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Abstract
This article gives an overview of the theory and application of real-time con-
trol of accelerator beams. The design and structure of orbit feedbacks are
described, going from basic local feedbacks to modern state-of-the art global
systems. The time domain behaviour is analysed for the building blocks of the
systems as well as from the spectrum of random sources driving the orbit per-
turbations. The use of predictive filtering is shown for the design of the control
algorithm. A second important class is the control of tunes and chromatici-
ties. Advanced tune measurements are performed using a digital phase-locked
loop. The feedback systems are typically hybrid, simultaneously working on
tune and coupling and chromaticity. Adaptive feed-forward algorithms are
shown to be a suitable approach for use in energy ramping. For application in
a high-speed bunch-by-bunch feedback system, efficient low-noise data pro-
cessing is presented for a digital filter. Also here, predictive filtering is shown
to give well-adapted high-order filters.

1 Introduction
One of the countless corollaries to Murphy’s Law states that everything able to go out of adjustment will
do so with the utmost enthusiasm. As a consequence, today’s accelerator facilities employ a myriad of
controllers, from minor ones stabilizing individual components and subsystems, to the ones described
here and directly affect the beam behaviour.

These systems are best classified according to the parameter in the phase-space distribution which
they are supposed to control. This phase space describes the particle motion in the accelerator in six
dimensions: the three spatial coordinates and the corresponding momenta. The most important are mean
values (position, energy and flight angle) and standard deviations (size and energy/momentum spread)
as a function of time and position inside the machine.

The longitudinal position and momentum (as well as the frequency of the longitudinal synchrotron
oscillation in a ring machine) are mainly influenced by the amplitude and phase of the main RF. These
are controlled by the regulation loop of the RF system, which is not covered here. Exceptions are fast
instabilities caused, for example, by higher order modes in the system, which are typically controlled by
bunch-by-bunch feedbacks.

Transversally, we observe drifts in the beam orbit due to ground motion and mechanical drifts.
Other than the longitudinal case, sources of perturbations as well as required corrections are distributed
over the whole machine, so that feedbacks and feed-forwards need multiple sensors and multiple correc-
tions. As in the longitudinal case, there are fast transverse oscillations due to wake fields etc., which are
controlled via dedicated bunch-by-bunch feedback systems.

Then there are the higher order properties of the beam such as the transverse tunes relating to
the focusing strength of the magnet optics in the respective planes and the chromaticity of the optics,
which describes the dependency between focusing strength and particle energy. The tunes, the coupling
between the horizontal and vertical tunes, and the chromaticity are intrinsically related, so that typically
hybrid stabilization schemes are employed.
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1.1 Feedback or feed-forward
Implicitly, all controllers make use of pre-knowledge about the system and the excitations. The way this
is done defines two general classes, feedbacks and feed-forward systems.

The main task of a feedback is to control random, non-predictable fluctuations in the accelerator
parameters, which may be due to internal or external noise. (Notable exceptions are bunch-by-bunch
feedbacks. Here the system is inherently unstable and the goal of the feedback is to change an unstable
behaviour into a stable one.)

But there are also systematic changes like ramping the energy of an accelerator. While ramping the
beam energy, the magnets controlling orbit and focusing have to be adjusted correspondingly, something
which could in principle be done by a feedback system. But, since the parameters for the ramping
curve are perfectly known in advance, a feed-forward system is the more suitable approach, where the
corresponding set of magnet currents are precomputed and set directly.

A pure feed-forward system blindly sets values derived from a machine model and will not look at
the quality of the correction. So the usual approach is to use an adaptive feed-forward, which combines
the classical feed-forward with a feedback. The correction values from the feedback are used to update
and optimize those used by the feed-forward system.

2 Controlling the orbit
One of the fundamental beam properties to control is deviations from the reference orbit in the accelera-
tor. The measurement is done using beam-position monitors (BPMs), in which the passing beam induces
electromagnetic fields into sets of electromagnetic electrodes in the shape of buttons or striplines. The
beam position is proportional to the difference in signal strength coming from the electrodes. As an
alternative, the synchrotron light radiated by the beam as it is deflected by the magnets can also serve for
the position measurement. As the light strikes the electrodes of X-ray BPMs, it stimulates the emission
of photoelectrons. Comparing the photocurrent from different electrodes again results in a position mea-
surement. Corrector magnets—typically dipole magnets of low strength—give a transverse kick to the
beam as it passes the corrector and thus adjust the orbit.

2.1 Local control

Fig. 1: Simple local orbit feedback

A model of the most basic local orbit feedback is shown in Fig. 1. It contains three corrector
magnets C1 to C3 spaced at a certain distance and a BPM positioned directly at corrector C2. If we need
to change the position at the BPM, we apply a kick to the beam at the corrector C1. Corrector C2 will be
driven so that the overall change in beam offset at C2 is zero and corrector C3 will compensate for any
change in the flight angle. The magnet triplet C1 to C3 is called a magnet bump; it will generate a local
excursion in the beam trajectory, which (in first order) is transparent outside the bump.
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A second triplet centred around BPM3 using correctors C2, C3 and a following corrector would
help control the position there. Interlacing this bump with the one centred around BPM2 gives full
control of beam position and angle between BPMs 2 and 3. Whereas a local feedback using a triplet
is a classical setup around a collision experiment, a four-magnet bump is fairly common in synchrotron
light sources, since the beam angle defines the direction of the synchrotron light generated, an important
parameter for the machine.

It should be clear though that even with perfect magnets, local orbit bumps and feedbacks are
local only in a first-order sense. Setting up a bump, we change the path length of the trajectory. As the
beam has a different time of flight along the orbit, the synchronization with respect to the accelerating
RF changes results in a different beam energy, which via dispersion leads to global orbit changes.

2.2 Going global
In principle, a global orbit feedback can be set up by interlacing multiple local feedbacks, such that we
cover the whole accelerator. In practice, we do not have total freedom in placing the components of the
feedback. The BPMs may be in different locations than the correctors, and in addition, the number of
BPMs may be higher or lower than that of the correctors.

To characterize the relationship between correctors and BPMs, a response measurement is used.
The machine is set to the reference orbit, we drive one of the correctors ci and measure the resultant
orbit excursion at all BPMs xj inside the ring. If we restrict ourselves to small amplitudes, magnet
non-linearities and hysteresis effects will be negligible, so that we end up with a linear relationship.
Measuring offsets at all k BPMs using all n correctors, gives us the n× k size response matrix M :

~x = M~c . (1)

To correct the orbit, we need the inverse mapping, giving us corrector settings~c for a given orbit distortion
~x. Trying to invert M will fail in most cases. The matrix may not be quadratic and, even if it is quadratic
and invertible, it may be badly conditioned, meaning that even tiny errors in measuring beam offsets lead
to huge errors in the computed corrector settings. Effectively, we need a suitable approximation of M
that we can invert without encountering the problems discussed above.

The appropriate way out of this dilemma is given by the singular value decomposition (SVD)
algorithm [1]. The n× p matrix M is decomposed into a product of three matrices

M = USV T , (2)

where U and V are unitary n× n and p× p matrices:

UTU = I , (3)
V TV = I . (4)

The vectors ui and vi constituting U and V are called the left and right singular vectors and, together
with the singular values σi, define a relationship similar to eigenvalues and eigenvectors:

Mvi = σiui

MTui = σivi .

As can be shown from these relations, the singular values define the diagonal matrix S:

sii = σi, i = 1 . . . n (5)
sij = 0, else . (6)

The most simple approach computes the decomposition as follows. The left singular vectors vi are given
by the eigenvectors with non-zero eigenvalue of the matrix product MM T . In the same way, the right
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singular ui are eigenvectors with non-zero eigenvalue of the matrix product M TM . The singular values
themselves are given by the square roots of the non-zero eigenvalues of either MM T or MTM—they
are equal. (For a tutorial on SVD see Ref. [2].)

Given the components of the decomposition, we can define a pseudoinverse mapping as

M̃−1 =
∑

viσ
−1
i ui, i = 1 . . . n , (7)

which will be a least-square approximation of the inverse of M . The smallest singular values σi corre-
spond to states which are very sensitive to noise and errors in the input. Therefore one typically restricts
the calculation of the pseudoinverse even further by using only the first r < n largest singular values, so
that one ends up with a well-conditioned mapping.

Fig. 2: Conversion of a MIMO feedback system into multiple SISO feedbacks using the singular value decompo-
sition

Apart from computing a pseudoinverse, the approach has a second extremely useful feature. Let
us assume we change the corrector magnet settings to values corresponding to one of the right singular
vectors vi. By definition, we see a change in BPM readings, which is proportional to the corresponding
left singular vector ui and nothing else. Thus we obtain a set of decoupled states of the machine, for
each of which we can define a single input single output (SISO) controller, as shown in Fig. 2. The
data coming from the BPMs is decomposed into decoupled states using the matrix U ; we multiply the
state variables with the scalar SVD inverse σ−1

i and feed the result into the scalar controller to compute
correction factors. Multiplying these with the right singular vectors gives us the actual machine settings
for the correctors. Instead of having a large-dimension multiple-input multiple-output (MIMO) system,
we deal with a (large) number of scalar SISO systems, which are far easier to manage in terms of analysis
and design.

In doing the decomposition, we implicitly assumed purely linear components in the system. For
the corrector magnets, this assumption may not hold. For large amplitudes, a magnet with a yoke may
show hysteresis effects corresponding to a variable gain. Superconducting magnets exhibit decay and
snap back effects due to persistent currents in the magnet. If these effects are encountered, additional
local control loops measuring and stabilizing the field strength should be used to compensate, so that
the global orbit feedback sees more or less linear devices. For a discussion of the problem for the Large
Hadron Collider superconducting correctors, see, for example, Ref. [3].

Finally, there is one important thing to keep in mind in applying this decomposition. Especially
for a MIMO system, it is extremely important to avoid saturations in selected parts of the system such
as ADCs, DACs, amplifiers or corrector power supplies. In a system with a single input and output,
a saturating element will simply change the effective gain of the whole system. In a MIMO system,
however, only parts of the response matrix saturate, so the singular value decomposition used by the
controller is no longer valid and system behaviour changes in an unpredictable manner.
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2.3 System topology
Given the large number of input and output parameters, data flux and processing seem to be rather
complex. All the BPM data in the accelerator has to be collected to do the decomposition into the
various machine states. The same thing looks true for the corrections. At first glance, this seems to
favour a centralized processing architecture where one big central node is responsible for receiving,
processing, and sending out data.

But looking at the local feedback using a three-corrector bump as described before, we can observe
something interesting. If we forget about higher order coupling due to path length changes, this feedback
already represents one of the decoupled states of the machine. Further, as has been mentioned already,
we could set up a global feedback by interleaving bumps using the local feedbacks on the bump. The
local feedbacks would correspond to the SISO controllers working on the decoupled SVD states of the
machine, the corresponding hardware architecture would be that of a distributed system requiring only a
localized data exchange.

Fig. 3: Topology of orbit feedback system (SLS)

In general, the distribution of BPMs and correctors will differ from the idealized case discussed
here, but we will still have a certain localization of right and left singular vectors relating to the fact that
to correct an orbit deviation in a selected location of the ring, we have to adjust only correctors in the
vicinity of that location and not over the whole machine. An appropriate architecture for a global system
will most likely look like that in Fig. 3, showing the layout of the SLS feedback [4]. We have twelve
BPM/corrector stations distributed along the ring, each being connected to six BPMs and correctors. Fast
fibre optic links connect adjacent stations allowing the real-time exchange of data. For the computation of
each corrector, the data from up to 18 BPMs in the vicinity can be processed. A central server connected
to the stations via Ethernet is responsible for the distribution of the precomputed SVD coefficients and
manages the data transfer to and from the control system.

2.4 Dynamics
What is the time and frequency domain behaviour of the overall system? The first and most important
component, the beam, sees changes in the corrector fields instantaneously and propagates the information
about corrector kicks as it passes through the accelerator.

The next component to consider is the position measurement and the controller itself. The hard-
ware layout of a BPM/corrector station is shown in Fig. 4. An analog RF front-end converts the 500 MHz
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raw signals coming from button BPMs down to an intermediate frequency, which is sampled digitally at
a high sample rate of 33 MS/s. The digital down converter filters and down-samples the signal to a 2 kHz,
4 kS/s data stream, from which the first DSP calculates the position data. The second DSP performs the
SVD calculations and contains the controller algorithms. The computed kicks are sent via fibre optic
links to the digital power supply controllers steering the corrector magnets.

Fig. 4: Hardware layout of a SLS BPM/corrector station

The influence of these components on the frequency domain behaviour of the control loop is
relatively simple. The principal effects are latencies due to data transfer, which in the case of the SLS
amount to 1.5 milliseconds. Both digital down converters and corrector power supplies each have a 2 kHz
bandwidth, which is large compared to the low pass behaviour due to eddy currents in the magnet core
and the vacuum chamber wall, described in the following.

The magnetic flux in the corrector magnet builds up in two steps. First the field induced by the
coils propagates into the spaces between the metal sheets of the lamination, a process which happens
within picoseconds. In the second step the magnetic field enters the sheet material itself. Here the bulk
of attenuation and delay takes place due to eddy currents.

The effect can be calculated analytically with good accuracy. The frequency dependency of the
flux comes out to be

ψ(ω)
ψDC

=
2
kd

tan(kd/2) (8)

k2 = ω2εµ− jωµκ . (9)

An example [5] of the resultant frequency behaviour is shown in Fig. 5.
A second, similar effect are eddy current losses in the wall of the vacuum chamber. Other than the

effects in the lamination of the corrector, the eddy currents also have an effect on the distribution of the
magnetic field, so this needs to be computed numerically. As an example, Fig. 6 shows the loss density
in the wall together with the resulting frequency dependency. These two effects, eddy current losses in
the corrector magnets and the chamber wall, are the main determinants of the feedback performance.

2.5 Sources of orbit drift
Before talking about suitable controllers, we first need to know what effects the system is supposed to
follow or correct.

There are plenty of sources of orbit drift and jitter such as, for example, machinery or human
traffic, but the fundamental and unavoidable contribution is due to random drift of the ground. Tectonic
drifts, settling effects, and other natural effects lead to a stochastic ground motion equivalent to a random
walk or Brownian motion. If we look at two given points on the ground and try to predict the evolution
of their distance L(t) over time, we can make only statistical statements. There is no preferred direction,
so the expected distance E(L(t)) will stay constant. But as time goes by, we can say less and less what
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Fig. 5: Frequency dependency of the magnetic flux generated by a corrector magnet with laminated yoke. Thick-
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Fig. 6: Upper part: Eddy current loss density on the vacuum chamber walls at 50 Hz. Lower: Resulting frequency
dependency with and without losses in the corrector magnets.

exactly it is going to be—the variance E((L(t) − L(0))2) will increase, in this case linear with time.
This is described by the ATL law [6]:

E(L(t)) = L(0) . (10)
E
(
(L(t)− L(0))2

)
= AtL . (11)

The drift constant A has been measured in various parts of the Earth; a relatively constant value of
approximately

A = 10−5µm
2

sm
(12)
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has been obtained. The corresponding noise power density comes out to be

S(jω) =
A

jω
. (13)

The beam itself sees these shifts only indirectly via changes in the magnetic fields, as the magnets
drift. As the field of quadrupole magnets varies linearly with position, it is the quadrupole motion
which has the strongest effect on the beam. Thus the beam trajectory will fluctuate proportionally to the
ground noise modulated by the mechanical transmission from ground to the magnets. The corresponding
transmission function may add frequency peaks due to mechanical resonances in the girder and will
change the spectrum considerably, especially for the higher frequencies. A measurement of the ground
spectrum together with the corresponding quadrupole spectrum is shown in Fig. 7.

Fig. 7: Power spectrum of mechanical motion at the SLS measured on tunnel floor and quadrupole magnets [7]

A typical power spectrum of the beam motion is shown in Fig. 8, along with the corresponding
curve for a running feedback using a PID controller. These have been computed from two-second sam-
ples of the beam motion, so the DC peak due to the random walk drift is not very visible. Most prominent
is the line at 50 Hz, which shows the beam motion not from mechanical drifts but due to stray fields of
the 50 Hz power mains. Next we see a few peaks between 10 and 30 Hz, which correspond to mechanical
resonances of the girder structures. At 3 Hz there is still a tiny peak in the spectrum, which is also due
to stray fields. In this case, these originate from magnets in the SLS booster, which is ramping in a 3 Hz
cycle.

2.6 Proceeding further
The classic textbook example of a controller is a PID controller containing a proportional part, an inte-
grator, and a differentiator. We determine only three parameters and, as the results in Fig. 8 show, good
performance can already be obtained.

Nonetheless, it is interesting to consider what a truly optimum controller design could look like
for a given machine, a given noise spectrum exciting the beam and—not to be forgotten—the internal
noise sources present in the measurement, controller and corrector hardware.

This looks like a nice task for a specialized filter. The problem is that the filter is part of a feed-
back system, so its characteristic acts back on the feedback loop. Taking this into account leads to an
optimization process involving the solution of a differential equation of the Riccati type. For purely
Gaussian, white, and mutually uncorrelated noise sources, the solution is given by a linear quadratic
regulator LQR [8].
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In the case of orbit correction schemes, these assumptions do not hold and we would have to find
an adapted solution to the equivalent Riccati equation, and synthesize an equivalent FIR and/or IIR filter.
Here, we restrict ourselves to a more approximative approach. We look for an appropriate stochastic
filter fitting conditions which are explained in the following, neglecting the effects due to the feedback
loop. Closing the loop and optimizing performance is then done using a classical (e.g. PID) controller.
(For an in-depth overview on the topic see, for example, Ref. [9].)

2.6.1 A short introduction to predictive filtering
To keep things simple, we will assume linear, weak, stationary systems having time invariant means and
variances.

Fig. 9: Basic feedback loop

Given the basic feedback loop in Fig. 9, let us discuss what a perfect controller should look like.
Any correction applied by the controller will affect the machine state only after a certain delay Tc. Fur-
thermore, measuring the state of the device takes an additional delay (and causes bandwidth limitations
and noise); the controller acts on old and only partially reliable information and needs to correct a future
state of the machine. So we would like to have the best guess or estimate of the state of the machine at a
future time s(t+ Tc), as computed from the currently available measurement values m(t), t < 0:

s̃(t+ Tc) = E{s(t)|m(τ), τ < t} . (14)
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This describes an estimator filter
s̃(t) =

∫
m(τ)h(t− τ)dτ

with a yet to be determined pulse response h(t). Requiring the estimation to minimize the mean square
error

P = E
(
(s(t)− s̃(t))2

)
leads to the defining equation of a Wiener filter [10]

Rsm(t, ζ) =
∫ T2

T1

h(τ)Rmm(τ, ζ)dτ , (15)

whereRmm andRsm are the auto and cross correlation functions ofm(t) and s(t). The integration limits
T1 < T2 < t choose the time span of data we are extrapolating from1.

Fig. 10: A FIR predictor filter

In the discrete world, the estimator corresponds to a FIR filter as shown in Fig. 10. Minimizing
the estimation error in terms of the unknown filter coefficients ak leads to N equations of the form

E{(s(n)−
N∑
k=1

aks(n− k)
)
s(n−m)} = 0, 1 ≤ m ≤ N (16)

or in terms of the auto correlation R(n):

R(m)−
N∑
k=1

akR(m− k) = 0, 1 ≤ m ≤ N . (17)

These are called the Yule–Walker equations. The corresponding matrix is a Toeplitz matrix, the system
can be solved by Levinson’s recursion [11].

Given the coefficients ak, we create the filter of Fig. 10 and, subtracting estimate and measurement,
we can compute the a posteriori error ẽ(n). An ideal filter will extract only the predictable parts of the
signal, so the error will not be zero but white noise with autocorrelation

Rẽẽ(k) = Eδ(k)

and power E. This property is also valid in reverse. If the signal to be estimated is white noise, then
the corresponding Wiener filter will be zero in all coefficients. Signal levels for white noise can not be
predicted by definition, so this certainly makes sense.

This argument can be extended a little bit further. If the signal can be modelled as an IIR filter as
in Fig. 11, driven by white noise

s(m) =
N∑
k=1

aks(m− k) + n(m) ,

1Using, for example, T1 < t < T2 will interpolate and t < T1 < T2 will give a best estimate of past values in terms of
future ones.
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Fig. 11: IIR filter

the inverse filter, which is an FIR type, will convert s(m) back into white noise and so the corresponding
Wiener filter gets the coefficients

hk = ak .

As we have seen, the autocorrelation of the a posteriori error ẽ(n) contains information about the
quality of the estimator. From the estimation process itself, we can also compute an a priori error along
with its autocorrelation. If we have a non-stationary process, which means the stochastic properties of
the sources and devices involved vary with time, we can monitor both error signals and continuously
update the filter coefficients. The resultant adaptive system is called a Kalman filter [12].

2.6.2 Application to typical spectra
The most simple model of orbit motion is given by the ATL law describing a random walk. In this case,
the orbit deviation is simply an IIR integrator being driven by white noise:

s(k) = s(k − 1) +An(k) .

Assuming a perfect measurement without additional noise, we can apply the result from the last section
and directly write down the estimator as

s̃(k) = s(k − 1) .

Effectively, we take the value of the last measurement as the best guess of the current state.
In the next step, we take the same model for the orbit drift, but now we are more realistic in adding

some uncorrelated white noise to the measurement m(k).

s(k) = s(k − 1) +An1(k) .
m(k) = s(k) +Bn2(k) .

In this case, measurement and signal differ. Minimizing the least-squares error between signal and
estimates leads us to the following defining equations:

N∑
l=1

alRmm(l, k) = Rsm(k); k = 1, N

Rmm(k) = Rss(k) +B2δ(k)
Rsm(k) = Rss(k)

Since the noise sources n1, n2 are uncorrelated, the correlation matrices Rmm and Rsm can be derived
easily from those of s(k). The result is shown in Fig. 12. Before, we had an all pass filter with a single
tap pulse response, now we obtain a low pass filter giving us a high response at frequencies where the

REAL TIME CONTROL OF BEAM PARAMETERS

341



 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0  50  100  150  200

FI
R 

pu
lse

 re
sp

on
se

tap No

line 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

|H
|

frequency (a.u.)

Wiener filter
Power spectral density

Fig. 12: Predictor filter assuming basic random walk orbit drift and white noise in measurement. Left: pulse
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Fig. 13: Closed loop performance with and without basic predictor filters, as shown in Fig. 12. Left: suppression
of orbit jitters caused by ground motion, right: additional orbit jitter excited by measurement noise.

signal is high compared to the noise. This does not come for free, as one sees in the spread-out pulse
response and increased group delay.

What is the closed loop performance of a feedback using this predictor compared to just taking
the measurement value? Figure 13 shows the relevant graphs assuming a PI controller. The prolonged
latency of the filter will worsen the effectiveness of the controller in suppressing the effect of ground
motion as can be seen in the left graph. The big advantage of the estimator is visible on the right
graph which shows how noise in the measurement leads to additional orbit fluctuations in both cases.
Orbit noise contains contributions from both sources; the estimator will provide a good compromise in
limiting both.

As a second generic example, Fig. 14 shows a predictive filter assuming a random walk, where the
ground spectrum is amplified by a mechanical resonance, for example in the girder. Varying the strength
of the uncorrelated noise in the measurement, we see a similar effect as before. As we increase the
measurement noise, the filter converges to a narrow band behaviour, limiting the influence of the noise,
but at a high cost in terms of latency.

One observation should be made here with respect to a real world optimization of the closed loop
performance. The objective is to minimize jitters in the estimation s̃(k) and not in the measurement
signal m(k). This approach has some inherent danger. Depending on whether the resonance in Fig. 14 is
really a girder resonance or, for example, a measurement artefact (and consequently, how we determine
the filter coefficients), the predictor will enhance or suppress it, so that the result may be well off the
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optimum. A good and clean assessment of the system and its excitations are a prerequisite for the
successful use of this technique.
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Fig. 15: Predictor generated from power spectral density of beam at SLS

As the last example, we look at a filter generated for real world data. Figure 15 show the power
spectrum and the filter characteristics for beam jitter data seen at the Swiss Light Source. As seen
before, the filter removes the peaks in the power spectral density; nonetheless the characteristic shown
is not the optimum for the task. We have non-random components in the signal such as the 50 Hz line
(which is due to magnetic stray fields of the power lines) or the 3 Hz line, which corresponds to the SLS
booster cycle. These are completely predictable and should be handled by feed-forwards. Not visible
in the spectrum are artificial lines in the spectrum showing up from other sources via cross-talk and
interference, which also have to be handled separately. More on this topic is shown in the section on
bunch-by-bunch feedbacks later.

3 Tune and chromaticity feedbacks
Quadrupole magnets show focusing effects only in one of the transverse planes; beam offsets in the other
will be magnified. By setting a horizontally defocusing quadrupole into the focal point of a horizontally
focusing one of equal strength, one obtains a net focusing action of the whole assembly. Applying this
principle simultaneously for both planes, we get an arrangement of magnets called a FODO lattice. Other
magnet types such as sextupoles or octupoles may be included in the design to correct for aberrations in
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the optics. A detailed introduction to beam optics can be found in Ref. [13].
The focusing strength not only controls the transverse dimensions of the circulating bunches, but

also affects the trajectories of bunches, which are off-axis. A bunch at an offset will oscillate transversally
until damping effects due to synchrotron radiation cause it to settle down to the reference trajectory. The
number of oscillations per machine turn is called the betatron tune Q and is proportional to the focusing
strength of the machine.

The deflection of a particle due to magnetic fields is inversely proportional to its energy. Cor-
respondingly the tune will vary with beam energy. Analogous to optics, this parameter is called the
chromaticity Q′. Each ring optic has a natural chromaticity, which can be influenced by additional sex-
tupole magnets. As with the tune values, we may have different chromaticities for each plane.

For a storage ring running at a constant energy and having a working orbit stabilization, we can
expect only minor and very slow variations in tune and chromaticity. The situation is different if the ring
is ramped in energy. Non-linearities of the magnets lead, even for a gentle ascent of the magnet currents,
to fluctuations in the beam optics.

The control of the tunes and their associated parameters involves several aspects. The first is
doing a clean measurement of the tunes, the second setting up a feedback. Third comes accounting for
higher order effects due to tune coupling in the horizontal and vertical planes and the interaction with
chromaticity measurement and feedback, which typically leads to a hybrid system design.

3.1 Tune measurement
In principle, all techniques of measuring the tune look at the oscillation frequency of particles around
the design trajectory. The most direct way consists in kicking the bunches and doing a Fast Fourier
Transform on the BPM data. This has several drawbacks. The beam quality (emittance) gets worse. The
kick needs to be strong enough to give a visible signal, so the resultant orbit excursions cause particles
in the beam halo to get lost and produce radiation—an effect which is of special concern for high-energy
hadron colliders like RHIC or LHC. The latency of the measurement is mainly given by the rate by which
the beam is kicked. A short latency, required for good feedback operation, means a high kick rate, but
conflicts with the need for low emittance and particle loss rates.

An alternative relies on the fact that the charge distribution in a bunch is never 100% homogeneous–
it consists of discrete, randomly distributed particles, so that we always have residual inhomogeneities
exhibiting so-called Schottky or shot noise. These inhomogeneities oscillate with the tune frequency and
can be measured directly in base band with Schottky monitors [14]. There is no external excitation to
the beam, so this is the ideal measurement in terms of emittance dilution and the effect on beam loss
rates. The headache is that we derive our measurements from noise spectra, so the signal-to-noise ratio
may vary strongly depending on the initial condition of the injected beam and the machine settings. For
low levels of Schottky noise, a relatively long measurement and measurement latency may be needed to
obtain the required resolution, causing problems for the feedback.

The third and last option, which is nowadays used for feedback applications [15, 16] and which is
described in more detail here, is to run an active phase-locked loop on the beam using fast kickers and
pickups.

The typical structure is shown in Fig. 16. A numerically controlled oscillator (NCO) feeds a
sinusoidal signal into a kicker deflecting the beam. The transverse beam oscillation has the maximum
amplitude at the tune frequency. At this frequency, the motion is in phase with the excitation driving
the kicker, whereas we have a phase difference approaching ±90 degrees off crest. A phase detector
compares the beam signal coming from a pickup with the reference from the NCO. The resultant phase
difference signal is fed into a controller steering the frequency of the NCO.

The most basic phase detector would be a simple mixer followed by a low pass filter. With the
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Fig. 16: Classical setup for tune measurement using a PLL loop

beam response
H(ω) = A(ω) ∗ e−jφ(ω) ,

we get

zr = A(ω) cos(ωt)︸ ︷︷ ︸
NCO signal

·A(ω) cos(ωt+ φ(ω))︸ ︷︷ ︸
beam response

=
A(ω)

2

(
sin(φ(ω))︸ ︷︷ ︸
≈φ(ω)

+ sin(2ωt+ φ(ω))︸ ︷︷ ︸
removed by low pass

)
.

This detector can be implemented in a relatively simple and robust way using analog circuitry. The
disadvantage are non-linearities arising from the linearization of the sine argument and the amplitude
dependency of the beam response, which can lead to reduced performance and even chaotic behaviour
of the PLL loop [17].

Fig. 17: Advanced PLL detector decoupling phase and amplitude as used at the LHC

An advanced digital detector design used in the LHC [18] which avoids these problems is shown in
Fig. 17. The beam signal is split into two parts, which are mixed in phase and out of phase with the signal
from the NCO followed by a low pass filter. A rectangular-to-polar converter generates pure amplitude
and phase signals. In addition to the phase-locked loop controlling the frequency and obtaining the tune,
a second controller keeps the amplitude constant. In the case of the LHC design, the controller used is a
PI design, which was optimized with Youla’s affine parametrization method [19], which is also described
in the Appendix. The bandwidth of the measurement is of the order of 8 Hz.
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If we compare the PLL measurement to the kicked excitation, a much smaller amplitude of the
beam oscillation is required to keep the PLL locked. At prototype tests at the SPS ring at CERN, am-
plitudes well below 1 µm were required, while the emittance blow up and particle losses due to the
measurement were negligible.

3.2 Full system and extensions

Fig. 18: Example of tune stabilization using PLL at the SPS/CERN

The closed loop performance of a tune feedback using the PLL is demonstrated in Fig. 18. Here a
prototype was tested in the energy ramping cycle at the SPS, where within roughly seven seconds protons
get accelerated from 26 GeV to 450 GeV. Apart from the tune, the output from the phase and amplitude
control loop is also shown. Monitoring these value gives a good indication of whether the PLL is still
locked. The region where the lock is lost (no more beam due to extraction) is marked with the blue circle.

The coupling of the beam motion between the horizontal and vertical planes can obscure the
measurement, especially if, at certain times, both tunes are nearly equal, as happens for example during
the ramp in RHIC [20]. In that case, exciting the bunches at the tune will result in a mixed vertical
and horizontal motion. Also, the residual coupling leads to a perturbation of the tune values, decreasing
the accuracy of the measurement. So one has to go one step further and use a hybrid feedback which
simultaneously controls both tunes and coupling.

Fig. 19: Combined tune and coupling feedback at RHIC

The layout is shown in Fig. 19. We have phase-locked loops (analog front end AFE, A/D converter,
numerically controlled oscillators NCO1 and 2) similar to that shown locking to the beam resonances,
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which correspond to the perturbed tunes. Data processing for the individual planes is done by dedicated
front end computers FEC1 and 2; a master FEC computes the required corrections, which are applied by
a fourth computer to the sextupoles, quadrupoles, and skew quadrupole families.

Fig. 20: Set and measured tunes of combined tune and coupling feedback at RHIC; uppermost trace: feedback on;
middle trace: feedback on plus feed-forward on magnets; lower trace: feedback off

Figure 20 demonstrates the performance of the system for a 100 GeV development ramp done over
five minutes. The lowest set of traces shows the tunes with the feedback switched on. In the upper-most
set, the feedback is switched on showing a marked improvement.

As presented in the introduction, feedback should be used only to correct for non-predictable
perturbations. Fluctuations which are predictable either due to their physics or because they are periodic
like in an accelerator cycle are best handled by a feed-forward system. The middle set of traces are a nice
demonstration of this. Magnet correction values from previous ramps were used to update an adaptive
feed-forward system. The feedback itself has to perform only minor corrections, the result is an excellent
stability of the system.

Fig. 21: Combined tune and chromaticity feedback at the LHC

For the LHC, a hybrid system is planned stabilizing all tune, coupling, and chromaticity. As shown
in Fig. 21, it consists of a cascade of three different feedbacks. The innermost part is the PLL loop used to
measure the tune. By modulating the RF, and measuring tune versus longitudinal momentum, the average
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tune and the chromaticity are obtained and used for controlling the sextupole magnets. The measured
tunes are used to compute the coupling and the unperturbed tunes and fed into a third controller steering
the normal and skew quadrupole magnets.

It is clear that coupling between the nested feedbacks can be a problem, especially since the tune
feedback would minimize the momentum driven modulation of the tune and render the chromaticity
measurement useless. So the highest bandwidth of 8 Hz is assigned to the tune PLL, followed by one of
circa 1 Hz for the chromaticity feedback. The tune feedback is the slowest one.

4 Fast data-processing algorithms for a longitudinal bunch-by-bunch feedback
Bunch-by-bunch feedback algorithms are covered in depth in Ref. [21], the idea for this section is to
cover certain data processing features of these high-speed systems and keep the general description to a
minimum.

Fig. 22: Layout of bunch-by-bunch feedback system

The basic layout is shown in Fig. 22 (Ref. [22]). The effects to be corrected are unstable longitu-
dinal oscillation driven by trapped resonances in the vacuum chamber, for example. For this application,
the beam can be seen as resonant at the synchronous sidebands of the revolution harmonics of the accel-
erator.

Fig. 23: Multiplexing and demultiplexing of data streams

The feedback is a single-input single-output (SISO) system with the special challenge that there
are a large number of potentially instable resonances (e.g., 480 for the Swiss Light Source, 3564 for the
LHC). By multiplexing the incoming signal into multiple channels (Fig. 23), each containing the data for
one individual bunch, the problem can be simplified considerably. Owing to the inherent down sampling,
all the resonant sidebands of the full signal get mapped to the same frequency for the single-bunch data
stream, something which facilitates the controller design considerably. It may be tempting to see this
approach as a decomposition of a decoupled state similar to using the singular-value decomposition
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method for orbit stabilization. But the instabilities lead to a coupling of bunch motion, so this is not the
case.

4.1 Signal and noise
Using the example of the SLS parameters, let us take a look at signal and noise levels. The detector
works at a centre frequency of 1.5 GHz running at a band width of B = 500 MHz. Omitting for the
moment cross-talk, beam harmonics, and other external noise sources, we are left with the thermal noise
floor, which at a temperature of T = 300 K comes out as

N = kBTB = −77 dBm .

The RF front end may add another 6 dB, so that we end up with a noise power of −71 dBm.
As for the signal, we are not interested in static phase offsets, but in the instable oscillatory part.

This is equivalent to a phase modulation of the beam signal and seen in the frequency domain as side
bands of the revolution harmonics. The signal picked up by the RF front end is

V (t) = Aej(ωt+φ cosωst) , (18)

where ω is one of the revolution harmonics and ωs is the synchronous frequency. For small oscillations,
we can approximate

Aej(ωt+φ cosωst) = Aejωtejφ cosωst ≈ A(1 + jφ cosωst
)
ejωt .

Applying standard trigonometric identities, we obtain three frequencies, the beam harmonic at ω with
amplitude A and the two side bands ω±ωs with amplitude Aφ. A beam of 400 mA creates a main peak
of −1 dBm, the noise floor of approximately −71 dBm corresponds to a phase noise of

∆φ = 10−70/20 dB rad = 0.3 mrad ∼ 2 ps at 1.5 GHz .

Fig. 24: Synchronous phase (yellow line) for fill pattern with gap (blue line), data from the SLS

On the analog side, everything looks fine for a successful conversion to digital and, for a homoge-
neous fill pattern with bunches in all RF buckets, this would hold true. But typically an inhomogeneous
filling as in Fig. 24 is used, employing a gap to avoid accumulation of ions near the beam trajectory. As
this inhomogeneous pattern circulates around the ring, the voltage in the cavity gets modulated by the fill
pattern, so that the synchronous phase of the individual bunch will also vary from the reference phase.
The result is that the ADC range has to be adjusted not only to cover the amplitudes of any dynamic

REAL TIME CONTROL OF BEAM PARAMETERS

349



oscillations coming from instabilities, but also the static phase offsets. We end up with a pronounced
decrease in resolution and a corresponding increase in quantization noise.

To make the picture complete, there are still other noise sources like truncation noise (due to the
finite precision of the computations done in the controller) or white noise contributions (coming from
the digital-to-analog converter and the power amplifiers). Nonetheless, the essential contribution is due
to ADC quantization noise.

Is this critical for the system performance? In terms of a broadband excitation of beam jitter,
the answer is essentially no, since the dynamic of the beam exhibits a narrow band-pass behaviour, so
that it will react only to components in the noise spectrum close to the synchronous frequency. The big
challenge lies in a possible saturation of digital controller, DAC, and the power amplifiers due to noise
which can severely compromise the function and efficiency of the feedback. An example of how to set
up the filter in terms of algorithm, data flux, and format in a manner that avoids these problems is shown
in the next section.

4.2 Low-level processing

30
0 

Hz
 II

R 
LP

20
 k

Hz
 II

R 
LP

300−20000 Hz BP

Fig. 25: Basic blocks of the total filter

After the analog-to-digital conversion, we are left with predominantly white noise, spread over the full
spectrum. The only way of reducing it is to cut the bandwidth while leaving the signal intact. Given that
the signal occupies frequencies in the near vicinity of the synchronous resonance2 , a band-pass design
centred around the synchronous frequency is the most suitable approach. This implementation uses two
filter stages. The first is a fixed IIR band-pass implemented so as to minimize internally generated noise,

2For the SLS, for example, we have a few hundred hertz around a synchronous frequency of 2–5 kHz compared with a full
bandwidth of 500 kHz.
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which cuts the noise and limits the bandwidth from DC –500 kHz to 0.3–20 kHz. Following that, the
data rate is reduced by a 1:16 down sampling stage. Following that is the second, user configurable 16
tap filter. Figure 25 shows the layout.

Fig. 26: Introductory bandpass IIR

Figure 26 gives a close look at the introductory IIR filter. The band pass is constituted as the differ-
ence of two IIR low-pass systems resulting in a bandwidth of 300–20 000 Hz. The internal computation
is done in 32-bit fixed point. Finally a gain and saturation control stage reduces the data format to 16 bit.

Fig. 27: Implementing the IIR low pass yn = 7
8yn−1 + xn with minimum noise

The low level implementation of one of the stages (shown in Fig. 27) computes the recursion

yn =
7
8
yn−1 + xn .

The input data is inserted into bits 14 to 21 of a 32-bit double word. The multiplication by 7/8 is done by
writing the data yn−1 into two registers, into the first as is and into the second using a shift by three bits
(or divided by eight). Subtracting both gives the required prefactor 7/8. Only the shift operation results
in a truncation error in the least significant bit. The maximum gain of this iteration is eight, so the result
has significant values in bits 0 to 24.

Putting the result into the second IIR stage fills its output 32-bit word from bits 0 to 27, the
following multiplication by eight (realized again as a bit shift) makes use of bits from 0 to 30 without

REAL TIME CONTROL OF BEAM PARAMETERS

351



incurring any noise effects. The IIR low pass in the second branch is done in an analog way. The gain
and saturation stage at the end does a user controlled truncation to a 16-bit data format, choosing the
right gain will give the optimum balance between saturation and noise.

Fig. 28: Second stage: data flux and format of the 16-tap FIR filter

After the down sampling stage, the data rate is low enough to implement the user configurable FIR
filter using 16-bit for coefficients and input (Fig. 28). Multiplying coefficients and input data without
truncating leads to a 32-bit number. Adding two 32-bit numbers results in a 33-bit size, four 32-bit
numbers give a 34-bit and so on until we end up with an untruncated data flow of 36-bits width. A
second user configurable gain and saturation stage helps the user find a good balance between saturation
and noise.

What remains is how to choose the sixteen coefficients. A quick way, suitable for a manual trial
and error optimization, is shown in the next section.

4.3 Quick and easy controllers
A standard controller typically found in textbooks and used for universal application is a PID controller:

F (s) = P +
b

s
+ cs .

Only three parameters have to be chosen to optimize the control loop—sometimes even the differentiator
is omitted reducing these to two. For a bunch-by-bunch feedback, this approach cannot work, the main
reason being that the PID controller is designed for operation around DC, but the perturbation is centred
at a non-zero frequency. So it is interesting to ask what a corresponding filter looks like for a non-zero
frequency ω0.

For the proportional part, things are easy. A constant will stay that way also for non-zero fre-
quency, so there are no changes here:

FDC = Fω = P . (19)

Next we have the integrator. In DC, we have a pole at s = 0, so the shifted integrator needs to
have two at s = jω0 and s = −jω0, consequently, it should look like

F (s) =
1

s2 + ω2
0

.

To be realizable, the corresponding time domain function should be real. If we look in a table of Laplace
transforms, we find two candidates

s

s2 + ω2
0

⇐⇒ cosω0t

ω0

s2 + ω2
0

⇐⇒ sinω0t
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which correspond to in-phase and out-of-phase time domain responses and which we can identify with a
real and imaginary prefactor. The integrator comes out to be

Fω =
(
br + bi

ω0

s

) s

s2 + ω2
0

. (20)

The design of the differentiator essentially follows the same pattern. Instead of a DC zero s = 0,
we need two zeros at s = ±jω0. Again, there is an in-phase and an out-of-phase candidate, so that we
have a real and imaginary prefactor giving us

Fω(s) =
(
cr + ci

s

ω0

)s2 + ω2
0

s
. (21)

The corresponding time domain response is a pair of opposing pulses combined with a step function.

Table 1: Comparison of filter functions for PID controller centre on DC and offset at ω0

Type PID at DC PID at ω0

P F (s) = A F (s) = a
I F (s) = B 1

s
F (s) =

(
br + bi

ω0

s

)
s

s2+ω2
0

D F (s) = Cs F (s) =
(
cr + ci

s
ω0

) s2+ω2
0

s

An overview of the resulting functions is shown in Table 1. Where a standard PID controller
has three parameters, we now specify five. To do the digital implementation, the values of the pulse
response at discrete times are used to define the coefficients of an equivalent FIR filter. As an alternative,
a combined FIR/IIR design is possible. A description for a similar controller used for low-level RF
control can be found in Ref. [23].

4.4 Applying predictive filters
The purpose of the feedback is not to suppress wide band noise, but to shift the instable resonances
back into a region with positive damping. We are only interested in the response of the predictor in the
vicinity of the resonance—multiplied with an appropriate scalar factor, the predictor can be used directly
as a controller.

What is the measurement and what is the signal or state we are looking for? The power spectral
density of the longitudinal momentum is described by a resonance at the synchronous frequency with
positive or negative damping coefficient. Since the bunch oscillates in the longitudinal phase space,
measurement (the bunch phase) and state (the bunch momentum) are at 90 degree phase offset with
respect to each other. In addition, the measurement m contains white noise, giving us the following
power spectra (while neglecting the damping terms):

Sm(jω) =
Aω2(

ω2 − ω2
s

)2 +N

Ss(jω) =
A(

ω2 − ω2
s

)2 .
The resulting 16 tap filters in Fig. 29 show the typical behaviour. As the measurement becomes noisy,
the controller converges more and more to a band pass.

In a real machine, we are not only going to observe the synchrotron tune obscured by white noise.
The signal also contains static offsets combined with low-frequency noise due to the regulation loops of
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Fig. 29: Pulse and frequency response assuming only synchrotron resonance fs = 0.1 for varying levels of
measurement noise

the main RF, for example, something which we can approximate as a stochastic drift process. The naive
approach would be to include this as a true signal in the description of the power spectrum of the state.
The resulting filter would show a band-pass behaviour near the synchronous frequency as well as a peak
near DC to bring out the drift signal. But the drift signal is precisely the one that the feedback should
not react to! So, what we do is to define it as being a part of the measurement noise and let the predictor
suppress it:

Sm(jω) = A
1ω2(

ω2 − ω2
s

)2︸ ︷︷ ︸
synchrotron oscillation

+ B
1
ω2

+N︸ ︷︷ ︸
drift/measurement noise

Figure 30 shows the result. We get a minimum suppressing the drift, as one would expect.
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Fig. 30: Using predictor to suppress unwanted drift signals in the spectrum

4.4.1 Accommodating estimation and model errors
In the following discussion, let us take a look at how to handle tolerances in setting up the physical model
(e.g., the value of the synchronous frequency) or non-stationary effects. The normal approach would be
to use a Kalman filter, but incorporating an adaptive, time-varying filter into a feedback loop could easily
lead to unstable closed loop behaviour. Also, if changes are rapid, the adaptive filter may not be able to
follow within the required time.

In the context of bunch-by-bunch feedbacks, there is a good example for that. Often, synchrotron
light sources have higher harmonic cavities (HHC) built into the ring. These are passive devices excited
by the beam. By changing the slope of the RF voltage versus phase seen by the beam, they produce longer
bunches with higher stability thresholds with respect to intra bunch oscillations. Since the synchronous
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frequency depends on the slope, it also varies with the induced voltage in the HHC. In the case of the
SLS, it varies from a standard value of approximately νs = 5 · 10−3 down to values of 2 · 10−3.

If we optimize the feedback only for the current operating value, the following vicious circle can
appear: In the beginning, we may have the onset of a longitudinal instability. As the beam is oscillating,
the lines in the beam spectrum widen up and drop in height, so the beam excites less voltage in the HHC.
As a result, the synchronous frequency changes from the design value and so the feedback becomes
less efficient in stabilizing the situation. The beam oscillation grows, the voltage in the HHC drops, the
synchronous frequency deviates even more. We end up in a full blown instability. The process happens
really quickly, too short for an adaptive filter algorithm to react.
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Fig. 31: Including variations in the synchrotron frequency into the predictor (0.1 < fs < 0.2)

So what we could do is to include the expected range of the synchronous frequency (as well as
other variables) as a stochastic density in the design process. Staying with our generic examples, we
assume a variation of fs between 0.1 and 0.2 and take a constant density distribution of

Dfs(fs) =
{
C; 0.1 < fs < 0.2
0; else

and create an adapted power density to give

Ss(jω) =
∫
S(ω, fs)Dfs(fs)dfs =

∫ 0.2

0.1

CAω2(
ω2 − ω2

s

)2 dfs .
The resultant filter shown in Fig. 31 takes account of this spread of frequencies. A similar filter to this is
actually in use at the SLS bunch-by-bunch feedbacks.

5 Outlook
Accelerator-based feedbacks have come a long way from early analog systems used for basic local stabi-
lization. Several trends are visible. Digital systems allowing for more flexibility have replaced more and
more components in the analog signal path. The system architecture went from local systems to ones
taking into account cross coupling effects, be it the global orbit or the relationships between tunes, tune
coupling, and chromaticity. Digital systems always have the disadvantage of higher latencies compared
to analog solutions, so lots of work is devoted to speeding up processing, data flux, and data rates.

Given that we will reach a point of vanishing returns, the next step is to replace the currently
used standard controllers by optimized feedback controllers. The successful use of predictor filters or
LQR controllers needs a profound knowledge of the accelerator and of the stochastic properties of the
processes determining the perturbations to be expected.
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Appendix
A Youla–Kucera parametrization
Finding optimum controllers (with respect to internal noise, transient behaviour and so on) by performing
an unrestricted optimization over a whole function space often runs into severe problems. The resultant
system may be unstable or the controller not physically realizable. So it is quite attractive to first generate
the complete set of controller functions with stable properties, before doing a restricted optimization on
this set. One method, which will be shown in the following, is the Youla–Kucera parametrization.

In order to start, we first introduce some terms coming from pure mathematics. A ring R is a set
of elements with the following properties:

– On all elements of R, there exists a commutative addition

A+B = B +A .

– On all elements of R, there exists a commutative multiplication operation

A ·B = B ·A .

– An element C having a multiplicative inverse D is called a unit element. Not every element of R
needs to be a unit element.

Examples for rings are the following:

– The set of integer numbers Z.
– The set of proper Hurwitz stable functions, where both nominator and denominator of the fraction

are Hurwitz polynomials.

RH(s) =
∑
ais

i∑
bisi

.

– The set of discrete FIR functions
Rf (z) =

∑
akz

k .

If all elements in a ring are unit elements, that is, we can define a division for all elements, it is
called a field. Examples for fields are the sets of real numbers or the sets of rational functions.

Equations on a ring are the so-called Diophantine equations [24]. An example for this is the search
for solutions of

An +Bn = Cn for A,B,C ∈ Z, n = 2, 3, ...

which for n > 2 is the subject of the famous last theorem of Fermat [25]. For our purposes, we are
interested in solutions of the linear equation

AX +BY = C , (A.1)

where A,B,C,X, Y ∈ R,A,B,C are given and we are looking for solutions (X,Y ). This equation has
the following interesting property. Assume, we have already found one pair X ′ and Y ′ solving Eq. A.1.
Then we can create other pairs by setting

X = X ′ +BW (A.2)
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Fig. A.1: Simple control loop

Y = Y ′ +AW, W ∈ R (A.3)

which will solve the equation. What is more, this method will create all solutions in R.
How do we use that rather abstract result in the context of designing controllers? For that, let us

take a look at the simple feedback schematic in Fig. A.1. We assume that we can write both device and
controller transfer functions as fractions of Hurwitz stable functions RH(s):

S1(s) =
B(s)
A(s)

,

S2(s) = −Y (s)
X(s)

.

With this representation, the closed loop behaviour of the parameter y(s) is given as

y(s) =
BX

AX +BY
n(s) +

−BY
AX +BY

w(s) (A.4)

and a condition for y(s) to be stable is that the denominator AX +BY be a Hurwitz stable function.
Now let us assume that we already know one stabilizing controller, which we again decompose

into a fraction:
S′2(s) = −Y

′(s)
X ′(s)

. (A.5)

Using this particular solution and arbitrary functions W (s) ∈ RH(s), we can generate a whole set of
solutions

X(s) = X ′(s) +B(s)W (s)
Y (s) = Y ′(s)−A(s)W (s) ,

since, according to our Diophantine equation above

AX +BY = AX ′ +BY ′ ∈ RH(s) .

So the parametrization of all stabilizing controllers will take the form

S2(s) = − Y
′(s)−A(s)W (s)

X ′(s) +B(s)W (s)
,∀W ∈ RH(s) . (A.6)

A.1 Example
As a simple example, we assume the following characteristics for device and controller. The device is
proportional with unity gain, so that we can write it simply as

S1(s) = 1 =
1
1

=
A(s)
B(s)

.
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As a particular case of a stabilizing controller, we assume an integrator

S2(s) = −1
s
.

When decomposing the transfer function into a fraction, we need both nominator and denominator to be
Hurwitz stable, writing for example:

S2(s) = −1
s

= −
1
s+1
s
s+1

= −Y
′(s)

X ′(s)
.

Now the parametrized controller can be written as

S2(s,W (s)) = −
1
s+1 −W (s)
s
s+1 +W (s)

,∀W (s) ∈ RH(s) ,

using for example
W (s) =

1
s+ a

; a > 0 .

A possible disadvantage of this approach is, that the parametrization is in terms of a ring of func-
tions and not functional space like a Hilbert space, for which we have lots of techniques for optimization
and synthesis. Nonetheless, one is typically looking for controller designs of a low order and complexity,
so that the effort stays manageable.

As an alternative, we can use the same approach with controller and device transfer functions
exchanged. As a result, we obtain a parametrization of all devices, which can be stabilized by a given
controller. Comparing these with the expected variations in the device behavior due to tolerances and
drifts gives a valuable criterion for the robustness of the chosen controller.
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