-

tical location. However the characteristic streamwise scale of succeed-

ing cat's eyes are relatively similar. For a simple wave train the

cat's eye extent would equal the disturbance wavelength,and for lack of

a better indication the scale of the cat's eyes will be taken as being

representative of fundamental mode wavelength.

The vertical extent of the closed contours gives an indication of

the critical layer thickness. Based on the cat's eyes contours the

critical layer thickness of the ogy mode is of the order of 0.3 cm.

Thi.s compares favorably with the theoretically predicted value for II

which is of the order (aR)-1/3 \0.3 cm.
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(c) Vertical Phase Variations

Shown in figures 5.53 to 5.56 are the variations in phase across

the shear layer at each downstream station where a traverse was made.

The phase shifts are measured relative to the speaker-induced oscilla-

tions at the reference point xr in the free stream just above the

splitter plate edge.

Note that the phase measurements were made by exciting the tran-

sition at w 1 . The resulting probe signal was filtered to isolate a

desired n w /m frequency component. The reference w excitation sig-

nal was multiplied and divided to give a reference signal of frequency

nw II/m for comparison with the filtered probe signal. Hence the mea-

surements represent the actual phase relations between the various

modes in the w transition, and not the phase development when the flow

is forced at n w i/M.

The initial phase distribution of w as measured just behind the

splitter plate had a very strong 1800 asymmetric phase shift. The first

few stations were made with high amplification rates and the early pro-

files probably reflect the phase distribution of the speaker-inducded os-

cillations.

The rapid growth of the unstable w mode is reflected in the

abrupt formation of a very complex phase profile. This basic profile

persisted until w reached an equilibrium amplitude at about x = 11.00

cm. Here , a strong 1800 shift is again established. Smoke pictures

showed the formation of a possible discrete vortex structure in this re-

gion. In the last wavelength of transition, the phase of o became
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very intermittent and gradually lost its asymmetric structure. The

cat's eye effect is also evident in these as a sausage like necking of

the phase profiles with downstream distance.

The phase distributions for w11 /2, 3 w11 /2 and 2w I require some

qualifying comments. All three modes show phase distributions (and

hence implied modal activity) in the initial wavelength of transition.

This is in contrast to the energy, and r.m.s. plots which do not indi-

cate any activity in these modes during the first wavelength of transi-

tion. This dichotomy can be attributed to several factors. Most im-

portant is the fact that the phase meter circuitry required a minimal

500 my signal for successful operation. Consequently a high gain A.C.

amplifier was used to bring the probe signal to the level necessary for

comparison with the reference signal. Hence any spurious modes, no

matter how small, were to all intents treated as a real 500 my signal

by the meter. The region immediately behind the splitter plate may

have contained some spurious oscilllations near the frequencies of the

harmonic modes, and the meter may have registered the phase of these

small but spurious disturbances.

In all three cases, one notices a tendency for the harmonic mode

phase profiles to take on a definite character at about x=3.0 cm. This

is near the point at which non-linear modes first appear in the energy

plots.

Since the phase meter will only give a clear steady output volt-

age when the input frequency exactly matches the reference signal, it is

felt that the accuracy of those portions of the phase plots which do not
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exhibit a great deal of noise or scatter represents the actual be-

havior of the desired mode.

A surprising feature of the sub-harmonic behavior is the presence

of 900 phase shifts. This indicates a sloshing type behavior where

the upper stream sub-harmonic oscillations occur with no bottom stream

action and vice versa. This tendency persists until the sub-harmonic

begins its second region of growth and loses any coherent phase rela-

tion to the wI forcing signal.

The second harmonic oscillations have a very complex phase struc-

ture with less abrupt phase shifts. The sharp 1800 jumps exhibited by

the primary modes do not appear. Instead more gradual variations occur.

The poor phase relation between 2w I and the 2w reference signal

(which was derived from the wII forcing signal) was not expected since

the second harmonic is the clearest and most strongly centered non-lin-

ear mode present in the transition. Whether the poor phase relation is

due to the electronic processing, or really indicates a lack of real

phase dependence with the primary is not clear.

(d) Three-Dimensinnal Structure

Cross-stream variations of the wI r.m.s. disturbance amplitudes,

and the spanwise phase angle 3 (WII) were measured at various vertical

levels for selected downstream stations. Downstream intervals of 2.5

cm (i.e.~0.57X I) were chosen for analysis.

Perhaps the best indicator of spanwise distortion is the spanwise

phase angle # 3 of the primary fluctuation. R.m.s. wavefront distortions

can be a misleading indicator. This fact was demonstrated by the verti-
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cal r.m.s. profiles of the sub-harmonic mode. The r.m.s. profiles gave

no indication of the sloshing behavior which was evident from its verti-

cal phase measurements.

The cross-stream phase variations of the primary mode are shown in

figures 5.57 to 5.60. Also shown are the cross-stream variations of the

r.m.s. probe voltage (i.e. the variation of the r.m.s. level of the

fluctuations across a wave front). It must be noted that the r.m.s.

plots are arbitrarily scaled and are not representative of the absolute

values of velocity fluctuations. They only show the qualitative dis-

tortion of the wave front in comparison to the phase distribution. The

magnitude of the r.m.s. distortions have been magnified for visual com-

parison.

Initial measurements showed that the first indication of spanwise

variations in phase coincided with the equilabration of the fundamental

mode at 1.8X . The spanwise phase distributions (solid lines) in the

linear and weakly non-linear regions were relatively flat across the

tunnel. For example, the only variations observable at x = 5.00 cm are

those accompanying the abrupt vertical phase shift across the center

line. The scatter at y = 0.025 cm may be due to a low frequency

shifting of the shear layer cat's eyes. Some spanwise variations of

wave front r.m.s. amplitude (dashed lines) are present at x = 5.00 cm,

and may reflect a pre-existing spanwise variation in the entrance

streams. However, measurements made at the test section entrance

showed no significant spanwise r.m.s. variations.

Within one and a half wavelengths downstream (i.e. near 7.5 cm)
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phase variations were observed at the center line and distortions of the

r.m.s. distribution became more emphasized. However, no strong cyclic

cross-stream wave structure existed and it is questionable if three-di-

mensional mechanisms are being brought into play. This point marked the

beginning of the equilibration zone.

At x = 10.00 the flow actually tends to revert to a more two-di-

mensional structure with variations in phase and r.m.s. values being

less severe. This station is within the equilibrium amplitude zone.

At x = 12.50 cm, in coincidence with the onset of strong sub-har-

monic growth, the flow again tends to lose its two-dimensional structure.

By x = 15.00 cm it has reached a highly distorted spanwise structure,

1800 spanwise phase changes appear. This highly distorted spanwise

structure is reinforced with downstream distance until at x = 17.50 cm

the entire central portion of the shear layer is strongly three-dimen-

sional.

In summary then it appears that three-dimensional effects are not

present in region I nor for the greatest portion of II. However, they

seem to weakly appear just prior to the onset of the equilibrium region,

III, disappear during region III and again appear in increasing severity

in regions IV and V. Spanwise phase measurements were not made in region

VI and one can only speculate that the three-dimensionality increased in

severity.
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Figure 5.7: Influence of the forced excitation field on the input
spectra at the test section entrance.The natural input noise spectra
is shown below each forced spectra.(x=O.O,y=4.0 cm )

Figure 5.8: (a) Excitation signals of the 4 T WA(WS, and fs

transitions. (b) Lissajous phase pattern between the 0A and
()B excitation signals in the mixed mode transition.
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the o forced transition (y = 0.2 cm).
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Figure 5.10: Downstream frequency spectra of
the W fsl forced transition (y = 0.2 cm).



x 0.20 J V.J 13.00

x 1.00 14.00

x =2.00

x =3.00 x 16.00

C,)

z x = 4.00 x 17.00

E

< x = 5.00 x 18.00

I- x = .00-0 6x =0.00 =19.00

x =7.00 x = 20.00

< x = 8.00x =1 4.00

(r) z
0

x =25.00

x =10.00 x =23.00

S=I .00 x = 24.00

12.00 x =25.00

10 20 304050607080 90100 10 20 30 40 50 60 70 80 90 100
FREQUENCY [HZI FREQUENCY [HZ]

Figure 5.11: Downstream frequency spectra of

the (WA + WB) forced transition (y = 0.2 cm).
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Figure 5.12: Downstream frequency spectra illustrating
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Figure 5.14: Downstream frequency spectra of the transition
resulting from the direct excitation of a harmonic mode by
a symmetric forcing field. Forcing frequency set at 2wfsl'
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Figure 5.16: Downstream frequency spectra of the forced
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field (y = 0.2 cm).



Figure 5.17: U(x,y) mean velocity profiles and
contours for the wIT transition. U/UT amplitude
axis = 1.00; contour interval = 0.05.



Figure 5.18: V(x,y) mean velocity profiles and
contours for the W transition. V/U amplitude
axis = 1.00; contour interval = 0.02.
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Figure 5.21: Downstream profiles of the mean downstream

shear 3U/3x for the W transition. Amplitude axis norm-

alized with U T/26 (x,9 Full scale = 0.05.
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Figure 5.22: Downstream profiles of urms *I)

urms /UT amplitude axis = 15.5%.
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Figure 5.27: U(x,y) mean velocity profiles and
contours for the W fsl transition. U/UT amplitude
axis = 1.00; contour interval = 0.05.



Figure 5.28: Downstream profiles of

urms /UT amplitude axis

urms fsl '
= 5.5%.
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Figure 5.31: Downstream profiles of urms (2wfsl9.

u rms/UT amplitude axis - 15.5%.
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Figure 5.33: U(x,y) mean velocity profiles and
contours for the ( A ) transition. U/UT amplitude
axis = 1.00: contour interval = 0.05.



Figure 5.34: Downstream profiles of urms (W ).

urms /U T amplitude axis = 15.5%.



Figure 5.35: Downstream profiles of urms (W ).

u rms/JJT amplitude axis = 15.5%.
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Figure 5.40: Downstream profiles of u (Wa + WB/2).

u r/UT amplitude axis = 5.5%.



Figure 5.41: Downstream profiles of u rms(2w '
u rms/UT amplitude axis - 5.5%.



- 16a -

0 5 10 X (CM) 15 20 25

Figure 5.42: Downstream growth of the maximum u velocity

of each mode in the Wfsl transition. [ x - fsl Wfsl/2

V- 3wfs1/2 ; O - 2wfsl ; A- 3fsl'
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Figure 5.44c: Downstream growth of the maximum u velocity

of the significant modes in the (WA + ) transition.
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Figure 5.44d: Downstream growth of the maximum u velocity

of the significant modes in the ( WA + W B) transition.
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Figure 5.51: Downstream variations in the streamwise
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profiles of theWI fundamental mode.
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Figure 5.61: Contours of the u (w I) velocity field.

Contour interval = 1.0%.



Figure 5.62: Contours of the u (w /2) velocity field.

Contour interval = 1.0%.



Figure 5.63: Contours of the u (3Ow /2) velocity field.rms II
Contour interval = 0.5%.
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Figure 5.64: Contours of the urms(2w I) velocity field.

Contour interval = 1.0%.



Figure 5.65: Contours of the urms (3wII ) velocity field.

Contour interval = 0.5%.
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CHAPTER VI

DISCUSSION OF THE TRANSITION PROCESS

As briefly mentioned in chapter IV, the single mode forced tran-

sitions were characterized by six distinct regimes, each of which ex-

hibited a particularly unique character. For convenience these will

be referred to as regions I-VI. The identifying characteristics of

each region are noted below for the W transition.

Approximate
Extent

0.0-+0.9X

0. 9+1.8\B

1.8-2. 5X

2.5+3. 20X

Characteristics

Fundamental mode grows exponentially
and obeys linear theory. No non-
linear modes present.

Fundamental mode continues to grow
exponentially; exponentially growing
non-linear modes appear.

Fundamental mode reaches a finite
amplitude equilibration state; non-
linear modes also equilibrate.

Fundamental mode remains in equili-
bration; sub- and 3/2 harmonics start
second region of growth; second and
third harmonics start to decay.

Termination of fundamental mode equi-
libration; second and third harmonics
decay strongly; sub- and 3/2 harmonics
change growth rates but continue to
grow. Three-dimensional distortions
of the fundamental appear.

Final breakdown of flow; disturbance
spectra rapidly fill in; w 11, 2
3 u start to grow again, W 11 /2,
3 approach a second equilibra-
tion; strong three-dimensional dis-
tortions.

Table 6.1: Identifying downstream characteristics of the W Transi-
tion.

Region

I

II

III

IV

V

VI
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This chapter is presented in two segments. The first considers

the detailed behavior of the single mode forced transitions and is di-

vided into six sections, each concerning itself with a given region of

transition. Primary emphasis is placed on the w transition of the

maximally unstable mode. The second segment concerns itself with the

mixed mode (wA + W B) transition.

The effects of forcing on the transition process, and the relative

character of the forced and natural transitions have been discussed in

chapter IV and will be drawn upon when needed; otherwise the following

discussions will only be concerned with the forced transtions.

VI.I Single Mode Forced Transition

Region I: Linear Transition (0.0s0.9 X I)

In order to interpret the experimental results in the linear

transition zone, a series of stability calculations were made for various

downstream mean velocity profiles. The mean profile at each station was

approximated by a trapezoidal model (see below). The linear, inviscid

limit was taken and the Rayleigh equation was solved. The resulting

eigenvalue matrix was analyzed for both temporal and spatial instabili-
V

ties. 'T

Figure 6.1: Trapezoidal approximation of a
continuous velocity profile.
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After several preliminary calculations both intuition and the

general trend of the calculations indicated that the proper method of

fitting the trapezoidal profile to the real data was to choose the slope

and length scale of each segment to model the maximum mean shear as pre-

viously calculated from the experimental data. Since (UT, UB, UM) are

fixed by the experimental data, this technique introduced three length

scales (LT, LB, L) or equivalently (LT, LB, LM). As might be expected,

the calculations for the maximally unstable mode (which were due to the

upper layer inflexion point) were not significantly affected by slight

variations in LM and LB if the overall scale, L, was held constant.

However, variations in LT (which changed the maximum modeled vorticity)

or in L (which altered the characteristic length scale) caused variations

of 10 to 20% in the predicted growth rates and wavelengths.

(a) Stability of the Initial Wake Profile

Both temporal and spatial analyses were made for the initial pro-

file at x and the results are presented in figure 5.1. The spatial ana-

lysis presented convergence problems for large values of |al; this be-

havior has been noted by other authors, Mattingly (1968), in conjunction

with continuous profiles. It seems to be an inherent problem with spa-

tial models, and not one due to the trapezoidal approximations. The ex-

cessive computation costs involved with the spatial analysis precluded

an attempt to calculate the eigenvalues for large values of |al and once

the maximally unstable mode was reached the calculations were terminated.

The agreement between the spatial model and experimental data was quite

good for small |al. The poorer agreement for larger values of |aj is to
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be expected for a trapezoidal model.

Although the temporal and spatial models gave slightly different

maximum growth rates, both were centered near the frequency of the ex-

perimentally determined maximally unstable mode. The results of both

analyses are tabulated below along with the experimental values.

The pertinent results of previous workers on similar problems are

also included for comparison. These comparative results were typically

obtained for single inflexion point shear layers and correspond to the

mode II upper inflexion point instability of the trapezoidal profile.

Table 6.2: Eigenvalues for the maximally
unstable mode II disturbances

Model

Miksad (exp)

Miksad
(spatial)

Miksad
(temporal)

Browand (exp)

Sato (exp)

Freymuth (exp)

Michalke
(spatial)

Michalke
(temporal)

Lessen & Fox
(temporal)

Frequency

0.2175

0.2216

0.2090

0.227

0.2208

0.2140

0.2067

0.223

0.220

Growth rate

-a. = 0.1970

-e. = 0.2370

arci/cr=0-1560

arci/cg=0 .
1540

-ai = 0.220

-ai = 0.184

-ai = 0.180

-ai = 0.2284

atrci/cr=0-1898

arci/cr=0-160

arci/cg=0.150

Wave no.

0.380

0.414

0.396

0.36 +

0.37

0.4031

0.4446

0.408

Phase speed

0.570

0.536

0.547

.08 0.58 + 0.11

0.54 + .08

0.5137

0.5000

0.5400
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The eigenvalues of the spatial trapezoidal model at x are plotted

in figures 6.2, 6.3 and 6.4 together with the experimental data as

measured in the linear transition zone. The dispersive nature of the

spatially growing waves is evident from the wavenumber plot.

Perhaps the most interesting point to be noticed here is the fact

that the group velocity is a minimum for the maximally unstable mode.

This result implies that the most unstable mode is that mode whose energy

travels at the slowest speed and hence can, so to speak, hang around long-

er and absorb more energy from the mean flow. Another way of looking at

this is to note that the time scale over which the Reynolds stress can

interact with the mean flow and transfer energy to the disturbance is a

maximum when the group velocity is a minimum.

(b) Successive Downstream Quasi-Uniform Calculations

Using a quasi-uniform approach the local growth rate curves were

calculated at each downstream station by considering successive local

mean velocity profiles and assuming that each new profile represented

a new parallel flow stability problem. The theoretically predicted

variations were then compared to the experimental data.

The analysis was broken into two sections. The initial regions

of transition in which the flow had an asymmetric wake configuration

were analyzed with the trapezoidal model discussed earlier. The re-

mainder of the flow could, for all intents, be considered as a single

shear layer and was modeled by fitting a hyperbolic tangent profile

to the local mean velocity. The results of Michalke's (1965) spatial

analysis were used for the downstream profiles beyond 6 cm. It should
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be emphasized, however, that for all intents linear approximations

cease to be valid beyond 6cm. Thus, the application of Michalke's

model should be viewed as a test to see just how bad linear theory is

in a non-linear region.

The convergence problems associated with the spatial trapezoidal

model, and the fact that linear transition was only one facet of this

investigation, precluded detailed spatial calculations for downstream

stations other than the first one at x . Instead, since the temporal

eigenvalues at x0 are in reasonable agreement with experiment for the

maximally unstable mode, temporal calculations were made for the down-

stream stations between x0 and 6 cm. Of course, if the local details

such as the eigenfunction structure or phase distribution are desired,

a spatial analysis would be necessary.

The downstream variations of the growth rate and frequency are

plotted in figure 6.5 for the trapezoidal wake as it evolves in the

first six centimeters of transition. The neutral point, as well as

the frequency and growth rate of the most unstable mode decrease with

downstream distance. It should be noted that the validity of the tra-

pezoidal approximation is questionable for the small wavelength modes

near the neutral point. The calculated neutral points are lower than

those obtained by other authors for continuous profile single inflexion

point shear layers.

The variations in eigenvalues for the most locally unstable mode

are given in table 6.3 for the first six centimeters of transition. It

is apparent that by x = 4.0 cm, the locally preferred mode is Sr =
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Figure 6.5: Downstream variations in the temporal
growth rate curves as predicted by a series of quasi-
uniform linear stability calculations. Calculations
are based on a trapezoidal approximation to the ex-
perimentally measured mean velocity profiles in the
first 6 cm. of transition. Dashed curve is the mode I
instability at x . All other curves are for the
mode II instabilities of the upper shear layer.
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0.1633%w s

Table 6.3: Downstream variation of the eigenvalues of the
most unstable mode as predicted by a series of
quasi-uniform calculations based on a linear
trapezoidal model.

x (cm) c -a Model

0.2 .2216 0.4140 0.5361 0.2370 Spatial
0.2 .2090 0.3822 0.5468 0.1562 Temporal
0.5 .1891 0.3463 0.5461 0.1433 Temporal
1.0 .1852 0.3380 0.5479 0.1364 Temporal
1.5 .1821 0.3306 0.5505 0.1355 Temporal
2.0 .1807 0.3264 0.5537 0.1308 Temporal
2.5 .1780 0.3219 0.5570 0.1790 Temporal
3.0 .1742 0.3105 0.5610 0.1218 Temporal
3.5 .1666 0.2945 0.5656 0.1145 Temporal
4.0 .1633 0.2866 0.5697 0.1094 Temporal
4.5 .1630 0.2849 0.5721 0.1079 Temporal
5.0 .1603 0.2785 0.5754 0.1032 Temporal
5.5 .1570 0.2706 0.5800 0.0984 Temporal
6.0 .1325 0.2266 0.5847 0.0817 Temporal

The diange in the frEquency aid gDwth rate of tB lDoally most unstable mode

reflects the successive shrinking of the velocity deficit, and hence

the maximum vorticity, as the flow approaches a free shear layer con-

figuration. Once the wake structure was eliminated, a hyperbolic tangent

model was applied. The results for the most unstable local mode are

summarized in figure 6.6. In general, a direct relation exists between

the local maximum vorticity and the locally preferred mode.

(c) Comparison of Experiment to the Quasi-Uniform Model

Indicated in figure 6.6 are the experimentally preferred modes of

the natural transition at each downstream station. In the initial

stages of transition the preferred natural mode remained relatively near
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its value at x . Not until a significant decrease in mean vorticity

occurs do the natural modes decrease in an apparent response to

local conditions.

The fact that the preferred natural modes do not exhibit a downward

shift, as predicted by theory, may reflect the inability of the quasi-

uniform approach to consider the strong upstream preference for energy

input into the initially most unstable mode at x0. The stability

characteristics of each upstream station act to organize and -center

the disturbance energy at the most unstable mode as befits its local

conditions. Since the maximum vorticity and hence the most vigorous

instability occurs at x = x0, it is the initial profile which acts

to center the disturbance energy most strongly, and the energy input

at later stations will necessarily be centered at the frequency of

the convected upstream energy. The shear layer scale does not change

extensively in the initial stages of the natural transition and the

x mode can still fit in with the downstream local length scales. It

is not until strong changes in scale occur, that the preferred upstream

energy input can be overcome by changes in the local mean conditions.

The effect of local variations have even less influence on forced

transitions. As was evident from the data of chapter V, the growth

rates of the forced modes were also insensitive to local changes in

the first wavelength of transition. They grew as predicted by the

stability characteristics at x0. Apparently, the continuous energy

input of the forcing field tends to mask and override all subtle

changes due to evolving mean conditions.
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Thus the disturbance evolution in both the. natural and forced

transitions can be modeled with reasonable accuracy in the initial

stages of transition by a linearized parallel flow model based on the

initial mean flow at x . Even though local conditions may lead to a

variation in predicted stability characteristics, the initial instabi-

lity based on the upstream profile will dominate the downstream

disturbance field .

However, as will be discussed in the next section, the local va-

riations in scale and fundamental mode stability characteristics play

an important role in determining which non-linear modes are preferred

by the local mean conditions. In this vein, quasi-uniform calculations

can be of great use, even though on their own right they cannot pre-

dict the actual behavior of the most unstable fundamental mode.

(d) The Effect of Local Scale Conditions on Non-Linear Activity

A comparison of the relative location of the points at which non-

linear modes first appear, and the wake-like structure of the mean flow

disappears, will illustrate some points concerning the importance of

local scale effects on non-linear activity. In the ogy and Wfsl tran-

sitions, the wake structure of the mean flow disappears at different

downstream distances. The absolute distances are in the ratio of the

respective wavelengths of w and wfsl. However, in both transitions,

non-linear modes appear at about the same absolute location (x4.0 cm)

and not at distances in proportion to the Wi, and Wfsl wavelengths.

The dependence of mean flow erosion on fundamental mode wavelengths

is quite understandable. The rate of disturbance erosion is really a
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measure of mean energy loss. As the energy plots show, the funda-

mental modes absorb most of this energy. The initial rate at which

mean energy is lost is basically expressed by the exponential growth

rate e -ix of linear theory, which in turn is really an expression of

the rate at which Reynolds stresses transfer energy to the fundamental.

The growth rates,-a., of Wf and w vary in rough proportion to their

wavenumbers. Thus, the two transitions will attain equal mean energy

losses, and hence roughly similar mean profiles at distances in propor-

tion to their wavelengths. The disappearance of the wake structure can be

expected tooccur at distances in rough proportion to X fsl and X .

The fact that non-linear modes appear at similar downstream dis-

tances indicates that factors other than growth rate must be considered.

If non-linear activity depends solely on disturbance amplitude, then

a critical amplitude would presumably exist. Growth rate considerations

would indicate that the critical value would be reached at distances in

proportion to the wavelengths of w and ofsl'

The characteristic amplitudes of w fsl and w when non-linear modes

first appear are on the order of

Wfsl 0[0.7-0.8%]

o = 0[l.6-2.0%]

The amplitudes are roughly in the ratio of 1:2 and there does not seem

to be a specific critical amplitude for higher mode generation. Hence

amplitude effects cannot be the sole factor in determining non-linear

activity. Rather, it appears that in addition to amplitude, the verti-

cal scale of the fundamental and non-linear modes must be considered.

* see figure 6.7
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The quasi-uniform calculations showed that at x'A.0 cm the funda-

mental mode preferred by the local mean conditions is near w f.

The appearance of harmonics of Wfslin the natural transition may in-

dicate that the local conditions also favor the vertical modal structure

of the non-linear modes of w fs

The mean flow is the initial source of all disturbance energy.

The non-linear modes can derive their energy either directly from

the mean flow or indirectly by taking energy from the fundamental

which in turn derives its energy from the mean flow.

The basic energy transfer relations between the mean flow,

the fundamental, and the non-linear modes can be expressed as *

- (Wz- U') aicA~ A Aj( V' 3c AXc
Ox ax J aX

where u' is the fundamental mode, and u" represents a harmonic

mode. The interaction, and possible energy transfer between the

fundamental and non-linear modes are expressed by the second and

third terms on the R.H.S. of the above equation. A similar rela-

tion can be written for the harmonic mode, and along with terms

* see Stuart (1962)
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representing the interaction with the fundamental. It will contain

a term of the form u"v" DU/Dy which represents direct interaction

of the harmonic mode with the mean flow. The terms which express

the interaction of the fundamental and non-linear modes with the

mean flow are clearly dependent on the vertical scale of the distur-

bance modal structures. The mutual interaction terms between the

two disturbances are also partially dependent upon the vertical scale

of the disturbances.

If the non-linear modes obtain their energy from the fundamental

then one must consider the efficiency of the fundamental in obtaining

energy that it can pass on to the non-linear modes. The effective-

ness with which the vertical scale of the fundamental mode fits in

with the local mean shear profile is certainly as important as its

amplitude is in determining the overall efficiency of the Reynolds

stress in transferring energy to the fundamental; (i.e.) the proper

matching of the maximums of u'v' and aU/ay is just as important as

the value of the maximums themselves.

If the non-linear modes derive their energy directly from the mean

flow, then certainly the same arguments which hold for the efficiency

of the u'v' fundamental mode Reynolds stress will apply equally as well

to the u"v" interaction of the non-linear mode with the mean flow.

The energy plots of chapter V indicate that the non-linear modes

may not receive their energy at the expense of the fundamental. This

brings up the interesting concept of the fundamental acting as a



- 208 -

Icatalyst' for the direct transfer of energy from the mean flow to

the non-linear modes. Physically, the catalyst behavior can be

viewed in terms of the fundamental mode acting to alter or condition

the vertical scale of the mean shear so that the u"v" terms of the

harmonic modes can interact in an efficient manner with the mean

shear. Presumably, due to the interaction terms between the fundamental

and non-linear modes, the vertical scale of the non-linear modes will

be dictated by the scale of the fundamental. This behavior has been

noted for the modal structure of the harmonic modes in symmetric free

shear layers. It seems plausible then that if the scale of a specific

fundamental mode is locally preferred by the mean flow, then so will

those of its non-linear modes be.

The fundamental can condition or alter the vertical scale of the

mean flow by its u'v' Reynolds stress interaction. Those fundamentals

with vertical scales near that preferred by the local mean conditions

may not have to grow to as large an amplitude for effective condi-

tioning, and subsequent matching of the disturbance and mean flow

scales, as other locally less preferred modes may have to. This would

explain the difference in amplitudes of w and w fsl at the onset of

non-linear activity.

(e) Effect of Test Section Boundaries

The results of a model by Howard (1964) were used to analyze the

possible stabilizing influence of the boundaries on the disturbance

oscillations. Howard considered the temporal stability of a hyper-

bolic tangent profile bounded by rigid walls at y = y0 .
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The model showed that disturbances should be stabilized by the

boundaries when

a y < 1.997

Thus long wave disturbances are more likely to be stabilized, and based

on the geometry of the test section, waves with ar <0.20 will tend to

be influenced by the boundary constraints.

This behavior was observed experimentally for frequencies below

r'-- 0.150 (i.e. ar < 0.175). Modes below Br = 0.150 could be excited

and were found to initially grow at the exponential rates predicted by

theory. However, as the mean flow evolved towards a free shear layer

configuration, the long wave modes equilibrated at smaller amplitudes

than observed by previous investigators. These other experiments were

typically conducted in tunnels of much larger geometry. Thus it ap-

pears that the test section geometry used here did have a stabilizing

influence on long wave modes.

Both w and w fsl were above the stabilization point and were not

apparently affected by the boundaries. This was collaborated by check-

ing the limiting amplitudes of each mode against the available results

of other experimenters.

Region II: Weakly Non-Linear Behavior (0.9.-1.8 X I)

When the primary mode, w11, reached an amplitude of approximately

2%, the generation of non-linear modes was observed. The primary mode

then continued to grow at almost the same exponential rate as it did in
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the linear zone. The newly generated non-linear modes also grew ex-

ponentially, often at rates exceeding that of the fundamental. The

region II growth rates of the wI and wf transitions are given below.

Mode

W I'

W /2

3w /2

2w

3w

Table 6.4: Spatial growth rates of the fundamental and
non-linear modes of the wII and wfsl transi-
tions in region II.

* *
-a.=-a.-26 (x ) Mode -a.=-a 26

1 1 m o _ 1 1

.200 fsl .138

.247 W fs/2 .170

.187 3w /2 .164

.303 2wfsl .158

.302 3wfo .230

(x )m o

Spanwise phase measurements showed no three-dimensional distortions,

and the non-linear interactions can be assumed to involve two-dimension-

al waves.

The relatively small amplitudes of the primary modes at the begin-

ning of region II (i.e. 0.7+2.0%) indicate that the non-linear mecha-

nisms can be investigated from the viewpoint of weakly non-linear inter-

action theory. It is interesting to note that Klebanoff (1962) also

finds the linearity limit of the primary mode in boundary layer transi-

tions to be of order 2%. Studies of free shear layers have typically

found higher values nearer 4 to 5%.

The larger values of the later investigators were normally deter-

mined by investigating the point at which the growth rate of the funda-
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mental mode deviated from exponential form. Their curves were typi-

cally determined from the growth of a given r.m.s. peak and often con-

tained considerable scatter, or a minimum of points and only gross fea-

tures could be observed.

It can be quickly ascertained from figures 5.42 and 5.43 for maxi-

mum amplitude growth, that the first significant departure from exponen-

tial growth does indeed occur at approximately 4% in this experiment

also. However, this is a rather poor definition of linearity and the

linear limit used here will be that point at which non-linear modes

first appear. As will be seen in the mixed transition, this also corres-

ponds to the point at which the superposition concept of linear theory

breaks down.

It is not at all clear why other investigators, such as Browand

have not observed the formation of sub- and 3/2-harmonics in region II.

Browand's growth rate curves indicate that second harmonics were ob-

served at x - 0.7X wavelengths downstream, which is roughly coincident

with our region II. Sub- and 3/2-harmonics did not appear until the pri-

mary and second harmonics reached an equilibration point (i.e. our re-

gion III). The intermittency of w11/2, 3w11/2 in region II, and their

small amplitudes may have been a factor. With the exception of one

point for the primary mode, Browand's data seem to start at some instru-

ment threshold point of u'/U 0' 2%. The instrumentation used here was

sensitive to 0.05% + 0.02% fluctuations. The fluctuations in region II

are seen to be normally below 1% and may have been below Browand's

sensing range.
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The exponential growth of the non-linear modes indicates that

they may represent the non-resonant interaction of exponentially grow-

ing modes. Raetz (1959) has shown that the non-resonant interaction of

two such exponentially growing modes can produce a third combination

wave whose amplitude will grow exponentially and will be equal to the

product of the exponential amplitudes of the interacting waves.

The growth rate of 2w,, was found to be roughly twice that of wog

at x and probably represents the self interaction of the primary mode.

The exponential growth of 3wI, and its delayed appearance until 2w I

reaches a significant amplitude may infer a weak secondary non-linear

interaction between o., and 2w11 ; the growth rates of w, and 2w , do

not sum to that of 3 11 however.

The origin of the sub-harmonic mode is not clear. However, several

points do stand out. The sub-harmonic energy grows exponentially and

not as the product of a secular term times an exponential (i.e. xe )

as might be expected for the result of a resonant interaction. In fact

the sub-harmonic growth rate (as determined from the energy plots) is

very close to the sum of (a + a /2) as observed experimentally (see

figure 5.1). Hence the sub-harmonic may represent the com -

bination interaction of the primary mode with a latent sub-harmonic os-

cillation. However it is not evident why the sub-harmonic should be pre-

*
ferred for such an interaction

*
Kelly (1967) has shown that just such a preference does exist when the
fundamental reaches finite amplitude on the order of 10%.
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The strong intermittency of the sub-harmonic in region II dis-

counts the possibility that the speaker forcing field contains a sub-

harmonic contribution which could directly excite w /2. Hence the

generation of sub-harmonics in this region seems to be an inherent fea-

ture of the transition.

It is possible that a parametric resonance mechanism may be gener-

ating the sub-harmonic mode. In parametric resonance an oscillation of

very small magnitude and frequency w , without recourse to non-linear

effects, can destabilize and amplify the half-frequency, w0/2, by a

periodic variation of the parameters of the system. This phenomenon

has been discussed by Kelly (1965) for Kelvin-Helmholtz flows. The de-

stabilized sub-harmonic is a solution of a Mathieu type equation and

its amplitude can be shown to behave as exp(+ et/2) for small where

E is a measure of the periodic variation of the natural parameters.

It is interesting to note that if as an exercise (and with no ri-

gorous physical justification) a Mathieu type equation is written for

the velocity u of the sub-harmonic mode w11 /2,when the fundamental mode
0 1

u'(w ) is assumed to give a representative periodic variation,

2 2

2+ [+ 4 +u'(w ) cos WI tu = 0
dt ii i

then it can be shown that

u'(ow )
2

4

and using the growth rate of the sub-harmonic as E/2 U .247 implies
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that a periodic oscillation of the fundamental mode of order

U' = 0[4%]

can lead to a sub-harmonic parametric amplification of the observed

rate of growth. This is near the value of u' that would be predicted

from the u'rms curves.

A parametric resonance mechanism may also be responsible for the

direct excitation of harmonic modes as observed in figure 5.1 and sec-

tion 5.2d. Excitation at 2) for example, may parametrically excite 0.

If the role of the fundamental,0, is that of a catalyst then it may

not have to grow to significant amplitudes to enact a passage of energy

from the mean flow to the harmonic. The time necessary for the sub-

harmonic effect to organize 0 oscillations may explain the delay in the

appearance of an effectively reinforced harmonic. The preferred rein-

forcement of 2&by the forcing field may explain its large growth rate

once the necessary energy transfer arrangements have been established.

Kelly has also discussed the importance of the dispersive nature

of the system for effective parametric resonance. It may also be that

the dispersive nature of the flow is responsible for the intermittency

of the sub-harmonic modes. Both non-linear sub-harmonic resonance inter-

actions, and parametric resonance mechanisms are strongly sensitive to

phase synchronization effects. Slight changes in the local mean state,

due to mean flow distortion by the growing primary mode, may cause com-

mensurate changes in the frequency and phase characteristics of the in-

stantaneously valid local free modes. Since the condition for resonant
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energy transfer is dependent on the proper matching of the phase ve-

locities of the interacting wave trains, it is apparent that any inter-

mittent changes in the local phase velocities of the free mode can

lead to intermittent energy transfers. This effect is discussed further

in region IV and the arguments used there apply equally as well in this

region.

Regardless of what mechanisms trigger the growth of the sub-harmonic

and other non-linear modes, it is quite clear from the amplitude equi-

librations in region III that non-linear mechanisms which can act as

energy growth limiters must eventually become important in region II.

Region III: Finite Amplitude Equilibration (1.8.2.5 X )

As the amplitude of the fundamental mode approached a finite value

of 4 to 5%, the disturbance growth rate deviated from its initial expo-

nential value. At larger amplitudes of about 12% the fundamental mode

and the growing non-linear modes equilibrated into oscillations of defi-

nite finite amplitude. The equilibration amplitude of the fundamental

mode was found to be independent of its initial amplitude at x0. The

o IItransition exhibited the most clearcut tendency for fundamental 
and

non-linear mode equilibration. The fundamental and sub-harmonic modes

of WIT undergo the most distinct equilibrations while the second and

third harmonics start an immediate decay once a maximum is achieved.

The rate of loss of mean flow energy (figure 6.7) is also seen to

level off as equilibration is approached.
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(a) Equilibration Amplitudes

Representative values of the equilibration amplitudes, A e of the

fundamental and non-linear modes are given below. Although w is the

maximally unstable mode, w fsl and its non-linear modes grow to larger

amplitudes. This result was not entirely unexpected and will be dis-

cussed more fully later.

Table 6.5: Region III equilibration amplitudes of

the fundamental and non-linear modes of
thew and w transitions.

Equilibration Amplitudes

Mode Ofsl 0 1 1  
Browand

Transition Transition Max. Unstable Mode

W 15.5% 12.5% 11.0%

w/2 5.1% 1.0%
3w/2 2.2% 0.75%
2w 6.0% 5.0% 4.8%

3w 3.1% 1.5%

The non-linear modes are basically dependent upon the fundamental

mode for their existence. Their respective equilibrations are apparently

a direct result of the equilibration of the fundamental. The important

aspect of the transition in region III is to consider just why the fun-

damental mode equilibrates.

The initial growth of w is described by linear theory. Quasi-

uniform linear calculations showed that downstream mean flow variations

can alter growth rates somewhat, but cannot account for disturbance equi-

libration. As will be discussed in the following section, the finite
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amplitude behavior of the fundamental and the presence of non-linear

modes must be considered to describe the eventual equilibration of the

fundamental mode.

The picture can be simplified by noticing that the second harmonic,

2ogy, is the dominant non-linear mode in regions II and III, and to a

good approximation, is the only non-linear mode that need be considered

in the equilibration scheme. This does not necessarily imply that the

third, sub-, and 3/2-harmonics do not play a role in the equilibration

process. It only implies that their effects are probably of smaller

magnitude than that of the second harmonic.

(b) Calculation of the Second Landau Coefficient

Liu (1969) has shown that if sub and 3/2-harmonics are neglected,

and if the non-linear interaction of the fundamental with the mean flow

and various non-linear modes is considered, then an equation governing

the streamwise growth of the fundamental mode can be obtained from the

equations of motion.

d|A(x)| = 2a iA(x)|2 + 2a |A(x)| + OIA(x)|6 +
dx 0

This equation was first discussed by Landau (1944) and "a " is

usually referred to as the second Landau coefficient. It represents the

various first order, and often competing non-linear effects.

Since in the linear limit, the disturbance growth must be exponen-

*
See Watson (1960) and Stuart (1960) also.
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2m
tial, IA(x)| + 0, m / 1, and a =-a., the growth rate of linear theory,

and is positive in magnitude. If finite amplitude equilibration is to

occur, then dIA(x)| /dx + 0, and a1, the second Landau coefficient must

be non-zero and negative (a1<0).

The experimental growth rates and equilibration amplitudes were mea-

sured for the primary modes between (0.133<6r <0.390) and the resulting

second Landau coefficients were calculated. Since the test section geo-

metry precluded an unbiased study of non-linear effects for long waves,

the data of Freymuth (1966) was used to calculate typical values of the

second Landau coefficient for long wave modes. The equilibrium values

A | of the fundamental modes of both investigations were found to vary

with frequency, and are shown in figure 6.9.

The intensity of the non-linear effects, as represented by the mag-

nitude of the second Landau coefficient, increases with frequency and

hence wavenumber. Long wave disturbances which have smaller values of

a1 take longer to equilibrate and hence will grow to larger amplitudes.

The trend of the data confirmed this behavior except for very long wave

disturbances which were sensitive to boundary stabilization effects.

These modes are circled in figure 6.10. The stabilizing influence of

the boundaries cannot be accounted for in the Landau theory and in the

context of the Landau relation they will appear as an apparent increase

in non-linear activity.

Freymuth's test section essentially had infinite boundaries and he

was able to measure muchlonger wavelength disturbances. If the boundary

stabilized modes are ignored the values of this investigation fall along

* see figure 6.10
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the same general curve that Freymuth's lower modes do. Also, the equi-

libation amplitudes and second Landau constants for the most unstable

modes of both investigations agree reasonably well.

(c) Influence of the Critical Layer

The rapid increase of a1 with frequency indicates an increasing

influence of non-linear effects. Without a complete understanding of

the internal structure of the second Landau coefficient it is difficult

to pinpoint just which mechanisms dominate the equilibration process.

The details of a will be discussed shortly; however, it is of interest

to consider the possible influence of the critical layer.*

As can be seen from the Orr-Sommerfeld equations, the disturbance

eigenfunctions and eigenvalues are sensitive to the rate at which changes

occur at the critical layer. Meskyn and Stuart (1951) have shown that

finite amplitude oscillations can have a destabilizing influence at the

critical layer.

Non-linear mechanisms distort the mean flow by interaction with the

mean shear. Since the maximum mean shear occurs at the inflexion point

yO, the destabilizing effects may be expected to increase as the criti-

cal layer y approaches the inflexion point yO.

The experimentally measured critical layer positions and thicknesses

are given in table 6.6 along with the theoretically predicted critical

*The region where the disturbance phase velocity equals the local mean
velocity.
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layer thicknesses as given by |cRK 1| 3* It is clear that y + y as
c o

r increases, and the critical layer of the higher frequency 
modes

tends toward and often overlaps the inflexion point. Thus, the in-

crease in a1 with frequency may be due to an intensification of non-

linear effects at the critical layer.

Table 6.6: Critical layer position where U(yc)=cr(Br) and
theoretical critical layer thickness larR'-1/3
for the fundamental modes at x0. Experimental-
ly measured inflexion point location at xo is
yo=0.240 cm. Experimentally measured critical
layer thicknesses based on cat's eye plots are
0.3+0.4 cm for fr= 0 .21 78 , and 0.45+0.6 cm for
Br=0-167 . Accuracy of yc is + 5%, and |aR|-1/3
is + 10%.

Dimensionless
Radian Frequency

0.133
0.148
0.163
0.178
0.194
0.207
0.222
0.237
0.252
0.266
0.281
0.296

Experimental Critical
Layer Position

Ye (cm)

0.410
0.406
0.404
0.378
0.356
0.322
0.302
0.284
0.266
0.265
0.250
0.243

Theoretical Critical
Layer Thickness
|aRI-1/3 (cm)

0.401
0.385
0.372
0.354
0.338
0.318
0.298
0.284
0.286
0.262
0.248
0.420

(d) Dependence of Equilibration on Local Reynolds Number

The fundamental mode derives its energy from the interaction of the

Reynolds stress with the mean flow, and as the oscillations grow in the
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downstream direction they distort the mean flow. One might expect

that there may exist a downstream location, unique for each frequency,

at which the mean flow has become so distorted and non-linear effects

have grown so strong that a continued increase in energy transfer to

the fundamental is no longer possible. Equilibration can then occur.

The local Reynolds number based on momentum thickness gives a measure

of mean flow distortion and a relationship may exist between the equi-

libration amplitude and the local Reynolds number at which equilibration

2occurred. This idea was first put forth by Landau who assumed A eb
e

(R - R ) . Later work by Stuart (1958) showed that at least fore cr

Poiseuille flow the proper relation is

JA 2 _ Ke(Re - Rcr)

e aRe2

where Rcr is the critical Reynolds number for laminar instability; R

is the local downstream Reynolds number at which equilibration occurs,

and K is a measure of the competing non-linear mechanisms at equili-

bration. This relation was originally derived for a constant Reynolds

number flow. However, the results of this section show that it holds

for evolving flows which under "slow" transitions.

The experimentally measured equilibration amplitudes and Reynolds

numbers were used to evaluate the above relation. The results are pre-

sented in figure 6.11. The local momentum thicknesses at equilibration

were used to determine Re while the curves of Betehov and Szewezyk (1963)

were used to determine R .
cr

The experimental points fall along a relatively straight line with
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unit slope (i.e. K "%1.00) for all modes except the low frequency onese

for which boundary stabilization effects are important. It is interest-

ing to note that the experimental agreement with this simple relation

extends over a wide range of Reynolds numbers: typically (R -R cr)/Rcr

n0[10-20]. This is in contrast to the theoretical restrictions on this

relation which basically state that (R -R )/R <<1.
e cr cr

A similar experimental relation has been found for Taylor flow

transition. Taylor flows are an example of spectral evolution transi-

tions and exhibit critical Taylor numbers for disturbance onset, and

bands of Taylor numbers over which disturbance equilibration can occur.

The existence of Reynolds number equilibration bands and critical values

It

of a finite amplitude instability, demonstrate the hybrid,spectral evo-

lution-catastrophic transition'nature of free shear layers which undergo

slow transitions. The significant critical Reynolds numbers are sum-

marized below.

Table 6.7: Critical local Reynolds numbers for significant
stages of transition. Note that the mean velo-

city field evolves differently in each transi-

tion. Thus the local momentum thicknesses must

be calculated from the velocity field of each

transition.

Value of Local Reynolds Number

Onset of Fun- Onset of 2nd Termination Turbulent

Transition damental Equi- Region of Sub- of Fundamen- Breakdown

libration Harmonic Growth tal Equili-
bration.

ofsl 248 470 480 577

WII 226 335 370 454

(wA + wB) 206 320 354 523
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The Reynolds number band over which equilibration occurs decreased

with increasing disturbance frequency. This decrease may explain why

the higher frequency harmonic modes have such narrow equilibration

zones and decay almost immediately after equilibrating.

(e) Physical Significance of the Second Landau Constant

The details of the Landau equation and the internal structure of

the second Landau coefficient have been discussed by Stuart (1958, 1962)

and Liu (1969) for temporally and spatially growing disturbances. Their

results show that the various non-linear effects which contribute to a1

are physically similar in both cases and, in general, express the effects

of mean flow-Reynolds stress interaction, viscous dissipation, harmonic

mode generation, and harmonic mode interaction with the fundamental and

mean flow, on the energy of the fundamental mode.

In specific,the Landau relation can be expressed as

dAx 2 2 4 6
d|A(x)| = 2a IA(x)| + 2(K 1+K2 +K 3)IA(x) + OIA(x)| + ...

dx o123

and the terms can be identified as having the following physical signi-

ficance:

a : represents the initial rate of energy transfer

from the mean flow, via the Reynolds stress, to
the fundamental, minus the viscous dissipation
of fundamental mode energy;

a1 : represents the restrictions imposed by the non-
linear mechanisms on the flow of energy to the

fundamental mode where

K 1: is the restriction on energy transfer due
to Reynolds stress distortion of the mean
flow;
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K2 : is the flow of energy from the fundamental
to the non-linear harmonic modes; and

K3: contains two parts and represents the dis-
tortion of the structure of the fundamental
mode by the interactions of the mean flow
(K31) and the second harmonic (K32 ).

Since the non-linear second harmonics may also extract energy di-

rectly from the mean flow, one must also consider K20, the direct trans-

fer of mean flow energy to the harmonic as having a possible influence

on the energy available to the fundamental.

The equilibration process of the fundamental can schematically be

pictured as follows:

U.e rit Tt. " r=^&t 1-0 cAa

TJL u rIA L. = :Mw AB5IL a Y_ AL j b

FI
r F "e#r0DESj ATAL e. f

.2 . . O F 2.AITE.4.Av C&IF TiA a IUirLW re TsR L F P)

REAF- MEA PLO t
gi 3MMF- MOht FIEb ME~AN FLOLL)NL~v -/ON L( .R .MLEF-11 

FU-'MSd A MGor

Figure 6.12: Basic non-linear mechanisms involved in the finite am-
plitude equilibration of the fundamental mode.
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As will be seen in the next section, the actual equilibration

process is significantly more simplified for free shear layers. How-

ever, as Davey (1962) has shown, all of the mechanisms discussed must

be considered before specific conclusions can be drawn.

(f) Simplified Model of the Equilibration Process

Returning to the dependency between Reynolds number and the equi-

libration amplitude, Stuart (1958) has shown that if the presence of

harmonic modes is neglected in the derivation of the Landau relation,

then the equilibration constant K becomes
e

Sa R
K o r e
e a1

where it has been tacitly assumed that a1 = K +K31'

The experimental data plotted in figure 6.12 indicates that K

1.00 and the above relation can be reduced to a simple expression for

the second Landau coefficient.

a, ~ aoa r Re

This relation is plotted in figure 6.10along with the results obtained

from the rigorous Landau relation. The points calculated from the sim-

pler relation agree reasonably well with the true Landau points. Thus,

to a good approximation, the second Landau constant and hence the

strength of the non-linear effects can be calculated from easily mea-

sured experimental variables.

The agreement of the simpler model with the Landau relation indi-

cates that to a good approximation the effects of harmonic generation
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and harmonic distortion of the fundamental and mean flow basically

cancel each other out, so that

(K2 + K20 + K3 2) <<(K1 + K 31

and a1 does equal (K1 + K3 1).

Thus, the generation of non-linear harmonic modes does not play a

significant role in the equilibration of the fundamental mode in free

shear layers. The important effects are due to a feedback system esta-

blished by the distortion of the mean flow by the Reynolds stress of the

fundamental, and the subsequent modification of the fundamental by the

distorted mean flow.

Region IV: Second Region of Sub-Harmonic Growth (2.5 + 3.2 X I)

(a) Sub-Harmonic Generation by Finite Amplitude Interactions'

In contrast to the continued equilibration of the fundamental and

the decay of the higher harmonic modes in region IV, the 1/2- and 3/2-

harmonics undergo a very strong second region of growth. The existence

of an equilibration zone between the two regions of sub-harmonic growth

indicates that the responsible destabilizing mechanisms differ in each

region. As indicated by the equilibration in region III the sub-harmo-

nic mechanisms of region II are amenable to modification or counter-

balancing by finite amplitude non-linear effects. In contrast, those

in region IV seem to be dependent upon the existence of finite amplitude

oscillations of the fundamental mode.

The disturbance energy curves show that the system prefers to keep
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the fundamental in equilibration even though the sub-harmonic energy

starts to grow again. This indicates that the sub-harmonic mode may

not be deriving its energy from the fundamental. Instead it appears

that the finite amplitude oscillations of the fundamental condition the

flow so that a critical Reynolds number is achieved at which the flow

is amenable to a new second type of instability, namely the finite am-

plitude sub-harmonic oscillations. In this respect the fundamental can

again be considered as a catalyst which allows energy to be extracted

from the mean flow and fed directly into a non-linear mode. The fact

that the fundamental mode continues to equilibrate even after the cri-

tical Reynolds number is reached indicates that the critical Reynolds

number for equilibration breakdown is higher than that for sub-harmonic

initiation.

Sub-harmonic phase measurements show that although a mean relation

does exist relative to the fundamental, there is no clear phase synchro-

nization between the two. Assuming that a causal relation does exist

between the fundamental and sub-harmonic modes it seems that the proper

explanation of the sub-harmonics intermittent behavior involves the

dispersive nature of the spatially growing disturbances.

Since the non-linear self-interaction of a wave can only produce

higher frequency harmonics, sub-harmonic modes must come from the inter-

actions between waves of different wavelength. Non-linear resonant

mechanisms, and other mechanisms such as parametric effects, are very

sensitive to the proper phase synchronization between the interacting

disturbances. Physically, this is really a question of the characteris-



- 231 -

tic time during which resonating wave trains overlap such that energy

can be effectively exchanged between the two. A physical example of

this is the phase relations which are necessary for wind perturbation

fields to generate amplifying ocean surface waves.

Spatially growing waves are dispersive and form packets of ampli-

fying traveling waves. Hence, resonance conditions which only require

the proper matching of wavenumber and frequency (and hence phase velo-

city) will not give a proper estimate of the interaction efficiency.

The finite length of the wave packets and hence the characteristic time

of overlap cannot be accounted for. Instead, the group velocity of the

interacting waves must be considered. From figure 6.4 it can be seen

that the group velocity of those modes near the sub-harmonic varies

strongly with wavenumber. Since the group velocity is dependent upon

the local dispersion relationship, any instantaneous variations of the

local mean flow, or subsequent downstream deformations, can cause sig-

nificant variations in the group velocity of the sub-harmonic and its

immediate neighboring modes. One would expect then that due to slight

changes in the local dispersion relation the proper group velocity

necessary for efficient resonance with the fundamental will be inter-

mittently attained by modes on either side of w /2. Hence the inter-

mittent and broad band nature of the growing sub-harmonic oscillations

are felt to be due to the intermittent shifting of the phase and group

velocity matching conditions necessary for efficient interaction in a

dispersive system.

Apart from the intermittency of the sub-harmonic response, the
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essential features of this region are markedly consistent with the

analysis of Kelly (1967). Kelly showed (from a temporal analysis of

an asymmetric free shear layer) that a finite amplitude fundamental

mode oscillation can serve as a vehicle by which sub-harmonic oscilla-

tions can be resonantly reinforced. A critical threshold amplitude

of approximately 12% was found to be necessary for the fundamental mode.

This compares favorably to the value found at the beginning of re-

gion IV. For fundamental modes of this value, Kelly found the growth

rate of the destabilized sub-harmonic to be of the same magnitude as

that of the fundamental as predicted by linear theory in region I.

Calculations based on the energy curves show that the sub-harmonic

growth rate was almost one half of that of the fundamental. Kelly con-

sidered only a temporal non-dispersive system, and the difference in

growth rates may be due to the dispersive nature of spatially growing

modes.

Within a short distance of sub-harmonic growth, the energy of the

fundamental mode starts to decrease; this decrease is accompanied by a

commensurate reduction of the sub-harmonic growth rate. It is interest-

ing to note however that the fundamental mode energy did not decrease

during the initial stages of sub-harmonic growth.

Spanwise wave deformations were only measured for the fundamental

mode, and no indication of the spanwise structure of the sub-harmonic

is available. However, it is interesting to note that the strong two-

dimensional structure of the fundamental is lost at x = 15.00 cm (i.e.

- 3.5 X1 1 ). The appearance of spanwise distortions of the fundamental
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coincide with the first alteration of the sub-harmonic growth rate,

and the decay of the fundamental mode energy from its equilibration

value. Thus three-dimensional effects seem to play an important role

in the breakdown of the equilibration zone. The commensurate decay

of fundamental mode energy and sub-harmonic growth rates is very in-

teresting and may be another check on the applicability of Kelly's

analysis since his work indicates that the sub-harmonic growth rate

will decrease slightly as the equilibration amplitude of the funda-

mental decreases.

It is also of interest to note that Kelly's model also indicates

that the finite amplitude fundamental oscillations can interact with

two disturbances,, 0 /2 and 360 /2 and act to destabilize the 3/2-
II II

harmonic. Since ) /2 exists very strongly prior to the second growth
II

of the 3/2-harmonic, this triad interaction may explain the coincident

growth of 3) /2.
II

(b) Vortex Model for Sub- and 3/2-Harmonic Generation

Smoke trace pictures indicated that the process of sub-harmonic

generation may involve the mutual slipping of vortex pairs. Although

*
one cannot attach great significance to smoke pictures (i.e. they only

represent instantaneous streak lines and not streamlines) many of the

gross features of the sub-harmonic field can be described by a relative-

ly simple model consisting of a double row of alternating vortices

spaced at half-wavelength intervals on either side of the inflexion

point.

* see figures 6.13 and 6.14
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Figure 6.13: Sequence of smoke pictures taken at
succeeding instants of time showing the formation
of sub-harmonic oscillations by vortex slipping
and fusion. Splitter plate is at the right-hand
side of the picture. Left-hand edge is approxi-
mately 30 cm. downstream.
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Figure 6.14: Top picture is the 4th instant of
the series in figure 6.13. Middle picture taken
with the stroboscope set at 3w 1/2. Bottom pic-
ture shows the formation of second harmonics.
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Figure 6.15 Possible finite amplitude vortex configuration prior
to sub-harmonic generation.

This configuration has been discussed by Lighthill (1963) in con-

junction with Blausius boundary layer instability. He notes that the

velocity field induced by each disturbance augments the circulation

of its neighbors; the induced velocity fields also augment the mean

convective speed of each row so that they keep in relative step.

Hence on its own right, it may be a possibly valid representation of

the finite amplitude structure of the fundamental just prior to sub-

harmonic generation.

In fact the vertical phase plots of the fundamental in figure

from x = 10.00 to 12.00 cm show a phase structure qualitatively similar

to that of Lighthill's model. Note how the characteristic dip in phase

F 6te

Figure 6.16 Alteration of phase angle distribution in vortex model.
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alternates to either side of y just as it does in the model above.

Using the arguments of Bawand (1 9 6 6 ), one can show that the sense

of the restoring (or destabilizing) acceleration exerted on a displaced

vortex will be given by the product of the signs of the disturbance

circulation and the local mean vorticity gradient. (Note that the mean

vorticity gradient changes sign at yo.) One can then show that the

mean vorticity field will act to inhibit vortex slipping of like signed

vortex pairs as arranged in this initial configuration. However, if the

vortices are assumed to be subjected to some finite perturbations which

displace each vortex towards and across the inflexion point, one can

show (again using the same arguments ) that the mean vorticity field

will act to produce the following configuration. As indicated adjacent

pairs of opposite signed vortices will tend to translate outward, (and

hence cause wake spreading) while adjacent pairs of similar circulation

will tend to induce a mutual rotation about a common axis.

Y..

A little consideration will show that the mean vorticity gradients

will act to inhibit the mutual rotation of the positive vortex pairs

while it will aid the rotation of the negative ones, at least until

they reach the quasi-equilibrium position indicated below.
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-V (Y)

aY

In this configuration the induced velocity fields of the 0 vor-

tices will tend to move the ® ones closer to the inflexion point,

while the mean vorticity gradients will inhibit their crossing. Simi-

larly, the @ vortices will tend to keep the E vortices near their

indicated positions. The mutual action of the induced disturbance velo-

city fields and the mean vorticity fields will probably act to cause

slight oscillations about the indicated positions and hence cause some

intermittency. This configuration would then show intermittent sub and

3/2-harmonics along the center line, as well as two smaller sub-harmo-

nic contributions to either side. The r.m.s. velocity distributions

suggested by this model

Y Y

LA ~( (c.3W

Figure 6.17: R.M.S. distributions predicted by vortex model
after slipping has occurred.
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are remarkably similar to the measured sub and 3/2-harmonics.

Of course this is a very crude model which is subject to many as-

sumptions concerning the relative strength of the vortex slipping effects

and mean vorticity field stabilization strength. However it does seem

to account for many of the observed features of the sub-harmonic genera-

tion. Browand (1966) has also presented several vortex models for sub-

harmonic generation. However the possibility of vortex slipping was not

considered.

Similar arguments may also be used to give a physical explanation

as to why sub-harmonic oscillations are not observed in symmetric, narrow

jets and wakes. These flows have two inflexion points and hence two

closely spaced vorticity peaks of opposite sign. In this situation the

downward displaced unstable vortices of the upper row for example, will,

upon traveling a very short distance, find themselves in the vorticity

field of the lower layer. A little consideration will show that those

vortices which are destabilized by the positive vorticity gradient in

the lower part of the upper layer will receive a counteracting upward

restoring force due to the negative gradients of vorticity in the upper

portion of the lower layer. Similarly, unstable vortices of the lower

layer will be retarded by the positive vorticity gradient in the lower

portion of the upper layer. Hence a disturbance configuration condu-

cive to vortex slipping will not be achieved.
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Figure 6. 6 : Vortex model for symmetric jets and wakes. Note
how the lower vorticity field of opposite sign
stabilizes unstable vortices from the upper layer
and hence inhibits the slipping of vortex pairs.

Region V: Onset of Three-Dimensional Behavior and the Termination of

Fundamental Mode Equilibration. (3.2-4.75 X I)

The fundamental mode equilibration zone terminated at about 3.2

wavelengths downstream. Three-dimensional distortions appeared at this

point, and it appears that a new critical Reynolds number has been

reached for the presence of yet another new type of instability. The

Reynolds number at equilibration breakdown is of order 450.

This region marks the first point where strong periodic spanwise

activity, as indicated by the spanwise phase measurements, appears.

Earlier distortions of r.m.s. wavefront profiles were observed but they

were not accompanied by periodic phase variations. Wavefront distor-

tions alone do not imply periodicity, and it is felt that phase varia-

tions are the best indication of developing three-dimensional activity.
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Slight spanwise phase distortions did appear near the onset of equili-

bration in region III. However, they were not periodic or extensive,

and did not signify three-dimensional activity.

The onset of spanwise activity is accompanied by a noticeable de-

cay of the fundamental mode energy along the z = 0 center plane. It is

hard to tell whether this reduction is due to a spanwise transfer of

energy. One curious feature is the apparent smoothing out of previous

distortions in the r.m.s. wavefront. This smoothing may indicate that

weak spanwise energy transfers may be occurring in such a manner that

they act to fill in undesired distortions as a precursor for setting up

a more preferred spanwise structure.

By x = 17.50 cm, significant spanwise distortions of both phase and

r.m.s. wavefronts have been established and the structure of the phase

plots indicates the development of a secondary flow consisting of sever-

al streamwise longitudinal vortices. The exact details of this second-

ary flow were not investigated but several features were evident. The

cross-stream scale (i.e. diameter) of the vortices varied with spanwise

location and tended to decrease with downstream distance. This decrease

in scale was accompanied by an increase in three-dimensional activity.

At x = 15.00 cm the spanwise wavelength varied between (2.5-3.0) cm,

while at x = 17.50 cm, the characteristic wavelength had decreased to

(1.2-2.0) cm. The major activity of the rolls was confined to a region

near the critical layer of the fundamental mode. The vertical scale of

the rolls was smaller than the lateral scale, the rolls being somewhat

ellipsoidal in cross-section. The erratic nature of the fluctuations
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in the final stages of breakdown precluded further downstream investi-

gations of the secondary vortex structure.

These results are all in agreement with the Benney-Lin mechanism

(1961) in which it was shown that a two- and three-dimensional distur-

bance can interact to reinforce spanwise distortions of the fundamental

and subsequently generate a secondary longitudinal vortex structure.

The theoretical spanwise wavelength of the vortex structure was found

to vary from the wavelength of the fundamental mode for weak three-

dimensional effects, to one half the fundamental wavelength when strong

three-dimensional effects dominated the transition. As noted earlier,

a similar reduction in wavelength was experimentally observed as three-

dimensional activity increased.

Similar three-dimensional distortions have also been observed for

symmetric jets and wakes in the final stages of transition. Symmetric

wakes do not exhibit sub-harmonic oscillations and it seems unlikely that

the onset of three-dimensionality in asymmetric wakes can be directly

attributed to the presence of finite amplitude sub-harmonic oscillations.

This last stage of transition where three-dimensional distortions

appear may be a necessary precursor for turbulence. Since turbulence is

a three-dimensional phenomenon, it seems logical that the final insta-

bility just prior to turbulent breakdown will be one that can condition

the flow for acceptance of strong three-dimensional motions. Viscous

boundary layers, symmetric jets and wakes,and asymmetric jets and wakes

all seem to exhibit some sort of three-dimensional vortex structure just

prior to turbulent breakdown. The Benney-Lin mechanism, or some modifi-
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cation of it, thus seems to play an important role in the breakdown

of shear layers in general.

It is not clear if the cross-stream boundaries exert any spanwise

constraints in this region. At best one could only hope to fit in two

or three fundamental mode wavelengths in the cross-stream direction.

This certainly is not a sufficient degree of freedom to eliminate bound-

ary effects. I do not wish to pursue the question of spanwise boundary

constraints further. However, it is a subject which must be explored

in order to understand the representativeness of the three-dimensional

mechanisms observed in this experiment.

One other notable feature of region V is an extremely strong, al-

most exponential decay of the third harmonic.

Region VI: Final Breakdown (4.75-5.75 X I)

After about five wavelengths of transition the disturbance spectrum

abruptly spread into a broad band spectrum. Phase measurements showed

that all synchronization with the upstream fundamental was lost. The

flow is certainly three-dimensional and although oscilloscope traces

indicated the presence of weak, intermittent, secondary instabilities

at the upper edge of the shear layer, no evidence of high frequency

bursts were found. The secondary instabilities seemed to generate fre-

quencies in the range wI to 3w I and may have been due to instantaneous

mean flow distortions caused by the secondary vortex structure of region

V.

As indicated in figure 5.48 the total disturbance energy starts to
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increase in this region to levels above the apparent upper bounds

present in regions III, IV and V where a discrete transition spectrum

existed.- This growth of total energy seems to coincide with an appar-

ent second equilibration region for the sub-harmonic which has now

become the dominant disturbance. The spectra plots indicate a grouping

of energy near the sub-harmonic and this second equilibration may re-

present yet another step in Landau's successive instabilities concept.

Here, the sub-harmonic seems to be playing the same role as the funda-

mental did in earlier regions.

It is not at all clear as to just what role three-dimensional ef-

fects play in the second sub-harmonic equilibration. However, it does

appear that unlike the fundamental and sub-harmonic mode equilibration

in region III, strong three-dimensional effects, probably due to the

secondary vortex structure, are necessary for the second sub-harmonic

equilibration. It is curious, and perhaps significant, that a slight

indication of three-dimensionality also appeared just prior to region

III equilibration. In that case the influence of three-dimensionality

was not deemed important. It may however be an integral part of the

equilibration mechanism and poses a question that should be investigated.

VI.2 Mixed Mode Transition

The mixed mode experiments were conducted mainly out of curiosity.

However it was evident, even before actually running the experiments,

that in addition to obtaining the usual phenomenological information on

shear layer transition (as were taken for the wI transition) several



- 245 -

basic stability concepts could be tested independent of the particular

details of the flow being studied.

In brief, the excitation of two growing fundamental modes allowed

the following points to be investigated:

(a) the validity of the linear superposition principle

which asserts that component oscillations can exist

independently of each other;

(b) the importance of the generation of non-linear com-

bination modes (due to the interaction of the funda-

mental modes) in the transition process;

(c) the role which non-linear mode competition plays

in the transition process.

A fourth, but initially unappreciated factor, is the role played by the

relative phases of the excited disturbances in the transition. Perhaps

by inertia and habit, a great deal of quantitative data was accumulated

for the mixed mode transition. However, the points just mentioned were

of greatest interest to the author, and are the only ones that will be

discussed.

(a) Validity of the Linear Superposition Principle

The mixed transition experiment provided a classic example of the

limits to which the linear concept of disturbance superposition can be

extended. The w fi and w experiments established the behavior of the

isolated transitions of the two respective fundamental modes. It was

clear from the energy and r.m.s. plots that for infinitesimal amplitudes

WA and wB grew in a manner identical to the growth of their 
single mode
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counterparts, wfsl and w . However, significant differences occurred

when wA and wB reached respective finite amplitudes of 1 and 2%. At

this point, the rate of growth of wA abruptly declined. In contrast,

w B continued to grow at the same rate that its single mode counterpart

had. Non-linear modes also appeared at this point.

Since the growth of w B does not deviate in any significant manner

from that of Wt), it appears that the amplitude of wB determines when

superposition will break down. The breakdown of superposition is re-

flected in the alteration of the growth characteristics of wA and the

appearance of non-linear modes. The 2% value for wB marks the upper

limit to which the principle of superposition can be extended. As such,

it can be taken as the best criterion for determining the extent to

which linear theory can describe the mechanics of shear layer transition.

(b) Role of Non-Linear Combination Modes

In the mixed mode experiments, non-linear sum and difference combi-

nation modes appear along with the usual harmonic and sub-harmonic modes

of each individual fundamental. The combination modes interact with

the two fundamentals and the other non-linear modes andcan extensively

organize the transition spectra. As many as 25 different non-linear

modes appear in the transition spectrum. Most of these modes were ob-

served to initially grow at an exponential rate, and the dominant non-

linear modes are tabulated in table 6.8 along with their initial expo-

nential growth rates. Additional information is presented in the data

of chapter V.
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Mode

WA

WB

(WB~WA)

(WoB +WA)

Table 6.8: Spatial growth rates of the dominant modes
in the (wA + wB) transition in regions I
and II.

-ai= -ai-2Om(xo) Mode -ai= -ai-2

0.144 w B/2 0.285

0.198 wA+wB /2 0.276

0.246 3w B/2 0.109

0.209 2wB 0.220

em (xo)

The mixed mode transition is obviously more complicated than the

normal single mode transition. In many respects it may be more repre-

sentative of a natural transition. In natural transitions many dis-

crete disturbances are randomly introduced and trigger the grow of many

fundamental modes which then proceed to interact among themselves just

as wA and wB do.

As can be seen from figures 5.46 and 5.47a, the growth of wB energy

is almost identical to the growth of o11 energy. Also, as shown in

figure 5.48, the total disturbance energy of the mixed transition is

almost identical to that of the a transition. It appears that the

combination modes obtain their energy at the expense of WA and its non-

linear modes, and not from u. Also, since the total disturbance energy

does not differ in any significant manner from the a transition, the

presence of combination modes induces a redistribution of energy among

the disturbances and not an increase.

An interesting aspect of the mixed transition was the observation
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that the generation of the w A/2 sub-harmonic mode was suppressed in

favor of the (wB - WA) combination mode. In contrast, wB/2 was not

noticeably affected.

Combination modes are generated by the direct non-linear inter-

action of wA and wB* Since wA and wB have constant relative phase an-

gles the sum and difference modes can be expected to be more sharply

centered and less intermittent than the broad band sub-harmonics are.

Resonance reinforcement mechanisms can be expected to be more efficient

for the difference frequency (wB~WA) than for the sub-harmonic modes.

The broad band of disturbances that amplify in the w A/2 sub-harmonic

band overlap the (wB~WA) frequency. The strong centering of (wB~ WA)

apparently interferes with an efficient sub-harmonic reinforcement of

WA/2. In contrast, wB/2 is much further away from the difference fre-

quency and does not experience a competition for energy input.

(c) Mode Suppression Due to Non-Linear Effects

As the mixed mode transition proceeds downstream, an equilibration

zone (similar to that observed for wfs1 and w ) appears. It is here
fsl II

that the coupling between the two fundamental modes becomes apparent.

The equilibration amplitude of wB is almost identical to that of w I,

while wA equilibrates much earlier and at a much lower level than wfsl

did. This result demonstrates the crucial role which the linear zone

plays in establishing the initial conditions for the downstream non-

linear regions. The most efficient organizer of upstream energy is the

maximally unstable mode wo1  OWB, and it appears that as long as the

flow is destabilized at this frequency, the overall character of the
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non-linear regions of transition will be dominated by this mode. The

other fundamentals, if present, seem to enter into the picture mainly

through their interaction with the most unstable mode to generate com-

bination modes and other higher order non-linear effects.

Stuart (1962) considered the mutual influence of two growing fun-

damentals on the equilibration process. The analysis resulted in two

mutually coupled Landau equations, one for the amplitude A of wA and

one for the amplitude of B of wB* Based on the work of Liu, these will

be written in their spatial form.

d 2 = 21A 2{-a (A) + aAA 2 + aBI 2 +.. }

dIBI 2 = 2|B|2{-a (B) + bB 2 + bAA2 +
dx 211{c (B bBI bAAI +.

where a B and bA represent the non-linear coupling between wA and wB

Since the growth rates and equilibration amplitudes of wB and wII

are almost identical, the equilibration of wB must be relatively insen-

sitive to the presence of a second fundamental mode: It seems reason-

able to assume that

bB >> bA

and to a good approximation, the equilibration of wB is governed by the

same mechanisms as the wI equilibration, the distortion of the mean

flow by the w B fundamental and the subsequent modification of wB by the

distorted mean flow.
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However, it is evident that the equilibration of wA is extremely

sensitive to the presence of wB. The influence of wB on the wA equili-

bration is expressed by aB, where

qi(WA) - aA e 2
aB aee2 -{168 + 17.3 a AB 2B A

If, as an exercise, the value of the second Landau coefficient for

the ofsl transition is taken to be representative of aA, the effect of

WB on the equilibration of wA can be estimated as

a B ~ -312 = 37.4 aA

The non-linear coupling effects of oB on the equilibration of wA, are

seen to be 40 times as great as the effects of wA on itself. Hence,

even though the equilibration of w B is virtually unaffected by the pre-

sence of wA, the non-linear coupling between wA and wB acts to strongly

suppress the growth of wA* This is an example of non-linear mode compe-

tition.

(d) Role of Disturbance Phase in Shear Layer Breakdown

As discussed in appendix A.3 , the wavenumber and frequency

characteristics of a disturbance are determined by the spatial and time

variations of the disturbance phase O(x, t). The valid variations of

6(x,t) (and hence ar' r) are governed by the local dispersion relation

of the flow*

*
The term 'dispersion relation' is used in a very loose sense to des-
cribe the constraints of the mean flow field and boundary conditions
on the allowable degrees of freedom the disturbance oscillations may
have.
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If we consider a flow with one or two amplifying fundamental

mode disturbances

(I$ ( ) (x

then as these modes grow to finite amplitudes they will interact with

and distort the mean flow field. The mean flow distortion is dependent

on the particular disturbances which are present. Hence the local dis-

persion relation is sensitive to variations in 01 and 02* Variations

in phase and dispersion relations will be reflected as variations in

the wavenumber and frequency of the disturbance field.

If 01 and 02 are assumed to be constant, then the transition will

be dominated by two specific wavenumber and frequency pairs, the values

of which are determined by e1 and 02 and the constant, local dispersion

relation.

If, however, the phases 01 and 02 are allowed to vary on a random

or intermittent basis, as is observed just prior to turbulent breakdown,

then the local mean conditions, and hence the local dispersion relation

will also vary on a random or intermittent basis. Variations in 0 and

02 will cause an observer to see variations in wavenumber and frequency.

Variations in the dispersion relation will alter the wavenumber and fre-

quency combinations which are instantaneously valid. The coupled varia-

tions in phases and dispersion relation will thus cause the appearance

of a wide range of disturbance wavenumbers and frequencies. The intro-

duction of only a few disturbances with random phases can thus cause a

broad band filling in of the wavelength and frequency spectrums. The
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presence of non-linear modes, whose phases are also sensitive to

variations in the phases of the fundamental modes will further augment

the chaotic nature of the disturbance spectrum.

Thus the intermittent or random behavior of just a few amplified

disturbances can describe many facets of the abrupt transition to tur-

bulence observed in shear layers.

As was seen in the wII, Wfsl and (wA + wB) transitions, the distur-

bance spectrum at turbulent breakdown is sensitive to the upstream ini-

tial conditions. The unstable normal modes of the linear region dominate

the non-linear regions and persist in influence into the turbulent re-

gion. Turbulence is a statistical phenomenon and it would be interest-

ing to conduct an experiment in which the phases 01 and e2 of the un-

stable upstream disturbances varied on a controlled basis according to

some given statistical relation. Then the effects of the initial input

statistics on the transition process and the final turbulent field could

be investigated. Also, since turbulent Reynolds stresses only have

meaning on a statistical basis, it may prove possible to isolate speci-

fic features of the turbulent Reynolds stress in the normally organized,

and well studied, non-linear regions of transition. In this manner,

Reynolds stress due to statistically excited disturbances could be com-

pared to the organized Reynolds stress induced by a coherent single or

multi-mode excitation field.

In either case, a controlled statistically excited experiment would

give a more representative model of the natural behavior of an unstable

system.
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APENDIX

A-i Linear Trapezoidal Stability Model

Using a streamfunction ,,= (r,) e.

the Rayleigh equation for inviscid parallel flow can be written as

where primes indicate derivatives with respect to the y coordinate,

and a is the x coordinate wavenumber.

Equation A-1-1 has the Greens function solution

-L 3- (A-1-2)

hence

)_ __~_ (A-1-3)

.20(

where

(A-1-4)
C +

For a trapezoidal profile, V ') is identically zero at all points

except at the N points (a ) where the straight line profiles inter-

sect. Thus,
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JM U~ai)-c (A-1-5)

giving

The solution, by nature of the Greens' function, satisfies the neces-

sary boundary conditions e) -> o>. The importance of choosing

the right mean velocity slope (i.e. vorticity) in fitting the trape-

zoidal model to the real profile is clearly evident from equation

(A-1-6).

When evaluated at each of the (a ) points, the above equation

gives N equations in N unknowns and leads to the eigenvalue problem

E C c)(A-1-7)

where

and can be solved for complex values of c and a. Since can be

written as
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where

Ar Or Cr- 0(. - 6 -(A-1-9)

and the valid spatially growing solutions are those for which a. = 0,

and a is negative. The solution for (a, = 0, > 0) corresponds

to the temporal problem.
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A-2 Sound generation of vorticity perturbations

The mechanics by which sound waves generate perturbation fluctu-

ations in a moving, non-uniform, sheared flow are not well understood.

In the simplest case of a uniform stream at rest, the sound induced

velocity field is irrotational. One would expect that the basic per-

turbation field for a sound excited, low Mach number flow would also

be basically irrotational.

However, linear stability models show that valid perturbations

are rotational and it is unlikely that a sound induced potential velocity

field could directly trigger the actual flow instability. Rather a

mechanism for the production of.perturbation vorticity is needed.

If the total velocity field is expressed as a sum of an irrotational

and rotational perturbation superposed on a sheared mean flow, then

(A-2-1)

where

ePA. (A-2-2)

If the respective equations governing the potential and rotational

components are separated from that of the mean motion, then it can be

shown (Mollo-Christensen {1969]) that (1) the basic sound induced velocity

field is irrotational, and (2) a mechanism does exist by which the

irrotational perturbance field can interact with the mean vorticity to

produce perturbation vorticity.
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The first statement is evident from the equation for t' which is
I

basically the forced wave equation and can be expressed as*

The R.H.S. expresses the local generation and interaction mechanisms.

For a far-field approximation, this reduces the retarded potential problem.

If the effects of the R.R.S. are assumed small (see Mollo-Christensen)

then it reduces to the equation for a potential perturbation field, and

the sound waves will produce a basically irrotational perturbation field.

The equation frru' expresses the production of perturbation vorticity
1t

in a sheared flow in which irrotational disturbances are present. For

our purpose it can be expressed as

(A-2-4)

v)cu + f( cQ v c-uA-kU_ 7 A9- QA

+ kSO &~ CLAA(A 4,_aws C-h -op 4 A LAS

It is apparent from the first term on the R.R.S. that sound

generated potential field perturbations can interact with the mean shear

(i.e. mean vorticity) to produce perturbation vorticity. If baroclinic

effects are neglected, then this term provides the only mechanism by

which disturbance vorticity can be produced by a potential perturbation

field.

*See Mollo-Christensen (1969)
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Considering the relative importance of the three components

of the first term it can be shown that terms (i) and (iii) will

generate spanwise vorticity perturbations

CU. V)YjyQ
4,

A

Since the largest values of cur/ff and its derivatives exist

near the edge of the splitter plate, one can expect this region to be

the most efficient producer of perturbation vorticity. It is clear,

however, that the interactions can occur throughout the mean shear

field.

Physically, these three terms indicate that the potential

fluctuations can act to instantaneously alter the mean velocity field.

Thus the mean vorticity field is instantaneously altered, which in

effect is a generation of perturbation vorticity.

The symmetry or asymmetry of the generated perturbation vor-

ticity field will be dependent on the symmetry or asymmetry of the

potential perturbation field and the character of the mean shear

profile.
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A physical explanation of how long wave sound perturbations

can generate small scale vorticity perturbations can be illustrated

by considering the effect of the sound pressure field on the velocity

and pressure distributions at the splitter plate edge.

--.0 o

A v M&nv;Thate. Soo ".b4~&Tt..SUi
VU. aXc %t s-ra P-) IF tLLb . VSf~. EX C17cL&.0

An asymmetric sound field will produce pressure fluctuations

which alternatively shift the local pressure distribution from one

side of the splitter plate edge to the other. The local boundary

layers will be alternatively distorted by the shifted pressure dis-

tribution, so that perturbation vorticity of similar sign will be

effectively generated at the same instant of time. These will then

be swept downstream into the test section by the mean flow. The

downstream length scale of the convected vorticity field will be

determined by the ratio of the mean velocity to the forcing field

frequency and
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for w forcing if 7 = i-r. If the mean convective velocity is used

and T^'(LT4 )/Z , then 2 4 cm. In either case, the convec-

tive disturbance field will not be a simple sinusoid and will con-

tain oscillations near the value of the actual w wavelength.

The flow can then pick out its preferred wavelength.

A symmetric sound field will induce the same instantaneous

distortion on both sides of the stagnation point and will hence

produce vorticity perturbations of opposite sign on both sides of

the plate. This would then give a symmetric downstream perturbation

field.
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A-3 Wavelength, Phase Speed and Phase Angles

Although the actual disturbance measured by the hot wire probe

is normally viewed as being a travelling wave with a local wavelength,

phase speed and phase angle, the hot wire probe can only measure the

amplitude of the wave and the frequency at which variations in amplitude

sweep past it. Wavelengths, phase speed, phase angles, the instantaneous

directional sense of fluctuation, and relative position in the fluctu-

ation cycle must be inferred from a general phase functionO(x, t).

The phase function cannot be directly measured, but must be reconstruc-

ted from measurements of its space and time variations. The measure-

ments are then referred to the behavior at a reference point in the flow

in order to establish a consistent reference phase.

The probe senses the total local velocity component uN(x9 t)

normal to the wire,

U UN (A-3-1)

and responds with an analog voltage signal of the form

es xg E=(K + 0~ f (A-3-2)

By the reduction schemes discussed in Appendix A.4 the fluctu-

ating component of velocity can be constructed from the local values

of the r.m.s wire voltage, and phase function,

FTy CL' (f(A-3-3)
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The spatial variations of u (x) are normally measured

separately as they are the easiest to obtain. Measurements of

G(x, t) are more difficult. Since'P(x, t) gives the behavior at

one point in (x, t) space relative to another, its variations can

be measured relative to any convenient reference point or signal

with no loss of information.

Variations of the phase P(x, t) in (x, t) space can be expressed

as

9(i4)= (X~,1.)+ 7~9 -f(-_K) t i e order JApadha fee
(A-3-4)

If for simplicity the disturbance is assumed to be a constant

frequency travelling wave, moving in the downstream direction at a

constant speed, then the higher order temporal and x-coordinate

terms -> , and the wave structure is determined by

= =dow sh-e - a(A-3-5)

a 4( 3~'~.eoy

Based upon measurements giving the spatial and temporal varia-

tions of phase, the true disturbance wave form can be reconstructed
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as ' f X

(A-3,6)

where 9,r , % and f-& can be taken as zero for convenience.

It is clear, for example, that if a periodic spanwise phase

variation is observed, then the higher order z-coordinate derivatives

of 9 must approach zero. A shift in terminology would then be

made, and the periodic spanwise structure would be defined by a

spanwise wavenumber.

Variations of the spatial structure of 9(x, t) are measured

by a phase meter. As the probe is traversed through space, the

meter will register the instantaneous difference in phase as sensed

by two probes located at different spatial positions. The probes,

and hence the meter, can only view disturbances in the time domain,

and they see signals of the form

+ phase variations due to the
spatial structure of 9 (x, t)

or equivalently

-f + Jj) (A-3-7)

Recourse to a simple model will demonstrate how only spatial

variations in phase are measured by the phase meter, Temporal varia-

tions are of course measureable by a frequency counter.
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Consider a sinusoidal travelling wave of downstream wavelength A

and phase speed cr'

Two probes stationed at x = (x0,y0,z0) and x = (x,y9,z0) will

sense respective signals of the form *

x= e =e (A-3-8)

GX e =e=

These two signals are the inputs to the phase meter which in

turn responds with an analog output proportional to the phase differ-

ence

= )- . ) =6 ) - i'(C 0 ) (A-3-9)

Since ) ( =.) o , if = p ,and :(>)- .)

if e , then if an x-coordinate traverse is made

zcX9K Xf-0)

Thus, as far as the phase meter output is concerned, all time

dependence has been eliminated. Only the relative phase angle dif-

ferences, due to spatial variations in O-(x, t) are recorded. Physi-

cally, this is equivalent to riding with the phase speed of the wave.

* The meter operation is independent of the amplitude of the distur-

bances and only unit amplitude signals will be considered.
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Hence, an effective Galilean transformation has been made, and the

flow stream lines are nov steady. In a sheared flow, this will

give the Kelvin's cats eyes, discussed in section (5.5b).

The meter response goes from 0-31 2.7r and back to zero as

(x) - < (x ) increases from 2Ti n to 27-T ( - ) etc. Hence

the meter output has the following form as the measuring probe

proceeds downstream relative to the reference probe.

I 

I

The distance between zeros corresponds to

a =2r = 2 x-X)

and hence gives wavelength increments.

Similar arguments will show that if phase angle variations

exist along the vertical or spanwise coordinates, then (x9,yz9)

traverses will give the vertical phase angle variations

0(4 YW i - lg (K.,1 ooi) = ()(o -2 - 'k1- b'xo, Va, f'

and (x ,yoz) traverses will give the spanwise phase angle

variations

- () CXo, -
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Of course, real unstably growing wave trains are not simple

sinusoidal travelling waves. Non-linear effects can alter the local

dispersion relations and hence the wavelengths and phase speed. Ex-

perimentally, however, only errors due to wavelength variations can

be detected since the input signals to the meter are filtered in the time

domain so that id = constant.

The hot wire probe and associated measuring circuitry can not

distinguish between a linear wave train and a non-linear one. It can

not be programmed to follow a given wave train as it passes through

space and perhaps changes its wavelength and frequency due to local

or non-linear effects. The circuitry can only make a Fourier decompo-

sition of the localsignal in the analog time domain and then map out

the spatial phase behavior of a given frequency. It can not tell

whether a wave that earlier had a given local frequency and wavelength

has now had its frequency and wavelength altered and hence appears

to the probe as a different frequency and hence a new wave. Thus the

behavior of a given frequency, as it evolves in the laboratory frame

may be an actual composite behavior of many waves whose frequency and

wave numbers are altered according to their local dispersion relation

and interaction with the mean flow and other disturbances.
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A-4 Hot-Wire Calibration

Considerable attention has been paid to the calibration, and

operating characteristics of hot-wire anemometers. Excellent dis-

cussions have been given by Corrsin (1963), Hinze (1959), and Collis

and Williams (1959). The basic result is that the response of a

heated cylindrical wire in a mean flow of a sufficient velocity

to insure forced convection heat transfer, is given by:

(A-4-1)

where: U is the total velocity normal to the wire, and A, B, and n,

are calibration constants determined by the physical characteristics

of the wire and the medium in which it is operating. R and R arec w

the cold and operating resistances of the wire and (R /R -R ) is

usually referred to as the hot-wire overheat ratio. I is the opera-

tion hot-wire current.

The response equation can be linearized for small velocity fluc-

tuations, and separated into equations governing the mean and fluc-

tuating componets of velocity.

W (A-4-2)

(A- 4-3)

C I ,

-I-- nQC
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where E = E + el is the sensor voltage, and UN = U + ut are the mean
w wN

and fluctuating velocity components. The work of Roshko (1954) on

the shedding frequency of a cylinder in a mean flow was used to deter-

mine A and B. As given by Roshko:

L .. "U - 4. 47 >oo (A-4-4)

where the Reynolds number is based on the cylinder diameter "d".

The calibration procedure consisted of inserting a cylinder of

known diameter in the free stream flow. The hot-wire probe was then

positioned behind the rod and the eddy shedding frequency was monitored

by a digital counter. Roshko's relation was then used to compute UN.

The rod was withdrawn and the true current and operating and cold

resistances of the wire were measured for the given mean velocity.

By varying the tunnel velocity over a wide range, a series of cali-

bration points were obtained. These were then fitted to equation A-4-1

by a least squares fit, where "n" was taken to be 0.45 as suggested

by Collis and Williams. The fitted curve was extrapolated for velo-

cities lower than 20 cm/sec.

For computational analysis, the response equations A-l-l and A-1-2

were rewritten in terms of the measured variables (i.e. voltage, cur-

rent, and cold wire resistance).

U(>r) [[Ew-=n) ' x) (A-4-5)

IEIW(D - I Cx) e R
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u,'(x) = (A-4--6)

( ._ ( _) (A-4-7)

FSCK)

If A, B, n, and Re, are known, then the mean velocity and fluc-

tuation sensitivity FS(x.), can be computed from a knowledge of the

mean hot-wire voltage, Ew (xi) and current, I(x.) at each point in

space.
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