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Abstract

This thesis describes some of the recent (and some less recent) developments
in calculational techniques for scattering amplitudes in quantum field theory.
The focus is on on-shell recursion relations in complex momenta and on the use
of unitarity methods for loop calculations. In particular, on-shell recursion is
related to the MHV rules for computing tree-level gauge amplitudes and used
to extend the MHV rules to graviton scattering. Combinations of unitarity cut
techniques and recursion is used to argue for the “No-Triangle Hypothesis” in
N = 8 supergravity which is related to its UV behaviour. Finally, combinations
of unitarity and recursion is used to demonstrate the full calculation of a one-
loop amplitude involving a Higgs particle and four gluons in the limit of large
top mass.
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Chapter 1

Introduction

1.1 Scattering Amplitudes in Theory and Experiment

Ever since Physics arose as an empirical science, one of its main objectives has
been the identification and understanding of the fundamental principles and con-
stituents of Nature. Over time, fundamental principles have changed or been
extended, and constituents regarded as fundamental have been found to contain
even more fundamental parts. For the last 100 years, this hunt for the fundamen-
tal has been tied to the principles of quantum mechanics which governs Nature
at the fundamental level.

Particle physics as we know it today studies objects which are so small and
intangible that they can rarely be held in one place for study, either because
they are massless and move at the speed of light, or because they simply decay
too fast. At the same time, the measument apparatus cannot possibly be small
enough to explore a fundamental particle without being a particle itself. Thus,
the only viable method of exploration is to study the interactions between pairs
of particles that collide by identifying the consequences of this collision: What
comes out where, and how fast.

The physical quantity that describes this is the scattering cross section. It
specifies the area within which the one particle must hit the other for a specific
process to take place, or rather, the area where the particles do collide times the
quantum mechanical probability (density) that the given process will occur if the
particles collide. Such quantum mechanical probability densities always arise as
the absolute value squared of a quantum mechanical amplitude, which is in this
case called a scattering amplitude.

A scattering amplitude can recieve contributions from different processes
which are indistinguishable in the quantum sense, that is, processes which look
the same to the measurement apparatus. To form a scattering cross section, all
these processes have to be summed before squaring. Thus, if we wish to say
something meaningful about a theory with certain particles but not all of those
we know to exist, we should not start squaring the amplitude as we would be
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missing interference terms from the other processes. This point is made to argue
that the scattering amplitude is the furthest one can calculate in a theory without
taking into account other physical processes or experimental conditions. In that
sense, the scattering amplitude is the most proper way to describe a result in any
reductionist approach to particle physics.

Scattering amplitudes are normally calculated by perturbation theory as Tay-
lor series in coupling constants. The lowest order results are easily accessible with
todays methods, but already the next order is an analytical and numerical chal-
lenge. This is unfortunate because, as we shall see, more precise (approximate or
exact) results are in high demand.

1.1.1 Background Processes at the LHC

For the next many years, particle physics will be dominated by the experimental
programme at CERN, where the Large Hadron Collider (LHC) is being built.
This machine will collide (for the most part) protons on protons with a center-of-
mass energy of 14TeV. This is hoped to produce an array of novel particles, such
as supersymmetric partners of all the known particles, and expected to produce
decisive statistical evidence for the existense of the Higgs boson.

These interesting results will, however, be hiding behind massive amounts of
particle reactions that we already know and love from earlier investigations of
QCD and electroweak interactions. A good knowledge of the production rates
of these well-known events is essential because they contaminate the interesting
events and need to be subtracted. Knowing only these background processes to
the lowest order in the coupling constants is likely to introduce large theoretical
uncertainties, some of them prohibitively large.

process relevant for
(V ∈ {Z,W, γ})

1. pp → V V jet tt̄H, new physics
2. pp → tt̄ bb̄ tt̄H
3. pp → tt̄ + 2 jets tt̄H
4. pp → V V bb̄ VBF→ H → V V , tt̄H, new physics
5. pp → V V + 2 jets VBF→ H → V V
6. pp → V + 3 jets various new physics signatures
7. pp → V V V SUSY trilepton

Table 1.1: The LHC “priority” wishlist, extracted from [63].

Theorists and phenomenologists working on the LHC have issued a priori-
tized whishlist of next-to-leading order calculations they want done before the
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LHC turns on [63] (scheduled for Spring 2008 at the time of writing) included as
table 1.1. At the time of writing, only the first seems to be close to solved [67].
In principle, it is known how to calculate all these, but the conventional meth-
ods seem to have hit a roadblock; the calculational complexity of the required
calculations is rising faster than the available resources, be they human or elec-
tronic. Decisive progress in this area must come from both improved methods of
calculation and a strengthened effort.

1.1.2 Approaching Quantum Gravity?

Apart from the prosaic undertaking of extracting useful results from a multi-
billion Euro experiment, scattering amplitudes also play a role in the theoretical
understanding of quantum field theories. Amplitudes express and reveal both the
internal symmetries of a theory and its internal inconsistencies.

One inconsistency plays a special role in the problems defining a quantum
theory of gravity, namely that of non-renormalizability. In contrast to other
quantum field theories where infinities that pop up at intermediate results can be
arranged to vanish in physical quantities, gravity theories normally require more
and more new terms in their defining equations to counter the infinites which
necessarily appear.

However, it so happens that the maximally supersymmetric (N = 8) quan-
tum field theory of gravity does not seem to have such infinities. Calculation
of the necessary scattering amplitudes in this theory (and others) of gravity are
unfortunately extremely cumbersome and evidence is only accumulating slowly
that this may indeed be the case.

This understanding is driven by new methods of calculating amplitudes.
Thus, it may just be that such new methods can give a glimpse of something
which, without being a true description of all known particles and interactions,
can be called a consistent quantum theory of gravity.

1.2 Scattering Amplitudes in the Complex Plane

Scattering amplitudes are usually calculated perturbatively using Feynman rules.
Feynman rules are derived directly from an action principle, are understood by
all particle physicists alike, and have well-studied mathematical properties. A
calculation done with Feynman rules is rarely called in question, save for the
pointing out of simple algebraic errors. This makes Feynman rules the preferred
choice of almost everyone in the community, and with good reason.

Unfortunately, there are some issues with Feynman rules that make them un-
fit in several situations. The first is the issue of complexity: Since the rules work
by summing over contributions from all graphs of certain kinds, the complexity of
the calculation is factorial in the number of participating particles. When going
beyond leading order in coupling constants, there are integrals whose complex-
ities are also factorial in the number of particles. This leads to the roadblock
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mentioned earlier. The second issue is that of unphysical singularities: The re-
sults of the calculation are most often quoted in a form where some singularities
have to cancel between terms. When evaluating such expressions numerically,
roundoff error may introduce apparent effects which are not really there.

A contributing factor to these problems is that Feynman rules throw out in-
formation in exchange for more mechanical calculations. The prime example of
this is non-abelian gauge theories, where gauge invariance enforces a particular
structure of the three and four-point interactions. In the actual calculations, how-
ever, no reference is made to the gauge invariance, which might as well not have
been there. In the end, the constrained form of the Feynman rules ensure that
the amplitude is gauge invariant, but this has been obscured by the intermediate
calculation. This is just one of several pieces of information which may be used to
circumvent Feynman rules and obtain amplitudes faster, in more compact forms,
and with less unphysical singularities.

1.2.1 The Unitary and Analytic S-Matrix

The focus of this thesis will be the use of methods of complex analysis and meth-
ods derived from such considerations. Although most of the methods described
here have been developed since 2004, the idea itself is by no means new. In some
sense, it can be traced back to the so-called S-matrix programme of the 60’s.

The S-matrix is the evolution operator and is conventionally decomposed into
a unit piece (which describes no scattering) and into the rest (which describes
the actual scattering).

S = 1 + iT. (1.1)

The scattering operator iT sandwiched between a state of particles coming in
from the infinite past and a state of particles coming out at infinite future, gives
the scattering amplitude (also known as an S-matrix element if the unit matrix
is included). Requiring that the S-matrix be unitary imposes a relation for the
T operator commonly known as the optical theorem,

2ImT = TT †. (1.2)

If we insert a complete set of states between T and T † on the right side, we get
the formal diagrammatic expression

2Im =
∑∫

(1.3)
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where the sum is over all possible insertions of internal states and the integral
is over their on-shell momenta. In perturbation theory, the left side could cor-
respond to a one-loop amplitude and the right could correspond to a product of
two tree amplitudes.

If we also view the S-matrix as an analytic function of the kinematical vari-
ables, we can gain more information. In general, a one-loop amplitude as a
complex function of one of the kinematic variables will have a branch cut at real
positive values of the variable. The optical theorem can then be twisted to give
the discontinuity across the branch cut in terms of the insertions of all possible
states between two tree amplitudes, and the hope would be to reconstruct the
one-loop amplitude from its branch cut discontinuities. The really interesting
thing would then be if this information could somehow be used to bootstrap
amplitudes to all orders in perturbation theory.

This was the goal of the S-matrix programme: to produce a theory for the
strong interactions (and, in the long run, all of particle physics) from unitarity and
analyticity constraints on the S-matrix. That programme failed, partly because
a host of other assumptions turned out to be needed for the full reconstruction of
the S-matrix, partly because QCD, a Lagrangian quantum field theory, became
established as the correct theory of the strong interactions. A review of the
methods and motivations of the S-matrix programme can be found in [78].

In the 90’s, it was realized that some of the tools of S-matrix theory were
more powerful than public opinion in the community had assumed. The power,
however, came from the input of facts known from Feynman rules and dimensional
regularization, two concepts which were absent in the original S-matrix theory.
Bern, Dixon, Dunbar, Kosower and others used the known structure of certain
one-loop amplitudes to write them in a form where the discontinuities across
branch cuts could be expressed easily so that a (not even complete) computation
of the right side of (1.3) would almost completely determine the amplitude [24,
31–33]. We return to a detailed describtion of these methods in chapter 5.

Although this so-called “unitarity cut technique” produced results which were
unthinkable to compute with Feynman graph techniques, and attempted to use
all known information as efficiently as possible, it did lack in generality only being
useful for some particular cases (some of which were nevertheless relevant to ex-
periment). A central point in these methods is that only on-shell tree amplitudes
are used as input for the method, and this hints that we may, after all, be able
to bootstrap our way through the perturbative expansion.

This is not as far fetched as it may sound, because there are already results
that indicate that this is feasible in principle. The Feynman Tree Theorem [81,93]
gives exactly such a construction. It works by using retarded propagators ΔR

in all propagators in a loop, which sets the amplitude to zero because of time
ordering. By using that the retarded propagator is the Feynman propagator plus
a delta function

ΔR(P ) = ΔF (P ) − 2πiδ(P 2 − m2)θ(−P0) (1.4)
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the expression can be rewritten as a sum of ordinary Feynman diagrams where
some number of propagators are Feynman and others are set on-shell by the
delta function. This construction shows directly that the all-orders perturbative
S-matrix can be written as some complicated convolution of the tree-level S-
matrix. The Feynman Tree Theorem is discussed in more detail in [53].

1.2.2 Generalizing from Loops to Trees

As we saw above, the use of complex momentum space methods is not a new
invention, and at one-loop level, it has been used for some time as a tool for the
most efficient evaluation of scattering amplitudes. Most of tree-level calculations
were still being conducted in real Minkowski space using Feynman diagrams (or
related methods) at the turn of the century. The change in affairs would, however,
come from a completely different direction.

It had been known since the mid-80’s that a certain class of tree amplitudes
were considerably simpler than a Feynman diagram calculation would suggest
when using the spinor helicity formalism to which we will turn in chapter 2.
These were the so-called Maximally Helicity Violating (MHV) amplitudes where
(when all gluons are considered outgoing) two gluons have negative helicity and
any number have positive helicity. Building on some critical earlier insight by
Nair [107], Witten [124] was able, in 2003, to describe gluon tree-amplitudes
from the topological B-model string theory in twistor space, a type of theory
not commonly associated to the nuts-and-bolts of scattering calculations. Soon
after it was realized that in the same sense that MHV amplitdes are lines in
twistor space, tree-amplitudes with more negative helicity gluons were collections
of intersecting lines in twistor space. From this, it was only a small leap to
conjecture that there existed a formalism for calculating gluon amplitudes whose
vertices were MHV amplitudes.

That this was indeed the case was shown by Cachazo, Svrček and Witten in
the beginning of 2004 [66]. The construction is commonly known as either MHV
rules or CSW rules. This thesis will use the first, knowing that it may cause a bit
of confusion (Feynman rules generate Feynman amplitudes; MHV rules do not
generate MHV amplitudes). A description of MHV rules and some extensions
can be found in chapter 3. A good deal of calculations followed which verified
the MHV rules [85, 95, 126, 127]. Brandhuber, Spence and Travaglini were then
able to use them for one-loop calculations [55] which was slightly surprising at
the time.

All of these events were directly related to the twistor picture of gauge ampli-
tudes, which in itself did not involve complex momenta, but to some extent it did
involve momenta in 2 + 2 dimensions. In that metric signature, Britto, Cachazo
and Feng [57] realized that the unitarity cut technique described above can be
extended to insert four on-shell internal states rather than just two, basically
because the on-shell demand is easier to satisfy with two time directions. When
there are four on-shell constraints in a loop integral it becomes trivial because
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the four coordinates of loop momentum are fixed. This so-called “Quadruple Cut
Technique” allowed e.g. the conversion of the calculation of one-loop amplitudes
in maximally supersymmetric (N = 4) Yang–Mills to a purely algebraic one in
terms of products of tree amplitudes. It was also realized that the constraint
of being in 2+2 dimensions could effectively be removed by assuming to be in 4
complex dimensions. We return to this technology in chapter 5.

Since there are relations between tree and one-loop amplitudes in N = 4
super-Yang–Mills [29, 68, 86, 98], this allowed a quartic recursion relation for on-
shell tree-level Yang–Mills amplitudes [119], but with complex momenta. Britto,
Cachazo and Feng [58] were then able to rewrite this as quadratic recursion rela-
tion, but they also showed together with Witten [59] that it resulted from taking
the external momenta seriously as complex and using simple complex analysis.
Moreover, they showed that these recursion relations could be iterated such that
only complex three-point amplitudes contributed; in other words, the four-point
vertex in Yang–Mills can be thought of purely as an artefact of gauge invari-
ance necessary for Feynman rule calculations. These results will be presented in
chapter 3.

The remarkable developments described here have presented a completely new
view on the calculation of scattering amplitudes, and tie together concepts across
loop order in ways which are still not properly understood. The consequences of
treating scattering amplitude calculations as complex analysis is, at its essence,
the topic of this thesis.

1.2.3 Full Amplitudes from Trees

The concept of on-shell recursion relations derived from complex-momentum
methods have numerous applications. Most obvious are concrete tree-level cal-
culations which come out in a form which is more compact than the form from
Feynman rules. Another tree-level application is to show how the MHV rules
mentioned above can be viewed from recursion as a particular reorganization of
the Feynman rule calculation. The connection between MHV rules and on-shell
recursion will be explored in detail in chapter 4.

Another use of on-shell recursion is for the calculation of one-loop amplitudes.
Parts of one-loop amplitudes can be computed using the unitarity cut technique,
and exactly the parts that are missed in that technique are rational ones which
have similarities to tree amplitudes. This means that they are also computable
by recursion relations [36–38] although in a slightly more involved form. Such
a determination of a one-loop amplitude from unitarity cuts and recursion is
presented in chapter 8.

Numerous developments of unitarity combined with recursion have accumu-
lated over the last years and have improved one-loop calculation. Interestingly,
some results extend to a higher number of loops, although they are primarily
unitarity based. Founded on earlier insight by Anastasiou, Bern, Dixon and
kosower [2], Bern, Dixon and Smirnov [39] have been able to propose a closed
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form result for the all-loops N = 4 four-point amplitude, a result which may have
extensions to all maximally helicity violating amplitudes. Similarly, there have
been calculations up to three loops in N = 8 supergravity which lends credibil-
ity to the notion that it is perturbatively UV finite, and hence a (comparably)
well-defined theory of gravity outside string theory. The input into the calcu-
lations are tree amplitudes and the results are consequences of their structure.
These multi-loop results continue to attract attention from outside the circle of
specialists.

1.3 About This Thesis

1.3.1 Omissions

The purpose of this thesis is to review some of the central complex momentum
methods developed in recent years and to convey the results of the authors own
works in this area. As the reader will notice, the review part already takes up a
large part of the thesis, but still the topics that are relevant and interesting in
this context are so numerous and complex that many of these things have had to
be omitted.

Twistors are omitted completely, a choice which could be percieved as radical
when the field has such close connections to twistor string theory. In the approach
taken here, however, this connection is more historical since complex momentum
methods has managed to outrun the twistor methods in many cases, in particular
those cases chosen here. Twistor string theory have been well reviewed by Cac-
hazo and Svrcek [64] to which the reader is referred. Gauge theories in twistor
spaces have been developed by e.g. [50].

Another area which is not covered is that dealing with MHV rules as derived
from ordinary Yang–Mills in light-cone gauge. In this approach [105], the light-
cone Lagrangian is rewritten in a form where the MHV rules appear naturally,
and this permits extensions to loop calculations. Some important works in this
area are [54,80]. The viewpoint taken on MHV rules here is that MHV rules are
a special case of recursion relations, a viewpoint which is admittedly too narrow.

There have also been refinements of many of the unitarity and recursions
mentioned here which would lead us too far if they were to be explained in
detail. These are mentioned in the relevant connections. Within more traditional
caclulational approaches, there have also been recent andvances which will not
be covered.

1.3.2 Outline

The thesis is roughly divided in two parts, having to do with tree-level and one-
loop level, and is not in historical order. It starts out by explaining some basic
results in Yang–Mills theory, some notation, and the concept of gravity as a
quantum field theory in chapter 2. Armed with those methods, we can take a
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look at the two important tree-level developments, namely the MHV rules and
on-shell recursion in chapter 3. Based primarily on the articles [117] by the
author and [47] together with Bjerrum-Bohr, Dunbar, Ita and Perkins, chapter
4 describes how MHV rules can appear as a special case of recursion relations,
and how that can be used to derive MHV rules for a gravitational theory. This
highlighs some of the similarities between gravity and Yang–Mills that are obscure
in their Lagrangian formulation.

The purpose of chapter 5 is to introduce the loop level methods that will guide
us through the rest of the thesis, as well as some related ones, and the remaining
three chapters present some more concrete one-loop calculations which serve dif-
ferent purposes. The calculations of chapter 6 serve to explain how amplitudes in
N = 4 super-Yang–Mills are computed using a variety of techniques. The part of
the calculation which regards amplitudes with other external field content than
gluons is based on [118] together with Bidder and Perkins. Chapter 7 contains
calculations which elucidate the one-loop structure of maximal (N = 8) super-
gravity, which is necessary for the understanding of the all-loop structure. As
such, it serves to support the notion that N = 8 supergravity is UV finite, and is
based on [48] together with Bjerrum-Bohr, Dunbar, Ita and Perkins. The thesis
ends on a more prosaic note with the calculation in chapter 8 of the amplitude
for a Higgs going to four gluons of particular helicities in the limit where the top
mass is large. It is based on work together with Badger and Glover [9], but the
treatment is slightly different from the article.

1.4 Conclusion and Outlook

Rather than ending the thesis with a conclusion, we will sum up the main points
that the thesis will support, and give an outlook for the future.

1.4.1 A Competitor in the Calculation Race

The combined methods of unitarity and recursion has provided some extremely
effective means of calculating one-loop scattering amplitudes. More specifically,
they have allowed for the calculation of hitherto unknown six-parton QCD am-
plitudes, and hold the promise of making the progression to seven-parton QCD
amplitudes smoother. As demonstrated in chapter 8, they have also allowed for
calculations with fewer external particles to be sufficiently simplified that com-
pact algebraic expressions for amplitudes can be generated without the use of
computer algebra. Thus, it has opened up a new frontier for the specialists, and
hopefully provided tools for the many smaller groups of physicists with simpler
calculations in mind. New twists on these methods seem to keep coming in.

This is not to say that these methods are the only game in town. A purely
Lagrangian approach is still favoured by the broad community, and there have
been several refinements of conventional technology, both semi-numerical and
algebraic, which are reaching a comparable level. One can only hope that a
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combined effort of all the methods on the market can have the results in place
when they are needed in the near future.

1.4.2 Understanding Quantum Field Theories

The use of complex momentum methods have shown us that perturbative quan-
tum field theory is still far from understood. The investigation of scattering
amplitudes as complex functions gives several puzzles. At tree level, the simplest
version of on-shell recursion described in chapter 3 is known to work for both
Yang–Mills theories and gravity, but more complicated versions, such as those
used in chapter 4 are not proven, but seem extremely likely to hold. Superfi-
cially, the existence of on-shell recursion seems related to the UV behaviour of
tree amplitudes, a relation which is not clear either.

Equally, if not more, interesting are the relations between loop orders. Using
unitarity, statements about loop amplitude seem to be reformulable as statements
about tree amplitudes. In chapter 7, we will see how the existence of on-shell
recursion for tree gravity amplitudes comes close to proving that the one-loop
structure of N = 8 supergravity is the same as N = 4 super-Yang–Mills. Putting
such relations on a firm footing would contribute greatly to both our fundamental
understanding of perturbative quantum field theory, as well a our ability to do
calculations.

Together with the understanding of the full perturbative expansion of N = 4
Yang–Mills and the prospects for a UV finite theory of gravity, this makes the
topic of this thesis most exciting, an excitement that I hope that you, dear reader,
will share.

Enjoy!
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Chapter 2

Preliminaries

2.1 Colour Ordering

One of the more annoying aspects of doing gauge theory calculations is the pro-
liferation of indices, both for colour and for space-time. A strategy to avoid this
is to specify quantum numbers (such as colour) as early as possible in the calcu-
lation. This can provide expressions with less index mess, compensated by more
expressions to compute. The two chief methods for doing this are colour ordering
as described in this section and spinor helicity notation described in the next.
The contents of sections 2.1 to 2.3 are also reviewed in [72].

The strategy inherent in colour ordering is to identify the possible colour
structures we can obtain when we have finished an on-shell calculation. If we
consider adjoint particles only, the colour structures are products of structure
functions, fabc, which can be written in terms of traces of NC ×NC fundamental
colour matrices,

fabc = − i√
2
Tr[tatbtc − tatctb], (2.1)

where we normalise the matrices as

[ta, tb] = i
√

2fabctc, Tr[tatb] = δab. (2.2)

By using contraction identities such as (for SU(NC))

(ta)j̄i (t
a)l̄k = δl̄

iδ
j̄
k − 1

NC
δj̄
i δ

l̄
k, (2.3)

we can write all colour structure in terms of traces of fundamental colour matrices.
Note that when we are contracting structure functions only, the last term of (2.3)
will always drop out. Thus, we can write the completeness relation as

Tr[taM]Tr[taN] = Tr[MN] (2.4)

where M and N are arbitrary matrix strings.
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At the end of the calculation, the amplitude in question can be written as a
linear combination of the distinct trace structures,

An =
∑

{σi}∈Sn(1,...,n)/Zn

Tr[taσ1 taσ2 · · · taσn ]An(σ1, σ2, . . . , σn), (2.5)

the simplest examples being

A3 = Tr[ta1ta2ta3 ]A3(1, 2, 3) + Tr[ta1ta3ta2 ]A3(1, 3, 2) (2.6)

and

A4 = Tr[ta1ta2ta3ta4 ]A4(1, 2, 3, 4) + Tr[ta1ta2ta4ta3 ]A4(1, 2, 4, 3)
+Tr[ta1ta3ta2ta4 ]A4(1, 3, 2, 4) + Tr[ta1ta3ta4ta2 ]A4(1, 3, 4, 2)
+Tr[ta1ta4ta2ta3 ]A4(1, 4, 2, 3) + Tr[ta1ta4ta3ta2 ]A4(1, 4, 3, 2). (2.7)

The coefficients of the trace structures are called colour ordered amplitudes, be-
cause they correspond to a particular ordering of the colour matrices. Instead of
calculating the amplitude, using (2.1) to (2.4), and deducing the colour ordered
amplitudes we can calculate them directly by using colour ordered Feynman rules.
A diagram then contributes to a colour ordered amplitude if the cyclic ordering of
the external particles correspond to that of the wanted colour ordered amplitude.

If we are dealing with particles in the fundamental representation, the strings
of matrices will not be traced, because the colour indices of the fundamental
particles are free. It is still possible to define a colour ordering, e.g.,

A4(qi
1, q2j̄ , 3

a3 , 4a4) = [ta3ta4 ]ij̄A4(q1, 3, 4, q2) + [ta4ta3 ]ij̄A4(q1, 4, 3, q2). (2.8)

If we work in an SU(NC) gauge theory, we now have to take the last term of (2.3)
into account. This corresponds to subtracting at each vertex the contribution of
a U(1) gauge boson.

At loop level, we will also encounter multi-trace terms which we need to
compute. At one-loop level, however, it can be shown that all two-trace terms
are permutations of the (“planar”) single-trace terms [31].

2.2 Spinor Helicity Notation

After trading the colour information for more diagrams, we can now trade the
use of polarization vectors for yet more diagrams. This consists of writing the
amplitudes completely (or rather, to the extent possible) in terms of Weyl spinors
of massless particles. We will find that in this notation we can write down explicit
polarization vectors corresponding to positive and negative helicity gluons.

We start by deriving some basic facts about Weyl spinors. The Weyl spinors
corresponding to a massless momentum can be found by solving the massless
Dirac equation

pμγμu(p) = /pu(p) = 0 (2.9)
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where u(p) is a four component vector and γμ is a vector of 4×4 matrices obeying

{γμ, γν} = 2gμνI. (2.10)

We use “Peskin and Schroeder” conventions [113] where

γμ =
(

0 σμ

σ̄μ 0

)
(2.11)

Switching now to Weyl–van der Waerden notation the Dirac spinor can be written
as two two-component spinors

u(p) =
(

uα(p)
ũα̇(p)

)
(2.12)

whose indices are raised and lowered with εαβ, εα̇β̇, etc., using southwest-northeast
contraction. We define antisymmetric inner products between spinors,

〈λη〉 = εαβλαηβ = εαβλαηβ = λαηα, (2.13)

[λ̃η̃] = εβ̇α̇λ̃α̇η̃β̇ = εβ̇α̇λ̃α̇η̃β̇ = λ̃α̇η̃α̇, (2.14)

thus we are working with the “QCD” sign convention rather than the “string”
sign convention. In this notation (2.9) becomes

p · σβα̇ũα̇(p) = p · σβ̇αuα(p) = 0, (2.15)

which can further be elucidated by noting that p · σα̇α can be decomposed into a
product of two two-component spinors because det(p · σ) = p2 = 0:

p · σα̇α = λ̃α̇(p)λα(p), (2.16)

which is solved by

λ1 =
√

|p0 + p3|, λ2 = sign(p0)
p1 + ip2√|p0 + p3|

, (2.17)

λ1 = sign(p0)
p1 + ip2√|p0 + p3|

, λ2 = −
√
|p0 + p3|. (2.18)

λ̃α̇ = sign(p0)(λα)∗ (2.19)

From the above properties of the two-component spinors it follows immediately
that the Dirac spinors satisfying the Dirac equation are spanned by

u+(p) =
(

λα(p)
0

)
≡ |p〉, u−(p) =

(
0

λ̃α̇(p)

)
≡ |p], (2.20)

whose conjugate spinors are

ū−(p) =
(

λα(p)
0

)T

≡ 〈p|, ū+(p) =
(

0
λ̃α̇(p)

)T

≡ [p|. (2.21)
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The definitions of |p〉, |p] etc., ensure that 〈pq〉 = 〈λ(p)λ(q)〉 and [pq] = [λ̃(p)λ̃(q)]
thereby helping to simplify the algebra significantly. In terms of momenta, the
antisymmetric inner products are

〈pq〉 = −sign(p0)

√∣∣∣∣ q0 + q3

p0 + p3

∣∣∣∣(p1 + ip2)+sign(q0)

√∣∣∣∣p0 + p3

q0 + q3

∣∣∣∣(q1 + iq2),(2.22)

[pq] = sign(q0)

√∣∣∣∣ q0 + q3

p0 + p3

∣∣∣∣(p1 − ip2) − sign(p0)

√∣∣∣∣p0 + p3

q0 + q3

∣∣∣∣(q1 − iq2), (2.23)

which obey

〈pq〉[qp] = (p + q)2 = 2p · q, [qp] = sign(p0q0)〈pq〉∗. (2.24)

We will often encounter these spinors strung together using gamma matrices.
The following identities can be shown by using standard Dirac algebra:

〈p|γμ|q] = [q|γμ|p〉, (2.25)

〈q|γμ|q] = 2qμ, (2.26)

〈p|γμ|q]〈r|γμ|s] = −2〈pr〉[qs] (Fierz rearrangement), (2.27)

〈p|γμγν |q〉 = −〈q|γνγμ|p〉, (2.28)

〈pq〉〈r| + 〈qr〉〈p| + 〈rq〉〈q| = 0 (Schouten Identity). (2.29)

The two last have equivalent forms with 〈·| → [·|. We will suppress Feynman
slashes in general unless possibilities of misunderstandings arise. In fact, we
will quite often write momenta as their slashed versions rather than their vector
versions, as the whole point of spinor helicity notation is to get rid of explicit
vectors. When we write massless momenta in matrix form we should really write

p = |p〉[p| + |p]〈p|, (2.30)

but since only one of them avoids being projected out in spinor strings such as
〈q|p|r] or 〈q|p|r|s〉, we will allow ourselves the sloppynes of writing

p = |p〉[p| or p = |p]〈p|. (2.31)

We now know how to treat expressions with Weyl spinors and momenta.
The last objects which may occur in a colour ordered scattering amplitude are
polarization vectors. We use the two explicit realizations

ε+
μ (p) =

〈q|γμ|p]√
2〈qp〉 , ε−μ (p) =

〈p|γμ|q]√
2[pq]

. (2.32)
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In both of these, q is some massless momentum. Using the rules above it is quite
straightforward to verify the standard properties of polarization vectors,

ε±(p) · p = 0, ε+
μ (p) = (ε−μ (p))∗, (2.33)

ε+(p) · ε−(p) = −1, ε+(p) · ε−(p) = 0. (2.34)

We can argue that q is an arbitrary (apart from p · q �= 0) gauge vector by
considering the difference beween two different choices of q:

ε+
μ (p; q′) − ε+

μ (p; q) (2.35)

=
〈q′|γμ|p]√

2〈q′p〉 − 〈q|γμ|p]√
2〈qp〉 (2.36)

=
−〈q′|γμγν |q〉 + 〈q|γμγν |q′〉√

2〈q′p〉〈qp〉 pν (2.37)

=
〈q|{γμ, γν}|q′〉√

2〈q′p〉〈qp〉 pν (2.38)

=
√

2〈qq′〉
〈q′p〉〈qp〉pμ. (2.39)

Thus, the two choices give the same results due to the Ward identity. Finally,
we note that the polarization sum is that of a lightlike axial gauge with gauge
vector q:

ε+
μ ε−ν + ε−μ ε+

ν = −gμν +
pμqν + qμpν

p · q . (2.40)

This particular gauge is ghost-free, which will extremely helpful in later chapters
when we deal with loops.

Recently, a Mathematica package for manipulations with spinors in this con-
text called S@M has been published [101], but using slightly different conventions.

2.3 Tree-Level Structure of Yang–Mills Theory

This section collects some facts of Yang–Mills theory that we will need in the
future, and is not intended as a review af the subject. We will return to the
one-loop structure of Yang–Mills amplitudes in section 5.1.

2.3.1 MHV Amplitudes

It has already been mentioned that Yang–Mills scattering amplitudes take on
very simple forms in spinor helicity notation. The most striking example of this
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was conjectured by Parke and Taylor [111] and proven by Berends and Giele [15],
and states that

A(1+, . . . , n+) = 0,
A(1+, . . . , i−, . . . , n+) = 0,

A(1+, . . . , i−, . . . , j−, . . . , n+) = i
〈ij〉4

〈12〉〈23〉 · · · 〈n1〉 , (2.41)

where . . . denotes any number of positive helicity gluons. The last of these is
called the “Maximally Helicity Violating” amplitude, or MHV amplitude for
short. There is a simiar expression for the amplitude with two positive and
the rest negative helicity obtained by complex conjugation,

A(1−, . . . , i+, . . . , j+, . . . , n−) = (−1)ni
[ij]4

[12][23] · · · [n1]
, (2.42)

called the “googly MHV amplitude”1. These formulas determine all gluon ampli-
tudes up to and including five points, since all those amplitudes are either zero,
MHV or googly-MHV.

It should be noted that the “Maximally” in MHV becomes a misnormer at
loop level since the two first equations of (2.41) cease to hold in non-supersym-
metric theories.

2.3.2 Supersymmetry

Tree-level amplitudes in Yang–Mills theory have an apparent supersymmetry
[97, 110] because, say, a gluino and any adjoint fermion have the same Feynman
rules. Also, at the level of individual colour ordered amplitudes fundamental and
adjoint fermions are really indistinguishable since their colour ordered Feynman
rules are the same. The difference only shows when we compute amplitudes with
non-adjacent fermions where the fundamental fermion amplitude must vanish.
The actual supersymmetry only reveals itself at loop level where the number of
particle species becomes important.

The tree-level supersymmetry can be exploited to constrain tree amplitudes
by “Supersymmetric Ward Identities”, SWI’s [88,89], which relate amplitudes of
different external particle content but with the same momenta and the same sum
of helicities. Following [72], SWI’s are obtained by writing the amplitude as a
string of operators Φi cretaing helicity eigenstates by acting on the vacuum

〈0|Φ1Φ2 · · ·Φn|0〉. (2.43)

We now introduce the supercharge Q and contract is as Q(q, θ) = θqQ where θ is
a Grassmann parameter and qα is the Dirac spinor of some lightlike momentum.

1The word “googly” is a cricket reference often used in twistor theory. In cricket it denotes
a ball bowled with the opposite spin of the normal, thrown by a right-handed bowler.
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Since Q annihilates the vacuum, we can write

0 = 〈0| [Q(q, θ),Φ1Φ2 · · ·Φn] |0〉 =
n∑

i=1

〈0|Φ1 · · · [Q(q, θ),Φi] · · ·Φn|0〉, (2.44)

where the last expression must represent a sum over amplitudes where Q has
exchanged one particle with another. If one computes all the commutators, one
will get

[Q(q, θ), g+(k)] = θ[kq]f+,

[Q(q, θ), f+(k)] = θ〈kq〉g+,

[Q(q, θ), f−(k)] = θ[qk]g−,

[Q(q, θ), g−(k)] = θ〈qk〉f−. (2.45)

This permits us to prove the two first formulas of (2.41). The second can be
proven by acting on 〈0|g−1 f+

2 g+
3 · · · g+

n |0〉,
0 = 〈q1〉A(f−

1 , f+
2 , . . .) − 〈q2〉A(g−1 , g+

2 , . . .), (2.46)

and choosing q = 1 to eliminate the first term. Notice that the amplitudes with
two f+’s are zero because of the requirement of conservation of fermion helicity.

We can also extend the formula for MHV gluon amplitudes to amplitudes
with a fermion pair by acting on an amplitude with two negative helicity gluons
at 1 and i and a positive helicity fermion at j and the rest positive helicity gluons.
This gives the SWI

0 = 〈q1〉A(f−
1 , g−i , f+

j ) + 〈qi〉A(g−1 , f−
i , f+

j ) − 〈qj〉A(g−1 , g−i , g+
j ), (2.47)

and choosing q = 1 reduces this to

A(g−1 , f−
i , f+

j ) =
〈1j〉
〈1i〉 A(g−1 , g−i , g+

j ) = i
〈1j〉〈1i〉3

〈12〉〈23〉 · · · 〈n1〉 . (2.48)

This can be explained as moving a half unit of negative helicity from i to j,
thereby exchanging a factor of 〈1i〉 with a factor of 〈1j〉.

SWI’s can be extended to describe other supersymmetries. For example, N =
2 supersymmetry would contain a scalar and thus allow (2.48) to be extended to
include those. The N = 4 supersymmetry algebra will be of special importance
to us since that theory enters at both tree and loop level in several places below.
It has a gluon g±, four fermions f±

a , six real scalars sab = −sba, and the algebra

[Qa(q, θ), g+(k)] = θ[kq]f+
a ,

[Qa(q, θ), f+
b (k)] = θδab〈kq〉g+ + θ[kq]sab,

[Qa(q, θ), sbc(k)] = θδab〈kq〉f+
c − θδac〈kq〉f+

b + θ[qk]εabcdf
−
d ,

[Qa(q, θ), f−
b (k)] = θδab[qk]g− +

1
2
θ〈qk〉εabcdscd

[Qa(q, θ), g−(k)] = θ〈qk〉f−
a . (2.49)
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Notice that we might as well have used s̃ab = 1
2εabcdscd. Using these, we can

deduce SWI’s for theories with several different fermions and scalars, as well as
SWI’s for N = 4 amplitudes to any loop order. In particular, we can deduce the
exact form of all tree-level MHV amplitudes in N = 4 SYM by a procedure like
(2.48).

2.3.3 Limit Behaviour

We will also briefly touch on the behaviour of Yang–Mills tree amplitudes in
different limits. In a limit where a multi-particle kinematic invariant (and thus
a propagator) goes on-shell, the residue factorizes into two on-shell amplitudes,
summed over possible internal states. In the pure-glue case we have

A(. . .) →
∑
h=±

A(. . . , P h)A(−P−h, . . .)
P 2

(2.50)

as P 2 → 0. This factorization is present in most theories described by Feynman
rules and not just Yang–Mills.

When two-particle kinematic invariants go on-shell the situation is different
in massless Yang–Mills theory. Because of kinematics we should really be looking
at the limit where two colour adjacent momenta become collinear. In this limit,
the amplitude factorizes into the amplitude with one less external state times a
so-called splitting function which depends on the particles going collinear and the
internal state which is going on-shell. Again, considering only gluons we have,
when a → zP and b → (1 − z)P ,

A(. . . , aha , bhb , . . .) →
∑

hi=±
A(. . . , P−hi , . . .)Splithi

(z, aha , bhb). (2.51)

The splitting amplitudes for gluons are

Splittree− (a−, b−) = 0,

Splittree− (a+, b+) =
1√

z(1 − z)〈ab〉 ,

Splittree+ (a+, b−) =
(1 − z)2√

z(1 − z)〈ab〉 ,

Splittree− (a+, b−) = − z2√
z(1 − z)[ab]

, (2.52)

from which the remaining can be deduced. Similarly, one can deduce splitting
functions involving fermions and scalars from the corresponding MHV ampli-
tudes. The one-loop limits and simgularities will be considered in section 5.1.4.
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2.4 Gravity as a Quantum Field Theory

It is well known that General Relativity has serious problems when implemented
as a quantum field theory. It has a dimensionful coupling which means that it is
non-renormalizable. At each loop order one has to introduce new counterterms to
cancel divergences, and since nothing prevents finite parts of those counterterms,
we automatically introduce infinitly many coupling constants into the theory.

Because of this, “conventional wisdom” is that a QFT version of GR is non-
sensical. The situation, however, is not as bad as one may think. Gravity can
be treated as an effective field theory [122], where the theory is only renormal-
ized to the loop order needed. This is legal because we know that an all-orders
renormalized calculation can still be Taylor expanded around zero coupling. As
long as the coupling constant is small, we can expect tree-level computations to
be close to the actual result, and even at loop level the counterterms contribute
to local interactions but not to e.g. long range corrections to the gravitational
potential [45,74,75]. One could also remark that Yang–Mills theory in more than
four dimensions is also non-renormalizable, a fact which neither does nor should
deter people from working with the theory.

Another problem plagueing quantum gravity theories is that of algebra. When
the Einstein–Hilbert action,

SEH =
1

2κ2

∫
d4x

√−gR, (2.53)

is written out in terms of a perturbation around flat

gμν = ημν + κhμν or curved gμν = g0
μν + κhμν (2.54)

space, it contains vertices to all orders, and even the lowest order terms suffer
from severe congestion of indices. The three-point Feynman vertex takes up
about half a page in condensed notation, the four point requires one or two. This
means that only amplitudes where gravitons enter in the simplest manner can be
calculated analytically. The only computational point we will make here is that
of polarization tensors: Gravitons are spin 2 particles which have two on-shell
helicity states with traceless polarization tensors ε±μν . It so happens that one can
use products of gluon polarization,

ε±μν = ε±μ ε±ν . (2.55)

With the choices of polarization vectors described in section 2.2, we may even
choose different reference momenta.

2.4.1 The KLT Relations

What one can do to compute tree-level amplitudes in quantum gravity is to use
a result from string theory by Kawai, Lewellen and Tye [92], the KLT relations.
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These are obtained by rewriting the string computation for closed string scatter-
ing in terms of products of open string scatterings, and by taking the α

′ → 0
limit, they make a statement about a relation between graviton and gluon scat-
tering amplitudes. The relation is valid on-shell at tree-level in any number of
dimensions. The first three are (setting irrelevant factors to 1)

M(1, 2, 3) = A(1, 2, 3)Ã(1, 2, 3)
M(1, 2, 3, 4) = s12A(1, 2, 3, 4)Ã(1, 2, 4, 3)

M(1, 2, 3, 4, 5) = s12s34A(1, 2, 3, 4, 5)Ã(1, 4, 3, 5, 2)
+s13s24A(1, 3, 2, 4, 5)Ã(1, 4, 2, 5, 3). (2.56)

The M’s are graviton amplitudes and the A and Ã are colour ordered gauge
amplitudes. In fact, there are many forms of these relations since an (irrelevant)
relabeling on the gravity side gives another combination of orderings on the gauge
side. The simplest non-trivial example is the four graviton amplitude in four
dimensions which is

M(1−, 2−, 3+, 4+) = s12A(1−, 2−, 3+, 4+)A(1−, 2−, 4+, 3+)

= 〈34〉[43] 〈12〉3
〈23〉〈34〉〈41〉

〈12〉3
〈24〉〈43〉〈31〉

=
[43]〈12〉7

〈12〉〈23〉〈34〉〈41〉〈24〉〈13〉 . (2.57)

The KLT relations also imply that graviton states decompose into a tensor
product of two gluon states. Since the proof of the KLT relations does not
rely on the particular string theory in question, we may imagine that there are
more states than gravitons on the gravity side and gluons on the gauge side and
that the gravity states are tensor products of two gauge states. The two gauge
theories need not be the same. If we imagine the gravity side to be a heterotic
string theory, the one gauge theory corresponds to the right moving sector and
the other corresponds to the left moving sector [20].

2.4.2 The N = 8 /N = 4 Relation

At this point we can take a closer look at one of the main themes of this thesis,
namely the relation between the maximally supersymmetric gravity and gauge
theories in four dimensions. At tree level, the KLT relations give us a corre-
spondence between the two theories both at the level of the states of the two
theories (something which is independent of the loop order) and between the
actual amplitudes.

The spectrum (and Lagrangian) of N = 8 supergravity [69,70] can be derived
by dimensionally reducing 11 dimensional N = 1 supergravity [71] and contains
a graviton, eight Rarita–Schwinger gravitini, 28 vectors, 56 Majorana fermions
and 70 real scalars, a total of 256 states when helicities are taken into account.
The N = 4 multiplet has a gluon, four (Majorana or Weyl) fermions and six real
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scalars, a total of 16 states. By the KLT relation, any state in N = 8 supergravity
can be seen as a tensor product of two N = 4 states such that the sum of the
two N = 4 state helicities add up to the N = 8 state helicity. Supergravity can
have the same construction as we saw for supersymmetric gauge theories above
where the states are related by supersymmetry charges. In that sense, four of
the N = 8 charges map to the charges of one of the N = 4 theories and the
remaining four to the other.

This, however, does not account for all the symmetry on the gauge side. The
symmetry of Yang–Mills theory at tree level is the same as N = 4 SYM at loop
level, namely the superconformal symmetry. Since the spectrum, the supersym-
metry and the amplitudes are directly related to tree-level N = 8 supergravity,
one might guess that there is an additional symmetry in gravity theories which
mirrors the additional conformal symmetry in Yang–Mills. We will return to the
relations between N = 8 and N = 4 at loop level in chapter 7.
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Chapter 3

Tree Level Methods

3.1 Earlier Methods

Calculation of tree-level scattering amplitudes is normally done by applying the
Feynman rules. This procedure is completely safe, in the sense that it is com-
pletely mechanical and results are trusted. The expressions generated in this way
are known not to be the most compact, but they also avoid unphysical singular-
ities which may cause problems for numerical evaluation. For calculations by
hand, however, they become impractical beyond five-particle processes because
the number of diagrams becomes too big. Taking as an example the n + 2 point
gluon amplitude, the number of diagrams increases factorially, as shown in the
table below [94,104].

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 3.1: The number of Feynman diagrams contributing to the scattering pro-
cess gg → n g. Extracted from [104].

The problem of the number of diagrams can, to a large extent, be solved by im-
plementing Feynman rules on a computer, where the running time for generating
an amplitude and evaluating it at a specific kinematical point is not prohibitively
long even for a number of points of the order of 15. There are several programs
that can do such calculations [91,96,102,103,114].

Problems may still arise if we want to generate a large number of events with
many final states, since reevaluating the amplitude many times is time consum-
ing. On the other hand, deriving the amplitude analytically and subsequently
inserting numbers is also problematic since the analytic expressions from Feyn-
man rules are extremely large. What we would ideally like to have is some means
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of computing the amplitude in a form which is compact and well suited for in-
sertions of numerical values.

One method for this, based on Feynman rules, is Berends–Giele recursion
[15]. It uses colour ordering and the spinor helicity formalism and in addition
keeps as little off-shell information as possible. In this way it takes advantage
of gauge invariance and other on-shell conditions to simplify intermediate results
instead of waiting till the end. Berends–Giele recursion for gluon amplitudes
works by introducing the off-shell n-point gluon current Jμ

n which is the (gauge
dependent) off-shell amplitude for n-gluon scattering with n−1 legs taken on-shell
by multiplying in polarization vectors and using k2 = 0. By looking back into the
way Jμ

n was calculated, we see that the off-shell leg had to be attached to either
a three or a four vertex. Whatever was at the other legs of that vertex would
sum up exactly to some Jμ

m where m < n. This allows us to write down a cubic
recursion relation for Jμ

n , which can be terminated by setting the momentum of
the off-shell leg on-shell and multiplying by the polarization. We can either try
to solve the recursion relation exactly or implement it on a computer. A good
description of Berends–Giele recursion can be found in [72].

Even though this sort of recursion can speed up the calculation of amplitudes,
it still suffers from very long expressions, although less severely that traditional
application of Feynman rules. 2004 saw the invention of two methods which, in
their separate ways, have contributed to both more compact results and theoret-
ical insight into the structure of gauge theory amplitudes. We now turn to them
in historical order.

3.2 MHV Rules

3.2.1 Basic Construction

As described in the introduction, the analysis of Yang–Mills amplitudes in twistor
space led to an intuitive picture of MHV vertices connected by propagators.
The MHV vertex, however, was not a well defined concept since it is only well
defined on-shell where the momenta are all light-like. To make the MHV picture
concrete, it was necessary to construct an off-shell continuation of the MHV
amplitude. This was achieved by Cachazo, Svrček, and Witten [66] in March of
2004. The rules presented below were not derived as such, but rather proposed
and subsequently motivated. For multi-gluon amplitudes, the rules state:

1. Draw all possible graphs

• where external lines represent external gluons and have their helicity
marked,

• where internal lines have opposite helicities (±) at each end,

• where each vertex has exactly two edges of negative helicity—and at
least one of positive helicity—attached,
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• and which is planar and respects the colour ordering of the external
gluons.

2. For each graph, assign

• to each external line the outgoing momentum of the respective gluon,

• off-shell momenta Pi to the internal lines by assuming conservation of
momentum at each vertex,

• holomorphic spinors to internal lines as

|P �
i 〉 = |Piη] (3.1)

where the same (almost arbitrary) anti-holomorphic spinor |η] must
be used for all internal lines of all graphs.

3. For each graph, multiply,

• for each internal line of momentum Pi,

1
P 2

i

, (3.2)

• for each vertex, the MHV formula using |P �
i 〉 for the holomorphic

spinors of the internal lines.

4. Add the contributions of all graphs.

The combinatorics of these rules are similar to that of Feynman rules, but with
a somewhat gentler sprawl of diagrams. It is simple to show that an amplitude
with p negative helicity gluons will have p−1 MHV vertices and p−2 propagators;
significantly fewer than for Feynman rules. For fixed p, the number of diagrams
grows polynomially in the number of external gluons, thus presenting a significant
simplification over Feynman rules, but if we need all helicity configurations (and
thus all p up to half the number of gluons) e.g. for computing an unpolarized
cross section, the asymptotic behaviour of the number of MHV diagrams is again
factorial, thus not providing a significant advantage over Feynman rules for many
external gluons.

For few gluons, however, the simplification is remarkable. By taking advan-
tage of parity, a six gluon amplitude can be computed with the use of only 32
diagrams (depending on how you count) three of which are MHV and thus trivial.

To gain some familiarity with the rules, let us consider the simplest non-
trivial case of A(1−, 2−, 3−, 4+, 5+). It is of course slightly trivial because it is
a googly-MHV amplitude, but it will be a welcome first check to verify that the
rules obey parity. Having three negative helicity gluons, this amplitude is called
“Next-to-MHV”, or NMHV, and the diagrams must have two vertices and one
propagator. There are four permitted diagrams,
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− +

5+

1−
2−

3−

4+

+ −

1−

2−
3−

4+

5+

+ −

2−

3−
4+

5+

1−

− +

3−

4+
5+

1−

2−

Following the rules above, we get the contribution of the first diagram,

〈1(−P �
51)〉3

〈(−P �
51)5〉〈51〉

1
P 2

51

〈23〉3
〈34〉〈4P �

51〉〈P �
512〉

(3.3)

=
〈1P51η]3

〈5P51η]〈51〉
1

[15]〈51〉
〈23〉3

〈34〉〈4P51η]〈2P51η]
(3.4)

=
[5η]3〈23〉3

[1η][51]〈34〉〈4(5 + 1)η]〈2(5 + 1)η]
. (3.5)

At this point we can make a choice of |η] if we like. The choice |η] = |5] will
immediately set the diagram to zero, where as the choices |η] = |1], |(5 + 1)4〉,
|(5 + 1)2〉 will render it undefined. The latter three correspond to unphysical
poles which cancel among the diagrams. If we continue with |η] = |5], the three
other diagrams contribute

− 〈34〉2[45]3
[12][51]〈45〉[52]〈5P125]

, (3.6)

− 〈14〉2[45]3
[23][51]〈45〉[52]〈15〉[53]

(3.7)

and,

− 〈12〉2[45]3
[34][51]〈15〉[53]〈5P345]

, (3.8)

which adds up to the expected result,

− [45]3

[12][23][34][51]
. (3.9)
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Though the result of this calculation was already known to be fairly simple,
it is remarkable that we can compute a five point amplitude using only three
contributing diagrams of such limited complexity.

A comment on the choice of the off-shell extension (3.1) is in order here.
Because internal lines must have opposite helicities at each end, every diagram is
invariant under scaling of internal spinors. In other words, the requirement (3.1)
should really read

|P �
i 〉 ∼ |Piη]. (3.10)

As noted by Kosower [95] such a relation can be achieved by defining

P �μ
i = Pμ

i + αημ (3.11)

and choosing α such that P �
i is lightlike. This results in

P �μ
i = Pμ

i − P 2
i

2Pi · ηημ (3.12)

|P �
i 〉[P �

i | =
|Piη]〈ηPi|
〈ηPiη]

(3.13)

In the Yang–Mills MHV rules, only the holmorphic spinor is used, so in a sense,
the above rewriting adds information which is not used in practise.

3.2.2 Gravity: A Puzzling Failure

The success of MHV rules for Yang–Mills theory immediately raised the ques-
tion if MHV rules existed for gravity. Even though such rules were not directly
implied by the KLT relationship, the possibility was not excluded by them, nor
by any other known principle. The main obstacle, however, was that graviton
MHV amplitudes were not holomorphic, and thus the extension |P �

i 〉 ∼ |Piη] was
insufficient. As an example, take the graviton equivalent of the diagram treated
in detail above. MHV rules would give that this diagram was

M(5+, 1−,−P �−
51 )

1
P 2

51

M(2−, 3−, 4+, P �+
51 ), (3.14)

where the graviton amplitudes can be obtained from the KLT relations. For that
we would need P 2

23 or, equivalently, (P4 + P �
51)

2, but these are not obviously the
same because we are now “inside the MHV vertex” where we must use P �

51 rather
than P51. For this to be consistent, we must have

〈4P �
514] = 〈4P514] + P 2

51 (3.15)
〈4P51η]〈ηP514]

〈ηP51η]
= 〈4P514] + P 2

51 (3.16)

−P 2
51

〈4η〉[η4]
〈ηP51η]

= P 2
51 (3.17)

〈ηP451η] = 0 (3.18)
〈η(1 + 2)η] = 0. (3.19)
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The last requirement states that ημ must be a lightlike momentum orthogonal to
the time-like momentum P12. By going to the rest frame of P12 it can be seen
clearly that no such (non-zero) ημ exists. Thus, any gravitational attempt at
MHV rules along these lines seems impossible.

Although it seems that the problem at hand is rooted in the non-holomorphic
character of graviton MHV amplitudes, it is in fact much deeper. The amplitude
M(2−, 3−, 4+, P �+

51 ) is ill-defined because we have taken P51 away from its real
value without compensating in other places; the amplitude isn’t just off-shell, it
disobeys conservation of momentum. Had this been an amplitude proper, the
implicit delta function in the momenta would have set it to zero before we even
started. And this argument relates as much to Yang–Mills as to gravity.

In this light, the fact that Yang–Mills MHV rules do work becomes even
more puzzling. It gives the impression of being an inherently ill-defined proce-
dure which magically becomes meaningful for theories with holomorphic MHV
amplitudes. The missing ingredient to understand why the situation is signifi-
cantly brighter than this, will appear in section 3.3, and the puzzle will be resolved
in the next chapter.

3.2.3 Fermions, Higgses, and Vector Bosons

Meanwhile, we can turn to some of the additional successes of MHV rules. As
described above, the success of the MHV rules seemed to rely somewhat on the
holomorphic nature of MHV amplitudes, so similar theories with holomorphic
MHV amplitude ought to have associated MHV rules.

The primary example of this is Yang–Mills theory with coloured (adjoint
or fundamental) massless scalars and fermions [84, 85, 125, 126]. As described in
section 2.3.2, replacing gluons with fermions or scalars in an MHV amplitude only
changes the numerator, and there is nothing preventing us from extending the
MHV rules with fermionic and scalar internal lines. Particles in the fundamental
representation are handled by requiring them to be adjacent at all times. If, for
instance, we wanted to compute the NMHV amplitude A5(q−1 , 2−, 3−, 4+, q+

5 ), the
diagrams would be similar to those of our previous example, just with some of
the gluons being replaced by fermions denoted by dashed lines,

− +

q+
5

q−1
2−

3−

4+

+ −

q−1

2−
3−

4+

q+
5
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+ −

2−

3−
4+

q+
5

q−1

− +

3−

4+

q+
5

q−1

2−

The contribution of the second diagram would be

〈12〉3〈(−P �
12)2〉

〈12〉〈2(−P �
12)〉〈(−P �

12)1〉
1

P 2
12

〈3P �
12〉3〈35〉

〈P �
123〉〈34〉〈45〉〈5P �

12〉
(3.20)

= − 〈12〉2
〈1P �

12〉
1

P 2
12

〈3P �
12〉2〈35〉

〈34〉〈45〉〈5P �
12〉

, (3.21)

which differs from the corresponding gluon diagram by the factor

〈2P �
12〉〈35〉

〈21〉〈3P �
12〉

=
[1η]〈35〉
〈3P12η]

. (3.22)

If we now try to compute A5(s1, 2−, 3−, 4+, s5) we will again have four diagrams
similar to those above and for the one treated we would obtain the factor(

[1η]〈35〉
〈3P12η]

)2

(3.23)

relative to the gluon result.
Another case where MHV rules apply is one to which we will turn in chapter 8,

namely that of a massive, uncoloured particle H (such as a Higgs) which couples
to a gauge field through the term CHFμνFμν in the Lagrangian.

The last case is that of the coupling of gauge fields to electroweak vector
boson currents. The formalism is somewhat involved, and rather than trying to
explain it here, we refer the reader to the original article on the matter [42].

3.3 On-Shell Recursion Relations

As was discussed in the introduction, a decisive turn came with the realization
that spinors could be taken away from 3+1 dimensions where λa and λ̃ȧ are re-
lated by complex conjugation to complexified Minkowski space C

4 where they are
complex and independent. This allows for the use of standard methods of complex
analysis, in particular Cauchy’s Theorem. Although on-shell recursion relations
were first discovered as the combined consequence of N = 4 IR consistency con-
ditions and the quadruple cut method [58], we will take the complex analysis
viewpoint introduced by Britto, Cachazo, Feng, and Witten (BCFW) [59]. We
will, however, also touch on the connection with IR consistency conditions in
later chapters.
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3.3.1 Using Cauchy’s Theorem on Yang–Mills Amplitudes

BCFW on-shell recursion works by deforming a tree-level amplitude A by a com-
plex parameter z to Â(z) by choosing two external particles i and j and deforming
their spinors

|̂i] = |i] + z|j], |̂j〉 = |j〉 − z|i〉. (3.24)

This deformations obeys conservation of momentum since

p̂i + p̂j = |i〉[̂i| + |̂j〉[j| = |i〉[i| + z|i〉[j| + |j〉[j| − z|i〉[j| = pi + pj , (3.25)

so Â(z) is a well defined amplitude in C4.
For now, we assume that Â(z) → 0 as z → ∞. This allows us to use Cauchy’s

Theorem to write

0 =
1

2πi

∮
C∞

dz

z
Â(z) = Â(0) +

∑
poles p

RespÂ(z)
zp

(3.26)

The poles of tree amplitudes are well known; they correspond to the Feynman
propagators of internal momenta going on-shell, and the “residue” is given by

lim
P 2

k,m→0

[
P 2

k,mA
]

=
∑

h=±1

A(k, . . . ,m,−P−h
k,m)A(P h

k,m,m + 1, . . . , k− 1).(3.27)

If i ∈ {k, . . . ,m} and j /∈ {k, . . . ,m} (or vice versa) there will be a corresponding
pole in z because

P̂k,m(z)2 = (Pk,m + z|i〉[j|)2 = P 2
k,m + z〈iPk,mj], (3.28)

thus

zk,m = − P 2
km

〈iPkmj]
. (3.29)

The residue of this pole is

lim
z→zk,m

[
zA
]

=
1

〈iPk,mj]
lim

P 2
k,m→0

[
P 2

k,mA
]

=
∑

h=±1

A(k, . . . ,m,−P̂−h
k,m(zk,m))A(P̂ h

k,m(zk,m),m + 1, . . . , k − 1)

〈iPk,mj]
. (3.30)

Combining this with (3.26) leads to

A =
∑

k ∈ {j + 1, . . . , i}
m ∈ {i, . . . , j − 1}

k �= m, m + 2
h = ±1

A(k, . . . ,m,−P̂−h
k,m(zk,m))A(P̂ h

k,m(zk,m),m + 1, . . . , k − 1)

P 2
k,m

.

(3.31)

34



In human language, the conditions under the sum state that we must sum over
all internal momenta affected by the deformation. We can draw this as a diagram
consisting of two deformed amplitudes and an internal propagator, together with
the sum,

∑
all such diagrams

± ∓

P̂k,m

î

ĵ

P̂k,m is on-shell and has the form

P̂k,m = Pk,m − P 2
k,m

〈iPk,mj]
|i〉[j| =

|Pk,mj]〈iPk,m|
〈iPk,mj]

. (3.32)

Very often this recursion relation is used with i and j adjacent, e.g. (i, j) = (n, 1)
in an n-point amplitude. This simplifies the above relation to

An =
n−1∑
m=2

∑
h=±1

A(m + 1, . . . , n, P̂−h
1,m(zm))A(−P̂ h

1,m(zm), 1, . . . ,m)
P 2

1,m

(3.33)

where

zm =
P 2

1,m

〈nP1,m1]
, P̂1,m =

|P1,mn]〈1P1,m|
〈1P1,mn]

=
|Pn,mn]〈1P2,m|

〈1P1,mn]
. (3.34)

Before we can go and apply this decomposition on poles to the calculation
of real gluon amplitudes, there are two subtleties to consider, having to do with
three-point amplitudes and the behaviour of Â(z) as z → ∞.

3.3.2 Three-Point Amplitudes (and an Example)

In real Minkowski space, three-point gauge amplitudes are zero. This basically
stems from the fact that in order for the three momenta to be light-like, they
must also be orthogonal,

0 = p2
3 = (−p1 − p2)2 = 〈12〉[21], ⇒ 〈12〉 = [12]∗ = 0, etc. (3.35)

⇒ p1 ∼ p2 ∼ p3. (3.36)

When we move away from real Minkowski space, however, the restriction that
λa = λ̃ȧ is lifted and the on-shell constraints have two solutions,

|1〉 ∼ |2〉 ∼ |3〉 or |1] ∼ |2] ∼ |3]. (3.37)
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These each allow one of the two helicity configurations to be non-zero because
the expressions

[12]3

[23][31]
and

〈12〉3
〈23〉〈31〉 , (3.38)

respectively, are well-defined and contribute to (3.31).
We can illustrate the method and the considerations about three-point ampli-

tudes with the calculation of the googly-MHV five-point amplitude A(1−, 2+, 3−, 4+, 5−).
We define the deformation by taking

|3̂] = |3] + z|4], |4̂〉 = |4〉 − z|3〉. (3.39)

The internal momenta affected by this deformation are P1,3 and P2,3 each corre-
sponding to a pole in z at

z1,3 = − P 2
1,3

〈3P1,34]
=

〈45〉
〈35〉 , z2,3 = − P 2

2,3

〈3P2,34]
= − [23]

[24]
. (3.40)

Summing also over internal helicities gives four diagrams

+ −

P̂1,3

1−

2+

3̂−
4̂+

5−

− +

P̂1,3

1−

2+

3̂−
4̂+

5−

+ −
P2,3

2+

3̂−
4̂+

5−

1−

− +

P2,3

2+

3̂−
4̂+

5−

1−

with the contributions

A(1−, 2+, 3̂−(z1,3),−P̂+
1,3(z1,3))A(P̂−

1,3(z1,3), 4̂+(z1,3), 5−)

P 2
1,3

A(1−, 2+, 3̂−(z1,3),−P̂−
1,3(z1,3))A(P̂+

1,3(z1,3), 4̂+(z1,3), 5−)
P 2

1,3

A(2+, 3̂−(z2,3),−P̂+
2,3(z2,3))A(P̂−

2,3(z2,3), 4̂+(z2,3), 5−, 1−)
P 2

2,3

A(2+, 3̂−(z2,3),−P̂−
2,3(z2,3))A(P̂+

2,3(z2,3), 4̂+(z2,3), 5−, 1−)

P 2
2,3

. (3.41)
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Two of these contributions can be discarded immediately. Number 2 and 3 con-
tain an amplitude of the form A(−−−+) which is zero. In contribution number
1, z1,3 is found by requiring that

P̂ 2
1,3 = 〈4̂5〉[54] = 0, or |4̂〉 ∼ |5〉, (3.42)

so the three-point MHV amplitude in that contribution is zero, even in complex
momenta. The corresponding condition in the last contribution is |3̂] ∼ |2] which
kills the googly-MHV three-point but not the MHV three-point we need. Thus
it gives the only contribution, for which we need the solutions

|4̂〉 = |4〉 +
[23]
[24]

|3〉 =
|P3,42]
[42]

, P̂23 =
|P2,34]〈3P2,3|

〈3P2,34]
=

|P2,44][2|
[24]

. (3.43)

This allows us to compute

〈3(−P̂2,3)〉3
〈(−P̂2,3)2〉〈23〉

1
P 2

2,3

〈51〉3
〈1P̂2,3〉〈P̂2,34̂〉〈4̂5〉

=
〈51〉3〈3P̂2,3〉3

〈23〉2[32]〈4̂5〉〈2P̂2,3〉〈1P̂2,3〉〈4̂P̂2,3〉

=
〈51〉3〈3P2,34]3[24]2

〈23〉2[32][2P3,45〉〈2P2,34]〈1P2,34][2P3,4P2,34]

=
〈51〉3〈32〉3[24]5

〈23〉2[32][21]〈15〉〈23〉[34]〈15〉[54][24]〈51〉[15]

= − [24]4

[12][23][34][45][51]
, (3.44)

which is, of course, the known expression for a five-point googly-MHV amplitude.

3.3.3 Asymptotic Behaviour of the Deformed Amplitude

Until now we postponed the issue of whether limz→∞ Â(z) = 0. For certain
choices of the spinors to deform we can immediately argue that this must be
the case by looking at the calculation from Feynman diagrams and tracking the
dependence on z. Every propagator in a Feynman diagram affected by the defor-
mation must asymptotically contribute z−1, and every three vertex affected by the
deformation must contribute z1. The “worst case scenario” for the asymptotic
z dependence will be when the deformation only affects three-vertices. Before
multiplying by the external polarizations, such a diagram will go as z1.

If we make the deformation (3.24) the dependences of εμ
i and εμ

j on z will
depend on their helicities. For i the reaction to the deformation is

ε̂μ+
i =

〈qγμî]√
2〈iq〉 ∼ z1, ε̂μ−

i =
〈iγμq]√

2[̂iq]
∼ z−1, (3.45)
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and for j the asymptotic behaviour is the opposite. This leads us to conclude
that the worst behaviour of Â(z) as z → ∞ for helicities (hi, hj) is

(−,+) ∼ z−1, (+,+), (−,−) ∼ z1, (+,−) ∼ z3. (3.46)

This tells us that using BCFW on-shell recursion relations is always justified
when we deform the antiholomorphic spinor of a negative helicity particle and
the holomorphic spinor of a positive helicity particle.

In practice, however, the behaviour may be more benign. If we consider the
MHV amplitude A(1−, 2−, . . . , n+), the choice (i, j) = (1−, 2−) goes as z−1 and
so does e.g. the choice (3+, 4+) while (2−, 4+) and (3+, 5+) go as z−2. This shows
us that we can often expect an actual behaviour which is a few powers of z better
than the worst case. This is another expression of the fact that Feynman rules
are not taking advantage of all the available symmetries of the theory.

3.3.4 Some Consequences of BCFW on-shell recursion

Two points are worth making at this point. First, since we have rigorously
proven that we can always perform on-shell recursion with the choice (−,+) it
follows that any tree amplitude can, by successive recursion, be reduced to three-
amplitudes. In this perspective, the four gluon vertex can be completely neglected
for practical calculations, and its presence in the Lagrangian is only required for
gauge invariance.

Second, the existence of on-shell recursion shows that other formalisms that
claim to reproduce Yang–Mills amplitudes are correct if they have the right sin-
gularity structure (3.27) and Lorentz covariance. This was proven together with
the proposal of the MHV rules [66], thus, BCFW recursion provides an indirect
proof that the MHV rules are correct.

Both of these points are elaborated on in the original article [59].

3.3.5 Extension to Other Theories and Deformations

The deformation (3.24) chosen by BCFW is by no means unique. For instance,
one may choose three gluons i, j, k and deform them to [37]

|̂i] = |i] + z|j] + αz|k], |̂j〉 = |j〉 − z|i〉, |k̂〉 = |k〉 − αz|i〉, (3.47)

which also obeys momentum conservation for any α. In general one will have to
redo the derivations of section 3.3.1, but most features of the relations persist.
Using extended deformations may be helpful for improved z → ∞ behaviour and
for constructing relations to the MHV rules as done in the next chapter.

The methods of deriving on-shell recursion relations is clearly very generic,
relying mostly on the fact that the theory at hand is an ordinary quantum field
theory. Gauge invariance or colour ordering may be practical tools for obtaining
simpler expressions, but are not required as such for doing on-shell recursion in
this way. One extension is to allow other states than gluons to participate, such as
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charged scalars and fermions (massless, massive, D-dimensional) [6,8,99,100,116],
another is to take a completely different theory, such as QED [109], gravity [11,65],
or more exotic theories [14]. The challenge in most of these cases is to prove the
appropriate z → ∞ behaviour, which is sometimes done and sometimes left to
faith. Especially in gravity, where the “worst case scenario” analysis gives very
bad asymptotic behaviour, the on-shell recursion relations were used for quite
some time on this faith until a proof appeared [13].

The applications to loop-level calculations will be reviewed in section 5.5.
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Chapter 4

MHV Rules from Recursion

In the present chapter we will connect the two subjects of the previous chapter and
show how MHV rule constructions follow from on-shell recursion. The original
articles are [117] for the Yang–Mills case and [47] for the gravity case.

4.1 MHV Rules in Light of Recursion Relations

The MHV rules as described in section 3.2 distance themselves from recursion
relations in one obvious way: recursion relations have one unshifted propagator,
while the MHV rules have several. This immediately tells us that a simple deriva-
tion of the MHV rules from recursion is not obtainable, but also that the NMHV
case can serve as an initial test case. With this in mind, we can note four features
of MHV rules that will guide us:

1. An internal momentum is shifted on-shell in a manner close to that of
recursion relations. Setting

P � = P − P 2

2P · ηη, (4.1)

is practically the same as shifting P as

P̂ = P − zη, (4.2)

setting P̂ 2 = 0, and solving for z.

2. The asymmetry between holomorphic and anti-holomorphic spinors is deeply
rooted. The attempt to construct MHV rules for gravity by choosing |η〉 =
(|η])∗ failed because it produced non-Lorentz invariant results, thereby pro-
viding a hint that η is a complex momentum whose holomorphic and anti-
holomorphic spinors are unrelated. Admittedly, there is a bit of hindsight
in this argument, since the existence of MHV rules for gravity was not
guaranteed.
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3. If η is a complex momentum, we might as well continue all momenta. If
we do that, all the anti-holomorphic spinors of the external momenta are
unspecified by the MHV rules, just as |η〉. In fact, |η〉 may even differ
between different internal momenta, which would be a consequence of using
a non-minimal shift.

4. The MHV rules contain MHV three-point vertices and no googly three-
point vertices. The easiest way of ensuring this would be to shift only
anti-holomorphic spinors. This fits well the fact that these do not show up
in the MHV rules anyway.

This leads us to conclude that if MHV rules can be proven from recursion re-
lations, the proof must involve a non-minimal shift of anti-holomorphic spinors,
and all these shifts must be proportional to the (otherwise unspecified) |η].

4.2 The NMHV Case

We first apply the above considerations to the calculation of the amplitude
An(m−

1 , . . . ,m−
2 , . . . ,m−

3 , . . .) where the . . . have helicity +. If we choose to shift
only the three negative helicity gluons, the shift is unique up to a constant,

|m̂1] = |m1] + z|η]〈m2m3〉, (4.3)

|m̂2] = |m2] + z|η]〈m3m1〉, (4.4)

|m̂3] = |m3] + z|η]〈m1m2〉, (4.5)

where conservation of momentum follows from the Schouten identity

|m1〉〈m2m3〉 + |m2〉〈m3m1〉 + |m3〉〈m1m2〉 = 0. (4.6)

We will postpone the proof of the legality of this shift to section 4.5. With the
above shift, the z dependent internal momenta are those that have at least one
of m1,2,3 at each end, e.g.

− +

P

m̂−
1 m−

2

m−
3

The opposite helicity assignment for the inner line does not contribute, so we
have split the amplitude into two (shifted) MHV amplitudes. The solution for z
is found by setting

P̂ 2 = (P − z|m1〉[η|)2 = P 2 − z〈m1Pη] = 0 (4.7)
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P̂ =
|Pη]〈m1P |
〈m1Pη]

|P̂ 〉 ∼ |Pη] (4.8)

It should now be clear that we have reproduced the NMHV version of the MHV
rules for Yang–Mills: We must sum over all diagrams that split the amplitude
into two MHV vertices. For the external momenta we must use the shifted spinors
(but because the MHV amplitude only involves holomorphic spinors, it makes no
difference) and for the internal we must use |P̂ 〉 ∼ |Pη].

We have, however, obtained more than just the Yang–Mills MHV rules. We
have obtained the full expression for the shifted momenta, allowing us to con-
struct MHV rules for theories with other MHV amplitudes than Yang–Mills; most
notably gravity. We will return to the MHV rules for gravity in section 4.4 after
treating the general case with more than three negative helicity particles.

4.3 The NNMHV and General Cases

From the above discussion, it should be clear that setting up a recursion by
shifting the anti-holomorphic spinors of all negative helicity gluons by the same
reference spinor |η] allows a description where a) the left and right amplitudes
both have less negative helicity gluons than the full amplitude, b) there are no
three-point googly amplitudes, and c) that the spinor to be used for the internal
line is the same as in the MHV rules. The remaining problem is that there are
several propagators in each term while the recursion relations can only provide
one.

The solution will be to perform similar shifts one after the other and to reach
a reperesentation which can subsequently be proven to be equivalent til the MHV
rules. Starting with an NNMHV amplitude, we can choose a set c

(1)
i and shift

|m̂i] = |mi] + zc
(1)
i |η]. (4.9)

For conservation of momentum, the c’s must be chosen such that

4∑
i=1

c
(1)
i 〈mi| = 0. (4.10)

If we label the possible internal lines by a, we can write the result of the recursion
as

An(m−
1...4) =

∑
a

A(m̂−, P̂±
a )A(m̂−,−P̂∓

a )
P 2

a

, (4.11)

where |P̂a〉 = |Paη], and there is an implicit summation over helicities where
relevant. The two sub amplitudes are MHV and NMHV, respectively. Such
contributions can be depicted as
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+ −
Pa

m̂−
4

m̂−
1

m̂−
2

m̂−
3

To uncover a second propagator, we can set up a similar recursion for each term
in the above sum. However, we have the constraint on those recursions that
we should not uncover the same propagator 1/P 2

a again, or we would not have
progressed. Thus, for each a we choose a set c

(2)
a,i and set up the recursion as

| ̂̂mi] = [m̂i| + zc
(2)
a,i [η| (4.12)

such that P̂ 2
a = P 2

a . This gives one additional constraint on the c
(2)
a,i apart from

conservation of momentum. Performing the recursion for all terms in the sum
(4.11), we arrive at

An(m−
1...4) =

∑
a

∑
b�=a

A( ̂̂m−
,
̂̂
P

±
a )A( ̂̂m−

,− ̂̂P∓
a ,
̂̂
P

±
b )A( ̂̂m−

,− ̂̂P∓
b )

P 2
a P̂ 2

b

(4.13)

where the terms in the sum can be drawn as (placement of m’s and ±’s can differ)

+ − + −
Pa bPb

m−
4

m−
1

m−
2

m−
3

Since our recursion cannot split MHV amplitudes, it is clear that all three ampli-
tudes in the numerator must be MHV and thus that the helicities of the internal
lines are fixed by the external helicities. Moreover, if we write the twice shifted
|m]’s as

| ̂̂mi] = |mi] + ri|η] (4.14)

and remind ourselves that the coefficients were constructed to obey momentum

conservation and ̂̂P 2

a = ̂̂
P

2

b = 0 we can fix the | ̂̂mi] uniquely as a function of a
and b. This solution is independent of which of these was uncovered first, so we
can collect terms in (4.13) two by two and write it as

An(m−
1...4) =

∑
{a,b}

A( ̂̂m−
,
̂̂
P

±
a )A( ̂̂m−

,− ̂̂P∓
a ,
̂̂
P

±
b )A( ̂̂m−

,− ̂̂P∓
b ) (4.15)
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×
(

1

P 2
a P̂ 2

b(a)

+
1

P 2
b P̂ 2

a(b)

)
(4.16)

where P̂b(a) means Pb shifted using c
(1)
i as to put Pa on-shell. The last term,

however, is exactly what we would get if we took

1
P 2

a P 2
b

(4.17)

and did recursion on it using c
(1)
i . In terms of diagrams, what we are arguing is

that

+ − + −
Pa bPb(a)

b

bm
−
4

b

bm
−
1

b

bm
−
2

b

bm
−
3

+ + − + −
bPa(b)

Pb

b

bm
−
4

b

bm
−
1

b

bm
−
2

b

bm
−
3

= + − + −
Pa Pb

b

bm
−
4

b

bm
−
1

b

bm
−
2

b

bm
−
3

Thus, we can write the amplitude as

An(m−
1...4) =

∑
{a,b}

A( ̂̂m−
,
̂̂
P

±
a )A( ̂̂m−

,− ̂̂P∓
a ,
̂̂
P

±
b )A( ̂̂m−

,− ̂̂P∓
b )

P 2
a P 2

b

. (4.18)

This is exactly the MHV rules for NNMHV amplitudes.
It should now be clear how to proceed with the general case. To uncover the

first propagator in an NpMHV amplitude, a, use the shift

|m̂i] = |mi] + zc
(1)
i |η]. (4.19)

For each a, uncover the next propagator b by using the shift

| ̂̂mi] = |m̂i] + zc
(2)
i,a |η] (4.20)

where c
(2)
i,a is chosen such that ̂̂P 2

a = 0. The third propagator c can now be
uncovered by using the shift

| ̂̂̂mi] = | ̂̂mi] + c
(3)
i,a,b|η] (4.21)
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where c
(3)
i,a,b is chosen such that

̂̂̂
P

2

a =
̂̂̂
P

2

b = 0. We can evidently continue in
this way until we have uncovered p propagators, at which point we have shifted
the |mi] to |mi] + ri|η] and required that the shifted momenta of the uncovered
propagators are on-shell. The latter, together with conservation of momentum,
fixes ri independently of which order the propagators were uncovered in. Writing
the amplitude formally as

An =
∑

ordered
sets of p

propagators

AMHVAMHV · · · AMHV

P 2
a P̂ 2

b
̂̂
P

2

c · · ·
, (4.22)

this allows the formal rewriting

An =
∑

unordered
sets of p

propagators

AMHVAMHV · · · AMHV
∑

orderings

1

P 2
a P̂ 2

b
̂̂
P

2

c · · ·
. (4.23)

The last sum is exactly what one would get by considering

1
P 2

a P 2
b P 2

c · · · (4.24)

and applying recursion, first using c
(1)
i , then, depending on which propagator

was uncovered, applying recursion using c
(2)
i,a and then (depending on a and b)

applying recursion using c
(3)
i,a,b, etc. In other words,

An =
∑

unordered
sets of p

propagators

AMHVAMHV · · · AMHV

P 2
a P 2

b P 2
c · · · , (4.25)

We can now state what we have derived: To compute an amplitude,

1. Draw all permitted MHV diagrams,

2. For each diagram, shift the negative helicity particles according to

|m�
i ] = |mi] + ri|η] (4.26)

and solve for ri under the condition that all shifted internal momenta P �
a

are on-shell, and under the condition of conservation of momentum,∑
i

ri〈mi| = 0. (4.27)
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3. For each MHV vertex, multiply by the amplitude as a function of the shifted
momenta.

4. For each internal line with unshifted momentum Pa, multiply by 1/P 2
a .

For pure Yang–Mills, step 2 is irrelevant because it only provides information on
the anti-holomorphic spinors. The fact that for internal momenta |P �〉 ∼ |Pη]
is independent of the actual values of the ri. In the gravity application of these
rules, to which we now turn, this step becomes crucial.

4.4 MHV Rules for Gravity

Postponing again the question of the required large z behaviour, we can apply
the above version of the MHV rules to gravity amplitudes. We will do so through
the example of the amplitude M6(1−, 2−, 3−, 4−, 5+, 6+), which is N2MHV, but
also googly MHV, a fact which will not concern us here. This amplitude has a
total of 90 MHV diagrams that are permutations of six basic ones,

+
− + −

−

−

−

−

+

+

+
− −

+

−

−

+

−

−
+

− + − +

−

+

−

−

−
+

− + + −

+

−

− −

+

−

+
− + −

−

−

+ −

+

−

+
− −

+

−

−

+ +

−

−

To compute the contribution of a representative of the first basic diagram,
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+
−

Pa

+ −
Pb

1−

2−

3−

4−

5+

6+

we first write down the conditions for the on-shell’ness of the shifted internal
momenta,

(P �
a)2 = (Pa + r1|1〉[η| + r2|2〉[η|)2 = P 2

a + r1〈1Paη] + r2〈2Paη]
= 〈12〉([21] + r1[2η] + r2[η1]) = 0, (4.28)

(P �
b )2 = (Pb + r4|4〉[η|)2 = P 2

b + r4〈4(5 + 6)η] = 0. (4.29)

Two additional conditions can be obtained by hitting the conservation of mo-
mentum equation by two spinors (here we choose 3 and 4):

r1〈13〉 + r2〈23〉 + r4〈43〉 = 0 (4.30)
r1〈14〉 + r2〈24〉 + r3〈34〉 = 0. (4.31)

The solution is

r1 = −〈4(5 + 6)1]
〈4(5 + 6)η]

, |1�] =
|(5 + 6)4〉[η1]
[η(5 + 6)4〉 , (4.32)

r2 = −〈4(5 + 6)2]
〈4(5 + 6)η]

, |2�] =
|(5 + 6)4〉[η2]
[η(5 + 6)4〉 , (4.33)

r3 = −〈4(5 + 6)3]
〈4(5 + 6)η]

, |3�] =
|(5 + 6)4〉[η3]
[η(5 + 6)4〉 , (4.34)

r4 = −(4 + 5 + 6)2

〈4(5 + 6)η]
, |4�] = −|(5 + 6)(4 + 5 + 6)η]

〈4(5 + 6)η]
, (4.35)

such that

P �
a =

|(1 + 2)η]〈4(5 + 6)|
〈4(5 + 6)η]

, (4.36)

P �
b =

|(4 + 5 + 6)η]〈4(5 + 6)|
〈4(5 + 6)η]

. (4.37)

The contribution of this diagram is thus

MMHV
3 (1�−, 2�−,−P �+

a )
1

P 2
a

×MMHV
3 (P �−

a , 3�−, P �+
b )

1
P 2

b

MMHV
4 (−P �−

b , 4�−, 5+, 6+) (4.38)

=
〈12〉6

〈2P �
a〉2〈P �

a1〉2
1

P 2
a

〈P �
a3〉6

〈3P �
b 〉2〈P �

b P �
a〉2

1
P 2

b

[56]〈P �
b 4〉6

〈56〉〈45〉〈6P �
b 〉〈46〉〈5P �

b 〉
(4.39)
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=
〈12〉2

[1η]2[η2]2
1

〈12〉[21]
[η(1 + 2 + 3)3〉6

〈3(4 + 5 + 6)η]2[η(4 + 5 + 6)(1 + 2)η]2

× 1
(4 + 5 + 6)2

[56][η(5 + 6)4〉6
〈45〉〈56〉〈46〉〈6(4 + 5)η]〈5(4 + 6)η]

(4.40)

=
〈12〉[56]〈3Pbη]2〈4Pbη]6

[1η]2[2η]2[3η]2[21]〈45〉〈56〉〈46〉〈6Pbη]〈5Pbη]P 2
b

. (4.41)

Though the procedure to obtain one out of six contributions to the amplitude is in
itself quite complicated, it is nothing in comparison to the Lagrangian approach.
But again, the on-shell recursion relations for gravity will produce results faster.

Rather than computational speed, the interesting thing here is that it is pos-
sible to formulate MHV rules for a gravity theory. This highlight one of the mys-
terious connections between Yang–Mills theory and gravity which is not properly
understood. In this case, MHV rules for YM drops out of a description in twistor
space, and such a description does not seem likely for gravity, although there
have been attempts which reproduce the correct spectrum [1] but not the cor-
rect dynamical theory [108]. Thus, an explanation outside of on-shell recursion
relations is still an outstanding problem.

4.5 Large z Properties of the MHV Rule Shift

The question of the z → ∞ behaviour of deformed amplitudes should now be
adressed. To see what behaviour we need, consider the very last step of the
successive recursions where, for an NnMHV amplitude, we have uncovered n −
1 propagators. To uncover the last propagator, the last shift must have the
amplitude go as z−1. When we get to this point, the antiholomorphic spinors
have already been shifted many times,

|mi] → |mi] + (si + tiz)|η] (4.42)

where si are the consequences of all the previous shifts and the ti impose con-
servation of momentum and the vanishing of the z dependence of all propagator
terms we have already uncovered. Had we not imposed this, every propagator al-
ready uncovered would have contributed z−1 to the large z limit. In other words,
had the ti been unconstrained (apart from momentum conservation) the large z
behaviour of the final shift would be z−n. The dependence on the si is sublead-
ing in z and mainly a consequence of the c

(·)
i,...’s chosen along the way, so their

presence should not disturb this conclusion for generic external momenta. This
leads us to conclude that the condition for the MHV rules to hold as described
here is that under the shift

|mi] → |m]i + t̃iz|η] (4.43)

where t̃i impose momentum conservation but are otherwise free, an NnMHV
amplitude must go as z−n as z → ∞.
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For gluon amplitudes in Yang–Mills this can be proven directly by looking
at the worst possible Feynman diagram. In such a diagram, the n + 2 external
negative helicity gluons must be connected by some number v three-vertices and
v− 1 propagators. Since three-vertices go as z1 and propagators go as z−1, these
internal parts of the diagram go as z1. The dependence of the polarizations is z−1

each, because we are shifting the antiholomorphic spinor of a negative helicity
gluon, so the polarizations together go as z−(n+2). In total the whole amplitude
goes as z−(n+1) which is one power better than required. This forms the last
ingredient of the on-shell recursive proof of the MHV rules for gluons.

For gravitons it is a different story. If we do the same analysis as above,
we find that the v vertices contribute z2v , the propagators contribute z−v+1 and
the external polarizations contribute z−2(n+2). This gives in total zv−2n−3. The
maximal number of vertices that may have z dependence in an m-point amplitude
is m−2, so the worst possible Feynman diagram has the behaviour zm−2n−5 where
we require z−n. An analysis using the above result for Yang–Mills together with
the KLT relations gives the same estimate.

Luckily, these types of arguments are known to be way off for gravity. If
we do the same analysis for the BCFW shift (3.24) of an m-point amplitude we
would obtain zm−5, where the real result is known to be z−2 [13]. Cancellations
of this order of magnitude in the shifts used here should in general ensure that
the MHV rules for gravity are justified. In the original article on gravity MHV
rules [47], the NMHV six and seven point amplitudes were found to go as z−5

which is two powers better than needed and four and five powers, respectively,
better than the worst expectation. If we allow ourselves some speculation, this
hints that the actual z → ∞ behaviour is z−n−4, implying that m−n+1 powers
are removed by obscure symmetries in the gravity theory.
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Chapter 5

Loop-Level Methods

Until now we have mostly concerned ourselves with tree-level amplitudes. For
most practical applications though, amplitudes at one or more loops are required
for interesting results. This chapter will review four general tools out of strict
historical order. For loop-level calculations it is often necessary (or just useful)
to use combinations of them.

5.1 Structure of One-Loop Amplitudes

First, however, we will start out by reviewing what is known in general about
one-loop amplitudes, mostly in Yang–Mills theory, but also more generally.

5.1.1 Integral Reduction

When doing one-loop calculations with Feynman rules, one will encounter inte-
grals with arbitrary numbers of propagators and tensors depending on the loop
momentum of arbitrary rank. In Yang–Mills theory, an n-point calculation will
give up to n loop propagators and up to rank n tensors, while e.g. a gravity
calculation will give up to n loop propagators and rank 2n tensors in the loop
momentum. Such integrals are impossible to do directly, so one will normally do
some sort of integral reduction.

The most important of these is Passarino–Veltman reduction [112], which
reduces the powers of loop momentum appearing in the numerator by using the
knowledge that the result must be writable as a Lorentz tensor together with the
knowledge of which Lorentz tensors it can depend on. As a simple example, take
the integral∫

dDL
LμLν

(L2 + iε)((L + P )2 + iε)
. (5.1)

Since this integral can only depend on gμν and Pμ, it must be writable as

A(P )gμν + B(P )PμP ν . (5.2)
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By contracting with gμν and Pμ on both sides of this equation and using similar
results from simpler integrals, one can find expressions for A and B in terms of
integrals fewer powers of loop momentum in the numerator and the same number
of, or fewer, loop propagators. Iterating this procedure can remove all dependence
on the loop momentum in the numerator and leave us with scalar integrals only.

Depending on the dimension of spacetime, the scalar integrals may be reduced
further. Take for instance the massless hexagon integral in four dimensions (with
implicit iε’s)∫

d4L
1

L2(L + K1)2(L + K2)2(L + K3)2(L + K4)2(L + K5)2
. (5.3)

Because the external momenta are “twice” linearly dependent in four dimensions,
we can always adjust constants a0 through a5 such that

a0L
2 +

5∑
i=1

ai(L + Ki)2 = 1, (5.4)

which allows us to split the hexagon integral into six pentagons. Notice that
this depends on the dimension in which the external momenta live; dimesionally
regulating the loop momentum does not change this.

By using these types of integral reduction, one can arrive at expressions for
the wanted amplitudes which contain a reduced set of integrals that are possible
to compute, or more often, look up.

5.1.2 Massless Integral Basis in Four Dimensions

For four dimensional theories with massless states running in the loop, there
is an additional identity that allows pentagons to be written in terms of lower
point integrals [34]. This leaves a basis for all one-loop amplitudes consisting of
scalar box integrals, triangle integrals, bubble integrals, and 11. The integrals
are defined as (implicit iε’s)

I4(P1, P2, P3) = −iμ2ε

∫
d4−2εL

(2π)4−2ε

× 1
L2(L + P1)2(L + P1 + P2)2(L + P1 + P2 + P3)2

,

I3(P1, P2) = iμ2ε

∫
d4−2εL

(2π)4−2ε

1
L2(L + P1)2(L + P1 + P2)2

,

I2(P ) = −iμ2ε

∫
d4−2εL

(2π)4−2ε

1
L2(L + P )2

, (5.5)

These integrals (and 1) have coefficients which are rational functions of the ex-
ternal spinors and momenta. In addition, box and triangle integrals come out

1Remember that massless tadpoles vanish in dimensional regularization
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as expressions of mass dimension −2ε divided by their respective Gram determi-
nants which may or may not be rational. This promts us to define the box and
triangle integral functions F4 and F3 where the Gram determinant is taken into
the coefficient instead, where we will often find that it is cancelled.

Box and triangle integrals are classified according to which of their external
momenta are massless. For triangles there are zero-mass through three-mass (0m,
1m, 2m, 3m) while for boxes there zero-, one-, three-, and four-mass together
with the so-called two-mass-easy (2me) and two-mass-hard (2mh) configurations
where the massless corners are opposite and adjacent, respectively. The integral
functions and Gram determinants are given in appendix A.

5.1.3 Supersymmetric Decomposition

When calculating gauge theory amplitudes, the answer depends on the number
of massless fermions and scalars in the gauge theory because they can run in
the loop. There are particular choices for these numbers that give dramatically
simpler answers, namely those corresponding to supersymmetric theories. It is
standard to use the “basis” for the particle content consisting of an N = 4
multiplet (1 gluon, 4 fermions, 3 complex scalars), an N = 1 chiral multiplet (1
fermion, 1 complex scalar), and the so-called N = 0 multiplet containing just a
complex scalar. A theory with nf adjoint fermions and ns adjoint scalars can
thus be written as

(N = 4) −
[
4 − nf

]
(N = 1) +

[
1 − nf + ns

]
(N = 0). (5.6)

If the fermions or scalars are fundamental, nf,s should be substituted with nf,s/NC

where NC is the number of colours, and nf,s/N
2
C if they are gauge singlets.

In background field gauge, it can be shown explicitly that there are diagram-
by-diagram cancellations that remove four powers of loop momentum in the nu-
merator for N = 4 and two powers for N = 1. When those results are Passarino–
Veltman reduced, they can only give rise to boxes in the N = 4 case and only to
boxes, triangles and bubbles (that is, no additional rational terms) in N = 1. For
N = 0 there are no such cancellations, but the calculation is made simpler by the
reduced number of Lorentz indices for a scalar running in the loop as compared
to a gluon.

Supersymmetric decompositions can be used in other theories as well, how-
ever, without a formal handle on the cancellation of numerator loop momentum.
Since the expression of the supersymmetry at tree level is the same as in gauge
theory (e.g. SWI’s, cf. section 2.3.2) and tree level results are recycled in most
loop calculations, it is generally believed that the same regularity holds for other
theories, in particular gravity. For arbitrary N it is believed that an even N
multiplet will have N cancellations of loop momenta in the numerator while an
odd N multiplet will have N + 1 [19].
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5.1.4 Limits and Singularities

To aid in both cheking and construction expressions for one-loop amplitudes,
it becomes important to look at these expressions in certain limits. The tree-
level limiting behaviour was studied in section 2.3.3 and this is extended here to
one-loop level.

The multiparticle poles of Yang–Mills amplitudes can occur in the same way
as at tree-level when a non-loop propagator goes on shell and splits the diagram
in two, the loop being on one side or the other. We may also have a singularity
coming from other parts of the calculation which has a more messy interpretation,
though. This gives the multiparticle limit [28]

A1−loop(. . .) →
∑
h=±

(Atree(. . . , P h)A1−loop(−P−h, . . .)
P 2

+
A1−loop(. . . , P h)Atree(−P−h, . . .)

P 2

+FAtree(. . . , P h)Atree(−P−h, . . .)
P 2

)
(5.7)

as P 2 → 0, where F is a function depending (in a cut-containing and non-
factorized way) on all incoming momenta, but not on the helicities. It also de-
pends on the particle content of the theory.

Another type of singularity that Yang–Mills theory has, is collinear singular-
ities. Again, we get something similar to the tree-level case, only now we have to
introduce 1-loop splitting functions which depend on the particle content of the
theory. We have

A1−loop(aha , bhb , . . .) →
∑
h=±

Splittreeh (z, aha , bhb)A1−loop(P−h, . . .)

+Split1−loop
h (z, aha , bhb)Atree(P−h, . . .) (5.8)

as a → zP , b → (1 − z)P . The one-loop splitting functions for both gluons and
fermions are given in [31] (and the all-orders in ε in [30]). The pure-glue splitting
functions are

Split1−loop
+ (a+, b+) = − 1

48π2

(
1 − nf

N
+

ns

N

)√
z(1 − z)

[ab]
〈ab〉2

Split1−loop
− (a+, b+) = cΓSplittree− (a+, b+)

[
U +

1
3

(
1 − nf

N
+

ns

N

)
z(1 − z)

]
Split1−loop

+ (a±, b∓) = cΓSplittree+ (a±, b∓)U (5.9)

where

U = − 1
ε2

(
μ2

z(1 − z)(−sab)

)ε

+ 2 log z log(1 − z) − π2

6
. (5.10)
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The general form of infrared divergences in Yang–Mills is also known from
general arguments. This imposes the constraint that [68,86,98]

A1 = −cΓ

ε2
A0

4∑
i=1

(
μ2

−si,i+1

)ε

+ O(ε0). (5.11)

This imposes some quite stringent constraints on coeffiecients of box and triangle
functions because there needs to be complete cancellation of e.g. terms of the
kind

1
ε2

(
μ2

−t···

)ε

(5.12)

where t··· is any multiparticle kinematic invariant [29]. In one-loop gravity, a
similar relation holds [77],

M1−loop =
i

(4π)2

[∑
i<j sij log[−sij]

2ε

]
Mtree + O(ε0) (5.13)

with similar consequences [46] to be explored further in cahapter 7.

5.2 Unitarity Cuts

As mentioned in the introduction, the concepts of unitarity and analyticity of the
S-matrix came to play a large role again in the 90’s. That was primarily because
the insights of the previous section was sufficient to fill in the missing parts of the
puzzle, the parts which (helped by experimental evidence) sent S-matrix theory
out in the cold.

5.2.1 Ordinary D = 4 Unitarity Cuts

Instead of trying to directly reconstruct the one-loop amplitude from its cut
discontinuities—a procedure which is often ambiguous—it is possible to use all
the insights of the previous section to come up with an ansatz for the result
and match cuts on both sides of the equation to arrive at an answer. This was
first used by Bern, Dixon, Dunbar and Kosower to compute the one-loop MHV
amplitudes in N = 4 Yang–Mills [31] as follows: It is known that the N = 4
amplitude only contains boxes, so we can write

A1−loop
MHV (i−, j−) =

∑
a∈boxes

caIa. (5.14)

On both sides we can pick out the discontinuity in P 2
m1,m2

by replacing the loop
propagators between m1 and m1+1 and between m2−1 and m2 by delta functions
in the square of the loop momenta. On the left side of (5.14) we get an integral
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over the product of two tree amplitudes, possibly summed over internal helicities
in the loop,

Δm1,m2A1−loop

=
∑
h,h′

∫
dDl1d

Dl2δ(l21)δ(l
2
2)δ

(D)(l1 − l2 − Pm1,m2)

×A(m2, . . . ,m1, l
h
1 , (−l2)−h

′
)A(m1 + 1, . . . ,m2 − 1, lh

′
2 , (−l1)−h). (5.15)

Pictorically, this becomes

l1

l2

Pm1m2

m2

m1

−Pm1m2

m1 + 1

m2 − 1

where the dashed line denotes the cutting of the two internal lines. In Lorentz
invariant gauges such as Feynman gauge, we would have to include a ghost loop,
but by using the spinor-helicity formalism, which is implicitly in a light-like axial
gauge as mentioned at the end of section 2.2, we can avoid them.

For the two tree amplitudes to be non-zero, they must both be MHV. Then,
if i and j are both on the left [right] side we have (h, h

′
) = (1,−1) [(−1, 1)] while

if they are on opposite sides h = h
′

can take any value in the N = 4 multiplet
and we need to do an actual summation. These two distinct cases can be drawn
as

+ −

−+

l1

l2m2

i−

j−
m1 m1 + 1

m2 − 1

l1

l2m2

i−

m1 m1 + 1

j−

m2 − 1

The summation over the N = 4 multiplet, however, gives exactly the same result
as when both i and j are on the same side, namely that the integrand can be
written as

Atree(i−, j−)
〈(m1 − 1)m1〉〈l1l2〉
〈(m1 − 1)l1〉〈l1m1〉

〈m2(m2 + 1)〉〈l2l1〉
〈m2l2〉〈l2(m2 + 1)〉 . (5.16)

This can again be rewritten as

1
2
Atree

[
P 2

m1,m2
P 2

m1−1,m2+1 − P 2
m1−1,m2

P 2
m1,m2+1

(l1 + (m1 − 1))2(l2 − (m2 + 1))2
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+
P 2

m1,m2−1P
2
m1−1,m2

− P 2
m1−1,m2−1P

2
m1,m2

(l1 + (m1 − 1))2(l2 + m2)2

+
P 2

m1+1,m2
P 2

m1,m2+1 − P 2
m1,m2

P 2
m1+1,m2+1

(l1 − m1)2(l2 − (m2 + 1))2

+
P 2

m1+1,m2−1P
2
m1,m2

− P 2
m1,m2−1P

2
m1+1,m2

(l1 − m1)2(l2 + m2)2

]
, (5.17)

plus terms that vanish when we integrate. In this way all the dependence on the
loop momenta has been confined to two propagators in each of the four terms.
That however, is exactly what one would get by cutting four particular 2-mass
easy boxes. And even better, the coefficients (apart from Atree) are the respective
Gram determinants, so this is a sum of cuts of four box functions (F ’s) with the
same coefficient. In equations,

Δm1,m2A1−loop = AtreeΔm1,m2

(
F4(m1 − 1, Pm1 ,m2,m2 + 1)

+F4(m1 − 1, Pm1,m2−1,m2)
+F4(m1, Pm1+1,m2 ,m2 + 1)

+F4(m1, Pm1+1,m2−1,m2)
)
. (5.18)

This suggests that the one-loop amplitude can be written roughly as the tree
amplitude times the sum of all 2-mass easy box functions. The ’roughly’ comes
in through careful considerations of which choices of m1 and m2 are allowed and
independent. The result can now be checked using other means such as collinear
limits and it does indeed hold up.

Staying inside Yang–Mills theory there are two extensions we can make on
this [32]. Firstly, we can consider the N = 1 or the N = 0 theory where triangle
and bubble integrals are introduced on the right side of (5.14). This complicates
the calculation by giving integrands whose numerators depend on the cut loop
momenta while there may be one less propagator. This then requires integral
reduction a la Passarino–Veltman (section 5.1.1) with some simplifying conditions
on the loop momenta. For the N = 0 theory there is the additional complication
that the rational terms are not picked up by four-dimensional unitarity cuts. As
we will see later, it can still be quite useful to know the cut-containing parts of the
amplitude. Secondly, we can go beyond MHV amplitudes where the integrand
does not immediately have the nice decomposition into boxes as e.g. in (5.17).
Still, some N = 4 six-point results can be obtained.

Inspired by the recent revival of unitarity arguments, some inprovements have
been made on the technology which allows for quite efficient extraction of integral
coefficients [56,61].

5.2.2 Generalized Unitarity

The process of computing a unitarity cut where two propagators are put on-shell
has a clear interpretation as the discontinuity across a cut in the amplitude as a
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complex function of the kinematic variables. In the way it is applied, however,
this interpretation of the cut is not used. Although the interpretation of the
cutting of more than two loop propagators may not be as clear, it seems just as
reasonable to use it to constrain an amplitude.

The problem is that many integrals cut on more than two propagators turn
out to be zero because there are no solutions in Minkowski space for the cut
momenta. A triple cut is only non-zero when applied to three-mass triangles and
three- and four-mass boxes, while a quadruple cut is only non-zero for four-mass
boxes. Higher cuts are zero because they over-constrain the four-dimensional loop
momentum. There are some situations where generalized unitarity does come in
handy in Minkowski space; the NMHV N = 4 amplitude has been calculated to
all n in this way [29,35].

Since the comments here apply only to amplitudes in real Minkowski space,
they will be altered completely when we move to complex momenta below.

5.2.3 Unitarity in D = 4 − 2ε

If we want to know a full one-loop amplitude we must do the dimensional reg-
ularization properly. This involves taking the loop momentum to be 4 − 2ε-
dimensional rather than four-dimensional. This poses a very deep problem when
using the spinor helicity formalism as it is tied to exactly four dimensions. One
solution could be to use spinor helicity notation for all non-loop quantities and
ordinary Lorentz notation for loop quantities. This comes at the expense of the
compact form of tree amplitudes.

When computing gluon scattering amplitudes, the easiest way to proceed is
to use the fact that only the N = 0 component can have rational terms, and thus
we only need the less compact amplitudes for scalar particles in the loop [24,33].
In this way issues of summing over polarization states are also avoided. The cut
momentum of the scalar is written as

L(4−2ε) = L(4) + μe(−2ε), (5.19)

where L(4) is a four-dimensional momentum of mass μ and e(−2ε) is a −2ε-
dimensional unit vector. The integration will then split into an integral over
a massive scalar and an integral over the mass. Using the unitarity method, this
can be used to write the amplitude in terms of loop integrals whose rational parts
as ε → 0 are known. Recent versions of such methods are developed in [3, 4, 60].

5.3 MHV Rules for Loops: The BST Prescription

When the MHV rules were concieved, the perspective for their use at loop level
was rather dim. It was argued that the loops would necessarily contain states of
conformal supergravity, a theory which is non-unitary. Not everyone was deterred
by this argument, at least not Brandhuber, Spence and Travaglini (BST) who
decided to recalculate the one-loop N = 4 MHV amplitude using MHV rules [55].
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Their prescription consists of drawing all diagrams with two MHV vertices
and two internal lines to form a loop,

L1

L2

The momenta L1, L2 of these internal lines are off-shell, so on-shell continuations
of them are required for use in the MHV vertices. This is performed by taking
the integration measure

d4L1d
4L2

δ(4)(L1 − L2 + P )
(L2

1 + iε)(L2
2 + iε)

(5.20)

and changing variables to l1,2 and z1,2 such that l1,2 are lightlike and

L1,2 = l1,2 + z1,2η (5.21)

where η is an arbitrary lightlike vector. In those variables, the measure (5.20)
becomes

dz1dz2d
4l1d

4l2δ
(+)(l21)δ

(+)(l22)
δ(4)(l1 − l2 + P + (z1 − z2)η)

(z1 + iε)(z2 + iε)
, (5.22)

where the (+)’s at the delta functions restrict us to the positive energy states.
The two l vectors being lightlike can now be used in the MHV vertices and they
are constrained by the delta function in the numerator. Since this only depends
on z1 − z2, z1 + z2 can be integrated out to yield

∼ dzd4l1d
4l2δ

(+)(l21)δ
(+)(l22)

δ(4)(l1 − l2 + Pz)
z + iε

, Pz = P + zη. (5.23)

For N = 4 matter running in the loop, BST found that the product of the two
MHV vertices (summed over the multiplet) became—in a way similar to the
unitarity example above—a sum over terms of the kind

Atree (Pz + m1)2(Pz − m2)2 − P 2
z (Pz + m1 − m2)2

2(l1 + m1)2(l2 + m2)2
. (5.24)

At this point the loop momenta are described as 4-momenta rater than spinors,
and that permits a dimensional regularization by taking the number of dimensions
to be 4 − 2ε as usual.

With sufficient hard work, the integration of (5.24) with the measure (5.23)
can be performed and terms (four of each) which have the same numerator in
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(5.24) combine to form two-mass easy box functions. The proof relies in part on
an identity between nine dilog functions and in this way gives a different form of
the two-mass easy function which was previously unknown.

There are generalizations to the cases with N = 1 [12,115] and scalar matter
[10] in the loop which require triangle and bubble functions. In the scalar case
there are additional rational pieces which are not predicted by this version of
the loop MHV rules because they contain cuts almost by construction. These
rational terms, however, appear to be generated in the light-cone reformulation
of the MHV rules with a particular non-dimensional regularization [54].

In spite of the succesful application to several one-loop calculations of MHV
(and similar [5,9]) amplitudes, the BST prescription appears to be unpractical for
higher numbers of negative helicity gluons than two. Although the formal correct-
ness of the prescription has been proven using the Feynman Tree Theorem [53]
for any number of negative helicity gluons, there have been no concrete calcula-
tions, mainly because the method has been superseeded by others mentioned in
this chapter.

The prescription also inherits a formal problem from the tree-level MHV rules,
namely the one mentioned in section 3.2.2 that the vertices do not obey mo-
mentum conservation. From that perspective, it may be seen as odd that the
right results appear, as any (momentum conserving) rewriting of the vertices will
change the results to something wrong. Resolution of this problem comes either
from formulating the loop-level MHV rules in a light-cone form or by noting that
any cutting of internal lines (as in the Feynman Tree Theorem mentioned in the
introduction) reduces the amplitude to integrals over on-shell tree amplitudes
where the conservation-of-momentum problem was resolved by viewing the rules
as coming from recursion relations in complexified Minkowski space (chapter 4).

5.4 Quadruple Cuts

The unitarity method of section 5.2 employed cuts on two internal states, partly
because the cut conditions are guaranteed to have solutions for which the internal
momenta are real in Minkowski space. Clearly, there is nothing wrong with
applying more cuts in principle, but the cut conditions often turn out not to allow
any real solutions, thereby setting the cut to zero and rendering its information
useless.

While working with twistor methods, first described in 2+2 dimensions where
the spinors are real and independent, Britto, Cachazo and Feng realized [57] that
working in that signature (or, more generally, in complexified Minkowski space)
would allow simultaneus solutions to the constraints of four cuts. Since the
loop momentum is four dimensional this would fix it completely, reducing the
problem of finding the coefficient of a box function to a purely algebraic one.
This is particularly useful for calculating N = 4 amplitudes which only contain
box integrals.
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5.4.1 Basic idea in N = 4

Consider first a one-loop amplitude and choose four internal lines to take on-shell.
There is, of course, a one-to-one correspondence between the boxes and the sets
of four internal lines, so there is no double counting issue. The chosen box with
coefficient c is

c

∫
d4L

(2π)4
1

[L2 + iε][(L + K1)2 + iε][(L + K1 + K2)2 + iε][(L − K4)2 + iε]
(5.25)

which is cut to

c
∑
soln.

∫
d4L δ(+)[L2] δ(+)[(L + K1)2] δ(+)[(L + K2)2] δ(+)[(L − K4)2]. (5.26)

The constraints have two solutions which give rise to the same Jacobian for the
integral. The Jacobian is inversely proportional to the Gram determinant but
will otherwise not concern us. The result of the cutting is now

2c Jac(K1,K2,K4). (5.27)

We can do the same considerations for each Feynman diagram in the calculation
of the one-loop amplitude. Adding up contributions from all diagrams that cut
our four chosen internal lines will give∫

d4L
∑

soln.,states

A(. . . ,−L,L + K1)A(. . . ,−L + K1, L + K1 + K2)

×A(. . . ,−L + K1 + K2, L − K4)A(. . . ,−L + K4, L)
×δ(+)[L2] δ(+)[(L + K1)2] δ(+)[(L + K2)2] δ(+)[(L − K4)2], (5.28)

where the summation over states refers to the possibility that different particles
may have those momenta, and that we must sum over all possibilities. In the
same was as above, this gives( ∑

soln.,states

AAABACAD

)
Jac(K1,K2,K4), (5.29)

or,

c =
1
2

∑
soln.,states

AAABACAD. (5.30)

In other words, the coefficient is given by products of four on-shell tree amplitudes
in four dimensions. The quadruple cut can be depicted as a box with four corner
tree amplitudes connected by the (implicitly cut) loop propagators,
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l1

l2

l3

l4

A

B C

D

In concrete examples the internal momenta have helicity labes if there is only one
helicity configuration which gives non-vanishing contributions.

5.4.2 A Simple Example

As a first example, we may try to calculate the one-loop (− − ++) amplitude.
This has only one quadruple cut, namely

l1

l2

l3

l4

−+
±

∓
+ − ±

∓

a−

b− c+

d+

There are two solutions for the internal momenta l1 through l4. The first is

l1 = |d〉〈ba〉〈bd〉 [a|, l2 = |b〉〈da〉
〈bd〉 [a|,

l3 = |b〉〈dc〉
〈db〉 [c|, l4 = |d〉 〈bc〉〈db〉 [c|, (5.31)

with the consequence that MHV three-point amplitudes at corners B and D are
zero while googly-MHV three-point amplitudes at corners A and C are zero.
Thus, the only non-vanishing assignment of internal states is
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l1

l2

l3

l4

−+
−

+
+ − −

+

a−

b− c+

d+

giving the contribution2

1
2

〈al2〉3
〈l2(−l1)〉〈(−l1)a〉

[l3(−l2)]3

[(−l2)b][bl3]
〈l4(−l3)〉3

〈(−l3)c〉〈cl4〉
[(−l4)d]3

[dl1][l1(−l4)]

=
1
2

〈al2〉3
〈al1〉〈l1l2〉

[l2l3]3

[l2b][bl3]
〈l3l4〉3

〈l3c〉〈cl4〉
[l4d]3

[l4l1][l1d]

=
1
2
〈da〉2〈dc〉2〈bc〉2

〈bd〉6
〈ab〉3

〈al1〉〈l1b〉
[ac]3

[ab][bc]
〈bd〉3

〈bc〉〈bd〉
[cd]3

[cl1][l1d]

=
1
2
〈da〉2〈dc〉2〈bc〉2

〈bd〉4〈ab〉2
〈ab〉3

〈ad〉〈db〉
[ac]3

[ab][bc]
〈bd〉3

〈bc〉〈bd〉
[cd]3

[ca][ad]

= −1
2
stAtree, (5.32)

where s and t are the normal Mandelstam variables. The other solution for the
internal momenta comes about by ’flipping’ |·〉 ↔ |·] in (5.31) and appropriately
reversing the conclusions about the helicity assignments to get

l1

l2

l3

l4

−+
+

−
+ −

+

−

a−

b− c+

d+

Notice how the symbols and are used for three-point MHV and googly-MHV
corner amplitudes, respectively. Since Atree is invariant under flipping we get the
same result as before. The one-loop amplitude then becomes

A1−loop = −stAtreeI4(a, b, c) = 2AtreeF4(a, b, c). (5.33)
2Remember that |(−k)〉 = |k〉 and |(−k)] = −|k].
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In practise, a calculation will be a good deal more involved as it may include more
complicated corner amplitudes, especially non-MHV amplitudes, and summing
over the full N = 4 multiplet possibly running in the loop. Such an example
(pieces of which were calculated in the original article on quadruple cuts [57]) is
presented in the next chapter.

To aid our calculations in the remainder of this thesis, the solutions of the
internal constraints have been assembled in Appendix B.

5.4.3 Box Coefficients in Other Theories

The quadruple cut method extends smoothly to other theories, but without be-
ing “complete” in the sense that the entire amplitude can be found from that
method. What it does calculate is the contribution to the amplitude from box
functions, since the quadruple cut singles out the boxes. When calculating a gen-
eral Yang–Mills one-loop amplitude, the contributions to boxes from the N = 1
chiral multiplet running in the loop can be calculated just by adjusting the in-
ternal states. As is done in chapter 8, the method may also be used where some
(massive) external states do not run in the loop. Another extension is that to
gravity theories such as N = 8 supergravity, where it is possible in general to use
the KLT relations between tree amplitudes to construct KLT-like relations be-
tween the box coefficients. The use of quadruple cuts in gravity will be considered
in more detail in chapter 7.

5.4.4 Generalized Unitarity in Complexified Minkowski Space

As briefly mentioned in section 5.2.2 taking quadruple cuts was not a genuine new
idea in itself, rather it was the use of internal momenta in complexified Minkowski
space. Thus, the method also allows for wider use of the triple cut. This leads to
different methods for obtaining the cut-containing parts of amplitudes [49,82].

Also, both triple and quadruple cuts can be done with massive particles or,
equivalently (cf. section 5.2.3) with massless particles exactly in 4−2ε dimensions
to yield also the rational parts of amplitudes [52,106]

The idea of generalized unitarity can be extended to higher loop orders, where
cutting a large portion of the propagators can reveal information as to the struc-
ture of both the momentum-dependent numerator and any other coefficients, and
can likewise provide useful checks of higher loop unitarity cut calculation where a
more conventional generalized unitarity approach is taken. An amusing case [62],
which unfortunately does not seem to generalize, is N = 4 two-loop integral co-
efficients up to and including six external gluons where completely cut integrals
such as
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have an additional propagator-like singularity coming from the Jacobian of the
right box. This singularity can again be cut providing a total of eight constraints
which fix the integration completely and gives the coefficient as a product of tree
amplitudes. This, however, requires that there is a box which is two-mass hard
or one-mass; otherwise the Jacobian is not propagator-like.

5.5 Recursion at Loop Level

Up till now, this chapter has been concerned with deriving one-loop amplitudes
from tree amplitudes. In that perspective it should come as no surprise that
recursion can also play a role here. Indeed it does play a role in determining
coefficients of the integral functions [27, 49], although it does not seem to be as
strong a tool as at tree level.

The problem of determining integral coefficients is, however, not our main
objective in this section. Rather, it is the calculation of the rational parts of
non-supersymmetric one-loop amplitudes directly in four dimensions without ap-
pealing to D-dimensional (generalized) unitarity. The methods described here
were developed by Bern, Dixon and Kosower, first for amplitudes with no cut-
containing parts [36, 37] and later for amplitudes with cut-containing parts [38].
Since this section is more intended as background material for chapter 8 than a
review of advanced topics, the treatment will be adapted to that case and other
complications will only be mentioned briefly.

As in the tree case, on-shell recursion starts out by deforming two external
momenta with a complex parameter z and writing the z = 0 result as an integral
along a closed contour enclosing the origin,

A1−loop =
1

2πi

∮
around 0

dz

z
Â1−loop(z). (5.34)

If Â1−loop(z) → 0 as z → ∞, we can write this formally as a sum over integrations
around all singularities of Â1−loop(z), which may be both poles and branch cuts,

A1−loop = − 1
2πi

∑
singularities i

∮
around i

dz

z
Â1−loop(z)

= −
∑

poles i

ResiÂ1−loop(z)
zi

−
∫

B

dz

z
DiscBA1−loop(z) (5.35)
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where B is a branch cut and DiscB is the discontinuity across it. In the first term,
the residues are given by the appropriate multiparticle or collinear factorization
and depend on lower-point one-loop amplitudes or splitting functions. Since we
assume that the cut-containing parts of the amplitude can be calculated by other
methods described in this chapter, it makes sense to split all one-loop amplitudes
and one-loop splitting functions into their cut-containing3 and rational parts.
Then it can be argued that cut-containing parts can be deduced from the cut-
containing parts of lower-point one-loop amplitudes and splitting functions, and
that rational parts can be deduced from the rational parts of them.

This removes the complication of cuts in the amplitude, but introduces a new
one. When we make the split of an amplitude into cut-containing and rational
parts

A1−loop = C + R, (5.36)

we cannot trust that C and R individually only have physical (i.e. multiparticle
and collinear) singularities. In fact, the cut containing parts will often contain
terms like

log(s/t)
(s − t)n

, (5.37)

which do not correspond to physical singularities of A1−loop. To handle this, we
add and subtract a rational cut-completion term CR,

A1−loop = (C + CR) + (R − CR) (5.38)

which has (minus) the same unphysical singularities as C. The singularities of
R − CR are poles (single or double) in kinematic invariants, so we can do the
usual on-shell recursion trick (again, assuming R(z) − CR(z) → 0 as z → ∞),

R − CR = −
∑

poles i

Resi(R(z) − CR(z))
zi

, (5.39)

where the poles are those that arise from known singularities of A1−loop. The
terms coming from R and CR are known as the direct recursive DR and overlap
O terms, respectively. The latter can be computed directly from CR(z) while
the former is more intricate.

If the one-loop splitting functions had only single poles, we could interpret
them—in the same way as tree splitting functions—as recursion diagrams of the
type

3Rational terms proportional to π2 are included with the cut-containing part.
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P̂ab

x̂

T

â

b

L

Drawing it like that, we can now use the rational parts of the splitting functions
(5.9)

Split1−loop,R
± (x, a+, b−) = 0,

Split1−loop,R
+ (x, a+, b+) = −cΓ

3

√
x(1 − x)

[ab]
〈ab〉2 ,

Split1−loop,R
− (x, a+, b+) = −cΓ

3

√
x(1 − x)
〈ab〉 (5.40)

to say something about the contribution of such a diagram. Firstly, if a and b
have opposite helicities, there is no contribution. This is also the case if all three
helicities sitting on the three-point “vertex” and a had its antiholomorphic spinor
shifted, since the requirement of â and b being collinear is [âb] = 0; conversely, if
a had its holomorphic spinor shifted the all-minus splitting function would give
zero.

If the holomorphic spinor of a is shifted and we have to deal with an all-
plus splitting amplitude, we immediately see that it has a double pole in z.
This poses a serious problem because finding the residue requires us to seperate
the pure double pole from any single pole which may be hiding underneath it.
However, Bern, Dixon and Kosower found a way to circumvent this by introducing
a slightly different three-point vertex which seems to do the job in general. Lastly,
the complex factorization of the last splitting amplitude above is quite murky,
and it should generally be avoided [37].

Keeping these matters in mind, we can obtain the direct recursive terms as

DR =
∑

i,h=±

(Atree(. . . ,−P h
i )R(P−h

i , . . .)
P 2

i

+
R(. . . ,−P 2

i )Atree(P−h
i , . . .)

P 2
i

+FR
Atree(. . . ,−P h

i )Atree(P−h
i , . . .)

P 2
i

)
(5.41)

where i runs over all channels affected by the shift, R are the rational parts of
lower-point amplitudes or properly defined three-point loop vertices and FR is
the rational part of the factorization function. Summing up, the rational part of
the amplitude we are after is

R = DR + CR − O. (5.42)
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A last complication is that of the z → ∞ behaviour of the amplitudes. It is not
always possible to find a shift which is both zero as z → ∞ and avoids problematic
splitting functions. However, it has been shown [17] that all problems can be
circumvented with imaginative combinations of shifts. This means that any one-
loop amplitude in massless QCD is in principle obtainable by the combination of
unitarity methods for the cut-constructible parts and recursion for the rational
part. In chapter 8 we will turn to a complete calculation of a particular one-loop
amplitude in QCD with an effective coupling to the Higgs particle.
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Chapter 6

One-Loop Amplitudes in N = 4
Super-Yang–Mills

In this chapter we take a closer look at the calculation of one-loop amplitudes in
N = 4 Yang–Mills. As described in section 5.4, these amplitudes can be written
as linear combinations of scalar Feynman integrals, where the coefficients are
essentialy products of four tree amplitudes. Here we will calculate some concrete
one-loop amplitudes as a demonstration of the technique. The first calculation
of one-loop MHV amplitude is primarily included for demonstrational purposes.
The part of the calculation of the one-loop NMHV amplitude where scalars and
fermions in external states are taken into account is based on [118].

6.1 MHV Constructibility

Although the quadruple cut method allows for the efficient numerical evaluation
of one-loop amplitudes from tree amplitudes, there are many analytic simplifica-
tions to exploit. The most important of these is the combination with the simple
all-n expression for MHV tree amplitudes. For certain configurations of external
helicies, and for some box coefficients, the required tree amplitudes are all ei-
ther MHV or googly-MHV, leading to easily obtainable all-n expressions. A box
coefficient with only MHV and googly-MHV corners is called MHV constructible.

The simlest class of MHV constructible box coefficients are those of the MHV
one-loop amplitude. They were first computed by the unitarity method of section
5.2 by Bern, Dixon and Kosower [31], but we will review the calculation from the
quadruple cut perspective here for the sake of familiarity with the method.

As in any quadruple cut calculation, we must start by determining which box
functions contribute. This can often be reduced to a matter of counting pluses
and minuses: The MHV amplitude has two external minuses. Inside the cut
box there are four internal lines with one minus each. Thus, the four tree-level
corner amplitudes must have a total of six minuses. The only way these can be
distributed without giving zero amplitudes is to have two MHV corners and two
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googly-MHV three-point corners, and the latter must be at opposite corners. In
other words, we can only have 2-mass easy boxes where the massless corners are
googly. Of course, this argument only holds for gluons in the internal and external
states, but the conclusions hold in general because all non-zero amplitudes are
related to the gluons-only amplitude with the same sum of helicities.

l1

l2

l3

l4

A

b C

d

Rather than now classifying the positions of the two negative helicity external
legs, we can start out by using the simple form of the MHV amplitude to write
down part of the coefficients, namely the part that depends on the denominator
of (2.41),

1
2

1
〈(−l1)d + 1〉〈d + 1 · · · b − 1〉〈b − 1l2〉〈l2(−l1)〉

1
[(−l2)b][bl3][l3(−l2)]

× 1
〈(−l3)b + 1〉〈b + 1 · · · d − 1〉〈d − 1l4〉〈l4(−l3)〉

1
[(−l4)d][dl1][l1(−l4)]

=
1

2〈· · ·〉
〈dd + 1〉

[dl1]〈l1d + 1〉
〈b − 1b〉

〈b − 1l2〉[l2b]
〈bb + 1〉

[bl3]〈l3b + 1〉
〈d − 1d〉

〈d − 1l4〉[l4d]

× 1
〈l1l2〉[l2l3]〈l3l4〉[l4l1] . (6.1)

Using the solutions of the internal constraints (B.3), we can write this as

1
2〈· · ·〉

〈db〉
[dAb〉

〈bd〉
〈dAb]

〈bd〉
[bCd〉

〈db〉
〈bCd]

〈bd〉4
〈db〉〈dACd〉〈bd〉〈bCAb〉

=
〈bCd]〈dAb]

2〈· · ·〉
( 〈bd〉
〈bCd]〈dAb]

)4

. (6.2)

Notice that

〈bCd]〈dAb]
= −〈bC(A + b + C)Ab]
= −A2〈bCb] − C2〈bAb] − 〈bAb]〈bCb]
= A2(C2 − (b + C)2) + C2(A2 − (A + b)2)

−(A2 − (A + b)2)(C2 − (C + b)2)
= −(A + b)2(C + b)2 + A2C2 (6.3)
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is twice the Gram determinant. Thus, the denominator consists of the Gram
determinant, the conventional 〈· · ·〉 spinor product, and a remaining term to the
fourth power.

The term coming from the numerator depends on the position of the two
external negative helicity legs. These can be placed in four distinct ways, but we
will content ourselves with the calculation of two of them. The first case is when
the two negative helicity legs are on the same MHV corner, say corner A,

l1

l2

l3

l4

−+
+

−
+ − −

+

A i−
j−

b+ C

d+

If we call them i and j, respectively, the numerator becomes

〈ij〉4[bl3]4〈(−l3)l4〉4[(−l4)d]4

= 〈ij〉4
(

[bCd〉〈bd〉〈bCd]
〈bd〉2

)4

= 〈ij〉4
(〈bCd]〈dAb]

〈bd〉
)4

. (6.4)

We see that the paranthesis cancels with the one in (6.2) and leaves only the
Gram determinant times the tree amplitude.

We now turn to the case where i and j are on corners A and C, respectively.
In this case, the whole N = 4 multiplet can run in the loopm which we draw as
extra internal line,

l1

l2

l3

l4

A

i−

b+
Cj−

d+
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The numerator contribution from the gluons can easily be seen to be

〈il2〉4[(−l2)b]4〈jl4〉4[(−l4)d]4 + 〈(−l1)i〉4[bl3]4〈(−l3)j〉4[dl1]4. (6.5)

The contribution of the fermions can be computed by noting that the amplitude
AMHV(g−, f−, f+, . . .) is simply related to AMHV(g−, g−, . . .), namely by the ex-
change of one of the numerator factors with another. This yields

−4
(
〈il2〉3〈i(−l1)〉 [(−l2)b]3[l3b] 〈jl4〉3〈j(−l3)〉 [(−l4)d]3[l1d]

+〈l2i〉〈(−l1)i〉3 [b(−l2)][bl3]3 〈l4j〉〈(−l3)j〉3 [d(−l4)][dl1]3
)
, (6.6)

where the prefactor takes into account that there are four species and that they
must have fermionic sign. The scalar contribution becomes

6 〈il2〉2〈i(−l1)〉2 [(−l2)b]2[l3b]2 〈jl4〉2〈j(−l3)〉2 [(−l4)d]2[l1d]2. (6.7)

When we add these three expressions together, we see a common situation in
N = 4 SYM: the particle multiplicities make sure that the result is simplified, in
this case by making it writable as a fourth power of some term:(

〈il2〉[(−l2)b]〈jl4〉[(−l4)d] − 〈(−l1)i〉[bl3]〈(−l3)j〉[dl1]
)4

=
(
〈il3〉[l3b]〈jl1〉[l1d] − 〈il1〉[l1d]〈jl3〉[l3b]

)4

= 〈ij〉4
(
〈l3l1〉[l3b][l1d]

)4

= 〈ij〉4
(

[bCd〉〈bd〉〈bAd]
〈bd〉2

)4

= 〈ij〉4
(〈bCd]〈dAb]

〈bd〉
)4

. (6.8)

In words, the particle states of N = 4 running in the loop conspire to make the
numerator factor the same as before. It is not difficult to imagine (and true) that
all four positionings of the negative helicity legs i and j give the same numerator
factor.

We can now write down the complete one-loop MHV amplitude in N = 4
SYM. It is

A1−loop
MHV = cΓAtree

MHV

n∑
i=1

min(n,i−2+n)∑
j=i+1

F4(i, Pi+1,j−1, j). (6.9)

This was the result for gluons in the external states, but in fact, it holds for
any MHV choice of external particles. Remember from section 2.3.2 that SWI’s
relate fix all tree-level MHV amplitudes up to a constant; since the one-loop
result should also respect the full N = 4 supersymmetry, the same is the case
here. Only the common factor is corrected from its tree-level value to its one-loop
value.
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6.2 NMHV Amplitudes

The next natural step would be to compute all NMHV amplitudes. The purely
gluonic case was worked out by the unitarity methods of section 5.2 by Bern,
Dixon and Kosower [35] prior to the invention of the quadruple cut method.
With this method, its inventors computed the MHV constructible parts of the
NMHV amplitude [57]. The case with other external particles was worked out by
Bidder, Perkins and the author [118], but since the latter calculation naturally
incorporates the pure gluon case, both cases will be reviewed here.

For most (but not all) of the box coefficients of the NMHV amplitude, we
can again exploit MHV constructibility. Doing the same analysis of the “number
of minuses” as above, we see that there are a total of seven minuses, which can
be distributed among the four corner amplitudes in two ways: Either there is
one googly-MHV three point corner and three MHV corners, or there are two
googly-MHV three point corners, one MHV corner, and one NMHV corner. The
latter solution is not MHV constructible and will be postponed until we have
considered the former which is. The diagram for the calculation and the solution
for the internal spinors are

l1

l2

l3

l4

A A1

A−1

B

B1

B−1 CC1

C−1

d

l1 =
|d〉〈dCBA|
〈dACd〉

l2 =
|BCd〉〈dA|
〈dACd〉

l3 =
|BAd〉〈dC|
〈dACd〉

l4 =
|d〉〈dABC|
〈dACd〉 . (6.10)

6.2.1 3 Mass Boxes, Gluons Only

As in the MHV case, we start by getting the denominator factors out of the way
since they are independent of the external helicities. These are

1
2

1
〈(−l1)A1〉〈A1 · · ·A−1〉〈A−1l2〉〈l2(−l1)〉

× 1
〈(−l2)B1〉〈B1 · · ·B−1〉〈B−1l3〉〈l3(−l2)〉

× 1
〈(−l3)C1〉〈C1 · · ·C−1〉〈C−1l4〉〈l4(−l3)〉

× 1
[(−l4)d][dl1][l1(−l4)]

(6.11)

=
1

2〈· · ·〉
〈dA1〉〈A−1B1〉〈B−1C1〉〈C−1d〉

〈A1l1〉[l1l4]〈l4C−1〉[dl4]〈l4l3〉〈l2l1〉[l1d]
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× 1
〈A−1l2〉〈l2B1〉〈l3l2〉〈B−1l3〉〈l3C1〉 (6.12)

=
1

2〈· · ·〉
−〈dACd〉2

〈dCBACBAd〉
× −〈A−1B1〉〈B−1C1〉

[dCl3〉〈l2Ad]〈A−1l2〉〈l2B1〉〈l3l2〉〈B−1l3〉〈l3C1〉 (6.13)

=
1

2〈· · ·〉
〈dACd〉
〈dCBAd]

〈A−1B1〉〈B−1C1〉
[dCBAd〉〈dCBAd]〈dCBBAd〉

× 1
〈A−1BCd〉〈dCBB1〉〈B−1BAd〉〈dABC1〉 (6.14)

=
〈dCBAd]

2
1

〈dCBAd]4

× −〈A−1B1〉〈B−1C1〉
〈· · ·〉P 2

B〈dCBA−1〉〈dCBB1〉〈dABB−1〉〈dABC1〉 . (6.15)

By manipulations of the same kind as (6.3) it can be shown that 〈dCBAd]/2 is
the Gram determinant. We see the same kind of structure as for MHV: the Gram
determinant, something to the power 4 (which we hope disappears) and a factor
involving 〈· · ·〉 which looks natural as a box coefficient.

We can now turn to the numerators. The easiest way to proceed is to consider
the gluon case first and then use NMHV SWI’s and the known facts about the
MHV amplitude for other-than-gluons to relate them to the gluon amplitudes.
There are seven distinct non-zero configurations of the three negative helicity
gluons of which we will show the calculations for three of them.

The first case is shown in the box diagram below

l1

l2

l3

l4

+−
−

+
+ − −

+

A

B

m−
1

m−
2 C

d−

The numerator is given by(
〈(−l1)l2〉〈m1m2〉〈(−l3)l4〉[(−l4)l1]

)4

=
(
− 〈m1m2〉〈l3l4〉[l4l1]〈l1l2〉

)4

= (〈m1m2〉〈l3d〉[dAl2〉)4
= (〈m1m2〉〈dABd〉)4〈dCBAd]4. (6.16)
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We should be happy to see the factor 〈dCBAd]4 appearing as it cancels the
corresponding (unphysical) factor in the denominator. The second placement of
the negative helicity gluons we will explore is

l1

l2

l3

l4

−+
+

−
+ − −

+

A m−
1

m−
2

B

m−
3

C

d+

which has the numerator(
〈m1m2〉〈(−l2)m3〉〈(−l4)l3〉[(−l4)d]

)4

=
(
〈m1m2〉〈l2m3〉〈l3l4d]

)4

= (−〈m1m2〉〈l2m3〉〈l3Cd])4

= (〈m1m2〉〈dCBd〉)4〈dABCd]4

= (〈m1m2〉〈dCBd〉)4〈dCBAd]4. (6.17)

As before, we see the wanted factor to the power four. The last case is the one
where the three negative helicity gluons are situated on the three massive corners,

l1

l2

l3

l4

A m−
1

B

m−
2

C
m−

3

d+

This configuration is rather special, as the whole N = 4 multiplet can run in the
loop and we have to sum over all the particle species. The two gluon contributions
can be constructed as for the cases above,(

〈m1l2〉〈m2l3〉〈m3l4〉[d(−l4)]
)4

+
(
〈m1(−l1)〉〈m2(−l2)〉〈m3(−l3)〉[dl1]

)4
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=
(
〈m1BCd〉〈m2BAd〉〈m3d〉〈dABCd]

〈dACd〉
)4

+
(
− 〈m1d〉〈dCBAd]

〈dACd〉 〈m2BCd〉〈m3BAd〉
)4

=
[(

〈m1BCd〉〈m2BAd〉〈m3d〉
)4

+
(
− 〈m1d〉〈m2BCd〉〈m3BAd〉

)4]
×〈dCBAd]4

〈dACd〉4 . (6.18)

As in the one-loop MHV calculation above, the fermion and scalar contributions
follow from the gluon ones by taking products of the two parantheses above with
powers summing to four and by adjusting the prefactors. This exactly turns the
final result into a complete power of four:(

〈m1l2〉〈m2l3〉〈m3l4〉[d(−l4)] + 〈m1(−l1)〉〈m2(−l2)〉〈m3(−l3)〉[dl1]
)4

=
(
〈m1BCd〉〈m2BAd〉〈m3d〉 − 〈m1d〉〈m2BCd〉〈m3BAd〉

)4 〈dCBAd]4

〈dACd〉4
=
[
〈m3m1〉〈dBCd〉〈m2BAd〉

+〈m1d〉
(
〈m3BCd〉〈m2BAd〉 − 〈m2BCd〉〈m3BAd〉

)]4 〈dCBAd]4

〈dACd〉4

=
(
− 〈m3m1〉〈m2BAd〉 + K2

B〈m1d〉〈m2m3〉
)4〈dCBAd]4

=
(
〈m1m2〉〈m3BAd〉 + 〈m3m2〉〈m1BCd〉

)4〈dCBAd]4. (6.19)

Again, we see the same picture emerging as before.
When doing all negative helicity gluon configurations, we finally obtain the

result

c3m(m−
1,2,3) =

−〈A−1B1〉〈B−1C1〉H4
k

〈· · ·〉P 2
B〈dCBA−1〉〈dCBB1〉〈dABB−1〉〈dABC1〉 (6.20)

where k denotes the configuration and

HBBd = 〈m1m2〉〈dACd〉,
HABd = 〈m1d〉〈m2BCd〉,
HBCd = 〈m2d〉〈m1BAd〉,
HACd = 〈m1d〉〈m2d〉K2

B ,

HAAB = 〈m1m2〉〈m3BCd〉,
HBCC = 〈m2m3〉〈m1BAd〉,
HABB = 〈m2m3〉〈m1BCd〉,
HBBC = 〈m1m2〉〈m3BAd〉,
HAAC = 〈m1m2〉〈m3d〉K2

B ,
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HACC = 〈m2m3〉〈m1d〉K2
B ,

HABC = 〈m1m2〉〈m3BAd〉 + 〈m3m2〉〈m1BCd〉. (6.21)

6.2.2 NMHV SWIs

Before proceeding to the equivalent calculations with other particle content than
gluons, we should consider some of the constraints on those amplitudes coming
from supersymmetry. In section 2.3.2 we looked at the effective supersymme-
try of tree amplitudes, supersymmetry algebras and the supersymmetric Ward
identities that follow. Since we are now working with a genuinely N = 4 su-
persymmetric theory we can use these considerations for loop amplitudes also.
Even better, since the box functions are all independent, N = 4 SWIs for the full
amplitude imply that they must also be satisfied coefficient by coefficient. Here
we will derive SWIs for amplitudes A where all g+ states are implicit.

To derive NMHV SWIs relating pure glue amplitudes to amplitudes with a
pair of fermions, we start from A(g−1 , g−i , g−j , f+

a,k) and apply Qa(q, θ) to find

0 = 〈1q〉A(f−
a,1, g

−
i , g−j , f+

a,k) + 〈iq〉A(g−1 , f−
a,i, g

−
j , f+

a,k)

+〈jq〉A(g−1 , g−i , f−
a,j, f

+
a,k) − 〈kq〉A(g−1 , g−i , g−j , g+

k ). (6.22)

This relation holds irrespective of the number of supersymmetries since we are
only using one. In a notation closer in spirit to what we will use here, the SWI is

0 = 〈1q〉A(1−1/2, i−, j−, k+1/2) + 〈iq〉A(1−, i−1/2, j−, k+1/2)
+〈jq〉A(1−, i−, j−1/2, k+1/2) − 〈kq〉A(1−, i−, j−, k+). (6.23)

We can extend this to scalars in external states by starting from the amplitude
A(g−1 , g−i , f−

b,j, sab,k) and applying again Qa(q, θ). Using (2.49) we get

0 = 〈1q〉A(f−
a,1, g

−
i , f−

b,j , sab,k) + 〈iq〉A(g−1 , f−
a,i, f

−
b,j, sab,k)

+〈jq〉A(g−1 , g−i , s̃ab,j , sab,k) − 〈kq〉A(g−1 , g−i , f−
b,j , f

−
b,k), (6.24)

which relates amplitudes with both gluons, fermions and scalars. For this SWI we
used that an amplitude involving A(. . . , sab, f

+
a ) vanishes, something which is not

immediately obvious. This follows roughly by noting that sab ∼ Qaf
+
b ∼ Qbf

+
a

which can be interpreted in the way that sab contains a f+
a , and this sets the

amplitude to zero by fermion conservation of helicity. These arguments can be
made more exact by considering a superfield formulation of the theory such as
Nair’s [107] which plays a major role in some twistor studies.

To obtain SWIs involving amplitudes with no negative helicity gluons we can
start from A(g−1 , f−

c,i, f
−
b,j, sab,k, f

+
c,l) and apply Qa(q, θ) to get

0 = 〈1q〉A(f−
a,1, f

−
c,i, f

−
b,j , sab,k, f

+
c,l) + 〈iq〉A(g−1 , s̃ac,i, f

−
b,j, sab,k, f

+
c,l)

+〈jq〉A(g−1 , f−
c,i, s̃ab,j , sab,k, f

+
c,l) − 〈kq〉A(g−1 , f−

c,i, f
−
b,j, f

+
b,k, f

+
c,l). (6.25)
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It is possible to deduce quite a few of these NMHV SWI’s and we shall not
attempt to derive all of them here. The general procedure for generating them is
this: Start with an amplitude which has three and a half units of negative helicity
(N3/2MHV) and where the SUSY indices b, c and d are each maximally used once
on f−

a and s̃ab states, and where the indices a, b, c and d are used maximally once
on f+

a and sab states (and a must be used once). Then, assuming the four SUSY
indices to be different, act with Qa(q, θ) to get the SWI. Resulting amplitudes
involving a twice in f+

a and sab states are zero for the reason discussed above.
As should be clear from the discussion of SWI’s, they are not concerned with

colour ordering, or numbering in general.

6.2.3 3 Mass Boxes with Two Fermions

We now want to calculate the three mass box function coefficients when we have
two negative helicity gluons and a pair of fermions. We first review some general
arguments and then give the full results without detailed calculation.

The easiest way of classifying the configurations is to view it as a process of
moving a half unit of negative helicity from one of the mi’s to a leg q situated on
one of the four corners. Take as an example the configuration q,m1 ∈ A, m2 ∈ B
and m3 = d and move a half unit of negative helicity from m1 on A to q which is
also on A. Since this only involves corner A the ratio of the coefficients must be
the ratio of the A corner amplitudes,

l1

l2

l3

l4

+−
+

−
+ − −

+

A m
−1/2
1

q1/2

B
m−

2

C

d−

/
l1

l2

l3

l4

+−
+

−
+ − −

+

A m−
1

q+

B
m−

2

C

d−

=
c3m({q1/2,m

−1/2
1 }, {m2}, {}, d−)

c3m({m−
1 }, {m2}, {}, d−)

=
〈l1q〉
〈l1m1〉

=
〈qd〉
〈m1d〉

=
HABd(q,m2)
HABd(m1,m2)

. (6.26)

If the −1/2 helicity came from d we could track the effect on each corner and
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derive the relative factor in a similar way. However, we could also use the SWI

〈qη〉c3m({m−
1 }, {m−

2 }, {}, d−)

= 〈m1η〉c3m({q1/2,m
−1/2
1 }, {m−

2 }, {}, d−)

+〈m2η〉c3m({q1/2,m−
1 }, {m−1/2

2 }, {}, d−)

+〈dη〉c3m({q1/2,m−
1 }, {m−

2 }, {}, d−1/2), (6.27)

and set η = m2 to obtain

c3m({q1/2,m−
1 }, {m−

2 }, {}, d−1/2)
c3m({m−

1 }, {m−
2 }, {}, d−)

=
〈qm2〉
〈dm2〉 −

〈m1m2〉
〈dm2〉

HABd(q,m2)
HABd(m1,m2)

=
〈m1q〉
〈m1d〉

=
HAAB(m1, q,m2)
HABd(m1,m2)

. (6.28)

The case chosen is, of course, deceptively easy since c3m({q1/2,m−
1 }, {m−1/2

2 }, {}, d−) =
0 as can be seen by trying (and failing) to assign internal helicities in the quadru-
ple cut. Taking the more involved road, it can also be found by using the SWI
above with η = m2.

In most cases there are no large advantages of using the one method (tracking
the half unit of helicity through the vertices) over the other (SWI) but in some
cases the former should definitely be avoided. Take as an example the gluon
configuration m1 ∈ A, m2,m3 ∈ B and move −1/2 helicity from m3 to q ∈ C.
When analysing the possible internal helicity assignments we find that there are
in fact two different ways it can be done,

l1

l2

l3

l4

−+
−

+
+1/2 −1/2

−

+

A m−
1

B

m−
2

m
−1/2
3 C

q1/2

d+
l1

l2

l3

l4

−1/2+1/2

−1/2

+1/2

+ −
−1/2

+1/2

A m−
1

B

m−
2

m
−1/2
3 C

q1/2

d+

Rather than calculating the result from this analysis, we can use that (including
a fermionic minus)
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l1

l2

l3

l4

−1/2+1/2

−1/2

+1/2

+ −
−

+

A m−
1

B

m−
2

m
−1/2
3 C

q+

d1/2

/
l1

l2

l3

l4

−+

−

+

+ −
−

+

A m−
1

B

m−
2

m−
3 C

q+

d+

=
c3m({m−1/2

1 }, {m−
2 ,m−

3 }, {q1/2}, d+)
c3m({m−

1 }, {m−
2 ,m−

3 }, {}, d+)

= −〈l2(−l1)〉
〈l2m1〉

[dl1]
[d(−l4)]

〈(−l3)q〉
〈(−l3)l4〉

= − 〈l2Ad]〈l3q〉
〈l2m1〉[dCl3〉

= − 〈dABq〉
〈dCBm1〉

= − HBBC(m2,m3, q)
HABB(m1,m2,m3)

(6.29)

and use this in the corresponding SWI with η = m2,

c3m({m−
1 }, {m−

2 ,m
−1/2
3 }, {q1/2}, d+)

c3m({m−
1 }, {m−

2 ,m−
3 }, {}, d+)

=
〈qm2〉
〈m3m2〉 +

〈m1m2〉
〈m3m2〉

HBBC(m2,m3, q)
HABB(m1,m2,m3)

=
〈qm2〉〈m1BCd〉 + 〈m1m2〉〈qBAd〉

〈m3m2〉〈m1BCd〉
= − HABC(m1,m2, q)

HABB(m1,m2,m3)
. (6.30)

We see the continuation of the picture that moving −1/2 helicity from one corner
to another produces a ratio whose fourth power is the ratio for moving −2 helicity
between the same legs. This holds not only when the external helicities constrain
us to a single internal state in the loop, but holds when more internal states open
up. The latter is a consequence of the N = 4 supersymmetry.

This becomes a helpful realization when we want to move helicity around in
the ABC gluon configuration. No matter how we do it, we will need to sum over
at least eight states of the multiplet. This can of course be done (and was indeed
done in [118]) but it is simpler to note e.g. that

〈qη〉HABC(m1,m2,m3) = 〈m1η〉HABC(q,m2,m3)
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−〈m2η〉HAAC(m1, q,m3)
−〈m3η〉HAAB(m1, q,m2), (6.31)

and interpret this to be ’proportional to’ the corresponding SWI

〈qη〉c3m({m−
1 }, {m−

2 }, {m−
3 }, d+)

= 〈m1η〉c3m({m−1/2
1 , q1/2}, {m−

2 }, {m−
3 }, d+)

+〈m2η〉c3m({m−
1 , q1/2}, {m−1/2

2 }, {m−
3 }, d+)

+〈m3η〉c3m({m−
1 , q1/2}, {m−

2 }, {m−1/2
3 }, d+), (6.32)

in the sense that

c3m({m−1/2
1 , q1/2}, {m−

2 }, {m−
3 }, d+)

c3m({m−
1 }, {m−

2 }, {m−
3 }, d+)

=
HABC(q,m2,m3)
HABC(m1,m2,m3)

, (6.33)

etcetera. Using the methods described in this section, one can derive all box
coefficients involving two gluinos. They are reported in the tables below. The top
line of each table states the gluon configuration we start from and the associated
H factor. Below, the first column states where the −1/2 unit is moved to (the
position of q) and the second column states which of the negative helicity gluons
it came from. The third column then states which factor the H in the top line is
to be reqlaced by to obtain the correct box coefficient. In the first three cases we
have used identities such as −HABd(m1,m2) = HAAB(q,m1,m2) to abbreviate
results.

AAB HAAB(m1,m2,m3)
A m1 HAAB(q,m2,m3)
/d m2 HAAB(m1, q,m3)

m3 0
B m1 HABB(m2, q,m3)

m2 HABB(m1,m3, q)
m3 HAAB(m1,m2, q)

C m1 HABC(m2,m3, q)
m2 −HABC(m1,m3, q)
m3 −HAAC(m1,m2, q)

AAC HAAC(m1,m2,m3)
A m1 HAAC(q,m2,m3)
/d m2 HAAC(m1, q,m3)

m3 0
B m1 −HABC(q,m2,m3)

m2 −HABC(m1, q,m3)
m3 −HAAC(m1,m2, q)

C m1 HACC(m2, q,m3)
m2 HACC(m1,m3, q)
m3 HAAC(m1,m2, q)
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ABB HABB(m1,m2,m3)
A m1 HABB(q,m2,m3)
/d m2 HAAB(q,m1,m3)

m3 HAAB(m1, q,m2)
B m1 0

m2 HABB(m1, q,m3)
m3 HABB(m1,m2, q)

C m1 HBBC(m2,m3, q)
m2 HABC(m1,m3, q)
m3 −HABC(m1,m2, q)

ABd HABd(m1,m2)
A m1 HABd(q,m2)

m2 0
d HAAB(m1, q,m2)

B m1 HBBd(m2, q)
m2 HABd(m1, q)
d HABB(m1,m2, q)

C m1 −HBCd(m2, q)
m2 −HACd(m1, q)
d −HABC(m1,m2, q)

ACd HACd(m1,m2)
A m1 HACd(q,m2)

m2 0
d HACd(m1, q)

B m1 −HBCd(q,m2)
m2 −HABd(m1, q)
d −HABC(m1, q,m2)

C m1 0
m2 HACd(m1, q)
d HACC(m1,m2, q)

BBd HBBd(m1,m2)
A m1 −HABd(q,m2)

m2 −HABd(m1, q)
d −HABB(q,m1,m2)

B m1 HBBd(q,m2)
m2 HBBd(m1, q)
d 0

C m1 −HBCd(m2, q)
m2 −HBCd(m1, q)
d −HBBC(m1,m2, q)

ABC HABC(m1,m2,m3)
A m1 HABC(q,m2,m3)

m2 HAAC(q,m1,m3)
m3 HAAB(q,m1,m2)

B m1 HBBC(q,m2,m3)
m2 HABC(m1, q,m3)
m3 HABB(m1, q,m2)

C m1 HBCC(m2, q,m3)
m2 HACC(m1, q,m3)
m3 HABC(m1,m2, q)

d m1 −HBCd(m2,m3)
m2 −HACd(m1,m3)
m3 −HABd(m1,m2)

6.2.4 Beyond Two Fermions

Using the same methods as above and assisted by SWI’s, the analysis can be
extended to other external particles than gluons and two fermions. For instance,
the ratio of coefficients between a (g−, g−, sab, s̃ab) and a (g−, g−, g−, g+) ampli-
tude is found by squaring the ratio between coefficients of (g−, g−, f−, f+) and a
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(g−, g−, g−, g+), e.g.

c3m({m−
1 ,m−

2 }, {m0−
3 }, {q0+}, d+)

=
−HAAC(m1,m2, q)
HAAB(m1,m2,m3)

c3m({m−
1 ,m−

2 }, {m−1/2
3 }, {q1/2}, d+)

=
(−HAAC(m1,m2, q)
HAAB(m1,m2,m3)

)2

c3m({m−
1 ,m−

2 }, {m−
3 }, {q+}, d+). (6.34)

If we moved four units of −1/2 helicity from m3 to q we would have to take
the paranthesis to the power 4, which is of course equivalent to exchanging
HAAB(m1,m2,m3)4 with HAAC(m1,m2, q)4 in (6.20) as it should be.

Amplitudes with both scalars and fermions can be constructed in similar
ways by viewing them as pure-glue amplitudes where units of −1/2 helicity have
been moved around. For each move, one of the original Hk factors is removed
and replaced by another which captures where the helicity was moved to. In
general this does not fix the overall sign unambiguously, so we must resort to
SWIs to be completely sure. As an example we can try to compute the coeffi-
cient c3m({m−

1 ,m
−1/2
2 }, {m−1/2

3 }, {q0+}, d+) by noting that it comes from moving
−1/2 helicity from m2 to q in c3m({m−

1 ,m−
2 }, {m−1/2

3 }, {q1/2}, d+). This tells us
that the relative factor must be ±HABC(m1,m3, q)/HAAB(m1,m2,m3), and that
we must use a SWI of the type (6.24) which describes moving helicity from some-
where to in an AAB configuration to corner C. Such an SWI is represented in
the first table above in the last three lines, namely

0 = 〈m1η〉HABC(m2,m3, q) − 〈m2η〉HABC(m1,m3, q)
−〈m3η〉HAAC(m1,m2, q) − 〈qη〉HAAB(m1,m2,m3). (6.35)

This leads us to conclude that

c3m({m−
1 ,m

−1/2
2 }, {m−1/2

3 }, {q0+}, d+)

=
−HABC(m1,m3, q)
HAAB(m1,m2,m3)

c3m({m−
1 ,m−

2 }, {m−1/2
3 }, {q1/2}, d+)

=
HABC(m1,m3, q)HAAC(m1,m2, q)

HAAB(m1,m2,m3)2
c3m({m−

1 ,m−
2 }, {m−

3 }, {q+}, d+).

(6.36)

With these methods, three-mass box function coefficients for any NMHV external
particle configuration can be calculated.

6.2.5 Beyond Three-Mass Boxes

Up until now we completely focussed on three-mass boxes because they were
MHV constructible and have a well controlled structure. Two-mass-hard boxes
are also MHV constructible but they have two contributions for each coefficient
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since either of the two massless corners can be the googly MHV one. We can eas-
ily obtain those coefficients, however, from the three-mass coefficients by taking
massive corners to have only one momentum on them,

c2mh(A,B, c, d) = c3m(A,B, {c}, d) + c3m({d}, A,B, c). (6.37)

The two-mass-easy boxes are not MHV constructible because the opposite mass-
less corners are both googly MHV and the two massive corners must be MHV and
NMHV, respectively. Rather than using explicit expressions for the the NMHV
amplitudes, we can use the same procedure as [35] where the known structure of
IR divergences in N = 4 super-Yang–Mills tells us that

A1−loop

∣∣∣∣
1/ε

= − ĉΓ

ε2

n∑
i=1

(
μ2

−si,i+1

)ε

Atree, (6.38)

which again translates to linear conditions on the box coefficients. These can be
inverted (at least for an odd number of external particles) to produce expressions
for the two-mass-easy coefficients in terms of the three-mass coefficeints. Because
we are considering N = 4 supersymmetry in both external and internal states,
these identities hold irrespective of the external states. Formally, the identity is

c2me(A, b,C, d) =
∑
d∈Ĉ

c3m(Ĉ, . . . , . . . , b) +
∑
b∈Â

c3m(Â, . . . , . . . , d), (6.39)

where the summations rum over all three-mass box coefficients that fulfill the
condition.

Just as two-mass-hard boxes were degenerate three-mass boxes, one-mass
boxes can be characterized as degenerate two-mass-easy and three-mass boxes.
This gives us the formula for the one-mass coefficients,

c1m(A, b, c, d) = c2me(A, b, {c}, d) + c3m({d}, A, {b}, c). (6.40)

Since there are no further contributions to the one-loop amplitude, this consti-
tutes a complete characterization of the one-loop NMHV amplitude in N = 4
super-Yang–Mills.
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Chapter 7

One-Loop Amplitudes in N = 8
Supergravity

This chapter introduces the calculation of one-loop amplitudes in N = 8 super-
gravity and the “No Triangle Hypothesis”1 for the structure. It is based on the
article [48], which extends the results of earlier work [46].

7.1 One-Loop Structure of Maximal Supergravity

The results of sections 5.1.1 and 5.1.2 apply just as well to a gravity theory as to
Yang–Mills. Thus, any one-loop amplitude in four dimensions can be written as
a sum of boxes, triangles, bubbles and a rational function,

M1−loop =
∑
i∈C

ciI
i
4 +

∑
j∈D

djI
j
3 +

∑
k∈E

ekI
k
2 + R. (7.1)

There are, however, no theorems that use supersymmetry to constrain this further
as with Yang–Mills, and generically, any theory of gravity should be expected to
include all types of terms.

For a low number of external gravitons, there are some results that do con-
strain the form. If we go back to the integrand of the loop integral, it will generally
have m ≤ n propagator terms where n is the number of external particles. Since
all Feynman vertices in gravity contain momentum squared, we should have 2m
powers of loop momentum in the numerator. By multiplying and dividing by
all propagators not in the expressions, this can be written as 2n powers of loop
momenum in the numerator and n propagators,

Mn ∼
∫

dDl
[lμ]2n

l21l
2
2 · · · l2n

(7.2)

1Given the present weight of evidence it should be termed the “No Triangle Conjecture”, but
the original name seems to have stuck with it. Considering what it actually says, it ought to be
called the “Box Hypothesis” or something similar.
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When we do Passarino–Veltman reduction on this, each propagator can be ex-
changed for one or two less powers of loop momentum. For any n, this is expected
to result in a combination of all the terms appearing in (7.1). However, we should
also expect that there are supersymmetry cancellations like in Yang–Mills that
reduce the power 2n. This is indeed the case in the so-called string-based ap-
proach to loop calculations [41,76] (for the string-based approach in Yang–Mills,
consult [25,40,43,44]) where cancellations can be made explicit which reduce the
numerator power of loop momentum by 8 in N = 8,

MN=8
n ∼

∫
dDl

[lμ]2n−8

l21l
2
2 · · · l2n

. (7.3)

This explicitly tells us that four-point amplitudes (as explicitly shown by a classic
string calculation [87]) can only have a box integral, five-point can have boxes
and triangles, six-point can have boxes, triangles and bubbles, while seven-point
and above is again unconstrained.

Somewhat surprisingly, the situation seems to be even better. It has been
known since the end of the 90’es [22] that five-point and six-point MHV 1-loop
amplitudes consisted only of boxes and it was conjectured that this would hold
for all MHV amplitudes. When it was recently found that the box function
part of the NMHV six-graviton amplitude was sufficient to explain all IR, soft
and collinear properties of the amplitude, it was hypothesized that all one-loop
amplitudes in N = 8 supergravity consisted of boxes only. In particular, since
there this means no triangles, it was called the No-Triangle Hypothesis.

An equivalent way to express this at one-loop is, that N = 8 supergravity
has the same structure as N = 4 super Yang–Mills, in particular that there
are cancellations which remove additional powers of loop momentum from the
numerator of integrands to reduce it to

MN=8
n ∼

∫
dDl

[lμ]n−4

l21l
2
2 · · · l2n

. (7.4)

This is n−4 more cancellations than N = 8 supersymmetry is known to give and
the origin is unknown. As described in the introduction, this and many other
results have led to speculations that N = 8 supergravity is perturbatively UV
finite to all orders and that this may be caused by an unknown symmetry present
in all gravitational theories independent of supersymmetry which softens the UV
behaviour.

7.2 Evidence for the No-Triangle Hypothesis

The present strategy for supporting the No-Triangle Hypothesis is to determine
the part of all six and seven-point amplitudes depending on box integrals and
to argue that no further cut-constructible parts can be present. This leaves
rational parts which are known to be absent at six-points; additional arguments
are presented why these ought to vanish at seven-point and higher.
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7.2.1 Box Coefficients and Soft Divergences

Box coefficients can be determined by use of the quadruple cut method of section
5.4. There are two strategies for determining these; the direct and the KLT-
inspired. The latter works by using the KLT relations on all corner amplitudes
of the quadruple cut to write the N = 8 coefficient as a product of kinematic
invariants and two N = 4 coefficients [26]. As an example, the coefficient of
I4(1−, 2−, 3+, (4+, 5+)) given by the quadruple cut

l1

l2

l3

l4

−+
+

−
+ −

+

−

1−

2− 3+

4+

5+

which can be KLT’ed to

cN=8
1−,2−,3+,(4+,5+) =

1
2
M(−l+1 , 1−, l+2 )M(−l−2 , 2−, l+3 )

×M(−l−3 , 3+, l+4 )M(−l−4 , 4+, 5+, l−1 )

=
1
2
A(−l+1 , 1−, l+2 )2A(−l−2 , 2−, l+3 )2A(−l−3 , 3+, l+4 )2

×s45A(−l−4 , 4+, 5+, l−1 )A(−l−4 , 5+, 4+, l−1 )
= 2s45c

N=4
1−,2−,3+,(4+,5+)c

N=4
1−,2−,3+,(5+,4+). (7.5)

In the cases where there is a summation over the multiplet running in the loop,
the rewriting will still hold because the N = 8 multiplet is two copies of the
N = 4 multiplet, each being summed over in the two N = 4 coefficients on the
right hand side. Unfortunately, this strategy becomes increasingly cumbersome
at higher points. The KLT relations become longer and involve permutations of
legs which lead to the N = 4 coefficients being the non-planar ones.

The more direct strategy is to use the expressions for N = 8 supergravity
amplitudes. These can be derived from on-shell recursion in more compact form
than those given by the KLT relations, and presumeably give rise the most com-
pact forms of the coefficients. The coefficients for general MHV amplitudes were
given in [22] and the coefficients for the six-point NMHV amplitude were given
in [26]. Thus, the remaining seven-point amplitudes are the NMHV ones. A large
portion of these are MHV constructible (cf. section 6.1) but some one-mass coeffi-
cients may depend on the NMHV six-graviton tree amplitude. One even requires
summation over the full multiplet, and we thus need to extend the NMHV six-
point tree amplitude to the case where two external particles are non-gravitons.
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This can be achieved by redoing the on-shell recursive calculation of [59] and the
result is given in appendix C of [48]. The procedure like the one used in section
6.2.5 cannot be used as it relies on the previous knowledge that the amplitude
contains only boxes, the fact that we are trying to establish. All the seven-point
NMHV box coefficients are collected in appendix A of [48].

The results for the box coefficients constrain the rest of the amplitude because
in must have the soft (1/ε) divergence [77],

M1−loop

∣∣∣∣
1
ε

=
i

(4π)2

[∑
i<j sij log[−sij]

2ε

]
Mtree. (7.6)

If this holds for just the box integral part of the amplitude, the triangles and
bubbles must have their soft divergences add up to zero. That this is indeed
the case has been checked numerically for the all amplitudes up to and including
seven-point. In practise, this is done by extracting the soft parts of all the box
functions and rephrasing (7.6) as identities among the box coefficients.

The soft divergences of one and two-mass triangles are best studied by rewrit-
ing them in a basis consisting of the functions

G(−K2) =
(−K2)−ε

ε2
=

1
ε2

− log(−K2)
ε

+ . . . , (7.7)

where K2 runs over all independent kinematic invariants. Since the soft parts
of this basis are independent, the vanishing of their sum amounts to requiring
the vanishing of every coefficient. Going back to the basis of one and two-mass
triangles this means that all coefficents of these are also zero. The three-mass
triangles have no IR singularities and can thus not be ruled out in this way. The
bubble functions are proportional to

(−K2)−ε

ε
=

1
ε
− log(−K2) + . . . , (7.8)

so all we can say about them is that their coefficients add up to zero.

7.2.2 Ruling Out Bubbles

The safest way of ruling out bubble contributions is of course to calculate them
directly. For this, the article uses two methods which are closely related. The first
is the method of Britto, Buchbinder, Cachazo and Feng [56] where the unitarity
cuts of amplitudes are explicitly integrated and the results compared with the
cut of the expansion in terms of scalar integrals. By inspecting all unitarity cuts
of seven-point NMHV amplitudes in this light, bubble integrals can indeed be
ruled out.

Rather than going through this technical, albeit interesting, calculation, we
will use a method which ties together the behaviour of tree amplitudes deformed
by a complex parameter z as in on-shell recursion (cf. section 3.3) and the UV
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behaviour of one-loop amplitude. This choice is made to illustrate one of the cen-
tral points of this thesis, namely that properties of graviton tree amplitudes (such
as z → ∞ behaviour) are tightly linked with the whole perturbative expansion
of N = 8 supergravity.

Using the expansion (7.1) we can write the unitarity cut in a particular channel
with momentum P and lift the momentum integration. This gives∑

i∈C′

ci

(l1 − K1(i))2(l2 − K2(i))2
+
∑
j∈D′

dj

(l1 − K3(j))2
+ ek + D(l1, l2), (7.9)

where C′ and D′ are the sets of box and triangle functions which have a cut in the
relevant channel and the l − K1,2,3 represent the remaining propagators. Only
one bubble function has the cut; this is represented by ek. Finally, we have added
a total derivative term which is set to zero by the integration. By the normal
logic of unitarity, this integrand should be equal to a product of two on-shell tree
amplitudes, summed over internal helicities,∑

h1,h2=±
M(. . . , lh1

1 ,−l−h2
2 )M(. . . , lh2

2 ,−l−h1
1 ). (7.10)

We can now deform this product in the same way as done in the BCFW con-
struction of on-shell recursion described in section 3.3, namely by making the
shift

|l̂1〉 = |l1〉 + z|l2〉, |l̂2] = |l2] − z|l1]. (7.11)

Under this shift, the integrand of boxes and triangles go as z−2 or z−1 as z → ∞
and bubbles go as z0. This immediately suggests a condition for absence of a
bubble: If (7.10) tends to zero as z → ∞ (and D(l1, l2) does as well) the bubble
corresponding to the cut is absent. This condition can be related directly to an
equivalent condition for vanishing of bubbles in the direct integration method
mentioned above, so it is indeed an appropriate check.

The behaviour of tree amplitudes under the under above shift (7.11) is not
known in general, but two things are known: For MHV amplitudes where the
helicities of (l1, l2) are given as (h1, h2), then the scaling can be derived from
known expressions for the amplitude [11,16] to be

MMHV ∼ z−2 when (h1, h2) = (+,+), (−,−), (+,−),
MMHV ∼ z6 when (h1, h2) = (−,+),

MMHV ∼ z2h+2 when (h1, h2) = (−h, h). (7.12)

It is also known generally [13] that

M ∼ z−2 when (h1, h2) = (+,−) (7.13)

for all graviton amplitudes. Furthermore it can be verified that the two first lines
of (7.12) holds for all six and seven-point tree amplitudes needed here. Thus, it
is not unreasonable to assume that this is a general picture.
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The known z → ∞ behaviour of MHV amplitudes can be used immediately
to derive the behaviour of the cut integrand for one-loop MHV amplitudes. A
singlet cut integrand where there is only one state running in the loop has the
generic form

M(1−, 2−, 3+, . . . , r+, l+1 ,−l+2 )M(−l−1 , l−2 , (r + 1)+, . . . , n+). (7.14)

+ −

−+

l1

l2
1−

2−

Under the shift, both tree amplitudes go as z−2 so the cut goes as z−4, and there
are no bubble contributions.

If the cut is non-singlet, the whole multiplet can run in the loop,

l1

l2
1−

2−

the integrand becomes∑
h

(−1)2h

(
8

2h − 4

)
×M(2−, 3+, . . . , r+, lh1 ,−l−h

2 )M(−l−h
1 , lh2 , (r + 1)+, . . . , n+) (7.15)

However, we know from SWIs that MHV amplitudes with different external par-
ticle content are related, e.g.,

M(2−, 3+, . . . , r+, lh1 ,−l−h
2 ) =

(〈2l1〉
〈2l2〉

)2h−4

M(2−, 3+, . . . , r+, l+1 ,−l−2 ),

(7.16)

so we can write (7.15) as

ρ ×M(2−, 3+, . . . , r+, l+1 ,−l−2 )M(−l−1 , l+2 , (r + 1)+, . . . , n+) (7.17)

where

ρ =
∑

h

(−1)2h

(
8

2h − 4

)(〈2l1〉〈1l2〉
〈2l2〉〈1l1〉

)2h−4

=
(〈12〉〈l1l2〉
〈2l2〉〈1l1〉

)8

. (7.18)
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Under the shift, the two tree amplitudes go as z−2 and z6, respectively, while ρ,
whose form is a consequence of N = 8 supersymmetry, goes as z−8. In total, the
integrand goes as z−4 which rules out bubbles in all one-loop MHV amplitudes.

For singlet NMHV cuts, the situation is quite the same as for MHV; the
integrand is

M(l−1 , . . . ,−l−2 )M(l+2 , . . . ,−l+1 ), (7.19)

and since both tree amplitudes go as z−2 under the shift, the integrand goes as
z−4. This explicitly holds true for all cuts of six and seven-graviton amplitudes,
and continues to hold for any singlet cut if the two first lines of (7.12) hold beyond
MHV.

The non-singlet NMHV cuts are more involved since they require the sum-
mation over the N = 8 multiplet. For some integrands, such as∑

h

(−1)2h

(
h

2h − 4

)
M(1−, 2−, 4+, l−h

1 ,−lh2 )M(−lh1 , l−h
2 , 3−, 5+, 6+), (7.20)

The calculation is essentially the same as for the MHV case because the left
NMHV amplitude is also a googly MHV amplitude where

M(1−, 2−, 4+, l−h
1 ,−lh2 ) =

(
− [4l1]

[4l2]

)2h−4

M(1−, 2−, 4+, l−1 ,−l+2 ), (7.21)

such that the integrand becomes( 〈3P124]
〈3l2〉[l24]

)8

M(1−, 2−, 4+, l−1 ,−l+2 )M(−l+1 , l−2 , 3−, 5+, 6+), (7.22)

and goes as z−4. But in the seven-point calculation we will need cuts like

l1

l21−
2−

4+

5+ 3−

6+

7+

with the integrand∑
h

(−1)2h

(
h

2h − 4

)
M(1−, 2−, 4+, 5+, l−h

1 ,−lh2 )M(−lh1 , l−h
2 , 3−, 6+, 7+),

(7.23)

the expression depends on the six-point NMHV tree amplitude. As mentioned
above, this has been calculated in the paper and is found to contain 14 terms,
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of which 12 have the structure X × Y 2h−4 and the last two only contribute at
h = ±2. When this expression is inserted into (7.23) we find that it goes to
zero as z → ∞ term by term (after the h summation) although it does not go
as well as z−4. Again this highlights the connection between recursion relations
and UV structure: Using recursion relations we can write down a form of the six-
point amplitude which rules out certain bubble contributions to the seven-point
one-loop amplitude without the need for further cancellations.

Since we have now calculated the z → ∞ behaviour of every independent
cut at six and seven-points, and found that they approach zero, we conclude
that there are no bubble contributions to the one-loop amplitudes, and that the
absence can be tied to recursion relations for gravity.

7.2.3 Ruling Out Three-Mass Triangles

As mentioned above, three-mass triangles have no IR singularities and have to
be ruled out explicitly. This can be done by expecting the triple cuts∑

h1,h2,h3

∫
dDl1δ(l21)δ(l

2
2)δ(l

2
3)

×M(. . . ,−l−h1
1 , lh2

2 )M(. . . ,−l−h2
2 , lh3

3 )M(. . . ,−l−h3
3 , lh1

1 ), (7.24)

and arguing that they are all results of triple cuts of the boxes,∫
dDl1δ(l21)δ(l

2
2)δ(l

2
3)
∑
i∈C′′

ci

(l1 − K(i))2
(7.25)

where l1−K(i) is the momentum of the remaining uncut propagator. The helpful
fact here is that there are kinematic regimes where the three-mass triple cut is
real, and thus the remaining integration can be performed numerically without
appealing to complex Minkowski space methods.

The box functions that have three-mass triple cuts are the 2-mass hard, 3-
mass and 4-mass boxes. Since we are only going up to seven-point amplitudes
we need not worry about the last of these. The result of the cut integrations are

I4(k1, k2,K3,K4)
∣∣∣
cut

=
π

2(k1 + k2)2(k2 + K3)2

I4(k1,K2,K3,K4)
∣∣∣
cut

=
π

2
(
(k1 + K2)2(K2 + K3)2 − K2

2K2
4

)
I3(K1,K2,K3)

∣∣∣
cut

=
π

2
√

K4
1 + K4

2 + K4
3 − 2(K2

1K2
2 + K2

2K2
3 + K2

3K2
1 )

(7.26)

With the knowledge of the box coefficients we have, it is fairly straigtforward to
numerically integrate all the triple cuts and compare them to the expectation
from the boxes at some randomly chosen kinematic points. This explicitly rules
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out three-mass triangles for both six and seven-point amplitudes. For the six-
point NMHV, the independent triangle coefficients are

d3m({1−, 2−}, {3−, 4+}, {5+, 6+})
d3m({1−, 4+}, {2−, 5+}, {3−, 6+}). (7.27)

The triple cut corresponding to the latter is a non-singlet cut which requires a
sum over the N = 8 multiplet. This means that it is non-zero for N < 8. The first
triangle coefficient can be expected to be zero in any massless theory of gravity.
For the seven-point NMHV, the independent three-mass triangle coefficients are

d3m({1−, 2−}, {3−, 4+}, {5+, 6+, 7+})
d3m({1−, 2−}, {3−, 4+, 5+}, {6+, 7+})
d3m({1−, 2−, 4+}, {3−, 5+}, {6+, 7+})
d3m({1−, 4+}, {2−, 5+}, {3−, 6+, 7+}). (7.28)

Again, the three first correspond to singlet cuts which are only sensitive to the
presence of the graviton and should be zero in any massless gravity theory while
the last is non-zero for N < 8.

7.2.4 Factorization and Rational Terms

We have now ruled out contributions to the cut-constructible parts from anything
but boxes at six and seven-point. At six-point it is already known that there are
no rational parts, so this provides a verification of the No-Triangle Hypothesis
in that case. For seven-point amplitudes, however, there is no general argument
ruling out rational contributions.

Computing rational contributions is in general very hard in gravity theories.
A strategy that works in Yang–Mills theory is to do the full calculation in 4− 2ε
dimensions (cf. section 5.2.3) and extract the rational pieces by taking ε → 0.
This works well because any massless field content can be decomposed into an
N = 4 multiplet, some number of N = 1 chiral multiplets and some number
of scalars, and because it can be proven explicitly that the two supersymmetric
theories have no rational parts; only the scalar loop calculation needs to be done
exactly in 4 − 2ε dimensions. For gravity, there is no such theorem saying that
supersymmetric theories have no rational contributions, so the calculation needs
to be done in 4 − 2ε dimensions for all states of the multiplet, thereby rendering
most of the benefits of the spinor-helicity formalism useless.

An alternative is to use the methods of section 5.5 or, more generally, the
known factorization structure of one-loop gravity amplitudes. As in the gauge
case, this means in particular multiparticle, collinear and soft factorization. The
multiparticle factorization is, on the grounds of general field theory arguments
[28], the same as for gauge theory (5.7) with the obvious corrections for the lack of
colour ordering in gravity. The collinear behaviour at one-loop is actually simpler
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than in Yang–Mills (5.8) as the splitting functions have no loop corrections. This
gives [22]

M1−loop(aha , bhb , . . .) →
∑

h=±2

Splitgrav−h (z, aha , bhb)M1−loop(P h, . . .) (7.29)

as a → zP , b → (1 − z)P . The splitting functions for gravitons are

Splitgrav+ (z, a+, b+) = 0

Splitgrav− (z, a+, b+) = − 1
z(1 − z)

[ab]
〈ab〉

Splitgrav+ (z, a−, b+) = − z3

1 − z

[ab]
〈ab〉 . (7.30)

There is also a universal soft behaviour when a graviton momentum approaches
zero, which also does not incur loop corrections,

M1−loop
n (s±, . . .) → Sgrav

n (s±)M1−loop
n−1 (. . .), (7.31)

as ks → 0. When the graviton going soft is number n in some arbitrary ordering,
the soft factor is

Sgrav
n (n+) = − 1

〈1n〉〈n(n − 1)〉
n−2∑
i=2

〈1i〉〈i(n − 1)〉[in]
〈in〉 . (7.32)

These limits put some quite strong constraints on the possible rational parts
which must have the same factorization as the cut-constructible parts. We know
that the rational parts of the six-graviton amplitude is zero, so by (7.29) and
(7.31) the rational part of the seven-graviton amplitude can have no collinear or
soft singularities. It is hard to imagine any rational spinor expression which has
none of these singularities while being of mass dimension 4 and having the right
holomorphic weight of spinors as determined by their helicities. Indeed, it is hard
to imagine such an expression for any number of external gravitons, so by “loose
induction” we should expect that all rational parts are zero.

This argument could probably be formalized by using on-shell recursive meth-
ods like those of section 5.5 for gravity. Some progress has been made in this
direction [51] but the approach is still to undeveloped to be used for the problem
at hand.

7.3 Conclusions

Using an array of different methods, we have explititly calculated the cut-containing
parts of the NMHV six and seven graviton one-loop amplitudes in N = 8 super-
gravity and found that only box integrals contribute. At six points, this deter-
mines the amplitude completely while at seven-point we have argued that an
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additional rational term is highly unlikely. This proves the No-Triangle Hypoth-
esis at six points and renders it highly credible at seven.

The methods used can be applied at any number of external particles, and it
does not appear that they would suddenly start failing. This applies in particular
to the ruling out of bubbles which relied on very general scaling arguments for the
amplitudes, scalings that are expected to hold to any number of points. Together
with the arguments that the rational parts of amplitudes are likely to be zero,
this provides strong evidence that the one-loop amplitude in N = 8 supergravity
consists exclusively of boxes just as N = 4 SYM.

As explained in the beginning of the chapter, this amounts to the cancellation
of n−4 powers of loop momentum in a n-point amplitude, a cancellation which is
unexplained. Similar cancellations seem to occur at higher loop order also. They
have been explicitly found in the four-point amplitude at two [21] and three [23]
loops, where it was proven that the divergences of maximal supergravity and
maximal super-Yang–Mills are the same in any dimension. This gives a strong
hint that the divergences of the two theories match in general, and that N = 8
supergravity in four dimensions is UV finite in particlular. It also hints that
there is some unknown symmetry or dynamical principle present in N = 8 which
is responsible, although there are no candidates for such a symmetry. There is
evidence that the cancellations occur already in non-supersymmetric gravity [19],
and thus the symmetry should be visible in some form without the presence
of supersymmetry. The identification of such a symmetry will be of immense
interest.
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Chapter 8

Amplitude with a Higgs

In this chapter we make the full determination of a particular one-loop helicity
amplitude, A1(Higgs, 1−, 2−, 3+, 4+). The chapter is based on [9] but presents
the calculation in a somewhat different way. The article calculates the cut con-
structible parts, using the one-loop MHV rules of section 5.3, of the all-n MHV
amplitude A1(φ, 1−, 2−, 3+, . . . , n+) (φ to be defined) and the rational part of
A1(Higgs, 1−, 2−, 3+, 4+) with on-shell recursion from section 5.5. In this chap-
ter, we limit ourselves to the four-gluon case all the way through and compute
the cut-constructible parts using classical unitarity as in section 5.2.

Even though the pp → Hjj process, where this amplitude is relevant, is
not included in table 1.1 of wanted NLO calculations, it is generally considered
of the same importance. Some semi-numerical results already exist [79], but
clearer analytic results are still missing. The process forms a background to
Higgs production by vector boson fusion [63].

8.1 Higgs in the Large Top Mass Limit

In the present calculation we will make the assumption that the top mass is large
or, to be exact, that the kinematic scales involved in the scattering are small
compared to twice the top mass. In that approximation, the dominant coupling
of the Higgs to massless QCD particles comes through a top quark triangle loop
connecting to two gluons,
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Such an interaction is well approximated by an effective term in the Lagrangian
[121,123]

C

2
HTrFμνFμν , (8.1)

where H is the Higgs field and C is an effective coupling constant equal to [90]

αs

6πv

(
1 +

11αs

4π
+ O(α2

s)
)

. (8.2)

In the addition to the Higgs, we can add a pseudoscalar Higgs A such that
the total effective Lagrangian becomes

C

2

(
HTrFμνFμν + iATrFμν

∗Fμν
)

(8.3)

where

∗Fμν =
i

2
εμνκλFκλ. (8.4)

If we now change variables to

φ =
1
2
(H + iA), φ† =

1
2
(H − iA),

Fμν
SD =

1
2
(Fμν + ∗Fμν), Fμν

ASD =
1
2
(Fμν − ∗Fμν), (8.5)

the effective Lagrangian becomes

C
(
φTrFSDμνF

μν
SD + φ†TrFASDμνF

μν
ASD

)
, (8.6)

and Higgs amplitudes can be recovered by

A(H, . . .) = A(φ, . . .) + A(φ†, . . .). (8.7)

The Higgs is colourless and does not participate in the colour ordering, but is
conventionally written first.

The central observation is that tree amplitudes for φ and φ† are separately
simpler than amplitudes for H or A. In particular, they follow a pattern like that
of the Parke–Taylor amplitudes (2.41),

A0(φ, 1+, . . . , n+) = 0
A0(φ, 1−, 2+, . . . , n+) = 0

A0(φ, 1−, 2+, . . . , i−, . . . , n+) =
〈1i〉4

〈12〉〈23〉 · · · 〈n1〉 , (8.8)

for φ, and

A0(φ†, 1−, . . . , n−) = 0
A0(φ†, 1+, 2−, . . . , n−) = 0

A0(φ†, 1+, 2−, . . . , i+, . . . , n−) = (−1)n
[1i]4

[12][23] · · · [n1]
, (8.9)
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for φ†. Even though the amplitudes look like the MHV and googly-MHV, the con-
dition between the gluon momenta for conservation of momentum is different be-
cause of the presence of the φ momentum. Notice also that parity changes the sign
of gluon helicities and daggers the φ, so there are no easy (φ,+,+,−,−,−, . . .)
amplitudes. In fact, there is a simple φ-all-minus amplitude (and φ†-all-plus
amplitude),

A0(φ, 1−, . . . , n−) = (−1)n
m4

φ

[12][23] · · · [n1]
,

A0(φ†, 1+, . . . , n+) =
m4

φ†

〈12〉〈23〉 · · · 〈n1〉 . (8.10)

The similatity of the φ-MHV amplitude to the MHV amplitude have led
people to develop MHV rules for amplitudes with a single φ, where a φ-MHV
vertex must be used once but where the off-shell prescription is unchanged [7,73].
The extension to one-loop amplitudes was explored in [5] and the article on which
this chapter is based [9]. The former deals with the cut-constructible part of
A1(φ,+,+, . . . ,+).

One-loop amplitudes involving a φ and at most one negative helicity gluon are
purely rational because the tree amplitude vanishes. All-n expressions for these
amplitudes have been constructed in [18] where Schmidt’s results for a Higgs and
three gluons [120] is converted into the φ/φ† notation. Some of those we need
are given at the relevant point below.

8.2 A One-Loop Higgs Amplitude

The methods presented in chapter 5 can be applied just as well to amplitudes
containing a Higgs in the large mt limit. Here we will apply it to the calculation of
A(H, 1−, 2−, 3+, 4+), that is, the one-loop amplitude for a Higgs and four gluons
with the ’adjacent MHV’ helicity configuration. This configuration has a non-
zero tree amplitude and we can thus expect cut-containing pieces at one-loop. In
practice we will calculate A(φ, 1−, 2−, 3+, 4+) and use that

A(H, 1−, 2−, 3+, 4+) = A(φ, 1−, 2−, 3+, 4+) + A(φ†, 1−, 2−, 3+, 4+)
= A(φ, 1−, 2−, 3+, 4+) + A(φ, 3−, 4−, 1+, 2+)∗. (8.11)

A(φ, 1−, 2−, 3+, 4+) is split into its cut-containing pieces and its rational pieces.
For generality we calculate the cut-containing pieces for A(φ, 1−, 2−, 3+, . . . , n+).
The whole calculation is done in the four-dimensional helicity (FDH) renormal-
ization scheme.

8.2.1 Cut-Constructible Pieces

As described in section 5.1.3, the states running in the loop can be written as
a linear combination of an N = 4 multiplet, an N = 1 chiral multiplet, and a
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complex scalar referred to as N = 0. The calculation of cut-containing pieces can
be performed separately for the three multiplets, and the result assembled from
them.

Our plan of action is to first uncover any box functions by the use of quadru-
ple cuts. We then consider the (two-particle) unitarity cuts where we isolate
the terms coming from the (by now known) boxes and relate the remainder to
triangles and bubbles.

Quadruple Cuts

If the amplitude is cut in four places, the four corners must together have six
minuses (two external and four internal). These must necessarily be distributed
as two three-point googly corners (opposite) and two MHV corners. Since the
corner with the φ cannot be three-point googly, it must be one of the MHV
corners. For N = 4, which contains the gluons, this gives us the following six
types of non-zero quadruple cuts:

l1

l2

l3

l4

−+
+

−
+ − −

+

φ
1−

2−

m+
a

m+
b

l1

l2

l3

l4

−+
−

+
+ − −

+

φ

1−

2−

m+

l1

l2

l3

l4

+−
−

+
+ −

+

−

φ

1− 2−

m+
l1

l2

l3

l4

+−
−

+
− +

+

−

φ

m+
a 1−

2−

m+
b
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l1

l2

l3

l4

+−
−

+
− + −

+

φ

m+

1−

2−
l1

l2

l3

l4

+−
+

−
+ − −

+

φ 2−

m+ C

1−

Notice that all permitted cuts necessarily have gluons running in the loop. This
immediately shows us that N = 1 and N = 0 cannot contribute since they do
not have gluons running in loops.

The calculation of the prefactors of the box functions is almost identical to the
one without the φ. Thus, we will only present one example calculation, namely
that of the coefficient c of the box corresponding to the second cut above. From
(B.3) in appendix B we derive that

l1 =
|2〉〈mP2,m−1|

〈m2〉 , l2 =
|2〉〈mP3,m−1|

〈m2〉 ,

l3 =
|m〉〈2P3,m−1|

〈m2〉 , l4 =
|m〉〈2P3,m|

〈m2〉 , (8.12)

such that

c =
1
2

〈1l1〉3
〈l1(−l4)〉〈(−l4)(m + 1)〉〈(m + 1) · · · 1〉

[l2(−l1)]3

[(−l1)2][2l2]

× 〈l3(−l2)〉3
〈(−l2)3〉〈3 · · · (m − 1)〉〈(m − 1)l3〉

[(−l3)m]3

[ml4][l4(−l3)]

=
1
2
〈12〉〈23〉〈(m − 1)m〉〈m(m + 1)〉〈1l1〉3[l1l2]3〈l2l3〉3[l3m]3

〈· · ·〉〈l1l4〉〈l4(m + 1)〉[l12][2l2]〈l23〉〈(m − 1)l3〉[ml4][l4l3]

=
1
2
〈12〉〈23〉〈(m − 1)m〉〈m(m + 1)〉〈12〉3(−〈mP2,m−1P3,m−1m〉)3
〈· · ·〉〈m2〉4〈2m〉〈m(m + 1)〉〈mP2,m−12](−[2P3,m−1m〉)〈23〉

× 〈2m〉3〈2P3,m−1m]3

〈(m − 1)m〉(−[mP3,m2〉)(−〈2P3,mP3,m−12〉)
=

〈12〉4
〈· · ·〉

(
− 〈2P3,m−1m]〈mP3,m−12]

2

)
. (8.13)

As usual for MHV amplitudes, this is just the Gram determinant times the tree
amplitude. This holds for all coefficients, so the boxy part of the amplitude is
given by

〈12〉4
〈· · ·〉

n∑
m1=1

m1−1∑
m2=m1+2

F4(m1, Pm1+1,m2−1,m2), (8.14)
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which is a combination of 1-mass and 2-mass-easy box functions. The difference
in comparison to the result without the φ is primarily that there are twice as
many 2-mass boxes because the φ makes the two massive corners non-identical.

Two Particle Cuts, N = 4 Case

By counting minuses, we can again see that the two tree amplitudes separated
by the cut must be MHV and φ-MHV, respectively:

l1

l2

φ

m2 + 1

m1 − 1 m1

m2

Regardless of the position of 1 and 2, the cut integrand becomes

〈12〉4
〈· · ·〉

〈(m1 − 1)m1〉〈l1l2〉〈m2(m2 + 1)〉〈l2l1〉
〈(m1 − 1)l1〉〈l1m1〉〈m2l2〉〈l2(m2 + 1)〉 . (8.15)

For generic values of m1 and m2 it can be shown, analogously to the pure gluon
case, that this is equivalent to the same cut of

〈12〉4
〈· · ·〉

(
F4(m1 − 1, Pm1,m2−1,m2) + F4(m1 − 1, Pm1,m2 ,m2 + 1)

+F4(m1, Pm1+1,m2−1,m2) + F4(m1, Pm1+1,m2 ,m2 + 1)
)
. (8.16)

The pure glue requirement that m1 − 1 �= m2 + 1 is, however, not present when
there is a φ on the left tree amplitude where the cut

l1

l2

φ

m

m + 1

m − 1

must be taken into account. The decomposition is the same as above, but the box
function F4(m1−1, Pm1,m2 ,m2+1) = F4(m,Pm+1,m−1,m) is physically unsensical
as it stands. Luckily, its cut can be rewritten,

−1
2
〈(m1 − 1)Pm1,m2(m2 + 1)Pm1,m2(m1 − 1)]

(l1 − (m1 − 1))2(l2 + (m2 + 1))2
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=
1
2
〈mPm+1,m−1m]2

〈ml1m]〈ml2m]

=
〈mPm+1,m−1m]

2(l1 − m)2
+

〈mPm+1,m−1m]
2(l2 + m)2

, (8.17)

as a sum of the cuts of the two triangle functions. But since a triangle functions
is independent of the ordering of its momenta, these two triangles are actually
the same, leaving us exactly with the cut of F3(m,Pm+1,m−1). There are no
contributions from bubble functions in the N = 4 case.

The conclusion is, that the amplitude should have the following dependence
on triangles

〈12〉4
〈· · ·〉

n∑
m=1

F3(m,Pm+1,m−1). (8.18)

Two Particle Cuts, N = 1 and N = 0 Cases

With the two particle cuts, we have a possibility to let a full multiplet run in the
loop if we have 1− and 2− sitting on different sides of the cut, that is, in the cases

l1

l2

φ

m + 1

1− 2−

m

l1

l2

φ

2−

m − 1 m

1−

where m runs from 3 to n in both. For simplicity, we only treat the first of these.
For N = 1, the cut is given by

〈1l1〉〈1l2〉〈2l1〉〈2l2〉
(
−
(
〈1l1〉〈2l2〉 − 〈1l2〉〈2l1〉

)2)
〈l1l2〉〈l2(m + 1)〉〈(m + 1) · · · 1〉〈1l1〉〈l2l1〉〈l12〉〈2 · · ·m〉〈ml2〉

=
〈12〉3〈m(m + 1)〉

〈· · ·〉
〈1l2〉〈l22〉

〈ml2〉〈l2(m + 1)〉
=

〈12〉3
〈· · ·〉

(〈m1〉〈2l2〉
〈ml2〉 +

〈1(m + 1)〉〈2l2〉
〈(m + 1)l2〉

)
=

〈12〉3
〈· · ·〉

(〈2l2m]〈m1〉
〈ml2m]

− 〈2l2(m + 1)]〈(m + 1)1〉
〈(m + 1)l2(m + 1)]

)
. (8.19)

We have now written this as cuts of vector triangles. To put this into the standard
basis of scalar integrals we need to perform a Passarino–Veltman reduction [112].
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The details of this procedure is given in appendix C, and the result is (using
P ≡ −P2,m):

〈12〉3
〈· · ·〉

(〈2P2,mm1〉
〈mP2,mm]

− 〈2P2,m(m + 1)1〉
〈(m + 1)P2,m(m + 1)]

)
. (8.20)

Here we have to remember that we have suppressed the integration, so what this
really tells us is that the cuts we have calculated are the cuts of

cΓ

n∑
m=3

〈12〉3
〈· · ·〉

(〈2P2,mm1〉
〈mP2,mm]

− 〈2P2,m(m + 1)1〉
〈(m + 1)P2,m(m + 1)]

)
F2(P2,m). (8.21)

Using that F2(P2,m) − F2(P2,m−1) = − log(P 2
2,m/P 2

2,m−1), we can rewrite this as

−cΓ
〈12〉3
〈· · ·〉

n∑
m=4

〈2P2,mm1〉
〈mP2,mm]

log
(

P 2
2,m

P 2
2,m−1

)
. (8.22)

The contribution from the second class of diagrams is

cΓ

n∑
m=3

〈12〉3
〈· · ·〉

( 〈1Pm,1(m − 1)2〉
〈(m − 1)Pm,1(m − 1)]

− 〈1Pm,1m2〉
〈mPm,1m]

)
F2(Pm,1), (8.23)

or

−cΓ
〈12〉3
〈· · ·〉

n∑
m=4

〈1Pm,1(m − 1)2〉
〈(m − 1)Pm,1(m − 1)]

log
(

P 2
m,1

P 2
m−1,1

)
. (8.24)

The N = 0 case is complicated by the need for integral reduction. However,
if we plunge right into it, the cut corresponding to the first diagram above is

2
〈1l1〉2〈1l2〉2〈2l1〉2〈2l2〉2

〈l1l2〉〈l2(m + 1)〉〈(m + 1) · · · 1〉〈1l1〉〈l2l1〉〈l12〉〈2 · · ·m〉〈ml2〉
= 2

〈12〉〈m(m + 1)〉
〈· · ·〉

〈1l1〉〈1l2〉2〈2l1〉〈2l2〉2
〈l1l2〉2〈ml2〉〈l2(m + 1)〉

= 2
〈12〉
〈· · ·〉

〈1l1〉〈1l2〉〈2l1〉〈2l2〉2
〈l1l2〉2

( 〈1m〉
〈ml2〉 +

〈1(m + 1)〉
〈l2(m + 1)〉

)
= 2

〈12〉
〈· · ·〉

〈1l1l21〉〈2l1l22〉
P 4

2,m

( 〈2l2(m + 1)1〉
〈(m + 1)l2(m + 1)]

− 〈2l2m1〉
〈ml2m]

)
= 2

〈12〉
〈· · ·〉

〈1P2,ml21〉〈2P2,ml22〉
P 4

2,m

( 〈2l2(m + 1)1〉
〈(m + 1)l2(m + 1)]

− 〈2l2m1〉
〈ml2m]

)
. (8.25)

These are cuts of triangles with three-index tensors in the numerators. Again,
we use the Passarino–Veltman reduction from appendix C (using P ≡ −P2,m) to
reduce

〈1P2,ml21〉〈2P2,ml22〉
P 4

2,m

〈2l2m1〉
〈ml2m]

(8.26)
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to

〈1P2,mm1〉〈2P2,mm2〉〈2P2,mm1〉
3〈mP2,mm]3

− 〈1P2,mγμ1〉〈2P2,mm2〉〈2γμm1〉
12〈mP2,mm]2

−〈1P2,mγμ1〉〈2P2,mγμ2〉〈2P2,mm1〉
12P 2

2,m〈mP2,mm]

=
〈1P2,mm1〉〈2P2,mm2〉〈2P2,mm1〉

3〈mP2,mm]3
+

〈2P2,mm2〉〈1P2,mm1〉〈12〉
6〈mP2,mm]2

−〈12〉2〈2P2,mm1〉
6〈mP2,mm]

=
〈1P2,mm1〉〈2P2,mm2〉〈2[P2,m,m]1〉

6〈mP2,mm]3
− 〈12〉2〈2P2,mm1〉

6〈mP2,mm]
. (8.27)

Thus, the bubble functions coming from the first diagram are

cΓ
〈12〉
3〈· · ·〉

(〈1P2,m(m + 1)1〉〈2P2,m(m + 1)2〉〈2[P2,m, (m + 1)]1〉
〈(m + 1)P2,m(m + 1)]3

−〈12〉2〈2P2,m(m + 1)1〉
〈(m + 1)P2,m(m + 1)]

− 〈1P2,mm1〉〈2P2,mm2〉〈2[P2,m,m]1〉
〈mP2,mm]3

+
〈12〉2〈2P2,mm1〉

〈mP2,mm]

)
F2(P2,m), (8.28)

while those coming from the second are

cΓ
〈12〉
3〈· · ·〉

(
− 〈1Pm,1(m − 1)1〉〈2Pm,1(m − 1)2〉〈2[Pm,1 , (m − 1)]1〉

〈(m − 1)Pm,1(m − 1)]3

+
〈12〉2〈1Pm,1(m − 1)2〉
〈(m − 1)Pm,1(m − 1)]

+
〈1Pm,1m1〉〈2Pm,1m2〉〈2[Pm,1,m]1〉

〈mPm,1m]3

−〈12〉2〈1Pm,1m2〉
〈mPm,1m]

)
F2(Pm,1). (8.29)

Again, these can be rewritten as

cΓ
〈12〉
3〈· · ·〉

n∑
m=4

[(〈1P2,mm1〉〈2P2,mm2〉〈2[P2,m,m]1〉
〈mP2,mm]3

−〈12〉2〈2P2,mm1〉
〈mP2,mm]

)
log
(

P 2
2,m

P 2
2,m−1

)
+
(〈1Pm,1(m − 1)1〉〈2Pm,1(m − 1)2〉〈2[Pm,1, (m − 1)]1〉

〈(m − 1)Pm,1(m − 1)]3

−〈12〉2〈1Pm,1(m − 1)2〉
〈(m − 1)Pm,1(m − 1)]

)
log
(

P 2
m,1

P 2
m−1,1

)]
. (8.30)
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Summing Up

We can now sum up the cut containing pieces for arbitrary fermion and scalar
content. In place of the logs we use

L1(s, t) =
log(s/t)

s − t
, L3(s, t) =

log(s/t)
(s − t)3

. (8.31)

The result is

cΓ
〈12〉4
〈· · ·〉

{
n∑

m1=1

(
F3(m1, Pm1+1,m1−1) +

m1−1∑
m2=m1+2

F4(m1, Pm1+1,m2−1,m2)
)

+
n∑

m=4

[(
1 − nf

N
+

ns

N

)(
〈1P2,mm1〉〈2P2,mm2〉〈2[P2,m,m]1〉

3〈12〉3 L3(P 2
2,m, P 2

2,m−1)

−〈1Pm,1(m − 1)1〉〈2Pm,1(m − 1)2〉〈2[Pm,1, (m − 1)]1〉
3〈12〉3

×L3(P 2
m,1, P

2
m−1,1)

)
+
(

11
3

− 2nf

3N
− ns

3N

)(
〈2P2,mm1〉

〈12〉 L1(P 2
2,m, P 2

2,m−1)

−〈1Pm,1(m − 1)2〉
〈12〉 L1(P 2

m,1, P
2
m−1,1)

)]}
. (8.32)

We can now specialize to n = 4, since this is the amplitude we ultimately want
to calculate. There, the result is

cΓ
〈12〉4
〈· · ·〉

4∑
m=1

(
F 1m

4 (m,m + 1,m + 2) + F 2me
4 (m,Pm+1,m+2,m + 3)

+F 2m
3 (m,Pm+1,m+3)

)
+ cΓ

[34]
3〈34〉

(
1 − nf

N
+

ns

N

)(
(8.33)

〈1P2342〉〈2[P23 , 4]1〉L3(s234, s23) + 〈2P4131〉〈2[P41 , 3]1〉L3(s41, s341)
)

+cΓ
[34]〈12〉2
〈34〉

(
11
3

− 2nf

3N
− ns

3N

)(
L1(s234, s23) + L1(s41, s341)

)
.

8.2.2 Rational Pieces

To compute the remaining parts of the amplitude we use the methods described
in section 5.5. The total one-loop amplitude is

A1 = C + R, (8.34)
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but C and R contain unphysical poles which cancel against each other, but pre-
vent us from finding R directly from recursion. Instead, we add and subtract a
term CR with the same unphysical singularities as C,

A1 = (C + CR) + (R − CR), (8.35)

such that only physical poles are left in each of the parantheses. Our first ob-
servation about (8.34) will be that the unphysical poles only reside in the L3

functions, and by rewriting it as

L3(s, t) =
1
2

log
[
1 + (s − t)/t

]
(s − t)3

+
1
2

log
[
1 + (t − s)/s

]
(t − s)3

=
1
2

1
t(s − t)2

− 1
4

1
t2(s − t)

+
1
2

1
s(t − s)2

− 1
4

1
s2(t − s)

+ O((s − t)0)

=
1
2

(
1
t

+
1
s

)
1

(s − t)2
− 1

4
s2 − t2

s2t2(s − t)
+ O((s − t)0)

=
1
2

(
1
t

+
1
s

)
1

(s − t)2
+ O((s − t)0), (8.36)

we see that CR must be constructed by replacing L3(s, t) by

−1
2

(
1
t

+
1
s

)
1

(s − t)2
. (8.37)

Thus,

CR = −cΓ[34]
6〈34〉

(
1 − nf

N
+

ns

N

)[〈1P2342〉〈2[P23 , 4]1〉
〈4P234]2

(
1

s234
+

1
s23

)
+
〈2P4131〉〈2[P41 , 3]1〉

〈3P413]2

(
1

s341
+

1
s41

)]
. (8.38)

Knowing now that R − CR has only physical poles, we can attack it with
recursion relations. For reasons which will become clear later, we choose the
recursive shift

|1̂〉 = |1〉 + z|2〉, |2̂] = |2] − z|1]. (8.39)

Rather than proving that this shift has the proper z → ∞ behaviour, we will note
that it does indeed work without the φ [83], and that the tests to be explained
in the next section show no signs of bad z → ∞ behaviour. The results of doing
recursion on CR are the overlap terms O23, O234, O41, and O341, coming from
the singularities in s23, etc. These are found by leaving the kinematic invariant,
shifting its coefficient according to (8.39), and inserting the z which puts us
exactly at the pole. Taking O23 as an example, we note that CR has a pole
where

0 = ŝ23 = 〈23〉[32̂] = 〈23〉([32] − z[31]) ⇒ z =
[32]
[31]

, (8.40)
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such that

|1̂〉 =
|P1233]

[13]
, |2̂] = |3] [12]

[13]
, P̂23 =

|P1231][3|
[31]

, (8.41)

and find that

O23 = −cΓ

6

(
1 − nf

N
+

ns

N

)
[34]〈1̂P12342〉〈2(34 − 4P123)1̂〉

〈34〉〈4P̂234]2s23

= −cΓ

6

(
1 − nf

N
+

ns

N

) [34]s123[34]〈42〉
(
s123〈24〉[43] − 〈23〉[34]〈4P123]

)
〈34〉〈4P231]2[34]2s23

= −cΓ

6

(
1 − nf

N
+

ns

N

) [34]s123〈42〉
(
s123〈42〉 + 〈4P123]〈32〉

)
〈34〉〈4P231]2s23

. (8.42)

The other overlaps are

O234 = −cΓ

6

(
1 − nf

N
+

ns

N

) [34]s1234〈42〉
(
s1234〈42〉 + 〈4P123P342〉

)
〈34〉〈4P231]2s234

, (8.43)

O41 = −cΓ

6

(
1 − nf

N
+

ns

N

)
[34]〈12〉2
〈34〉s41

, (8.44)

O341 = −cΓ

6

(
1 − nf

N
+

ns

N

) [34]〈2P134]
(
〈2P134] + 〈23〉[34]

)
〈34〉[41]2s341

. (8.45)

The hattings used in these and later calculations are given in the table below:

i |1̂〉 |2̂] P̂i

23
|P1233]

[13]
|3] [12]

[13]
|P1231][3|

[31]

234
|P1234P342〉
〈2P341]

−|P34P12341]
〈2P341]

|P12341]〈2P34|
〈2P341]

41 |4〉〈21〉〈24〉
|P4124〉
〈24〉

|4〉〈2P412 |
〈24〉

341 −|P34P12342〉
〈2P341]

|P1234P341]
〈2P341]

|P341]〈2P1234|
〈2P341]

We can now turn to the results of doing recursion on R. This does not give
us the R since we are summing over a limited set of poles, but rather gives us the
’direct recursive’ terms DR23, etc, composed of (a sum of) an unshifted propa-
gator times a shifted tree amplitude times a shifted rational part of a one-loop
amplitude. One complication is, that the three-point one-loop vertices cannot
really be interpreted as the corresponding amplitude, rather it has to be deduced
from the one-loop splitting functions. In the case at hand, however, we are con-
sidering a scalar running in the loop and we have chosen our shift such that the
two external gluons in a three-point vertex have opposite signs. Fortunately, the

108



rational parts of the corresponding splitting functions are all zero (cf. (5.40)) so
there are no contributions in our case from three-point one-loop vertices. The
non-zero diagrams are

− +

P̂23

2̂−

3+

T

φ

4+

1̂−

L
− +

P̂234

2̂−

3+

4+

L

φ

1̂−

T

+ −

P̂41

4+

1̂−

T

2̂−

3+

φ

L
+ −

P̂341

3+

4+

1̂−

L

2̂−

φ

T

The relevant lower-point amlitudes with a φ can be found in [18]

A1(φ, 1−, 2−) =
1

8π2
A0(φ, 1−, 2−)

R(φ, 1−, 2−, 3+) =
1

8π2
A0(φ, 1−, 2−, 3+)

A1(φ, 1−, 2+, 3+) =
1

48π2

(
1 − nf

N
+

ns

N

)〈12〉〈31〉[23]
〈23〉2

− 1
8π2

A0(φ†, 1−, 2+, 3+)

(8.46)

while the last was calculated in [44]

A1(1−, 2+, 3+, 4+) =
1

48π2

(
1 − nf

N
+

ns

N

) 〈24〉[24]3
[12]〈23〉〈34〉[41] . (8.47)

This gives the direct recursive terms

DR23 = A3(2̂−, 3+,−P̂−
23)

1
P 2

23

R4(φ, 4+, 1̂−, P̂+
23)

=
cΓ

3

(
1 − nf

N
+

ns

N

)
[34]s123[13]〈4P123]
[12][23]〈4P231]2

−2cΓA0(φ†, 1−, 2−, 3+, 4+) (8.48)

DR234 = R4(2̂−, 3+, 4+,−P̂+
234)

1
P 2

234

A3(φ, 1̂−, P̂−
234)

=
cΓ

3

(
1 − nf

N
+

ns

N

)
[34]s2

1234〈24〉3〈3P241]
〈34〉2s234〈2P341]〈4P231]2

(8.49)
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DR41 = A3(4+, 1̂−,−P̂+
41)

1
P 2

41

R4(φ, 2̂−, 3+, P̂−
41)

= 2cΓA0(φ, 1−, 2−, 3+, 4+) (8.50)

DR341 = R4(3+, 4+, 1̂−,−P̂+
341)

1
P 2

341

A3(φ, 2̂−, P̂−
341)

=
cΓ

3

(
1 − nf

N
+

ns

N

)
[31]〈2P134]3

〈34〉s341[41]2〈2P341]
. (8.51)

To obtain R, we now have to add the DR terms and CR and subtract the O
terms. Some lengthy but trivial manipulations give

R = 2cΓA0(A, 1−, 2−, 3+, 4+) + CR +
cΓ[34]
3〈34〉

(
1 − nf

N
+

ns

N

)[
〈23〉〈1P243]2

〈34〉[43][32]s234
− 〈41〉〈3P123]

〈34〉[12][32] +
〈14〉〈2P134]2

〈34〉[43][41]s341

−〈32〉〈4P124]
〈34〉[12][41] +

〈12〉〈2P134]
2[41]s341

− 〈12〉〈1P243]
2[32]s234

−〈12〉2
(

1
s34

+
1

s12
+

1
2s23

+
1

2s41

)]
. (8.52)

It is of special interest here that the first term is present regardless of super-
symmetry, where we might have expected that an amplitude with supersymmet-
ric particle content running in the loop would be fully cut-constructible. The
catch is, of course, that cut-constructibility requires also the external particles
to be supersymmetric, something which is not the case with φ. With those ar-
guments it may seem slightly surprising (although welcome) that it drops out of
A1(H, 1−, 2−, 3+, 4+) when we use (8.11). In A1(A, 1−, 2−, 3+, 4+), of course, the
additional rational piece stays.

8.2.3 Tests

There are a series of tests which we can perform to check that the result is correct.
The first regards only the cut-containing part, in particular the IR divergences
in ε. These are given by (cf. section 5.1.4)

A1 = −cΓ

ε2
A0

4∑
i=1

(
μ2

−si,i+1

)ε

+ O(ε0). (8.53)

This can be checked readily by taking the IR divergent parts of the box and
triangle functions from appendix A and putting them into (8.33). There are no
contributions from the bubble-like and rational parts.
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Collinear Limits

The second test is that of collinear limits. The full checking of all collinear limits
is a rather tedious exercise and will not be repeated here. It is contained in
the original article in detail. Since the cut-containing parts have been fixed by
unitarity, we expect the right collinear limits automatically; for the rational parts,
the use of recursion amounts exactly to enforcing the correct collinear limits for
gluons 4 and 1, and for gluons 2 and 3. Checking these limits provide primarily
a check on the algebra.

From the perspective of on-shell recursion, the important collinear limits are
the rational ones which do not participate in the direct recursive terms. If these
turn out wrong, it is a sign that the use of recursion was not justified because
R(z) − CR(z) did not vanish as z → ∞. In the case at hand, the important
limits in this sense is when 1 and 2 become collinear and when 3 and 4 become
collinear.

For these checks, we can use the rational parts of the splitting functions for
a scalar running in the loop (5.40) along with the tree splitting functions (2.52).
These predict that

R(φ, 1−, 2−, 3+, 4+) → − 1√
z(1 − z)[12]

R(φ, P−, 3+, 4+) (8.54)

as 1 and 2 go collinear, and

R(φ, 1−, 2−, 3+, 4+) → 1√
z(1 − z)〈34〉R(φ, 1−, 2−, P+)

−cΓ

3

√
z(1 − z)

(
1

〈34〉A
0(φ, 1−, 2−, P+)

+
[34]
〈34〉2A

0(φ, 1−, 2−, P−)
)

(8.55)

as 3 and 4 go collinear. We can prove the first by first extracting the part of
(8.52) that has the correct singularity,

R → 2cΓ
−[34]3

[12][23][31]
− cΓ[34]

3〈34〉2
(

1 − nf

N
+

ns

N

)[〈41〉〈3P123]
[12][32]

+
〈32〉〈4P124]

[12][41]

]
=

−1√
z(1 − z)[12]

[
− 2cΓA0(φ†, P−, 3+, 4+)

+
cΓ[34]
3〈34〉2

(
1 − nf

N
+

ns

N

)
〈4P 〉〈P3〉

→ −1√
z(1 − z)[12]

R(φ, P−, 3+, 4+), (8.56)

as wanted. For the collinear limit between 3 and 4 things are a bit more messy.
Because R(φ, 1−, 2−, P+) ∼ A0(φ, 1−, 2−, P+), the first line of (8.55) comes from
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the first term of (8.52) in the same way as for 1 and 2. The remaining terms with
the collinear singularity are

cΓ[34]
3〈34〉

(
1 − nf

N
+

ns

N

)[ 〈23〉〈1P243]2

〈34〉[43][32]s234
+

〈14〉〈2P314]2

〈34〉[43][41]s341

−〈41〉〈3P123]
〈34〉[12][32] −

〈32〉〈4P124]
〈34〉[12][41] −

〈12〉2
〈34〉[43]

]

→ cΓ[34]
3〈34〉

(
1 − nf

N
+

ns

N

)[〈23〉〈12〉[23](〈12〉[23] + 2〈14〉[43]
)

〈34〉[43][32]s234

+
〈14〉〈21〉[14]

(
〈21〉[14] + 2〈23〉[34]

)
〈34〉[43][41]s341

− 〈12〉2
〈34〉[43]

−
√

z(1 − z)
〈34〉

(〈P1〉〈PP12P ]
[12][P2]

+
〈P2〉〈PP12P ]

[12][P1]

)]
=

cΓ[34]
3〈34〉

(
1 − nf

N
+

ns

N

)[〈12〉2
s34

( s23

s234
+

s41

s341
− 1
)

+ 2
〈12〉〈23〉〈41〉

〈34〉

×
( 1

s234
+

1
s341

)
−
√

z(1 − z)
〈34〉

〈PP12P ]2

[12][2P ][P1]

]
→ cΓ[34]

3〈34〉
(

1 − nf

N
+

ns

N

)[〈12〉3[24][13]
[34]s234s341

+
〈12〉2[21]〈41〉〈23〉

〈34〉s234s341

+2
〈12〉〈23〉〈41〉(〈3P123] + 〈4P124])

〈34〉s234s341
−
√

z(1 − z)
〈34〉

〈PP12P ]2

[12][2P ][P1]

]
→ cΓ

√
z(1 − z)
3

(
1 − nf

N
+

ns

N

)[
− 〈12〉3

〈34〉〈2P 〉〈P1〉 − [34]m4
φ

〈34〉2[12][2P ][P1]

]
= −cΓ

√
z(1 − z)
3

(
1 − nf

N
+

ns

N

)
×
[A0(φ, 1−, 2−, P+)

〈34〉 +
[34]A0(φ, 1−, 2−, 3−)

〈34〉2
]
, (8.57)

as wanted. Notice how we had to rewrite a contribution which superficially went
as s−1

34 to one with either a 〈34〉−1 or a [34]−1 divergence. As noted above, the
correctness of these two colinear limits are an indicative necessary condition for
the recursion relation to hold.

Soft Higgs Limit

The very last test we will make is the limit as the Higgs momentum goes soft. In
fact, it turns out to fail, but only because the naive expectation for the soft limit
is wrong. The naive expectation comes from noting that as the Higgs momentum
goes to zero, the H field in the effective correction CHFμνFμν becomes a constant,
and the term becomes proportional to the Higgsless gluon term. This tells us that
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the first order term in C should be obtainable in this limit as

Al(kH → 0, n gluons) = Cg
∂

∂g
Al(n gluons)

= C(n − 2 + 2l)Al(n gluons), (8.58)

where g is the gauge coupling and l is the number of loops. From looking at the
form of the φ-MHV amplitude and the φ†-googly-MHV amplitude, it is reasonable
to guess that the corresponding limits for φ and φ† are

Al(kφ → 0, n−g−, n+g+) = (n− − 1 + l)Al(n−g−, n+g+),
Al(kφ† → 0, n−g−, n+g+) = (n+ − 1 + l)Al(n−g−, n+g+). (8.59)

In other words, we should be trying to prove that

A1(φ, 1−, 2−, 3+, 4+) → 2A1(1−, 2−, 3+, 4+) (8.60)

as kφ → 0. A1(1−, 2−, 3+, 4+) in the FDH renormalization scheme has the cut-
containing and rational parts [44]

C(1−, 2−, 3+, 4+) = cΓA0(1−, 2−, 3+, 4+)
[
2F 0m(1, 2, 3, 4)

+
(

11
3

− 2nf

3N
− ns

3N

)
F2(s23)

]
R(1−, 2−, 3+, 4+) =

1
144π2

(
1 − nf

N
+

ns

N

)
A0(1−, 2−, 3+, 4+). (8.61)

The cut-containing part can be checked quite easily by taking the expression
(8.33) and converting the Lk functions back into F2 bubble functions and then
treating each term in turn. In short, only the one-mass box (which becomes
zero-mass) and F2(s23) survive the limit, and for the bubble functions it is only
the last line of (8.33) that survives.

The limit of the rational part is in principle done in the same way. The term
proportional to A0(A, 1−, 2−, 3+, 4+) vanishes in the limit, and there are several
terms which must be considered together if the limit has to be taken consistently.
In the end we find that

R(φ, 1−, 2−, 3+, 4+) → − 1
48π2

(
1 − nf

N
+

ns

N

)
A0(1−, 2−, 3+, 4+), (8.62)

as kφ → 0. The corresponding φ† rational parts has the soft limit

R(φ†, 1−, 2−, 3+, 4+) = R(φ, 1+, 2+, 3−, 4−)∗

→ − 1
48π2

(
1 − nf

N
+

ns

N

)
A0(1+, 2+, 3−, 4−)∗

= − 1
48π2

(
1 − nf

N
+

ns

N

)
A0(1−, 2−, 3+, 4+), (8.63)
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such that the Higgs soft limit is

R(H, 1−, 2−, 3+, 4+) → − 1
24π2

(
1 − nf

N
+

ns

N

)
A0(1−, 2−, 3+, 4+), (8.64)

which is a factor −1/3 away from the expectation. This sort of violation was
anticipated already in [18] where it was pointed out that the Higgs momentum can
act as a kind of effective infrared regulator and that this would cause an exchange-
of-limits problem with the dimensional regularization. Thus, we conclude that
our results are indeed correct.
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Appendix A

Integral Functions

The box, triangle and bubble integrals used in this thesis can be obtained from
[32], though with slightly different conventions. The boxes are given by

I4(K1,K2,K3,K4)

= −iμ2ε

∫
d4−2εL

(2π)4−2ε

1
L2(L + K1)2(L + K1 + K2)2(L − K4)2

(A.1)

where the usual iε prescribtion is understood. The integrals are classified ac-
cording to which of the momenta are massive and which are massless. 1-mass
integrals have one massive momentum, 4-mass integrals have four. There are two
different 2-mass configurations; if the massive momenta are opposite it is called
the 2-mass-easy and if they are adjacent it is called the 2-mass-hard.

We give the integrals in terms of the box functions F4(. . .) which are dimen-
sionless because they are multiplied by the Gram determinant G of that integral.
We also take out a factor rΓ coming from dimensional reduction,

I4(. . .) =
cΓ

G F4(. . .) (A.2)

where

cΓ =
1

(4π)2−ε

Γ(1 + ε)Γ2(1 − ε)
Γ(1 − 2ε)

=
1

16π2
+ O(ε). (A.3)

We also define the kinematic invariants

s = (K1 + K2)2, t = (K2 + K3)2. (A.4)

The box functions through 3-mass are,

F 0m
4 (k1, k2, k3, k4)

= − 1
ε2

[(
μ2

−s

)ε

+
(

μ2

−t

)ε]
+ log2

(−s

−t

)
+ π2 (A.5)

F 1m
4 (k1, k2, k3,K4)

115



= − 1
ε2

[(
μ2

−s

)ε

+
(

μ2

−t

)ε

−
(

μ2

−K2
4

)ε]
+Li2

(
1 − K2

4

s

)
+ Li2

(
1 − K2

4

t

)
+

1
2

log2

(−s

−t

)
+

π2

6
(A.6)

F 2me
4 (k1,K2, k3,K4)

= − 1
ε2

[(
μ2

−s

)(
μ2

−K2
4

)ε

ε +
(

μ2

−t

)ε

−
(

μ2

−K2
2

)ε

−
(

μ2

−K2
4

)ε]
+Li2

(
1 − K2

2

s

)
+ Li2

(
1 − K2

2

t

)
+ Li2

(
1 − K2

4

s

)
+Li2

(
1 − K2

4

t

)
− Li2

(
1 − K2

2K2
4

st

)
+

1
2

log2

(
s

t

)
(A.7)

F 2mh(k1, k2,K3,K4)

= − 1
ε2

[(
μ2

−s

)ε

+
(

μ2

−t

)ε

−
(

μ2

−K2
3

)ε

−
(

μ2

−K2
4

)ε

+
1
2

(
− μ2s

K2
3K2

4

)ε]
+Li2

(
1 − K2

3

t

)
+ Li2

(
1 − K2

4

t

)
+

1
2

log2

(
s

t

)
(A.8)

F 3m(k1,K2,K3,K4)

= − 1
ε2

[(
μ2

−s

)ε

+
(

μ2

−t

)ε

−
(

μ2

−K2
2

)ε

−
(

μ2

−K2
3

)ε

−
(

μ2

−K2
4

)ε

+
1
2

(
− μ2t

K2
2K2

3

)ε

+
1
2

(
− μ2t

K2
3K2

4

)ε]
+ Li2

(
1 − K2

2

s

)
+Li2

(
1 − K2

4

t

)
− Li2

(
1 − K2

2K2
4

st

)
+

1
2

log2

(
s

t

)
(A.9)

The Gram determinants are given by

G0m = G1m = G2mh = −1
2
st, (A.10)

G2me = G3m = −1
2

(
st − K2

2K2
4

)
. (A.11)

Triangles are defined by the integral

I3(K1,K2,K3) = iμ2

∫
d4−2εL

(2π)4−2ε

1
L2(L + K1)2(L − K3)2

, (A.12)

again with iε understood. They have the same classification in terms of massive
corners as the boxes. As in the box case, we can take factors out of the integral
and define triangle functions

I3 =
cΓ

G F3. (A.13)
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The triangle functions are (omitting the 3-mass)

F 1m
3 (K1, k2, k3) =

1
ε2

(
μ2

−K2
1

)ε

(A.14)

F 2m
3 (K1,K2, k3) =

1
ε2

[(
μ2

−K2
1

)ε

−
(

μ2

−K2
2

)ε]
(A.15)

where

G1m = −K2
1

G2m = −K2
1 + K2

2 . (A.16)

The bubble integral is given by

I2(K) = −iμ2ε

∫
d4−2εL

(2π)4−2ε

1
L2(L + K)2

=
cΓ

ε(1 − 2ε)

(
μ2

−K2

)ε

= cΓ

[
1
ε

+ log
(

μ2

−K2

)]
+ O(ε)

≡ cΓF2(K2). (A.17)
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Appendix B

Solutions of Quadruple Cut
Constraints

This appendix lists the solutions to the cut constraints in a quadruple cut of a
one-loop amplitude. For each number of massive corners there are two solutions
which are distinguished by which massless corners are MHV and which are googly-
MHV. The two solutions will always be related by flipping (|·〉 ↔ |·]) but they
are all included for clarity. The four-mass cut is not used in this thesis and the
reader is referred to the original article for those solutions [57]. It should also be
noted that all the solutions here follow from the three-mass cases (which follow
from four-mass) by taking external momenta lightlike, but again, all cases are
included to benefit maximally from the masslessness of some corners.

Our conventions are to denote the internal on-shell momenta l1 through l4
starting from the bottom of the diagram and moving clockwise around the loop.
These momenta point in the clockwise direction. The corners are denoted by
A through D starting in the lower left corner. The outgoing momenta at those
corners are denoted by the corresponding letter in uppercase when it is massive
and in lowercase when it is massless. Massless corners are denoted by when
they are MHV and by when they are googly-MHV.

l1

l2

l3

l4

A

B C

d

l1 =
|d〉〈dCBA|
〈dACd〉

l2 =
|BCd〉〈dA|
〈dACd〉

l3 =
|BAd〉〈dC|
〈dACd〉

l4 =
|d〉〈dABC|
〈dACd〉 (B.1)
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l1

l2

l3

l4

A

B C

d

l1 =
|ABCd][d|

[dCAd]

l2 =
|Ad][dCB|

[dCAd]

l3 =
|Cd][dAB|

[dCAd]

l4 =
|CBAd][d|

[dCAd]
(B.2)

l1

l2

l3

l4

A

b C

d

l1 =
|d〉〈bA|
〈bd〉

l2 =
|b〉〈dA|
〈bd〉

l3 =
|b〉〈dC|
〈db〉

l4 =
|d〉〈bC|
〈db〉 (B.3)

l1

l2

l3

l4

A

b C

d

l1 =
|Ab][d|
[db]

l2 =
|Ad][b|
[db]

l3 =
|Cd][b|

[bd]

l4 =
|Cd][d|

[bd]
(B.4)

l1

l2

l3

l4

A

B c

d

l1 =
|d〉[cBA|
〈dBc]

l2 =
|Bc]〈dA|
〈dAc]

l3 =
|BAd〉[c|
〈dBc]

l4 = |d〉(B + c)2

〈dAc]
[c| (B.5)

120



l1

l2

l3

l4

A

B c

d

l1 =
|ABc〉[d|
〈cBd]

l2 =
|Ad]〈cB|
〈cAd]

l3 =
|c〉[dAB|
〈cBd]

l4 = |c〉(B + c)2

〈cAd]
[d| (B.6)

l1

l2

l3

l4

A

b c

d

l1 =
|d〉〈bA|
〈bd〉

l2 =
|b〉〈dA|
〈bd〉

l3 = |b〉〈dc〉
〈db〉 [c|

l4 = |d〉 〈bc〉〈db〉 [c| (B.7)

l1

l2

l3

l4

A

b c

d

l1 =
|Ab][d|
[db]

l2 =
|Ad][b|
[db]

l3 = |c〉 [cd]
[bd]

[b|

l4 = |c〉 [cb]
[bd]

[d| (B.8)

l1

l2

l3

l4

a

b c

d

l1 = |d〉〈ba〉〈bd〉 [a|

l2 = |b〉〈da〉
〈bd〉 [a|

l3 = |b〉〈dc〉
〈db〉 [c|

l4 = |d〉 〈bc〉〈db〉 [c| (B.9)
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l1

l2

l3

l4

a

b c

d

l1 = |a〉 [ab]
〈db〉 [d|

l2 = |a〉 [ad]
〈db〉 [b|

l3 = |c〉 [cd]
[bd]

[b|

l4 = |c〉 [cb]
[bd]

[d| (B.10)
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Appendix C

Passarino–Veltman Reduction
of Cuts

This appendix deals with the reduction of cut integrals which have loop momen-
tum dependence in their numerators. Those needed for this thesis are:

I0 =
∫

dμ, Iμ
1 =

∫
lμdμ, Iμν

2 =
∫

lμlνdμ, (C.1)

J0 =
∫

dμ

〈mlm]
, Jμ

1 =
∫

lμ

〈mlm]
dμ, Jμν

2 =
∫

lμlν

〈mlm]
dμ, (C.2)

Jμνκ
3 =

∫
lμlν lκ

〈mlm]
dμ, (C.3)

where

dμ = δ(l2)δ((l − P )2)d4l. (C.4)

The goal is to express all of these integrals in terms of mμ, Pμ, gμν , I0, and J0.
The method can be illustrated for Jμ

1 by noting Lorentz invariance forces it to
take on the structure

Jμ
1 = PμI ′ + mμI ′′, (C.5)

where I ′ and I ′′ are scalar integrals. These can be determined from the equations

〈mJ1m] =
∫ 〈mlm]

〈mlm]
dμ = I0 = 〈mPm]I ′ (C.6)

and

2P · J1 =
∫

2P · l
〈mlm]

dμ = P 2J0 = 2P 2I ′ + 〈mPm]I ′′. (C.7)

Similarly, Iμν
2 can be computed by noting that it must take on the form

Iμν
2 = gμνI ′ + PμP νI ′′ (C.8)
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and using the contractions

Iμ
2μ =

∫
l2dμ = 0 = 4I ′ + P 2I ′′, (C.9)

and

2P νIμν
2 =

∫
(2P · l)lμdμ = P 2Iμ

1 = 2PμI ′ + 2P 2PμI ′′, (C.10)

which relate I ′ and I ′′ to Iμ
1 . This procedure will allow us to construct the

required integrals recursively. Rather than deriving the results in detail, we will
just note that they are

Iμ
1 =

1
2
PμI0 (C.11)

Iμν
2 = −P 2

12
I0 +

1
3
PμP νI0 (C.12)

Jμ
1 =

Pμ

〈mPm]
I0 + mμ

(
− 2P 2

〈mPm]2
I0 +

P 2

〈mPm]
J0

)
(C.13)

Jμν
2 = − gμνP 2

4〈mPm]
I0 +

PμP ν

2〈mPm]
I0 +

(mμP ν + Pμmν)P 2

2〈mPm]2
I0

+mμmν

(
− 3P 4

〈mPm]3
I0 +

P 4

〈mPm]2
J0

)
, (C.14)

Jμνκ
3 = −(gμνP κ + gνκPμ + gκμP ν)P 2

12〈mPm]
I0 +

PμP νP κ

3〈mPm]
I0 (C.15)

+
(PμP νmκ + mμP νP κ + PμmκP ν)P 2

6〈mPm]2
I0 (C.16)

+
(mμmνP κ + Pμmνmκ + mμP νmκ)P 4

3〈mPm]3
I0 (C.17)

−(gμνmκ + gνκmμ + gκμmν)P 4

12〈mPm]2
I0 (C.18)

+mμmνmκ

(
− 11

9
P 6

〈mPm]4
I0 +

P 6

3〈mPm]3
J0

)
. (C.19)
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