Determination of Martian Surface Reflectivity

From 0.4 to 1.1 Micron Using a Vidicon Spectrometer
by
Douglas John Mink

Submitted in
Partial Fulfillment
of the Requirements for the Degree of Master of Science
at the
Massachusetts Institute of Technology
May. 1974

Department of Eprth and Planetary Sciences, May 20, 1974

Certified by:_r__

Accepted by:
Chairman, Departmental Comnittee on Graduate Students

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain pictures, graphics, or text that is illegible.
pagr. $=$ Determination of Martian Surface Reflectivity from 0.4 to 1.1 Micron
Using a Vidicon Spectrometer.

by
Douglas John Mink
Submitted to the Department of Earth and Planetary Science in partial fulfillment of the requirements for the degree of Master of Science on May 23, 1974

ABSTRACT

A new astronomical instrument, the vidicon spectrometer. is being developed at the M.I.T. Planetary Astronomy Lahoratorig. Based on the silicon diode vidicon system currently in use there. a low dispersion prism is added between the vidicon image tube and the telescope, allowing digital vidicon photographs to he taken of spectra. These spectra are stored on magnetic tape and computer processed to create intensity vs. Wavelength curves for stars and planets. The high spatial resolution of the vidicon image turne. combined with a higher spectral resolution than photometer filters currently in use at M.I.T. give this instrument potential in the study of planetary surface composition from spectral reflectivith. Procedures for reducing the vidicon images to spectra have bown tested on a set of spectra of tuo stars and the planet liars. It is concluded that the vidicon response is not linear enough with variations in exposure time at loul levels of incoming light for consistent star spectra, although it works well with Mars due to the planet's larger intensity where the vidicon tube has its poorest response. The spectrometer slit is so narroul lone serand of are for this datal that uavelength-dependent variations in refraction of light from a point source by the atmosphreve caurs star spectra of variable quality. Because of the lou ruality of the star spectra, direct spectral roflectivity measurements (which are obtained using Mars to star ratios) proved to be impossiblo. Although further tests of the spectral and intensity respionse of the silicon dinde fidicon should be carried out in the laboratory before good results can be guaianteed, the presont Mars spectra may probably be used in conjunction with photometer-derived reflectivity data to expand coverage of the surface of Mars.

Thesis Advisor: Thomas B. McCord
Title: Associate Professoir of Planetary. Physics

Acknowledgements

Numerous people were involved in the design and construction of the vidicon spectrometer, although 1 have only met a feu. Professor Thomas B. McCord, Mr. Jeffrey Bosel, and Ms. Carle Pieters have been informative about the design of the hardware, as well as the conditions under which they obtained the Mauna Kea data. Dr. Robert Huguenin lent his insight into the problems of Martian surface composition, as well as criticizing an early draft of this thesis. Steve Kent, who is also working with the spectrometer, provided criticism and astronomical knowlodge. My spouse. Catherine, has greatly aided me financially and norally. while David MeDonald greatly expedited the production of this thesis, with the aid of several computers.

Table of Contents

1. Introduction___ page 5
2. The Vidicon Spectrometer page 9
1II. Image Processing__ page 16
IV. Analysis of Data
page 27
V. Recommendations for Future Use page 50
3. Introduction

Although Mariner 9 has returned a vast quantity of information about the planet Mars, little was learned about surface composition. From such experiments as the infrarsd spectrometer, particle size and silica composition were estimated, but these determinations had error bars so great as to be nearly useless in reaching conclusions about the composition of the surface materials of Mars. Until the Viking Lander in 1975, there is no way to physically look at a Martian rock with instruments.

Probably the most useful technique for remotely sensing surface composition is reflectance spectroscopy. Dollfus (1961), studying the polarization of light reflected by Mars . concluded that limonite, a hydrated iron oxide, was probably a major constituent. Hovis (1965) observed absorption bands in the nearinfrared reflectivity of limonite and suggested that they would be a diagnostic test for limonite on Mars. Sagan et al (1965) compared absorption pands they observed in laboratory specimens of limonite to Dollfus' . Martian albedo curves and concluded that a surface with at least some limonite was not inconsistent with the data. Adams (1968) observed absorption bands between 0.5 and 2.5 microns in many iron-bearing minerals, the positions of which varied significantly from mineral to mineral. These bands are caused by electron transitions in iron ions and by vibrational bands i.n hydroxyl ions and water molecules. Adams suggests that
the absorption feature observed in Tull's (1966) geometric albedo curve is not inconsistent with a hydrated basalt composition. the feature observed at one micron in their spectra is not clue to iron in iron oxides, but to iron ions in silicates. Adams anrl McCord (1969). using geometric albedoes obtained during the $1 \cdot r_{1} \cdot 7$ opposition discovered that curves for the bright arras mill different shapes than those from the dark areas of the Martion surface. They concluded that the surface was composed of a combination of oxidized basalt and hydrated iron oxides. The bright and dark areas were modelled as being composed of of the same material in different degrees of oxidation.

McCord and Westphal (1971, see also McCord. Elias, and Westphal. 1971 observed Mars during the 1969 opposition and noted that the iron ion absorptions were in different places, indicating compositional differences. Seven areas were observed, four dark and three bright, each being about five Martian longitudinal degrees in diameter. From this data, much compositional analysis has been done (see Figure 1 for examples of mineral reflectivities compared to Mars): however, from such a small sample, generalizations about the rest of the surface cannot be made. Despite over twenty additional spots obtained during the 1973 opposition, such interesting features as the Coprates canyon 'and the Hellas basin remain uncovered; what is needed is whole disk coverage at hight spectral and spatial resolution. A new technique, vidicon spectroscopy, has been developed to obtain the

Figure 1.
Comparison of Mars dark area reflectivity to reflectivity of sheet silicates. Note resemblance to the clay minerals, kaolinite and montmorillonite.
(Courtesy Dr. Robert
Huguenin)
desired high resolution full-disk coverage. This thesis describes that technique.

11. The Vidicon Spectrometer

The silicon diode array vidicon was originally developed for television and picturephone use, but because of its large dynamic range, high quantum efficiency, and linear response, it is being used by a growing number of astronomers as a digital replacement for photographic plates. The only advantage a photographic plate has over a vidicon is spatial resolution; however, that is not a limiting factor as atmospheric conditions are the resolutionlimiting factor in astronomy. McCord and Westphal (1972). Kunin (1972), and McCord and Bosel (1973) have reported on the development of a vidicon system for single-frame astronomical photography at the Planetary Astronomy Laboratory of the Massachusetts Institute of Technology (MITPAL). This system is based on an RCA silicon vidicon tube with a peak quantum efficiency of 85% at 0.5 microns, sloping off to about 6% at 1.1 microns (see Figure 2). Using filters this system has been developed as a two-dimensional imaging photometer, using filter sets similar to those used with photometers for spectral reflectivity work at MIT. As reported by McCord and Bosel, a vidicon spectrometer which would give the spatial resolution of the vidicon combined with a greater spectral resolution than such a vidicon photometer is under development.

The vidicon spectrometer is basically an optical sysitem which is attached to the front end of the vidicon system on the telescope. Schematically it consists of a low-dispersion pric.ll

Figure 2. Quantum efficiency of the RCA vidicon.
This is the percentage of incoming photons which the diode array and affect it as opposed to being reflected or passing through without being absorbed. This graph was made by averaging the published curve over 250 angstrom segments.
through which light from a slit situated at the focus of the telescope is passed. The dispersed image of the slit is then refacused onto the surface of the vidicon diode array. In practice this is done through a system of mirrors (see Figure 3 for details) to avoid the infrared absorption of lenses.

The vidicon tube consists of a 1024 by 1024 array of reverce. biased diodes. A photon impinging on the vidicon target results in a decreass in charge in the diode it reaches. The image is read out by scanning the diode array with an electron beam which recharges the diodes as it hits them, producing a current proportional to the amount of charge lost. By knowing where the beam is at any given time, the intensity at each location in the diode array can be known. These intensity elements are then passed on to be recorded and displayed (for fur ther details on the electronics of a silicon vidicon see Crowell and Labuda (1963)). The vidicon is read out as 258 rows of 256 image elements, each of which corresponds physically to four diodes. In such a lower resolution scan, less accurate positioning is required of the electron beam. No data is lost, and the vidicon's resolution is still better than the atmosphere allows. The intensity image is amplified, recorded on magnetic tape, and displayed on a slow scan TV monitor. This image is then available for further computer processing. The spectrometer system is diagrammed in Figure 4.

A portion of a vidicon spectrometer image is presented in Figure 5. The elements along the column correspond to spatial

Figure 3. Optics of the MITPAL vidicon spectrometer. The telescope is to the right.

Figure 4. The MITPAL vidicon system with the spectrometer attached.
elements along the slit. Wavelength is along the abscissa. The magnitude of each element is proportional to the current from the vidicon diode array at the time a corresponding diode was read hy the scanning electron beam. The image is now ready to be turned into a spectrum.

	111	11	14	11.1	10	11.1	112	13	114	49	136	n）	［9H	H：					94						
1－		553		67													534	565		352	5 5．	5		549	
72	14\％	255	24.1	145	143	253	747	21.4		42	240	243	240	240	738	237	246	239	246	245	252	338	74	243	240
$3-$	1	144	1%	10	97	172	3	10	14%	$19 n$	189	1 HR	179	$1{ }^{1} 3$	121	138	186	195	186	196	192	187	98	9	1
$4-$	16，5	161		173	171	163	164	11	$1{ }^{1} 1$	174	162	175	166	156	167	165	163	161	176	164	172	172	150	105	164
s－	139	161	$1 \geqslant 1$	159	155	157	16.7	154	15,4	$13 ?$	158	170	166	157	153	157	120	151	164	158	179	169	169	172	5
\％－	15 ？	154	1 H	172	191	1；5	116	157	150	153	160	153	199	153	16.1	165	163	166	157	$15 ?$	157	175	176	186	5
1－	166	130	157	47	－	155	152	15%	153	45	149	159	151	157	147	4	159	157	107	59	165	\％	171	5	173
č－	57	149	156	150	7	153	157	$1 \mathrm{ha}^{2}$	15 H	155		145	157	153	157	153	155	170	167	156	175	176	179	55	176
	15	162	150	19.6	161	las	151	1%	54	160	163	159	153	110		181	165	17	172	179	191	80	194	1	179
	16，5	162	114	16.5	177	123	176	167	170	157	176	173	171	160	20	177	174	180	187	183	181	7			194
1	2 n	127	cis	115	25.9	179	202	2 C	199	210	2 C,	212	202	210	202	219	206	209	209	203	205	197	199		200
12－	341	354	3．9	331	359	347	357	354	137	325	322	327	111	295	298	300	284	273	258	245	2	249	23	22	220
$13=$	509	6．20	13	16	625	630	627	$6 ? 9$	607	573	570	557	552	535	506	416	452	422	380	34	325	317	361	299	7
$14-$	4.3%	642	33	わ？	653	16%	677	685	659	360	654	653	645	641	614	591	572	523	473	431	409	391	375	347	2
15	1243	12731	17－3	126.7	$12(5$	2	1276	24.5	1190	144	127	131	09	047	912	972	919	848	735	643	60？	532	545	472	417
15	＜949	2117	2149	2128	7147	2179	7191	2172	9	2048	047	040	016	750	878	1795	1711	1562	1311	16	102	035	735	305	33
17.	1611	2453	14.	2.02	2り䛞	2555	25 A7	254	2480	2439	425	439	41	360	2304	2219	2123	1967	1607	1541	5n6	458		2vi	959
1\％－	14．1	2515	2532	＜，31	2．a）	28.14	2625	2617	¢540	7487	2451	484	245	416	23＜3	2285	2185	2042	1789		625				111
17－	2425	2471	24．73	7：74	2003	254	2567	2547	2482	2433	446	44	417	2357	$22 ?$	2228	2138	2019	176	647	937	5	57	309	1130
$20:$	（3\％）	74.7	76.5	7	2417	2¢1	254\％	2534	2460	210，	3400	2397	＜377	2304	2271	7707	2112	1968	17	161	1583	54	1427	1274	3
1－	［41）	ว）${ }^{\text {3 }}$	134	2384	2391	24	1450	245	？ 3 B	2339	2360	？ 356	23.3	2765	27.1	2127	2047	1932	1706	1567	1558	149	13ak	124）	4
	c 16.4	2）	く！	2	224	2780	2312	2103	$27<5$	2189	2194	2200	2185	2129	2015	3091	1927	1411	1614	1487	1455	1420	1311	11	1043
6－	2116	\bigcirc こ1	$1{ }^{1}$	3：4．h	？299	＜32＇	2331	730 H	2713	2725	220\％	$22 ?$	28CR	4159	20nn	2073	1437	1823	1611	141		14， 1	1311	1183	1
－	＜ 1	＜：	\％${ }^{\prime \prime}$	1.37	1441	76，71	7498	2476	1434	2369	2368	2357	2343	2304	2236	2177	2077	1963	1721	15		1503	1361	1236	O
フラー	$\therefore{ }^{-}$	3	1．．）	2． 37	21.4	775：	2747	27？	7 r	2537	7	1.11	259	2507	2＇4h	7407	2321	2175	$190 ?$	1743	1718	1671	1532	36.3	5
1，	c4．		\cdots	1	－	く	＜10	164＂	＜1，11	．6	）	－${ }^{\text {a }}$ ，	くら1	24	94／4	$\therefore 1$	216	＜11	14	1192	$1 /$				
17－	7119	776.8	7170	ハn1	\％	2	2 R	24？	1	414	274	73	272	67	6，0		4，5	31	2044	1700	$1 \begin{gathered}1479\end{gathered}$	Res	691	327	
28－	27.4	？	1.2	27	3651	3110	3151	3150	3013	3017	3021	3045	3742	2960	2867	2 Aln	$270 d$	2570	2268	2023	2073	20	15：8	1683	1480
23－	041	120，	11	1395	3073	312	3180	3191	3113	3040	3056	3075	3057	299？	2420	2841	2776	2609	2303	2121	2189	2062	1919	17	35
\％		frí	\＄1／＂	\＄141	315%	32 tm	3268	3749	3144	3112	$31 / 1$	3139	3120	3056	2972	2729	2400	2686	$23+5$	2156	2147	2108	1745	1743	1568
31 －	cear	2794	$3: 10$	117	30	317	316.8	7172	3174	3045	3052	3064	309日	2771	$2^{\prime} 912$	2835	？ 75	2071	2307	214%	2101	？ 117	170	17	1531
11－	\％x： 4	1118	d	－13A	2＇9	3 nc	96．4	31166	31，41	2955	2741	2919	2944	2881	2805	¢ 109	2031	2520	2232	2163	， $11 /$	1．351	$17<4$	1607	1470
39	$\underline{0} 7$	¢ 76	＜${ }^{\prime}$	P17	\％14．t	－	Pッ1	ご\％	2735	2 PC 1	$2 \mathrm{Br} \mathrm{H}^{2}$	286	／R	277	264n	6.17	¢515	$4 ?$	2145	1971	1733	101.7	1703	$10{ }^{5}$	1427
$34-$	1317	¢354	（4）1	－	2	－	\％spr	2547	$\angle 550$	2499	2510	2544	354	467	碞	83	2245	2117	6	173？	1712	1681			
：5：	1962	2：30	$22_{1} 1$	$2: 12$		？	2126	2113	2685	2035	$2 \mathrm{Cl}_{3}$	？ 0.57	2234	1996	1936	1837	1333	174	155	1444	$1 \leq 15$	1384			
36	csi	大＂1	（4）	（45）	20.65	2431	－\％ $3^{\text {a }}$	$2,4 \mathrm{H}$	2496	2432	2415	2444	2432	2384	2319	2244	2164	2035	12^{86}	1831	2．${ }^{\text {a }}$				
3	21.4	2－1，9	A\％	く： $\mathrm{\square}$	？${ }^{1} 1$	2132	＋1，01	？6，59	¢til 1	$2 \cdot 12$	2「＇リ	2513	256	2594	2439	3382	2315	－	1	（0）					
3 l		bre	20，17	$1 \cdot 14$	4.5	1716	276n	211.3	212 k	21，47	7f，si	7664	262	2571	2536	2480	2404	298	2015	1743	1821	1717	1652	1470	1293
37	36	1423	＜4， 1	＜41	$2 s{ }^{2}$	254．	26,03	2613	2671	2512	7501	2544	＜ 5 ？	246	2r． 28	23.	＜303	2179	1732	1784	1774	1741	1617	1406	1279
	14.33	734．3	24：3	＜ 31	24.47	21.85	2141	7718	2721	28.43	26.4	2 2，81	518	7605	51		411	2305	0	1880	1755	1803	1017	517	1324
41	$\ldots 31$	2103	［123	204	2494	25．44	2.217	2527	2540	2.464	24.81	2535	$2{ }^{2}$	3465	250．1	232.2	2276	2195		75	1765	1724	1613	1436	1272
41	1416	1492	1，33	I＇s 8 ．	2－5，	7．17	2647	2676	26．21	2567		2107	（b）	5	1411	241	2346	1140	$1{ }^{125}$	1319	17	176			
$43-$	C33＊＊	24.1	1435	24．6	24：12	25.51	2519	2614．	2567	2505	2324	2560	2547	2502	2432	237	2292	2208.	1725	L73？	176	173	16こ9	1451	5
48.	1%	174		231	314	2391	7413	2454，	1175	2343	2357	2373	2381	2319	2289	2233	160	2055	1817	1673	6	1614	5－5		128
$45-$	＇．4．	111	2lus	＜10n	21\％＇	2747	2182	2278	＜10，	＜ 117	1124	2く40	2375	217	2113	2011	2012	1921	1601	1544	$19 ?$	1927\％	33.1	4.45	10
¢，	，	$12+1$		1：6\％	$1 \mathrm{Br} \mathrm{\prime} \mathrm{\prime}$	1＊1＇	$174{ }^{\text {1 }}$	1745	1925	1847	1897	1717	1909	1876	1 111	1769	1718	1642	14，	1375	1228	1276	1.77	087	
$41=$	1815	1180	上以	1.17	1421	1：22	1871	1412	1849	1712	1721	1423	1805	1722	1486	1658	1603	1517	1328	1220	208			969	
	1：1．4	194%	1：18	126.8	$13 \% 4$	141\％	143s	1434	1400	1377	1340	1409	188	135\％	340	1101	1268	1190	1071	1208					
¢7－	cl6	ก22	9.11	214	221	935	256	750.	932	？ 31	927.	435	929	914	809	884	871.	820.		121	11			030	572 423
8.	t＋	971	，	\cdots	Biol	751	112	116	108	n）	63	¢9	69	680	673	tho	636	608	565	540	5	19	492		23
－	4 C	491	$\therefore 4$		．5．9		517	52 P	520	511	311	512	504	523	4.98	474	474	431	417	397	393.	395	1	342	320
57－	364	3\％4，	365	6\％	$36:$	310	383	345	363	377	374	187	378	372	315	304	361	351	327	307	314	30	289	272	207
25－	241	2 C	11	116	214	245	221	293	281	211	283	291	283	281	284	272	273	273	251	255	244	245	240	226	222
；4－	2%	？ 11	114	＜24	2218	210	223	225	721	2111	734	210	224	211	217	214	214	213	212	201	20	20	202	23	
－	185	171	14＇	－ $2 \cdot 1$	－192．	112	170	198	196	197	194.	192	191	145	193	1.93	186	－ 185	186	172	172	182	182	184	
$36-$	$1{ }^{4}$	172	176	H	191	17.	177	165	180	18	18	17	177	11	107	179	178	184	179	173	176	168	173	183	176

Figure 5．A portion of one vidicon spectrometer image of Mars． It runs from about 0.6μ in the leftmost column to 0.8μ in the rightmost．

111. Image Processing

The first processing that must be done to the image is to convert the column coordinate into wavelength. This is dom through the use of a calibration function:

$$
S=-S_{0}+\frac{C}{\left(\lambda-\lambda_{0}\right)} \quad \lambda=\lambda_{\theta}+\frac{C}{\left(S+S_{0}\right)}
$$

S_{0}, λ_{0}, and C being. three constants determined from three column number-wavelength correspondences as follows:

$$
\begin{aligned}
& C=\frac{\left(\lambda_{1}-\lambda_{2}\right)\left(S_{1}+S_{0}\right)\left(S_{2}+S_{0}\right)}{\left(S_{2}-S_{1}\right)} \\
& S_{0}=-S_{1}+\frac{\left(\lambda_{2}-\lambda_{3}\right)\left(S_{2}-S_{1}\right)\left(S_{3}-S_{1}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(S_{3}-S_{2}\right)-\left(\lambda_{2}-\lambda_{3}\right)\left(S_{2}-S_{1}\right)} \\
& \lambda_{0}=\lambda_{1}-\frac{C}{\left(S_{1}+S_{0}\right)}
\end{aligned}
$$

These correspondences are obtained by observing the spectrometor image of a calibration lamp with knoun sharp emission lines la, shown in Figure 6). From this calibration, which is redonr: poriodically as data is taken, the wavelength-column relationship is known (see Figure 7 for an example). The resolution also varies as a function of wavelength, as would be expected (see Figure 8 for a sample dispersion function plotted from the first derivative of the calibration function).

Now enough is known to process a spectral image. A program

LT əbed
Figure 6. A spectrum of the calibration source, indicating vidicon intensity of each vidicon element along one row. Assigned wavelengths are indicated.

$1 \quad 0.3133$		$51-C .3508$		101	0.4114	151	$\begin{aligned} & 0.526 \mathrm{C} \\ & 0.5294 \end{aligned}$	$\begin{aligned} & 201 \\ & 202 \end{aligned}$	$\begin{aligned} & 0.8248 \\ & -0.8357 \end{aligned}$
7	0.3139	52	-0.3517	102	0.4130	152			
3	0.3145	53	0.3527	103	0.4146	153	0.5328	203	C. 8471
4	C.3171	74	0.3736	104	0.4162	154	0.5362	204	0.8588
5	0.3158	55	0.3546	105	0.4179	155	0.5398	205	0.8708
6	0.3104.	55	C. 3555	106	0.4196	156	0.5433	206	0.8834
1	C. 3175	57	C. 356	107	0.4713	157	0.5470	207	0.8963
8	0.3177	59	0.3515	$10{ }^{-1}$	0.4230	158	0.5507	209	C. 9098
9	C. 2133	59	Q. 3585	109	0.4247	159	0.5546	209	0.9237
15	0.3183	60	6.3,75	110	0.4265	160	0.5584	210	C. 9382
11.	0.3196	61.	0.3605	111	0.4283	161	0.5624	211	0.9532
12	0.32 C 3	62	(1.3615	112	0.4301	162	0.5664	212	0.9688
13	0.32 C 9	63	0.3026	113	0.4319	163	0.5705	213	0.9850
14	0.3216	65	0). 36.36	114	0.4338	164	0.5747	214	1.0619
13	$0.32 \leq 3$	65	0.3047	115	0.4357	165	0.5790	215	1.C194
1 C	C.3229	616	0.3657	116	0.7 .376	166	0.5334	216	1.0378
17	0.3236	67	1. 36,68	117	0.4395	167	0.5878	217	1.0569
18	0.3243	68	0.3079	118	0.4415	168	0.5924	218	1.0768
19	C. 3290	69	0.36 .90	119	0.4435	169	0.5970	219	1.0977
$\angle 0$	U.3257	70	0.3701	120°	0.4455	170	0.6018	220	1.1195
11	0.3264	71	0. 3712	121	0.4476	111	0.6666	221	1.1424
4	0.3271	72	0.3724	122	0.4497	172	0.6116	23.2	1.1663
23	C. 3279	73	0.3735	123	0.4518	173	0.6167	223	1.1915
<4	Q. 3246	14	0.374%	124	0.4537	174	0.6219	224	1.2179
2.5	0.3293	75	0.3759	125	0.4561	175	0.6272	$? 25$	1.2458
26	0.3301	76	0.3770.	126	0.4583	176	0.6326	226	1.2751
27	0.33 ca	77	0.3732	177	0.4005	117	0.6381	227	1.3C60
cd	0.3316	. 78	0.3775	178	0.4626	178	0.6438	228	1.3387
29	0.3323	79	0.3807	129	0.4651	173	0.6496	229	1.3733
30	0.3331	80	0.3 ni9	130	0.4674	180	0.6556.	230	1.4100
21	0.3339	81	0.3132	131	0.4698	181	0.6617	231	1.4489
32	0.3346	82	O. 38.44	132	C.4727	182	0.6679	232	1.4904
33	C. 3354	83	0. 38.857	133	0.4746	183	0.6 .743	233	1.5346
34	0.3302	84	0.31519	134	0.4171	184	0.6809	234	1.5818
35	0.3370	83	0.3483.	135	0.4796	185	0.6876	235	1.6324
36	0.3378	85	0.3396	136	0.4322	186	0.6945	236	1.6866
37	0.3336	87	0.3910	137	0.4848	187	0.7016	237	1.7 .451
38	0.3334	88	0.3723	138	0.4874	188	0.7089	238	1.8081
39	C. 3403	83	0.3931	139	0.4901	189	0.7164	239	1.8764
40	0.3411	90	0.3451	14 C	0.4978	190	0.7241	240	1.9505
41	0.3419	91	0.3965	141	0.4956	191	$0.731 ?$	241	2.0313
42	0.3428	92	0.3979	142	0.4984	192	0.7401	242	2.1197
43	0.3436	93	0.3793	143	0.5013	193	0.7484	243	2. 2168
44	0.3445	94	0.4008	144	0.5042	194	0.7570	244	2.3240
45	.0.3454	95	0.4022	145	0.5071	195	0.7658	245	2.4430
40	0.3463	95	0.41 .37	146	0.5101	196	0.7749	246	2.5758
47	0.3471	91	0.4052	147	0.5132	197	0.7843	247	2.725 C
*	0.3480	98	0.4147	148	C. 5163	198	0.7939	248	2.8937
49	Q. 3490	99	0.4083	14.9	0.5195	149	0.8039	249	3.0862
50	0.3499	150	1.4098	150	0.5227	200	0.9142	250	1.3077

Figure 7. Wavelength as a function of vidicon column for a typical calibration function. The three column (Sn)-wavelength (Ln) pairs used to determine the function are given at the top. Column number is at the Ieft, wavelength at right.

Figure 8. Spectrometer dispersion function. spectral resolution per image element as a function of wavelength.
has been written which runs as a subroutine under the Planetary Astronomy Laboratory's image processing system (DIPSYS) which has been set up to provide a metastructure under which vidicon images may be easily processed. A simplified diagram of this program appears in Figure 9. The spectral image is read off the run tape by DIPSYS and stored on a disk where it is available to the spectral processing routine, which has three basic tasks. The first and easiest is to punch out the intensities along one row of the image onto computer cards for input into a plotting routine (this was how Figure 6 was produced). Second, it can subtract the average background from the image, column by column. where the rows over which the background is to be averaged are read from the input instruction cards. Last, and most important, the program can produce a new image in which all of the elements have the same spectral resolution. For spectral reflectivity work, where the range of interest is 0.4 to 1.2 microns, a resolution of 250 angstroms, the best resolution at 1.2 microns, was chosen. Figures 18 and 11 show the effects of this processing on an image of the standard star Xi 2 Ceti. Portions of these images are then integrated spatially along the slit. Due to atmospheric and telescope optical effects, a star image is not a point: it is smeared out spatialy into to a Gassian distribution of intensity which is at its maximum where the point source would be. To use the full energy output of the star at a given wavlength, the image must be integrated across all rows where the image intensity is

[6 28ed

	31	152	153	1＇34	1，5	138	137	SB	119	160	01	102	163	04	95	68	161	16.	10.	115	111	：17	17：		11	
$1-$	445	437	436.	¢31	441	6\％）	＋	436	446	$15)$	430	4：9	454	44	443	－	，	4								
－	204	20%	112	719	117	115	175	171	146	193	191	175	104	170	10	17	179	$\therefore 1$	121	175	131	17	1		127	
3－	155	150	130	155	10.5	1；1	167	1：1	167	167	163	163	160	135	16.2	146	101	19	159	150	157	ic．	103		157	
－	136	14\％	$1 \% 4$	$1 \% 2$	143	1,2	137	149	151	152	153	144	145	$1 ; 1$	143	145	14.5	1，）	1，1	1%	1：3	143	14，		$1 \sim \cdot$	
$5-$	14%	165	1\％2	1：5	147	141	165	144	141	143	194	149	134	180	141	167	145	17^{-}	14．	$1+5$	1．2	$1-5$	1－2	1.1	$1 .$.	
	135	115	141	149	1；7	1\％）	144	133	134	141	1：9	135	141	131	145	144	144	13	141	$15+$	1.1	154	1.1	17	14.	
7	137	152	13	119	144	145	147	140	137	157	146	144	143	145	146	141	142	134	13	147	147	114	144	127	13：	
8	$14{ }^{4}$	13%	126	133	$1<1$	127	125	136	139	137	131	123	131	135	136	121	141	131	175	123	121	143	135	131	i．；	
9	135	161	131	135	134	131	132	129	137	141	143	132	139	135	141	137	131	131	137	14.4	141	135	$1-7$	1i1	19.	
$0-$	121	147	153	127	133	$13 \frac{1}{}$	127	132	137	137	131	145	135	126	140	131	132	115	125	137	149	1	143	112	1：\％	
11－	132	126	121	177	127	130	127	134	130	136	141	135	127	123	127	130	151	135	$1 / 5$	112	14.7	1.1	1.25	127	$1<$.	
12－	133	132	127	131	111	135	135	132	143	136	135	129	135	136	177	136	12.1	171	136	136	！？	$1 / 4$	132	137		
13－	135	134	127	131	139	135	142	137	141	146	144	147	137	139	134	143	131	135	148	141	142	14.	147	137	12 n	
14－	132	133	141	137	132	13.	127	127	121	129	147	137	133	132	124	124	129	13：	125	13；	131	110	154	1 ± 5	120	
15－	$1<7$	125	131.	139	137	135	133	132	127	127	136	133	131	129	141	131	130	19	$1<3$	131	133	1.	1－6	12＇	1.9	
16－	137	136	133°	143	135	128	131	130	127	139	134	131	134	131	134	131	142	13.7	139	141^{-}	$1<1$	117	17	13i	13：	
$17-$	126	125	127	177	134	127	137	137	129	135	124	123	175	131	13 n	123	：195	127	127	12.1	113	1：3	1.3	13.	13．	
19－	127	13,	156	123	177	133	127	13 H	130	130	137	136	136	127	147	112	128	153	127	$13 *$	114	126	$1<6$	15！	1.9	
17－	134.	140	132	135	132	125	135	135	131	137	139	125	139	159	157	132	143	12？	131	$1 ? 7$	142	133	1,4	19；	131	
20.	133°	137	139	139	121	123	122	136	134	137	137	130	175	127	135	131	130	135	127	isi	117	1	123	$12:$	$1: 7$	
$11=$	137	140	135	131	$1 \% 1$	113	137	130	135	141	130	137	125	130	130	127	136	13	131	111	112	111	189	13	131	
$27-$	13.	132	130	138	131	140	135	139	129	138	146	127	154	132	120	172	140	15	111	13	1.1	（1）	134	is	111	
$23-$	134.	135	121	131	141	197	126	131	133	132	142	139	128	133	136	14.	133	147	137	19	13	$1 / 3$		170	133	
＜4－	151	129	134	143	131	171	154	136	134	125	150	125	174	133	130	111	171	17	$1{ }^{\text {a }}$	$1 \cdot$	111	11	Is	1．1	$1 \leq$	
25－	131	135	130	137	133	133	128	141	127.	129	137	131	133	114	126	126.	114	17.	131	$1 \cdot 1$	13	111	10	1	1浐	
c6－	136	141	13	123	136	13\％	135	13%	132	135	131	132	122	135	136	173	127	120	129	11	いい	1.7	lea	1，：	12	
$27-$	145	131	153	136	126	117	132	139	120	143	143	125	129	138	127	132	145	： 3	131	1%	$1 \times$	111	1.	1	13，	
＜8－	144	143	130	130	143	157	134	142	131	133	143	133	126	136	$1<1$	136	133	121	150	$1: 1$	1＇\％	14	14	140	13：	
29－	152	151	134	143	14.4	147	132	146	136	135	151	144	135	141	141	121	131	13：	13：	$1: 4$	1！	1－9	1.	$1 \cdot 2$	13.	
35－	215	227	20%	117	200	206	207	244	208	714	－115	$2{ }^{2} 7$	217	284	2 Cb	174	200	176	14.	1	I－，	in＇	$13:$	17	13%	
$11-$	703	701	$7{ }^{7}$	117	112	7.71	677	097	692	691	696	－ 60	656	654	639	－2t	019	0.14	6.35	7\％	？3＇	\because	$3>1$	\because	343	
32－	1426	1321	1\％14	1011	1\％）	（103s	173	1938	1111	1923	1936	1904	1444	1 1．sen 2	1618	1112	1：17	11.31	114，	11：1	171i	1！	11.	i $\quad 1$.	1635	
33－	29.45	2857	2448	P．．57	？${ }_{14} 18$	2י53	7481	2，12	2.212	$?+84$	2912	2tel	2727	2418	277\％	276	セャッ）	2，：\％	2．23	＞015	，${ }^{\text {，}}$	1－4．8		2529	$24 \leqslant 4$	
$34-$	1845	184y	1449	1.557	1412	1975	1871	1 Cl 5	1972	11464	1.44	171？	17.15	1790	1771	1749	1709	$1: 口$ d	10.1	$1!4$	1：＂）	19	1212	$3 \cdot 1$	1522	
15－	744	768	114	191	$1 \cdot 4$	123	711	A 14	7．9？	H6T	419	811	$4{ }^{4} 2$	413	8,10	（1）11	111	\cdots	－1．	11	113	205	$-: 0$	310	74：	
36	413	411	416	470	113	43.5	$4{ }^{46}$	417	4400	9，43	490	442	$4 \mathrm{4a}$	45	$4{ }^{4}$	Por	$40:$	41	4	－\％	47	403	4	462	469	
－37－	241	242	744	くら7	20.4	763	\％	<55	751	232	288	206	25.3	260	264	257	203	271	357	\because	$\bigcirc 11$	$\cdots 1$	$?$	2：	580	
$38-$	173	183	111	193	173	163	117	175	172	179	118	1 H0	175	186	179	113	117	17%	10，	17	い	$11:$	1：	17：	1：0	
$37-$	147	154	143	143	111	133	135	141	135	142	141	145	171	136	139	133	136	13.9	131	i＊	1：	111	$1 \cdot 1$	14	1%	
$40-$	143	131	133	137	111	154	135	127	121	14.1	115	132	135	147	135	126	136	131	171	131	131	いい	1.	$1<1$	117	
41－	136	135	127	129	120	121	110	125	127	135	114	127	127	1.94	133	127	134	123	127	1.1	111	1,1	$1 ;$	1.7	135	
42－	125	132	127	127	177	132	177	131	132	121	131	135	122	123	117	130	121	136	125	133	1%	$1 / 3$	1.7	127	12.3	
$43-$	127	134	11%	$13 j$	135	131	133	135	143	136	114	125	133	138	13.3	127	117	$1<1$	119	172	1：3	14	1.1	$1 ; 3$	12：	
44.	131.	134	119	121	131	125	138	129	131	131	197	112	126	131	127	127	12.1	131	123	131	13.	123	1 1\％	113	13.9	
450	132°	131	127	131	120	134	12 n	143	120	120	137	112	127	135	11%	116	$1: 7$	127	175	$1 \geqslant$	$13 \cdot$	$12 \cdot$	1.	$1 \cdot 3$	13.2	
46	135	151	134	132	1：3	124	131	136	$12^{\prime \prime}$	136	131	123	123	132	127	125	134	13，	170	13	$12 \cdot$	133	$1 \cdots$	$!$	133.	
$4{ }^{4} 5$	134	132	123	137	137	121	131	137	131	133	129	133	123	131	131	171	127	1319	120	137	144	1313	156	13.	14.	
$49-$	134	132	$1<7$	135	133	13 H	112	137	153	137	130	111	126	141	132	117	131	125	123	133	190	1,1	1.7	i，	137	
$20-$	1ss	131	1.3	131	1：5	121	174	136	131	121	124	154	120	136	137	170	134	137	14.	13，	lin	14	1．7，	140	114	
$21-$	148	141.	133	127.	137	12.	121	140	122.	139	136	127.	150	154	$14^{\prime 3}$	114	129	121	129	14＊	127	1：	1 ＊．	14%	$13 i$	0
22－	121	125	127	135	129	133	132	137	132	125	127	111	121	157	1.34	135	127	13＇，	129	127	133	14.	1.4	iv？	145	0
－	143	134	1.15	144	133	131	132	141	133	131	140	174	175	136	145	136	134	143	134	147	1＋1	143	$1=1$	ist	$12:$	（1）
S6－	144	134	131	144	13^{\prime}	127	137	141	128	137	134	120	133	141	140	127	$1+1$	131	198	141	14，	135	140	$1 \cdot$	1－1	
55－	122	135	136	117	121	121.	134	134	135	125	133	136	171	172	13.3	13.7	139	14.3	－ 136	1：3	$1 \div 1$	11.3	14.4	1－7	い1	
56	13.7	132	118	127	133	126.	132	131	135	135	133	131	134	159	144	134	143	134	142	1.4	141	1 －2	1.4	$1 ;$	los	

Figure 10．A portion of the vidicon image of the spectrum of ξ^{2} Ceti from about 0.5μ to over 0.6μ ．Note spatial spreading of image（vertically）． The star is centered in row 32.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 1 \& ？ \& \& 4 \& 5 \& 6. \& － 7 \& \(\delta\) \& 9 \& 11 \& 11 \& 12 \& 13 \& 16 \\
\hline 1－ \& 3is． 5 \& \& ＊ 11.818 \& 924．7－4 \& \(217.72^{\circ}\) \& beb． 111 \& \(5 ¢ 7.5144\) \& 49ヶ．47， \& 3－4．190 \& \＄1．36： \& 402.335 \& 491.379 \& 487.122 \& \\
\hline 2－ \& 65.472 \& 1\％．91 \& －6．759 \& i Pr．ana \& 75．3nl \& 9：．644r \& 44.474 \& 154.6 \& ＋6． 712 \& 93.747 \& 73.933 \& －9．b：c \& 487．122 \& －7．3 \\
\hline － \& \(17.2=3\) \& 28.0104 \& \(4: 934\) \& 42.677 \& 22.441 \& 25.362 \& 28.97 \& 21.492 \& 41.769 \& 41.238 \& 4.251 \& 33.103 \& 17.589 \& 11．47． \\
\hline \(4-\) \& 7.6 \& 1．123 \& 16.4 en \& 17.7 ？ \& 16.121 \& 12.199 \& 1．1．46） \& 9.142 \& 17.813 \& 14．10 \& 10.804 \& 5.642 \& 17．789 \& His？ \\
\hline \& 2．34\％ \& \(9.86:\) \& 19.0 \& ＇6：\({ }^{\text {c }}\) \& \(7.10 \%\) \& \(4.0{ }^{\circ} \mathrm{C} 7\) \& 4.117 \& \& 11.461 \& －．Es， \& 1.64 \& 3.319 \& C．ers \& \\
\hline \& \(14 \cdot 0) 1\)
0.042 \& 8．4＇： \& ：1．13， \& 2．4：？ \& \(2 \cdot 617\) \& 3.534 \& 3.970 \& ？．041 \& 4.390 \& 6.737 \& 1． 978 \& 0.000 \& 0.500 \& eco \\
\hline － \& \[
\begin{aligned}
\& 0.20 \\
\& 4,3 i 3
\end{aligned}
\] \& 1． \(4.3 \pm\) \& 3． 3.924 \& \[
\begin{gathered}
\circ \text { or. } 1 \\
\text { sof } 11
\end{gathered}
\] \& 1.465
2.576 \& 3.545
2.363 \& 4.354
1.2055 \& 1.310 \& 11.714 \& 1.324 \& 4.045 \& 0.206 \& 0.000 \& 0.00 \\
\hline － \& 3.117 \& 4.647 \& 3.913 \& 3．2．4 \& 1．558 \& 2.363
2.232 \& 1.2978 \& 4.269 \& 0.372
1.363 \& c． 267
2.714 \& 1．89．9 \& 0.848 \& G．020 \& 8.00 \\
\hline \(11^{-}\) \& 6.197 \& 2.323 \& O．iels \& 1.45 \& 2.627 \& 1.040 \& 1.478 \& 2.112
4.967 \& \(\begin{array}{r}1.363 \\ \hline .623\end{array}\) \& 2.114 \& 1.844
1.00 \& 0.028 \& ？．233 \& O．c0 \\
\hline 11－ \& 2.943 \& 3．836 \& 1.148. \& 1．3．8 \& 3.669 \& c． 579 \& C．960 \& C． 30 \& C． 146 \& C． 274 \& C．C－ \& －¢ Cus \& \(\bigcirc \cdot 0: 0\) \& 0．ce \\
\hline 112 \& 3.383
4.447 \& 9．111 \& 1.5 .14
0.263 \& W．215 \& 0.712 \& 0.6 .34 \& 2.037 \& \(\therefore 1.166\) \& 4.324 \& C． 578 \& C．24： \& －0．9 \& n．cce \& －0．0 \\
\hline 14－ \& 3.457 \& 3． 81 \& c．ils \& 1．2618 \& 4.2004 \& 0.00 .0
6.337 \& 2.101
3.423 \& 2.451
2.132 \& 5.277 \& C． 147 \& 1.349 \& n．0以 \& 2.00 \& c．\({ }^{0}\) \\
\hline 15 \& \(3 . \operatorname{cote}\) \& \& \(\because .4 .89\) \& 6.347 \& c．375 \& c．4\％6 \& C．int \& U0\％00 \& 0.020 \& C． 0.260 \& C．0．000 \& 0.050 \& c．eus \& Coiz \\
\hline ：5－ \& 7.391 \& \％． \(31 \times\) \& 0.000 \& 0.543 \& 0.000 \& ． 696 \& 1.1 .44 \& 1.391 \& 1.373 \& 1.180 \& \& \& \& \\
\hline \(17-\) \& 1.393 \& 1．01 \& 0.015 \& \(0 \cdot \mathrm{ci} 2\) \& 1.342 \& 0.634 \& 1.749 \& c．ene \& 0.134 \& 1．180 \& －160 \& c．cFor \& 4.030 \& －ic \\
\hline 19－ \& 1.304 \& foran \& C． 0.404 \& 0．0：4 \& C．0．06 \& 9．006 \& \(0.1+3\) \& 0．184 \& 0.201 \& 0.437 \& cody \& \(0 . C \mathrm{cu}\) \& －700 \& \\
\hline 270 \& 5.103 \& 2.433 \& 0.047 \& 0.85 \& 0.928 \& 1.336 \& 0.514 \& －．000 \& 0.000 \& 1.439 \& 2.175 \& \(0 . \mathrm{c}\) \& C．nu＝ \& 8．0． \\
\hline \& 0.76 .7 \& ＇．te＂ \& －00n \& \(\therefore .778\) \& 1．08s \& 1.756 \& 1.746 \& 0.734 \& 0.690 \& 0.024 \& Cog． \& c．cio \& 0.005 \& 0.0 .2 \\
\hline \(21-\) \& 1．734 \& 20．015 \& c．nen \& 1．3．4 \& \(0 \cdot 1.13\) \& c． 165 \& ก． 73.5 \& 6.184 \& 1.075 \& 0.177 \& C．5．3 \& 0．cro \& C．0\％？ \& \(0 \cdot 0\) \\
\hline \(23-\) \& 1．216 \& 1.16 .4 \& c．ar？ \& 0.315
1.165 \& 0.019
2.309 \& 2．103 \& 0．818 \& 0.734 \& 3.515 \& 2.112 \& 0.8 ¢is \& 0.000 \& －\({ }^{1}\) \& 0． \\
\hline \(74-\) \& 1．\％ \& \(\therefore\) ¢ 71 \& \(\because\) ？ \& 9．4il \& 6.519 \& 0.165 \& lokcg \& 1．432 \& 1.952 \& 2.903 \& c．005 \& c．Cuo \& c．0cs \& j－cio \\
\hline 2\％－ \& 4．14\％ \& 3.341 \& －－：\％ \& \(\therefore\)－ 344 \& 0.229 \& \(0.13{ }^{\circ}\) \& 1.063 \& 0.184 \& 1．033 \& 0.236 \& C．273 \& \& c．esir \& \(0 . .10\) \\
\hline 26－ \& 1．20） \& －6！1 \& 2.018 \& \(\therefore\)－ 2.5 \& 0.049 \& C．0．7， \& 0.000 \& 1.149 \& 0.413 \& 0.000 \& 0.000 \& 0.00 c \& 0.200 \& c．0v \\
\hline \(21-\) \& 1.103 \& \(\therefore\)－ift \& 0.023 \& 2．237 \& C． 725 \& C． 324 \& 6．364 \& 1.199 \& 0.413
1.776 \& 9.024 \& 0.000 \& 3.900 \& －203 \& \(0 \cdot \square\) \\
\hline 20－ \& 1.028 \& E．13： \& 0.0 .07 \& \(\because .711\) \& 1.782 \& 2.363 \& C．009 \& ？．0791 \& 1．786 \& \％．554 \& 2．3 \& C．000 \& C．Cse \& g－ご \\
\hline 2\％－ \& 0.114 \& 0．35： \& C．COC \& 3．380 \& 4.517 \& 0.169 \& 15．500 \& 13.119 \& 9.283 \& 1.333
4.670 \& 0.75 .3
\(1.50 \%\) \& 0.000 \& 0.050 \& 3.0 \\
\hline \& 1.950 \& 1.060 \& 11.117 \& 4\％．486 \& 1月．）．71 \& 93.450 \& 11世0： 6 \& 1＜i．612 \& 120.449 \& 111.197 \& 1.509
0.747 \& 9.000 \& 0．crc \& 0.06 \\
\hline \(31-\) \& 4.918 \& 11.983 \& 114．9， \& 3：．tet 7 \& 538.71 c \& 120.357 \& คlヶ．？ \& 435．781 \& \(9<9.018\) \& \(651.12{ }^{\text {c }}\) \& 134．74\％ \& 6， \(6.00 \cdot 937\) \& 40．tj \& 3． \(0^{2}\) \\
\hline 97－ \& 5．8\％ \& 3．1．445 \& 4，9．04？ \& 12．11．607 \& 1＇551．f1 \& 7363．904 \& 263－ié \& 2024．239 \& 2－A4． 294 \& 764t．nn7 \& \(2639.1 \%\) \& 24076．459 \& 2，¢，7\％ \& \\
\hline \(4{ }^{2} 8\) \& 5.991
\(5.83 \%\) \& \begin{tabular}{l}
-3.615 \\
\hline 1.007
\end{tabular} \& 211．48＊ \& 7．33．74？ \& ， 13.419 \& 30c．6．341 \& \(4 \mathrm{C} 56.1 \times 5\) \& 4466.492 \& \(4 \times 5 \times .047\) \& 4464．391 \& 43 36．4．a \& 3044．5．3 \& 3412．b1： \& \\
\hline －－ \& 4.811. \& it 32.007 \& \(41,40.51\)
\(\therefore 0.0020\) \& 112\％．0．0 \& 1611．617 \& 22bs．134 \& 2976．13n \& 2016．550 \& 2（．24．6．3） \& ：717．477 \& 24＋6． 21 S \& 二小心．0口 \& \(\therefore\) Bn．atr \& 1st．．．nt \\
\hline －4－ \& 2．42； \& 12.817 \& 110．3－1 \& 2il．24． \& ＋31．451
\(\therefore 10.0 \% 1\) \& 787.144
357.481 \& 72．716 \& 110.730 \& 14.75 \& 1111．312 \& 11150.08 \& 1 1：4．4．0 \& 1113．7a0 \& 779． 33 \\
\hline \(37-\) \& 1.108 \& \％．13， \& 41.90 \& H\％10\％ \& 11 H .50 c \& 14.0833 \& l－j．1\％1 \& 123．011 \& \(4+1.991\)
147.232 \& 7？ 2.346
2.7 .605 \& 316.837 \& 3 ？ 3.665 \& \(3 \times \cdots+41\) \& 47.002 \\
\hline \(3 ?-\) \& 2.425 \& \(3.47 \%\) \& 7．10： \& i4．3is \& 37.361 \& 5． 5172 \& 50， 517 \& St．0．42 \& 164．094 \& 2．97．668 \& 701044 \& \& 160.024 \& \(\cdots 7.08\) \\
\hline 312 \& 1．2．2 6 \& 1．94\％ \& 0．t90， \& 5.6 .34 \& 16.7197 \& 11.751 \& 16．10．7 \& 13， 3 ， \& 2.000 \& 3.260 \& 25.947
0.0 \& 5 －\({ }^{\text {a }}\) \& cy．ala \& \(\therefore 0.350\) \\
\hline 4\％－ \& 1．754 \& 4.44 F \& \(1 .: 04\) \& 0.397 \& 1.107 \& 1.972 \& 0.007 \& 1.0 .41 \& C．960 \& 0.701 \& 0.000 \& O．E． \& cer \& 0.006 \\
\hline 41 － \& 1．tう7 \& 1.003 \& 9.037 \& 0.257 \& 0.426 \& U． 214 \& 0.147 \& 0.312 \& 0.000 \& 0.614 \& 0.000 \& 0.000 \& 0.011 \& 0.017 \\
\hline \(42=\) \& 0．5is \& 1.137 \& 0.44 \& 3.336 \& 1.340 \& O．eus \& O．rin \& 0.000 \& － 6.000 \& 0.010 \& 0.10 \& 0.00 \& －．000 \& 0．0ds \\
\hline \(44^{4-}\) \& 1.637 \& 4.140 \& i．52 5 \& \(0 . C 22\) \& 0.630 \& U． 344 \& \(0.156^{\circ}\) \& C．00u \& 2.513 \& 1.133 \& 6.0 .50 \& 0.3003 \& H．3．3 \& 9.311 \\
\hline 4，－ \& 2．133 \& 3.20 ， \& －1．46 \& 1． 564 \& 0.044 \& － 76.5 \& 0.007 \& 0.129 \& 0.000 \& 0.389 \& 0.000 \& 0.000 \& 0.000 \& 0.3 .26 \\
\hline 4 C － \& 1．n5： \& 1．943 \& 1.45 \& 0.419
\(0.8: 2\) \& 1.445
1.119 \& 1.619
1.124 \& 1.721

0.376. \& 0.514 \& C． 104 \& coun \& 0.000 \& $3 . ? 11$ \& －0， 01 \& 0.000

\hline 47 － \& 2．99： \& 1．33． \& \cdots \& C．tis \& 1.380 \& 0．689 \& C． 376.
0.757 \& 0.035
2.451 \& 0． 100
$0 . n 90$ \& COCOO
$\therefore \mathrm{CO} 24$ \& 1.349 \& 0.028 \& 0.033 \& 1.156

\hline 4 F \& 1.408 \& 0.771 \& 1.627 \& 1.447 \& 1.734 \& 3.051 \& 0.569 \& 2.451
0.063 \& 0.028
$1.02 ?$ \& N．024 \& 0.826
0.215 \& 1． 32 \& ？．317 \& 1.122
0.102

\hline 59 \& 1.365 \& $4.11=$ \& 4.551 \& C．636 \& 0.013 \& 0.455 \& $0.00{ }^{\circ}$ \& 0.600^{-} \& 1.137 \& C, COC \& 1.971 \& 万．Ẽio \& －．ivh \& 0.162
4.0 .23

\hline $56-$
$51-$ \& 3.575 \& 3.374 \& 1.172 \& 0.610. \& C． 967 \& 0.661 \& 1.074 \& 1.652 \& 0.000 \& 0.024 \& 1.101 \& c．s．e \& 3.401 \&

\hline 53－ \& 1．64， \& 0.317
1.334 \& 1.962
$7.2 n 2$ \& 2.084 \& 1.694 \& 0.399 \& 0.551 \& 2.304 \& 4.341 \& 0.000 \& 0.000 \& $\therefore \cdots ?$ \& \therefore Oex \& 1． 30

\hline 53－ \& 4.267 \& 5.735 \& 3.651 \& l．hy\％ \& c．erst \& 1．474 \& 0.000 \& U． 000 \& 0.620 \& C． 319 \& 1.013 \& 1.314 \& 7.673 \& 7．13！

\hline 54－ \& 3.877 \& 1.205 \& 6.235 \& 9．317 \& 4.146 \& 0.758 \& 0.018 \& 0.701 \& 1.033 \& 1.605 \& 3.124 \& 13.072 \& 12.646 \& 7．13：

\hline $54=$ \& 2.538 \& c． 167 \& ：．313 \& $3 \cdot 018$ \& 1.147 \& \& \& 2.681 \& 1.477 \& 1.144 \& 3.900 \& 4.7 － \& 1.06 \&

\hline 56. \& 1.797 \& 1．672 \& 3.212 \& 1.8145 \& 0.343 \& 0.716 \& C．O． \& 0.367
0.679 \& 0.000
0.000 \& 1.581
7.936 \& c． 527 \& 10.32 c \& 9.344 \& 1．17－

\hline
\end{tabular}

Figure 11．A portion of the processed image of ξ^{2} Ceti from 0.35μ to 0.70μ ． Each image element represents intensity per ten angstroms averaged subtracted out of the vidicon im element．The background was first
above the background. After this integration, the spectrum vector is punched out onto cards for plotting and further procesaing. A more advanced version of this processor will incorporate the plotting, ratioing, and other functions into one DIPSYS subsystem. where only disk files will be used.

The final procedure needed for good spectral reflectivily data of the surface of a planet is to know from what part of the surface the spectrum originates. A photograph is taken through the eyepiece, looking at the slit in a mirror tilted 45 degrees to the optical axis of the telescope (the first surface in Figure 3). A similar logging arrangement is used for photometer data. A plotting program has been written to create Calcomp plots of the coordinate grid of Mars (or any other planet) projected onto a disk using the physical ephemeris of the planet from The American Ephemeris and Nautical Almanac and the time of observation in Universal Time. Figure 12 is a block diagram of the program. while Figure 13 is a typical, although smaller than normel. output. To position the spectrometer slit on the disk of the planet, the negative of the photograph of the telescope image is projected onto the grid, and the slit marked by hand. At this point the original vidicon images have been reduced to constant resolution spectra of stars and known positions on Mars; and reduction to spectral reflectivity data, as well as testing, can begin.

Figure 12.
Flowchart of grid plotting program.

MARS
VIDSPEC C 4 OF
OCT. 18,1973
$T=8: 58$
LAT $=-17.3$
LONG= 9.8
DIA $=21.46 \mathrm{SEC}$

Figure 13. A typical grid plot produced by the program in Figure 12, the third produced for vidicon spectrometer Mars run C.

IV. Analysis of Data

The first major attempt to use the vidicon spectrometer to take spectra for reflectivity work occurred during the opposition of Mars during October, 1973. On two consecutive nights the Mauna Kea eighty-inch reflector was trained on the planet Mars, and about 75 spectra were taken, as well as an equal number of spectra of the standard stars Alpha Lyra and Xi 2 Ceti. Xi 2 Ceti was chosen because it was near Mars in the sky, while Alpha Lyra has a spectrum which is well known and is used to calculate planet/sun ratios to get reflectivity. Figure 14 demonstrates the reduction methods used to get spectral reflectivities from raw intensity spectra. To avoid airmass reductions, spectra of Alpha Lyra and $X_{i} 2$ Ceti were taken when the two stars were at the same airmass, 1.38. Since star/star ratios exhibit little variation with lou airmass changes, the ratio of the two stars obtained from these spectra can also be used to reduce reflectivities at othror alrmasses. Before any data was reduced to reflectivitinc. extensive testing was done to seo whether the data would be usable. This portion of the thesis will describe that hork, using the best results obtained to date.

Figure 15 shows a high resolution spectrum of Alpha Lyra which has been averaged over 250 angstrom segments to simulate the spectrometer output. Figure 16 is an Alpha Lyra spectrum from the vidicon spectrometer from which the vidicon response has benn

Figure 14. Production of spectral reflectivity from raw spectra. Air mass correction not not needed if objects to be ratioed are at the same air mass.

Figure 15. Spectrum of α Lyra, averaged over
250 angstrom resolution elements, from
a 50 angstrom resolution spectrum provided by Steve Kent.

Figure 16. α Lyra spectrum from vidicon spectrometer with vidicon response (Figure 2) divided out.
removed. Note that the peak is shifted to a slightly longer wavelength and that the shape is generally broader to about 0.7 microns. To test the repeatability of the data, pairs of spectra of the same star were ratioed to each other. Results of one such pair are shown in Figure 17 (all ratios plotted are normalized to 1.0 at 0.575 microns). Figure $17 a$ is the ratio of two Alpha Lyra spectra with similar airmasses (1.48/1.38), but different exposure times $(5 \mathrm{sec} / 1 \mathrm{sec})$. If the response of the system were perfectly linear, that is, if intensity recorded from a given source is a Iinear function of the integration (exposure) time, the curve would be. flat. It is obvious that it is not; however, the relatively flat region corresponds with the peak intensities of the spectra, so it may be that low level signals are nonlinear representations of the intensity received from the star. To test this idea, a 'pedestal' was set up under the spectrum. All intensities below a certain value would be ignored, and possibly, the nonlinear features of the curve would go away. Figures 17 b and 17 c show the results of installing pedestals of 300 and 400 . respectively (the maximum intensity registerable is 4095). a pedestal of 300 seems to help from 0.5 to 0.8 microns, but a larger pedestal doesn't help at all. Figure 18 shows a similar ratio for two $X_{i} 2$ Ceti spectra mith slightly different airmaserers (1.67/1.32) and different exposure times (20sec/15sec). Once again the curve is relatively flat over the peak in incoming energy, this time from almost 0.4 to 0.8 microns. (Figure 19 is a

SALYR86 / SALYR83

Figure 17a. Ratio of two α Lyra spectra, all elements above background included.

SALYR86 / SALYR83

Figure 17b. Ratio of same two aLyra spectra, this time including no elements less than 300 .

SALYR86 / SALYR83

Figure 17c. Ratio of same two α Lyra spectra, this time including no elements less than 400.

SXCT112 / SXCT124

Figure 18. Ratio of two ξ^{2} Ceti spectra, including all image elements above background.
typical Xi 2 Ceti spectrum). this time, however, there is 3 smooth upturn which has some undetermined significance. Thus. star ratios seem to be usable, at best, from 0.4 to 0.8 microns.

Now that there is some idea as to the reliability range of the spectrometer, indefinite though it may be, the Mars spectra can be observed. Figure 20 is a typical Mars spectrum, summed over five vidicon elements down the slit. Note that the peak is in the red, rather than the blue like the two stars spectra. This is because the stars are both of spectral type A0, while the sun. Which is providing the light which is reflected from Mars is a cooler, redder type G. Figure 21 shows a saturated spectrum of Mars. The peak intensity of 4895 is surpassed from 0.5 to 1.8 microns, although around 1.1 microns, the signal is unsaturated. Originally it was thought that the unsaturated portions of a saturated spectrum could be used to extend the range of an unsaturated spectrum which had a very low signal beyond 1.1 microns. The data show, unluckily, that there is little or no overlap between the good signal from one and the good signal from the other type of spectrum. Once again, an attempt was made to do away with low, nonlinear signals with a pedestal. Figures 22a,b, and c show the progressive changes as pedestals of 380 and 400 are subtracted from the original spectrum. Ratios of Mars images seem to be more consistent than those of star images. Figures $23 a, b$, and c and $24 a, b$, and c are the results of ratioing different images of Mars to each other. The three images used

SXCT112 INTEG.

Figure 19. A typical ξ^{2} Coti spectrum. Note that the peak is at a longer wavelength and the shape is broader than $\boldsymbol{\alpha}$ Lyra.

SMARSC-4 INTEG.

Figure 20. A typical Mars spectrum

SMARSC-5 INTEG.

Figure 21. An overexposed spectrum of Mars. Arrows indicate intensities reading greater than 4095 in at least one element of the image which went into the resolution element.

SMARSC-1 INTEG.

Figure 22a. Mars spectrum

SMARSC-1 INTEG.

Figure 22b. Mars spectrum with pedestal of 300 .

SMARSC-1 INTEG.

Figure 22c. The same Mars spectrum with a pedestal of 400 .
were taken within 15 minutes of each other. The same portion of the image was used in each case. Each is a one minute exposure. Note the flat curve from 0.5 to 1.1 micron, indicating better repeatability than for the stars, possibly due to more signal above a nonlinear level. As the pedestal is increased, some of the apparently good data is lost, but the noise is gone by tho time a pedestal of 480 is used (c). The Mars spectra are probably recoverable.
page 44

SMARSC-4 / SMARSC-1
Figure 23a. Ratio of two Mars spectra.
page 45

SMARSC-4 / SMARSC-1

Figure 23b. Ratio of two Mars spectra, each of which has a pedestal of 300 .

SMARSC-4 / SMARSC-1

Figure 23c. Ratio of same two Mars spectra, this time with a pedestal of 400 under each.

SMARSC-9 / SMARSC-1

Figure 24a. Ratio of two Mars spectra, without pedestals.

SMARSC-9 / SMARSC-1

Figure 24b. Ratio of two Mars spectra, each of which has a pedestal of 300 .

SMARSC-9 / SMARSC-1

Figure 24c. Ratio of same two Mars spectra, each of which now has a pedestal of 400 .
V. Recommendations for Future Use of the Vidicon Spectrometer

Abstract

Although it appears that it will be impossible to do spectral reflectivity work using the vidicon spectrometer due to an inability to meaningfully ratio stars and planets over a useful range, the instrument has advantages which will make it wor thwhile to develop it. The combination of good spectral resolution (250 angstroms or better, compared to 380 angstroms for a filter photometer), with complete spectral coverage and high spatial resolution indicate much promise. It appears that the limiting factor will be the response function of the vidicon tube, with its nonlinearities in wavelength and intensity. Once more lab work is done to quantify knowledge about this problem, the instrument will be ready to gather more data. Another problem which may affect the star spectra is the problem of differential diffraction of the star's light by the earth's atmosphere. Different wavelengths, diffracted at slightly different angles would show up at different positions in the smeared out star spectrum, and if the slit is smaller than the apparent diameter of the star. part of the star ${ }^{\circ}$. spectrum would be lost, in a wavelength-preferential manner. The solution is to widen the slit; although the spectral resolution at the vidicon would be reduced, the spectrum would be much mono reliable. But what about the Mars data from Mauna Kea? With the high spatial resolution and apparent good response of the vidicon. something should be recoverable. The planet in the slit occupies

up to 35 elements in a vidicon column when it is about 23 arc seconds in diameter, and the slit is two elements wide, so, with good seeing of 1.5 seconds or less, there are fifteen spectra per spectrometer image. Luckily, the slit passes over some photometer spots that were taken within days of the vidicon spectrometer run. allowing relative reflectivities to be obtained, basically extending the photometer data for more complete surface coverage. For example, Figure 25 shows the position of the slit on the planet's disk during one run. This one slit passes throught the Coprates canyon as well as a large dust storm to the southuest of Coprates. Using a photometer spot as a standard and modifying resolution to match the photometer, some interesting data should be for thcoming.

Figure 25. Position of one set of spectra across the disk of Mars. Latitude and longitude of the sub-earth point, S, given.

REFERENCES

Adams, J. B. (1968) "Lunar and Martian Surfaces: Petrologic Significance of Absorption Bands in the Near-Infrared, "Science 159, p. 1453-1455.

Adams, J. B. and T. B. McCord (1969) "Mars: Interpretation of Spectral Reflectivity of Light and Dark Regions, " JGR 74, p. 4851-4856.

Crowell, M. H. and E. F. Labuda (1969) "The Silicon Diode Array Camera Tube," Bell System Technical Journal, May-June 1969, p. 1481-1528.

Dollfus, A.(1961) "Polarization Studies of Planets," Chapter 9 in Planets and Satellites, edited by G.P. Kuiper and B. M. Middlehurst, (Chicago: University of Chicago Press).

Hovis, W.A. ,Jr. (1965) "Infrared Reflectivity of Iron Oxide Minerals," Icarus 4, p. 425-430.

Kunin, J. S. (1972) "A Technique for Two-Dimensional Photoelectronic Astronomical Imaging, With Application to Lunar Spectral Reflectivity Studies," M.S. Thesis, M.I. T. , September 1972.

McCord, T. B. , and J. Bosel. (1973) "Silicon Vidicon Astronomy at MIT," presented at the symposium, "Astronomical Observations with Television-Type Sensors, " held May 15-17, 1973, at the University of British Columbia.

McCord, T. B. , J.H. Elias, and J. A. Westphal (1971) "Mars: The Spectral Albedo ($0.3-2.5 \mu$) of Small Bright and Dark Regions," Icarus 14, p. 245-251.

McCord, T. B. and J.A. Westphal (1971) "Mars: Narrow-Band Photometry, from 0.3 to 2.5 Microns, of Surface Regions During the 1969 Apparition," Astrophys. J. 168, p. 141-153.

McCord, T. B. and J. A. Westphal (1972) "Two-Dimensional Silicon Vidicon Astronomical Photometer," Applied Optics 11, p. 522-526.

Sagan, C. , J. P. Phaneuf, and M. Ihnat (1965) "Total Reflection Spectrophotometry and Thermogravimetric Analysis of Simulated Martian Surface Materials, " Icarus 4, p. 43-61.

Tull, R.G.(1966) "The Reflectivity Spectrum of Mars in the Near-Infrared," Icarus 5, p. 505-514.

