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1. Introduction

String theory backgrounds that admit an exact conformal field theory (CFT) description

are of particular interest since their physical properties can be analyzed to all orders in

α′. The situation is even more interesting when these backgrounds are created by the

backreaction of a configuration of branes. In this case, deformations of the CFT correspond

to deformations of the brane system. It often happens that some of the latter can be

visualized as changes in the geometry of the branes, thereby leading to a very intuitive

geometrical picture of the CFT moduli space.

Unfortunately, the number of brane systems that admit an exact CFT description

is rather small. First of all, configurations with D-branes source Ramond-Ramond fields

and, as is well-known, it is notoriously difficult to obtain a useful CFT description of such

backgrounds. However, even when solely NS5-branes are present, there are so far only

two instances where the underlying CFT is known explicitly. The first is a configuration
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of k parallel NS5-branes put at the same point in their transverse R
4 space. The near-

horizon region of this system is described by the Callan-Harvey-Strominger (CHS) theory

SU(2)k × Rφ [1]. We will provide a brief reminder on this theory in the next section. The

second instance is that of k parallel NS5-branes put uniformly on a circle in R
4. In this

case, their near-horizon region is described by the coset CFT SU(2)k/U(1)× SL(2)k/U(1)

orbifolded by Zk [2]. Both of these theories support the N = 4 superconformal algebra,

since the associated NS5-brane systems are 1/2 BPS (they preserve 16 supercharges in type

II string theories and 8 supercharges in the heterotic string).

Geometric deformations of the system of NS5-branes away from the point or the circle

distribution are associated with exactly marginal operators in the underlying CFT. The

reason is that moving the NS5-branes away from their original locations yields a config-

uration that is also a solution of the equations of motion, continuously connected to the

original one, and the space of such solutions is generically identified with the space of ex-

actly marginal deformations of the CFT. Furthermore, since an arbitrary configuration of

NS5-branes in R
4 preserves the same amount of supersymmetry as the point-like config-

uration, we are naturally lead to consider only the deformations of the CHS theory that

preserve all of the original N = 4 worldsheet supersymmetry.

The connection between deformations of the NS5-brane system and marginal operators

in the CFT can be established either directly or through the use of holography. The first

approach is based on the fact that changes of the original locations of the NS5-branes

correspond to perturbations of the original supergravity background that subsequently

induce deformations of the associated worldsheet σ model. One can read these σ model

deformations and express them in terms of operators of the original undeformed theory.

The last step is performed by employing the semiclassical expression of these operators

in terms of σ model target space fields. This approach to NS5-brane deformations was

initiated in [3], where the operators in SU(2)k/U(1) × SL(2,R)k/U(1) that trigger an

elliptical perturbation of the circular NS5-brane system were uncovered.

The second approach is based on the fact that the decoupled worldvolume theory on

the NS5-branes, known as little string theory (LST), admits a holographic description in

terms of string theory on the near-horizon limit of the background generated by the NS5-

branes [4]. The conjectured holography implies a correspondence between operators in

LST and vertex operators in the dual string theory background [5, 6]. Since the moduli

space of the geometric NS5-brane deformations is the moduli space of LST and the latter

is parametrized by gauge invariant LST operators, we see that one can associate in this

way deformations of the NS5-branes with operators in the underlying CFT. At the level

of holography this association is done by using the symmetries of the two sides of the

correspondence. However, symmetry matchings do not constitute a proof and one would

like to substantiate the holographic dictionary between operators in a more explicit way.

This was achieved in [7] where the first approach, based on the σ model description of the

deformed NS5-brane background, was used to validate the holographic correspondence in

the semiclassical limit of large k.

In this paper we investigate some generic issues pertaining to deformations of the

CHS theory and in conjunction with its NS5-brane interpretation. First we will perform
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a study of the supersymmetry properties of several types of marginal operators of the

CHS. We will be particularly interested in operators that preserve the original N = 4

superconformal symmetry of the CHS model, as these operators can in principle correspond

to geometric deformations of the NS5-branes. Surprisingly, we will also uncover some

other classes of supersymmetry preserving marginal deformations that do not seem to have

holographic counterparts. Although we will elucidate the physical effects of some of them

with some simple examples, presented in the last section, the precise understanding of their

interpretation in terms of NS5-branes and LST is left for future work. Subsequently, we will

consider a set of NS5-brane configurations that arise as deformations of the point-like setup

and, therefore, can be described by marginal operators in the CHS theory. Our objective

would be to show how the physical and geometrical properties of these configurations are

encoded in the corresponding CFT operators. This analysis will illuminate further the

fascinating interplay between spacetime and CFT physics.

2. Supersymmetric operators in the CHS background

In this section we study the supersymmetry properties of a class of marginal operators of

the CHS background. First, we find conditions for these operators to be chiral or antichiral

primaries and subsequently we check which of these operators yield supersymmetry pre-

serving deformations. Since extended worldsheet supersymmetry is necessary for spacetime

(i.e. worldvolume) supersymmetry, we check first the former and then perform a test of the

latter. In the course of our analysis we will uncover that some operators that do not seem

to have a holographic intepretation preserve also maximal supersymmetry.

2.1 Generalities

The holographic description of LST is based on the correspondence between BPS operators

in LST and vertex operators in the CHS background SU(2)k × Rφ [5, 6]. The latter

contains a linear dilaton along the φ direction with background charge q =
√

2
k , where k

is the number of NS5-branes, and a N = 1 supersymmetric SU(2) WZW model at level k

generated by affine currents J a, a = 1, 2, 3. A class of BPS operators in LST consists of

t̃r(Xi1Xi2 · · ·Xi2j+2) with j = 0, 1
2 , 1, . . . ,

k−2
2 and where Xi, i = 6, 7, 8, 9 are scalar fields in

the adjoint representation of SU(k) whose eigenvalues parametrize the transverse positions

of the NS5-branes. In order that the LST operators are in a short multiplet of spacetime

supersymmetry, only the traceless and symmetric components in the indices i1, . . . , i2j+2

should be kept. The tilde on the trace means that we should not consider the standard

single trace but its combination with multi-traces. This subtlety, however, will not play

any rôle in the considerations of this section.

The dictionary proposed in [5, 6] and tested in a non-trivial setup in [7] states the

correspondence

t̃r(Xi1Xi2 · · ·Xi2j+2)←→ (ψψ̄Φj)j+1;m,m̄e
−qajφ , (2.1)

where the right-hand side is an operator in the CHS theory. The coefficient aj of the linear

dilaton vertex operator at the right must be either aj = j + 1 or aj = −j in order that the
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actual deforming operators, which arise from the action of the N = 1 supercharges on the

operators at the right-hand side of (2.1), are marginal (see formula (2.22) below). In the

first case the operator is normalizable1 and hence it corresponds to a situation where the

dual LST operator acquires a vacuum expectation value.

The way one associates geometric deformations of the NS5-branes to CHS operators

using the above holographic correspondence is the following. The original configuration of

NS5-branes put at the point x6 = x7 = x8 = x9 = 0 is described, in the near-horizon limit,

by the unperturbed CHS theory. A generic point in the moduli space, which corresponds to

separating the branes in their transverse R
4, thereby turning on non-vanishing expectation

values for the scalars Xi, is described by a deformation of the original CFT with operators

that can be found using the correspondence (2.1) (according to formula (2.22) below).

Notice that we consider only deformations that leave invariant the center of mass of the

NS5-brane system, in other words we always assume that tr(Xi) = 0. The reason is that

the associated U(1) degree of freedom in LST is frozen and decouples, so that there is no

normalizable mode corresponding to it. The other value of aj that yields also a marginal

deformation, i.e. aj = −j, corresponds to a non-normalizable deformation of the CHS

theory that triggers a perturbation of the LST with the operator at the left-hand side.

In order to write the CFT operators explicitly, we decompose the supersymmetric

WZW model into a bosonic SU(2)k−2 WZW model at level k − 2, whose affine currents

we will denote by J i, and three free fermions ψa, a = 1, 2, 3 in the adjoint of SU(2).

Consequently, the N = 1 affine currents can be written as J a = Ja− i
2ǫ
abcψbψc. The field

Φj is in general a Virasoro primary of the bosonic SU(2)k−2 WZW model and the notation

(ψψ̄Φj)j+1;m,m̄ means that we should tensor the fermions ψa to the bosonic primary Φj

into a primary of total spin j + 1 and (J 3, J̄ 3) = (m, m̄).

It will be practical to introduce the complex fermiom combinations ψ± = 1√
2
(ψ1± iψ2)

and also perform the usual change of basis for the SU(2)k−2 currents J± = J1 ± iJ2. The

super-affine currents then read J 3 = J3 + ψ+ψ− and J ± = J± ±
√

2ψ3ψ±. Finally, we

will use extensively the SU(2)k−2 current algebra at level k − 2

J3(z)J3(w) ∼ k − 2

2(z − w)2
, (2.2)

J3(z)J±(w) ∼ ±J
±(w)

z − w , (2.3)

J+(z)J−(w) ∼ k − 2

(z − w)2
+

2J3(w)

z − w , (2.4)

1Notice that strictly speaking one cannot talk meaningfully about normalizable operators in the CHS the-

ory since they are supported in the strong coupling region φ → −∞. However, there is a 1-1 correspondence

between operators of the SU(2)k×Rφ theory and of the non-singular coset CFT SL(2)k/U(1)×SU(2)k/U(1),

so that all of our subsequent discussion can be trivially generalized to the physically more reliable coset

theory.
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and the action of the SU(2)k−2 currents on the Virasoro primaries Φj;m:

J3(z)Φj;m(w) ∼ m

z − wΦj;m(w) ,

J±(z)Φj;m(w) ∼ j ∓m
z − wΦj;m±1(w) . (2.5)

Now, we can write explicitly

(ψψ̄Φj)j+1;m,m̄ = NjN̄j

1∑

r,s=−1

cr(j,m)cs(j, m̄)ψrψ̄sΦj;m−r,m̄−s , (2.6)

where we use the notation (ψ1, ψ0, ψ−1) ≡ (ψ+, ψ3, ψ−) and the Clebsch-Gordan coeffi-

cients cr(j,m) are given by

c1(j,m) = − 1√
2
(j +m)(j +m+ 1) ,

c0(j,m) = (j +m+ 1)(j −m+ 1) , (2.7)

c−1(j,m) =
1√
2
(j −m)(j −m+ 1) .

The Clebsch-Gordan coefficients are determined in terms of the coefficients in the action

of J± on the primaries Φj;m. In our case they differ from the more familiar form involving

square roots due to our conventions in (2.5). We have also introduced a convenient j-

dependent normalization factor given by

Nj = N̄j =
1

(2j + 1)(2j + 2)
. (2.8)

2.2 Chiral and antichiral primaries

At this stage one could ask if the CFT operators in (2.1) have any special properties.

Since the CHS background exhibits N = 4 superconformal invariance, a natural question

is if there are any chiral or antichiral primaries among them. Let us choose the N = 2

subalgebra generated by the energy-momentum tensor

T = −1

2
(∂φ)2 − 1

2
q∂2φ+

J iJ i

k
− 1

2
ψ∗∂ψ − 1

2
ψ∂ψ∗ − 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ , (2.9)

the supercurrents

G+ = iψ
(
∂φ− qJ3 − qψ+ψ−)+ iq∂ψ + qJ−ψ+ ,

G− = iψ∗ (∂φ+ qJ3 + qψ+ψ−)+ iq∂ψ∗ + qJ+ψ− , (2.10)

and the U(1) R-current

JR = ψψ∗ + ψ+ψ− = −iψφψ3 + ψ+ψ− . (2.11)

The fermion combinations

ψ± =
1√
2
(ψ1 ± iψ2) , ψ =

1√
2
(ψφ + iψ3) , (2.12)
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with ψφ being the superpartner of φ, satisfy the following operator product expansions

ψ(z)ψ∗(w) = ψ+(z)ψ−(w) ∼ 1

z − w . (2.13)

For considerations of spacetime supersymmetry, it will be also useful to bosonize the above

fermions as

ψ± = e±iH1 , ψ = eiH2 (2.14)

with H1 and H2 being canonically normalized bosons with OPEs

H1(z)H1(w) = H2(z)H2(w) ∼ − ln(z − w) , H1(z)H2(w) = 0 . (2.15)

Then the R-current can be written as

JR = i∂H1 + i∂H2 (2.16)

and (half of) the spacetime supercharges, which live on the 5+1-dimensional worldvolume

of the NS5-branes, are given by

Q±
α =

1

2πi

∮
dze−

ϕ
2
± i

2
(H1+H2)Sα . (2.17)

In this formula ϕ stands for the bosonized superconformal ghosts and Sα are worldvolume

spin fields in the 4 of SO(5, 1) whose explicit form will not be necessary. For NS5-branes

in type II theories a similar set of spacetime supercharges arises from the antiholomor-

phic sector, so that all together we have 16 spacetime supersymmetries. Notice that in

general we will focus only on the holomorphic sector, since exactly the same expressions

hold for the antiholomorphic one, and from now on we will suppress in most formulas all

antiholomorphic indices to avoid cluttering.

Recall that a field χ is primary of the N = 2 superconformal algebra if it satisfies

T (z)χ(w) ∼ h

(z − w)2
χ(w) +

∂χ(w)

z − w ,

JR(w)χ(w) ∼ q

z − wχ(w) , (2.18)

G±(z)χ(w) ∼ 1

z − wχ̃
±(w) ,

with h being its conformal weight and q its U(1) R-charge. In addition, it is chiral (an-

tichiral) if its OPE with the supercurrent G+(z) (G−(z)) is regular [8]. When a field is

both chiral (antichiral) and primary its conformal dimension is fixed in terms of its U(1)

R-charge as h = |q|/2. As a consequence h is not renormalized as long as superconfor-

mal invariance remains unbroken. In particular, chiral and antichiral primary operators

with |q| = 1 which yield marginal deformations when acted with the N = 1 supercharge

G = 1√
2
(G+ +G−), actually give rise to exactly marginal deformations.

It is a straightforward exercise to check that (ψΦj)j+1;me
−qajφ is a superconformal

primary when m = j + 1 or m = −j − 1. Then, the corresponding operators take the form

ψ+Φj;je
−qαjφ and ψ−Φj;−je−qαjφ, respectively. Notice that these superconformal primaries
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are built on affine primaries Φj,±j of the SU(2)k−2 WZW model. Furthermore, out of the

class of operators (ψΦj)j+1;me
−qajφ, only ψ+Φj;m−1e

−qajφ and ψ−Φj;m+1e
−qajφ can have

special chirality properties. These operators are chiral (antichiral) whenm = aj (m = −aj).
The final conclusion is that we have a set of chiral primaries given by ψ+Φj;je

−q(j+1)φ along

with their conjugates ψ−Φj;−je−q(j+1)φ which are antichiral primaries. It is interesting to

note that only normalizable operators, i.e. with aj = j + 1, can be chiral or antichiral

primaries.

Another operator we could consider is ψΦj;me
−qajφ and its conjugate, although only

their real part ψ3Φj;me
−qajφ appears in the holographic dictionary. These operators are

primary when m = 1 − aj and they are chiral (antichiral) when m = −j (m = j). Hence

we conclude that ψΦj;−je−q(j+1)φ
(
ψ∗Φj;je

−q(j+1)
)

is a chiral (antichiral) primary. Note

that their non-normalizable counterparts are not chiral or antichiral primaries.

The fact that the non-normalizable versions of the chiral (antichiral) primaries are not

also chiral (antichiral) primaries seems a bit puzzling at first sight. For instance, although

ψ+Φj;je
−q(j+1)φ and ψΦj;−je−q(j+1)φ are chiral primary (and their conjugates antichiral

primary), their non-normalizable versions, that share the same h and q, are not. This

seems to violate the standard argument that an operator with h = q/2 (h = −q/2) is chiral

(antichiral) primary. This argument is based on the observation that [8]

〈χ|{G+
− 1

2

, G−
1

2

}|χ〉 = 〈χ|2L0 − (JR)0|χ〉 = (2h − q)〈χ|χ〉 , (2.19)

where the N = 2 superconformal algebra was used. If h = q/2 one gets 〈χ|{G+
− 1

2

, G−
1

2

}|χ〉 =

0 and using hermiticity of the supercurrents (G±
r )† = G∓

−r along with positivity of the

inner product leads to G+
− 1

2

|χ〉 = G−
1

2

|χ〉 = 0. The resolution of the puzzle is that the linear

dilaton CFT contains non-unitary representations that correspond to fields with negative

conformal weights.

For instance, ψ+Φj;je
qjφ is non-chiral and therefore, if |χ〉 is the corresponding state,

we have G+
− 1

2

|χ〉 6= 0. Indeed, we obtain

|χ̂〉 = G+
− 1

2

|χ〉 = −iq(2j + 1)ψψ+Φj;je
qjφ|Ω〉 , (2.20)

where |Ω〉 is the vacuum. This state, however, satisfies G−
1

2

|χ̂〉 = 0 since there is no

second order pole between G−(z) and the operator ψψ+Φj;je
qjφ(w). Hence, although the

operator ψ+Φj;je
qjφ is non-chiral, it still has h = q/2 = 1/2 and (2.19) is obeyed. Similarly,

ψΦj;−jeqjφ is chiral but not primary since the state |ζ〉 it creates is not annihilated by G−
1

2

:

|ζ̂〉 = G−
1

2

|ζ〉 = −iq(2j + 1)Φj;−je
qjφ|Ω〉 . (2.21)

However, we can again check that G+
− 1

2

|ζ̂〉 = 0 since the OPE of G+(z) with Φj;−jeqjφ is

regular. The existence of non-unitary representations of the linear dilaton CFT underlies

both effects as it is obvious from the fact that the zero-norm states |χ̂〉 and |ζ̂〉 vanish when

the background charge q is zero.
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2.3 Supersymmetric deformations

According to the prescription given in [5, 6], when the operators t̃r(Xi1Xi2 · · ·Xi2j+2)

obtain non-zero VEVs the original Lagrangian L0 of the holographically dual conformal

field theory is perturbed to

L = L0 +

k−2

2∑

j=0

j+1∑

m,m̄=−(j+1)

(
λj;m,m̄G− 1

2

Ḡ− 1

2

(ψψ̄Φsu
j )j+1;m,m̄e

−q(j+1)φ + c.c.
)
. (2.22)

Here G(z) is the N = 1 supercurrent

G = iψφ∂φ+ qψ3J3 + qψ3ψ
+ψ− + iq∂ψφ +

q√
2
(J−ψ+ + J+ψ−) , (2.23)

and the couplings λj;m,m̄ are specified in terms of t̃r(Xi1Xi2 · · ·Xi2j+2) in a way that we will

make precise in the next section. Notice that by construction the deformation preserves

N = (1, 1) superconformal invariance.

The action of G− 1

2

can be read from the simple pole of G(z) in its OPE with

(ψΦj)j+1;me
−qajφ and it yields a piece without fermions and a piece bilinear in the fermions.

The first piece reads

qNj

1∑

r=−1

cr(j,m)λrJ
rΦj;m−re

−ajqφ , (2.24)

where (J±1, J0) ≡ (J±, J3) and λ0 = 1, λ±1 = 1√
2
. The fermion bilinear term is

qNj

(( 1∑

r=−1

iajcrψφψ
rΦj;m−r

)
+d1ψ3ψ

+Φj;m−1 + d−1ψ3ψ
−Φj;m+1+d0ψ

+ψ−Φj;m

)
e−ajqφ ,

(2.25)

where we defined the combinations

d±1 = mc±1 −
c0√
2
(j ±m) ,

d0 = c0 +
1√
2

(
c−1(j +m+ 1)− c1(j −m+ 1)

)
. (2.26)

Notice that one could reverse the logic and start with an ansatz for the deformation that is

the sum of (2.24) and (2.25) with arbitrary coefficients cr and dr. Then, the equations (2.26)

could be thought of as conditions for preserving N = 1 worldsheet supersymmetry.

2.3.1 N = 2 supersymmetry

We will first uncover the conditions for the sum of the deformations (2.24) and (2.25) to

preserve N = 2 supersymmetry and then extend the analysis to N = 4. If N = 2 is pre-

served, the deformation should be annihilated by both supercharges G±
− 1

2

or, equivalently,

by G− 1

2

and G3
− 1

2

where

G3 = − i√
2
(G+ −G−) . (2.27)
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Since the deformation we consider arises from the action of G− 1

2

on (ψΦj)j+1;me
−qajφ, it is

automatically annihilated by G− 1

2

. Furthermore, a sufficient condition for the deformation

being annihilated by G3
− 1

2

is that it has zero R-charge, as can be seen by the following

N = 2 commutation relation

[(JR)0, G− 1

2

] = iG3
− 1

2

. (2.28)

Actually, if we were only interested in preservingN = 2 supersymmetry, it would be enough

to just demand definite R-charge. However, we want to preserve N = 2 superconformal

invariance and since the R-symmetry is part of the N = 2 SCFT algebra, the deformations

we consider have to be neutral. Notice also that the condition we just formulated is not

necessary and, in principle, it could miss some supersymmetric deformations. However,

we will soon establish that for the operators under consideration it is actually necessary,

besides being sufficient.

The purely bosonic part (2.24) of the deformation obviously carries zero charge under

the R-current (2.11). Instead, the fermionic piece (2.25) has zero charge only when the

following conditions are satisfied

d±1 = ±ajc±1 . (2.29)

For a normalizable operator, which means we select aj = j+1, these conditions are satisfied

automatically. As we will see soon, these operators preserve also supersymmetry.

Of course it is expected that chiral or antichiral operators yield deformations that

preserve N = 2 supersymmetry. Indeed, a chiral primary state |χ〉 satisfies G+
− 1

2

|χ〉 = 0

and hence the deformation it yields is |χ̃〉 = G− 1

2

|χ〉 = 1√
2
G−

− 1

2

|χ〉. This state is ob-

viously annihilated by G−
− 1

2

and furthermore, using the N = 2 commutation relation

{G+
− 1

2

, G−
− 1

2

} = 2L−1, we see that it is also annihilated by G+
− 1

2

up to a total derivative that

does not affect the action. Similarly, the sum of a chiral and an antichiral operator yields

again a N = 2 supersymmetric deformation. For instance the operator with j = m = 0

belongs to this category. However, not all deformations preserving N = 2 supersymme-

try need originate from a chiral or antichiral operator. For instance, all operators with

|m| 6= (j + 1) yield N = 2 preserving deformations but none of them is chiral or antichiral

primary.

For non-normalizable operators with aj = −j there is only one solution of the N = 2

constraints (2.29) given by j = m = 0. The corresponding operator is ψ3 and it leads to

the deformation J3 + ψ+ψ−. We hasten to point out that although this deformation pre-

serves extended worldsheet supersymmetry, it does not lead to a spacetime supersymmetric

background2 since it does not commute with the spacetime supercharges (2.17).

Let us now check that the above argument, based on R-charge neutrality, does not

miss any solutions. This can be done by examining explicitly some terms of the OPE of

G3(z) with the deforming operator. Explicitly, this supercurrent is

G3 = iψ3∂φ− qψφJ3 − qψφψ+ψ− + iq∂ψ3 + i
q√
2
(J+ψ− − J−ψ+) (2.30)

2Interesting applications of that mechanism of supersymmetry breaking in non-critical superstrings can

be found in [9 – 11].
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and let us keep only the terms of its OPE with the sum of (2.24) and (2.25) containing ψ3.

These terms read

iq

z − w

(
aj

1∑

r=−1

crλrψ3J
rΦj;m−re

−ajqφ − ajc0ψ3J
3Φj;m (2.31)

−d+1√
2
ψ3J

+Φj;m−1 +
d−1√

2
ψ3J

−Φj;m+1

)

and they vanish if and only if (2.29) are satisfied. Hence, for the class of operators under

consideration, the condition of vanishing R-charge is not only sufficient but also necessary

for preserving N = 2 supersymmetry.

2.3.2 N = 4 supersymmetry

Similarly to the N = 2 case, a sufficient condition for preserving N = 4 SCFT invariance

is that the deformation is a singlet under the corresponding R-symmetry group SU(2)R.

The latter is generated by JR and two more generators S±:

SU(2)R : JR = ψ+ψ− + ψψ∗, S+ = ψψ+, S− = ψ−ψ∗ . (2.32)

The OPEs of S±(z) with (2.25) are zero provided that besides (2.29), which means that

we already assume preservation of N = 2, the following condition is satisfied

d0 = ajc0 . (2.33)

This condition holds automatically for all operators in the normalizable branch that

preserve N = 2. Let us present their fermionic pieces for completeness:

qNj(j + 1)
(
i
√

2(c1ψ
∗ψ+Φj;m−1 + c−1ψψ

−Φj;m+1) + c0(−ψψ∗ + ψ+ψ−)Φj;m

)
e−q(j+1)φ .

(2.34)

It is easy also to establish that these deformations preserve spacetime supersymmetry by

writing the above fermion bilinears in bosonized form

ψ∗ψ+ = e−iH2+iH1, ψψ− = eiH2−iH1 , −ψψ∗ + ψ+ψ− = −i∂H2 + i∂H1, (2.35)

where it is manifest that they commute with the spacetime supercharges (2.17). Actually

since the same combination of H1 and H2 appears in S± and in the spacetime super-

charges, we conclude that any deformation preserving N = 4 superconformal invariance

automatically preserves spacetime supersymmetry as well. As an example, we notice that

the usual marginal deformation J3J̄3 of the bosonic SU(2) WZW model can be promoted

to an operator in the CHS background that preserves N = (4, 4) superconformal invariance

in the following way

(J3 − ψψ∗ + ψ+ψ−)(J̄3 − ψ̄ψ̄∗ + ψ̄+ψ̄−)e−qφ . (2.36)

Going now over to the non-normalizable sector, we observe that the unique such op-

erator preserving N = 2, the one with j = m = 0, does not satisfy (2.33) and hence does

not preserve N = 4. Hence, the non-normalizable deformation (J3 + ψ+ψ−)(J̄3 + ψ̄+ψ̄−)

preserves only N = (2, 2) supersymmetry (but not any spacetime supersymmetry as we

emphasized earlier).
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2.4 More supersymmetric deformations

In this subsection we investigate the possibility that other classes of operators lead to super-

symmetric marginal deformations. One question is under what conditions a deformation

that originates from the operator

µ3ψ
3Φj;m3

e−ajqφ + µ+ψ
+Φj;m+

e−ajqφ + µ−ψ
−Φj;m−e

−ajqφ , (2.37)

preserves N = 2 and N = 4 superconformal invariance. This operator differs from

(ψΦj)j+1;me
−qajφ since the coefficients µ±, µ3 are arbitrary and we do not assume a pri-

ori any relation between m3 and m±. As before, the deformation arises by the action of

G− 1

2

Ḡ− 1

2

on (2.37) and hence N = (1, 1) supersymmetry is guaranteed by construction.

Notice that we consider a single j since there cannot be any mixing among different j’s

upon the action of the supercharges.

The deformations that arise from each of the three operators in (2.37) are:

qµ3

(
J3Φj;m3

+ iajψφψ
3Φj;m3

+ ψ+ψ−Φj;m3
+

1√
2
(j +m3)ψ

+ψ3Φj;m3−1

+
1√
2
(j −m3)ψ

−ψ3Φj;m3+1

)
e−ajqφ , (2.38)

qµ+

(
1√
2
J+Φj;m+

+ iajψφψ
+Φj;m+

+ (m+ + 1)ψ3ψ+Φj;m+
(2.39)

+
1√
2
(j −m+)ψ−ψ+Ψj;m++1

)
e−ajqφ ,

and

qµ−

(
1√
2
J−Φj;m− + iajψφψ

−Φj;m− + (m− − 1)ψ3ψ−Φj;m− (2.40)

+
1√
2
(j +m−)ψ+ψ−Φj;m−−1

)
e−ajqφ .

As explained previously, a sufficient condition for preserving N = 2 supersymmetry

is that these deformations are neutral under the U(1) R-current JR. For the example

under study we find that neutrality under JR is guaranteed if the following conditions are

satisfied:

1√
2
µ3(j +m3)Φj;m3−1 + µ+(aj −m+ − 1)Φj;m+

= 0 ,

1√
2
µ3(j −m3)Φj;m3+1 − µ−(aj +m− − 1)Φj;m− = 0 . (2.41)

Furthermore, in order to ensure N = 4 invariance we need to check that the deformations

are also neutral under the extra generators S± which, along with JR, generate the R-

symmetry group SU(2)R of the N = 4 superconformal algebra. We find three conditions.

Two of those are identical with these that guarantee N = 2 invariance. This is expected

since the S± generators close on JR. The third condition reads

µ3(aj − 1)Φj;m3
+

1√
2
µ+(j −m+)Φj;m++1 −

1√
2
µ−(j +m−)Φj;m−−1 = 0 . (2.42)
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Equations (2.41) and (2.42) provide a set of sufficient conditions for the deforma-

tion (2.38)+(2.40)+(2.40) to preserve N = 4 supersymmetry. These conditions yield dif-

ferent equations for the coefficients µ3, µ± depending on whether the charges m3 and m±
are related or not. The simplest case to analyze is that of m3 = m+ + 1 = m− − 1 = m.

Then, the N = 2 conditions fix µ± in terms of µ3 as

µ± = ∓ 1√
2

j ±m
aj ∓m

µ , µ3 = µ . (2.43)

The N = 4 condition yields a further constraint

µ3(aj − 1) +
1√
2
µ+(j −m+ 1)− 1√

2
µ−(j +m+ 1) = 0 . (2.44)

Upon combining with (2.43) we find that in order to have non-trivial solutions aj has to

equal aj = −j, j + 1, 0. In other words, the values of aj that are singled-out by N = 4

supersymmetry include those for which the deformation is marginal. Instead, the case

of aj = 0 (with the exception of j = 0 which is analyzed below) leads to an irrelevant

operator.

For normalizable deformations, i.e. aj = j + 1, the solution (2.43) yields the class of

holographic operators (ψΦj)j+1;me
−q(j+1)φ. As we already know these operators preserve

N = 4 supersymmetry and hence it is not necessary to check (2.42) (it is automatically

satisfied). The purely bosonic part of the corresponding deformation is

q

(
µ3J

3Φj;m +
µ+√

2
J+Φj;m−1 +

µ−√
2
J−Φj,m+1

)
e−q(j+1)φ , (2.45)

with |m| 6 j + 1 and with the coefficients being given by

µ± = ∓ 1√
2

j ±m
j + 1∓m µ , µ3 = µ . (2.46)

Choosing µ = (j + 1 −m)(j + m + 1) we obtain indeed the Clebsch-Gordan coefficients

(2.7).

For non-normalizable operators, i.e. aj = −j, the solution (2.43) boils down to

µ± = ± 1√
2
µ , µ3 = µ , (2.47)

which satisfies also the N = 4 condition (2.44). This non-normalizable solution is by

far more general than the one found in the previous subsection, where µ3 and µ± were

specified in terms of the Clebsch-Gordan coefficients fixing j = m = 0. Instead, the

current solution exists for any values of j and m that are allowed. We will denote from

now on the corresponding operator in (2.37) by (ψΦj)me
qjφ since it does not have definite

spin (it does have definite J 3 charge though). The associated bosonic deformation reads

qµ

(
J3Φj;m +

1

2
J+Φj;m−1 −

1

2
J−Φj;m+1

)
eqjφ (2.48)
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and the fermion bilinear piece is

qjµ
(
iψψ−Φj;m+1 + iψ∗ψ+Φj;m−1 + (ψψ∗ − ψ+ψ−)Φj;m

)
eqjφ . (2.49)

Since these deformations preserve N = 4 superconformal invariance, they also preserve

spacetime supersymmetry. Notice that these operators, for generic j and m, do not have

a holographic counterpart since they do not have definite total spin, and therefore cannot

correspond to an LST deformation. Their interpretation in terms of NS5-branes will be

uncovered in section 4.

There are two more classes of operators that lead automatically to N = 2 preserving

deformations. These are ψΦj;−je−q(j+1)φ and ψ∗Φj;je
−q(j+1) which, as was shown in sub-

section 2.2, are chiral and antichiral primaries, respectively. They were not captured by the

analysis we just performed since the ansatz (2.37) does not contain the fermion ψφ. It can

be checked that the corresponding deformations preserve also N = 4 supersymmetry and

therefore spacetime supersymmetry. The purely bosonic piece of the deformation coming

from ψΦj;−je−q(j+1)φ is
i√
2
(∂φ+ qJ3)Φj;−je

−q(j+1)φ (2.50)

and the fermion bilinear piece is

q√
2

(
iψ+ψ−Φj;−j − iψψ∗Φj;−j + 2jψ−ψΦj;−j+1

)
e−q(j+1)φ . (2.51)

Notice that ψΦj;−je−q(j+1)φ and ψ∗Φj;je
−q(j+1) do not have definite spin under the

spacetime symmetry SO(4) and do not appear independently in the holographic dictionary

(only their imaginary part for j = 0, which is ψ3e
−qφ, does have a holographic interpreta-

tion). In that respect, they are similar to the non-normalizable operators we discussed ear-

lier, which also preserve worldsheet and spacetime supersymmetry. Although both classes

of operators leave intact the 6-dim Lorentz invariance associated with the worldvolume of

the NS5-branes, they lack an interpretation in LST.

The non-normalizable versions of ψΦj;−je−q(j+1)φ and ψ∗Φj;je
−q(j+1) are chiral and

antichiral, respectively, but not primary. They are examples of operators where h = |q|/2
but due to non-unitarity they fail to be chiral primary. Furthermore, it can be checked

that they preserve N = 2 supersymmetry but not N = 4 and hence they break spacetime

supersymmetry.

An interesting observation is that the extra operators ψΦj;−je−q(j+1)φ and

ψ∗Φj;je
−q(j+1) are actually BRST trivial in the N = 2 topologically twisted theory. The

reason is that they arise from the action of G+(z) on Φj;−je−q(j+1)φ since

G+(z)Φj;−je
−q(j+1)φ(w) ∼ iq(2j + 1)

z − w ψΦj;−je
−q(j+1)φ(w) (2.52)

(and similarly for the complex conjugate). In the topological theory where the energy

momentum tensor is T (z) + 1
2∂JR(z) the BRST charge is QBRST =

∮
G+(z)dz and

ψΦj;−je−q(j+1)φ is a trivial element of the BRST cohomology.
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Let us also point out that the holographic operators (ψΦj)j+1;me
−q(j+1)φ originate from

the action of the extra two N = 4 supercharges on Φj;−je−q(j+1)φ. These supercurrents

read

G̃+ = iψ+
(
∂φ+ qJ3 − qψψ∗)+ iq∂ψ+ − qJ+ψ , (2.53)

G̃− = iψ−(∂φ− qJ3 + qψψ∗)+ iq∂ψ− − qJ−ψ∗ , (2.54)

and, along with G±(z), generate the N = 4 superconformal algebra. Then it holds that

G̃+(z)Φj;je
−q(j+1)φ(w) ∼ iq(2j + 1)

z − w ψ+Φj;je
−q(j+1)φ(w) . (2.55)

Hence, with respect to theN = 2 algebra generated by G̃±(z), the operator ψ+Φj;je
−q(j+1)φ

would be BRST trivial after the topological twisting. However, neither ψΦj;−je−q(j+1)φ nor

ψ+Φj;je
−q(j+1)φ are trivial as elements of the BRST cohomology of the N = 4 topological

string.

When j = m = 0 the real part of ψΦj;−je−q(j+1)φ and of its non-normalizable ver-

sion preserves N = 4 but the deformation it leads to, whose purely bosonic piece reads

∂φ∂̄φe−qa0φ, is trivial since it is tantamount to a coordinate redefinition of the linear dila-

ton direction. This triviality, however, does not seem to persist when j 6= 0 since primaries

of the SU(2)k−2 WZW model couple to the derivatives of the dilaton.

2.5 Comments and summary

Normalizable CFT operators of the form (ψψ̄Φj)j+1;m,m̄e
−q(j+1)φ correspond holograph-

ically to VEVs of the operators t̃r(Xi1Xi2 · · ·Xi2j+2) that parametrize the moduli space

of LST. Notice that spacetime supersymmetry does not change as we move in the moduli

space since any configuration of parallel NS5-branes, irrespectively of their positions in the

transverse space, preserves 16 supercharges in type II theories. Consequently, the N = 4

superconformal symmetry of the original underlying CFT should also be left intact [12].

We have shown that all deformations originating from (ψψ̄Φj)j+1;m,m̄e
−q(j+1)φ preserve

both N = (4, 4) worldsheet supersymmetry and 16 spacetime supercharges. Therefore,

all of those that bear non-vanishing couplings λj;m,m̄ can be in principle present in the

deformed Lagrangian.

The last observation is particularly puzzling for two reasons. First, as noticed in [5],

there is a mismatch between the number of couplings λj;m,m̄, which grows as k3, and the

number of parameters that determine a point in the moduli space of LST, the latter being

4(k − 1). Second, [7] established that the most general planar deformation of the NS5-

branes3 was captured by a subset of the possible deforming operators, namely those that

are (chiral, chiral) primaries as well as their (antichiral, antichiral) conjugates. It is also

quite straightforward to see that non-planar deformations of the NS5-brane are captured

by (chiral, antichiral) and (antichiral, chiral) operators.

3Notice that [7] considered deformations of a circular distribution of NS5-branes where the underlying

CFT is SL(2, R)k/U(1) × SU(2)k/U(1). As we mentioned already, there is a 1-1 correspondence between

operators in that theory and the CHS theory studied here, so that all results pertaining to SL(2, R)k/U(1)×

SU(2)k/U(1) deformations can be rephrased in the CHS theory.
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Therefore, it seems that the chiral ring operators, namely those with m, m̄ = ±(j + 1)

, are sufficient to capture the most general geometric NS5-brane deformation. Then, the

puzzle raised in [5] is resolved since the number of such operators is precisely 4(k−1) (recall

that j = 0, 1
2 , . . . ,

k−2
2 and we have to combine the holomorphic with the antiholomorphic

part). This is also in line with the fact that in the T-dual theory, which is described by a

σ model with an ALE target space and without the complications due to the presence of

NS-NS flux, only operators in the chiral ring correspond to geometric moduli. Therefore,

we will also dub “non-holographic“ all operators of the form (ψψ̄Φj)j+1;m,m̄e
−q(j+1)φ with

|m| or |m̄| different than j + 1.

One extra argument in support of this proposal is that the marginal deformations

originating from chiral (or antichiral) operators are actually exactly marginal. As we said

earlier, the reason is that these operators have protected conformal dimensions since the

latter are fixed in terms of the non-renormalized U(1) R-charge as h = q
2 . Since the NS5-

branes can be finitely separated without spoiling the conformal invariance of the worldsheet

theory, we are lead to the conclusion that only exactly marginal deformations, which in

principle can be integrated to finite deformations, should be used to perturb the original

CFT.

Notice that deformations originating from non-chiral operators are not, in general,

exactly marginal since they do not satisfy the criterion of [13]. However, there is an

exception provided by the operator j = m = m̄ = 0. The purely posonic piece of the

corresponding deformation is J3J̄3e−qφ and it is well-known [13] that J3J̄3 is an exactly

marginal operator of the SU(2)k−2 WZW model. The Liouville dressing does not modify the

argument of [13] since the operator e−qφ is equivalent to the identity operator in Liouville

theory and its OPE with itself is trivial.

Therefore, we propose that the normalizable operator with j = m = m̄ = 0 should also

be taken into account when one considers NS5-brane deformations. An additional reason

for doing so is that in the simple example where the point-like configuration of NS5-brane

is deformed to a circle, this operator yields the leading deformation of the CHS theory (or,

more precisely, of its T-dual) towards the model SL(2,R)k/U(1) × SU(2)k/U(1) [5] (see

also subsection 3.3 for more details).

Finally, let us point out that the fact that there are no non-normalizable operators

in the holographic dictionary that preserve the N = 4 superconformal symmetry, and

consequently the full worldvolume supersymmetry, ties nicely with the fact that there

should not exist any such deformations of the 5+1-dimensional LST. The other class of

non-normalizable operators

qµ

(
J3Φj;m +

1

2
J+Φj;m−1 −

1

2
J−Φj,m+1

)
eqjφ, (2.56)

that preserves N = 4, does not correspond to an LST deformation but, as we will see in

more detail in section 4, moves us away from the NS5-brane horizon.

3. Deformations of SU(2)k × Rφ and NS5-branes

In this section we will analyze several configurations of NS5-branes using the holographic
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operator chiral primary N = 2 N = 4 spacetime susy

ψ+Φj;je
−q(j+1)φ √ √ √ √ √

ψ+Φj;je
qjφ √

(ψΦj)j+1;me
−q(j+1)φ √ √ √

(ψΦj)j+1;me
qjφ

ψ3e
−qφ √ √ √ √

ψ3
√

(ψΦj)me
−q(j+1)φ

(ψΦj)me
qjφ √ √ √

ψΦj;−je−q(j+1)φ √ √ √ √ √

ψΦj;−jeqjφ
√ √

ψφe
−qφ √ √ √ √

ψφ
√ √ √

Table 1: Properties of various classes of operators in SU(2)k × Rφ. We have not included the

complex conjugates which have similar properties. Operators with unspecified j and m labels are

assumed to be generic, i.e. not for the cases j = m = 0 and/or m = ±(j + 1) when they reduce to

other operators present in the table.

correspondence (2.1) and its refinement proposed in the previous section. The configura-

tions under study will be thought of as small deformations of a stack of NS5-branes put

at the point x6 = x7 = x8 = x9 = 0. Accordingly, the exact CFT SU(2)k × Rφ describing

the latter is deformed and we will show how several physical features of the configurations

of NS5-branes under study can be inferred from the analysis of the corresponding CFT

deformations.

3.1 Generalities

We revisit now the holographic dictionary (2.1) and explain how it works in detail. Since

there are no m and m̄ indices at the left side, an obvious question is how these charges are

determined in terms of the indices i1, . . . , i2j+2 for a given LST operator. As shown in [5],

this can be done by using a parametrization of the moduli space in terms of two complex

variables that span the two orthogonal hyperplanes transverse to the NS5-branes:

A ≡ X6 + iX7, B ≡ X8 + iX9 . (3.1)

Embedding the rotational SO(2)A×SO(2)B of the A and B planes in the SU(2)L×SU(2)R
symmetry of the CHS background so that SO(2)A is generated by J3 − J̄3 and SO(2)B is

generated by J3 + J̄3, leads to the following charge assignments

mA =
1

2
, m̄A = −1

2
, mB =

1

2
, m̄B =

1

2
. (3.2)
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Subsequently, the general recipe (2.1) takes a more precise form

t̃r
(
AxBy(A∗)z(B∗)w

)
←→ (ψψ̄Φj)j+1;m,m̄e

−q(j+1)φ , (3.3)

where −(j+1) 6 m, m̄ 6 (j+1) and the positive powers x, y, z, w are related to the charges

j,m, m̄ as

x+ y = j + 1 +m, z+w = j + 1−m, y+ z = j + 1 + m̄, w+ x = j + 1− m̄ . (3.4)

The corresponding couplings λj;m,m̄ are given by

λj;m,m̄ =
1

k
t̃r
(
AxBy(A∗)z(B∗)w

)
(3.5)

and symmetrization is not necessary since we are interested in points in the LST moduli

space where A and B are diagonal. The 1/k factor is introduced so that the couplings are

O(1) in general. Furthermore, one should keep only the traceless combinations in (3.5).

The analysis of the previous section indicated that generically we should consider only

the operators that are either chiral or antichiral as well as the operator with j = m = m̄ = 0.

The associated couplings are

λj;j+1,j+1 =
1

k
t̃r(B2j+2) , λj;−j−1,−j−1 =

1

k
t̃r
(
(B∗)2j+2

)
, (3.6)

λj;j+1,−j−1 =
1

k
t̃r(A2j+2) , λj;−j−1,j+1 =

1

k
t̃r
(
(A∗)2j+2

)
, (3.7)

which are automatically traceless, and

λ0;0,0 =
1

k
t̃r(BB∗ −AA∗) , (3.8)

where the relative sign is chosen so that it is traceless.

3.2 NS5-branes on a 3-sphere

The first configuration we would like to consider is that of a continuous distribution of

NS5-branes on an S3 of radius R embedded in the transverse R
4. This configuration is

described by

A = R cos θeiφ, B = R sin θeiτ , (3.9)

where θ ∈ [0, π/2), φ ∈ [0, 2π), τ ∈ [0, 2π). We would like to approximate this distribution

by a sequence of discrete ones containing k NS5-branes so that the limit k →∞ yields (3.9).

Then, each of the coordinates θ, φ, τ on the sphere is discretized in terms of an index a, b, c

as follows

sin2 θ =
a

k1
, a = 0, . . . , k1 ,

φ =
2πb

k2
, b = 0, . . . , k2 , (3.10)

τ =
2πc

k3
, c = 0, . . . , k3 .
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We can verify that
1

2π2

∫
sin θ cos θdθdφdτ =

1

k

∫
dadbdc , (3.11)

so that the total number of NS5-branes is k = k1k2k3. Notice that we assume that the

discretization is smooth and hence that k1, k2 and k3 are large. The discrete distribution

is described by the k × k matrices

Aa,b,c = R

√
1− a

k1
e

2πib
k2 Ic , Ba,b,c = R

√
a

k1
Ibe

2πic
k3 . (3.12)

By definition we have tr(A) ≡ ∑k1
a=0

∑k2
b=0

∑k3
c=0Aa,b,c and we conclude that tr(A) =

tr(B) = 0 as it should.

Before considering the chiral and antichiral operators let us see what happens with the

j = m = m̄ = 0 operator. Its coupling turns out to be zero since

∑

a,b,c

(
Ba,b,cB

∗
a,b,c −Aa,b,cA∗

a,b,c

)
∼

k1∑

a=0

(
2

k1
a− 1) = 0 . (3.13)

Hence, for this particular configuration this operator does not appear in the perturbed

theory. Notice that we have used the standard trace since, as argued in [6], the multi-trace

corrections are subleading when k is large and j is finite. For the same reason we will

employ the usual single trace in the computation of λj;m,m̄ below, since the values of j that

we will consider will be large, but finite.

We proceed now with the computation of the coefficients λj;m,m̄ for the cases where

m = ±(j + 1) and m̄ = ±(j + 1). We have

λj;m,m̄ = R|m−m̄|+|m+m̄| 1
k

k1∑

a=0

k2∑

b=0

k3∑

c=0

(
1− a

k1

) |m−m̄|
2
(
a

k1

) |m+m̄|
2

e
2πib
k2

(m−m̄)
e

2πic
k3

(m+m̄)

= R|m−m̄|+|m+m̄| k2k3

k

k1∑

a=0

(
1− a

k1

) |m−m̄|
2
(
a

k1

) |m+m̄|
2

δm−m̄,0 mod k2δm+m̄,0 mod k3 .

For large k1, k2, k3 we can approximate the summation over a with an integral. We get

λj;m,m̄ = R|m−m̄|+|m+m̄|B

(
1 +
|m− m̄|

2
, 1 +

|m+ m̄|
2

)
δm−m̄,0 mod k2δm+m̄,0 mod k3 ,

(3.14)

where B(x, y) is the Euler beta function. Notice that if we had made the same approxima-

tion for the summations over b and c we would have found that only the coefficient with

m = m̄ = 0 is non-zero, therefore missing all other possibilities.

Let us now try to understand the behavior of the coefficients λj;m,m̄ for operators that

are either (chiral, chiral) or (chiral, antichiral). The other two cases are related to these

two by conjugation. In the first case we have (m, m̄) = (j+1, j+1) and the corresponding

coupling is

λj;j+1,j+1 =
R2j+2

j + 1
δ2j+2,0 mod k3 . (3.15)
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Since 2j + 2 goes up to k, there are k/k3 = k1k2 values of j which give non-vanishing

λj;j+1,j+1. For the (chiral, antichiral) case, where (m, m̄) = (j + 1,−j − 1), the coupling is

λj;j+1,−j−1 =
R2j+2

j + 1
δ2j+2,0 mod k2 (3.16)

and we have k/k2 = k1k3 values of j that yield non-vanishing coefficients.

We can now consider the purely bosonic deformation corresponding to the (chiral,

chiral) operators:
k−2

2∑

j=0

q2

2
λj;j+1,j+1J

+J̄+Φj;j,je
−q(j+1)φ . (3.17)

Explicitly this reads

k−2

2∑

j=0

1

k

R2j+2

j + 1
J+J̄+Φj;j,je

−q(j+1)φ δ2j+2,0 mod k3

=

k−2

2∑

j=0

J+J̄+

k(j + 1)
Φj;j,j e

−q(j+1)(φ−
√

2k lnR) δ2j+2,0 mod k3 . (3.18)

We start the analysis by noticing that the smallest value of j that contributes is of

order k3 and hence it is large. Consequently, if φ −
√

2k lnR = x < 0 the exponential is

e
− j√

k
x

and for j of order k3 it creates a potential wall that does not allow penetration

in the x < 0 region. In terms of the linear dilaton coordinate this wall is located at

φ0 =
√

2k lnR. The region x > 0 ⇔ φ > φ0 has a potential that goes very rapidly to

zero as k →∞. Hence, when k → ∞ we obtain the original SU(2) × Rφ theory, but with

a truncated dilaton direction φ > φ0. In terms of the usual radial coordinate the wall is

located exactly at the radius of the 3-sphere.

What we have just described is a stringy way of creating an impenetrable domain for

all modes in the theory. This should be compared to a purely gravitational approach in

which one postulates, without providing a microscopic origin, that the region r < R is not

part of the space and δ-function source terms are added so that the equations of motion

are satisfied at r = R.

This analysis is in perfect agreement with the application of the Gauss law for a con-

figuration of NS5-branes spread on a 3-sphere. In the limit of large k the SO(4) symmetry

is restored and according to the Gauss law, outside of the 3-sphere we should obtain the

same solution as that of a point-like configuration of NS5-branes, i.e. SU(2)k ×Rφ, but for

the fact that the dilaton direction is truncated to φ > φ0. Instead, inside the sphere we

have no sources and the solution should be the free CFT corresponding to four free bosons

parametrizing R
4. However, this effect cannot be seen explicitly in our analysis since the

perturbation blows up and cannot be considered as a small deformation of the original

CFT.
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3.3 NS5-branes on a circle: redux

We consider now a configuration of k NS5-branes arranged symmetrically on a polygon

inscribed in a circle of radius R in the B plane. This is a configuration that has been

discussed extensively in the literature since it admits an exact CFT description. It is

described by the k × k matrices

Aa = 0, Ba = Re2πia/k , (3.19)

so that the only non-zero couplings are λ0;0,0 = R2 and λ k−2

2
; k
2
, k
2

λ k−2

2
;− k

2
,− k

2

Rk. Notice

that tr(Bl) = 0 when l < k and hence there is no difference between the usual trace and

the one containing multi-traces.

The operator corresponding to the second coupling behaves exactly as the operators

discussed in the previous subsection, i.e. it rapidly vanishes when we are probing the

region outside the ring. Hence, the theory is modified only by the presence of the operator

corresponding to λ0;0,0 = R2, which is ψ3ψ̄3e
−qφ and whose bosonic part reads J3J̄3e

−qφ.
This operator drives the deformation

SU(2)k × Rφ =
SU(2)k

U(1)
×U(1)× Rφ −→

SU(2)k

U(1)
× SL(2,R)k

U(1)
, (3.20)

where a T-duality has been also been performed in the first step. The latter model is indeed

well-known to provide the exact CFT description of a circular configuration of NS5-branes

in the near-horizon limit [2].

We may verify explicitly that statement from the expressions for the corresponding

background [2]

ds2 = k

[
dρ2 + dθ2 +

1

Σ
(tanh2 ρ dτ2 + tan2 θ dψ2)

]
,

Bτψ =
k

Σ
, (3.21)

e−2Φ = Σ cosh2 ρ cos2 θ ,

where the dilaton is included for completeness and

Σ = tanh2 ρ tan2 θ + 1 . (3.22)

Indeed, expanding (3.21) for large ρ which, effectively, is equivalent to a circle of small size,

we get that

ds2 = ds2(0) + 4e−2ρ(sin4 θ dψ2 − cos4 θ dτ2) +O
(
e−4ρ

)
,

Bτψ = B
(0)
τψ + 4e−2ρ sin2 θ cos2 θ +O

(
e−4ρ

)
, (3.23)

where the fields indexed with a zero correspond to the SU(2) WZW unperturbed case. It

is now straightforward to verify that the perturbation is just −J3J̄3e
−qφ, where φ =

√
2k ρ

and

J3 = 2(cos2 θ∂τ + sin2 θ∂ψ) , J̄3 = 2(cos2 θ∂̄τ − sin2 θ∂̄ψ) , (3.24)

are the chirally and antichirally conserved Cartan currents.
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3.4 NS5-branes on orthogonal circles

Another interesting configuration is that of k NS5-branes put on two circles of the same

radius R on the two planes A and B. This is described by the k′ × k′ matrices

Aa = Re2πia/k
′
, Ba = Re2πia/k

′
, (3.25)

with k′ = k/2. In this case the only non-zero couplings are λ k′−2

2
;± k′

2
,± k′

2

= 1
2R

k′. As in the

previous case of NS5-branes put on a single circle, there is no difference between the usual

trace and the tilde one. For large k′ = k/2 the corresponding operators vanish rapidly in

the region outside of the two rings and since there are no other non-vanishing operators

(unlike the case of one ring where λ0;0,0 6= 0) the situation resembles that of the 3-sphere.

The previous remark leads to a puzzle, since the solutions corresponding to the 3-sphere

and the two circles are obviously different even in the k → ∞ limit. One can understand

why the two configurations behave similarly by examining the multipole expansion of the

corresponding harmonic functions, in conjunction also with a similar expansion for the

case of one circle. The reason is that on physical grounds the first non-vanishing multipole

moment triggers the leading perturbation of the original CFT. Since the 3-sphere configu-

ration behave as a point-like charge, all of its multipole moments vanish by definition. The

dipole moments pi =
∫
d4xρ(x)xi, where i = 6, 7, 8, 9 is a vector index in the 4-dimensional

transverse R
4 and ρ(xi) is the density of NS5-branes, are zero for both the case of one and

two circles. This is easy to check using the normalized densities

ρ1−circ.(x) =
1

π
δ
(
R2 − (x8)2 − (x9)2

)
δ(x6)δ(x7) (3.26)

and

ρ2−circ.(x) =
1

2π

[
δ
(
R2 − (x8)2 − (x9)2

)
δ(x6)δ(x7) + δ

(
R2 − (x6)2 − (x7)2

)
δ(x8)δ(x9)

]
.

(3.27)

Now, one can further check that the quadrupole moments

Qij =

∫
d4xρ(x)

(
xixj − 1

4
δijx2

)
, (3.28)

vanish for the two circles, rendering the solution similar to that of the 3-sphere up to this

order. Instead, the single circle behaves differently since it has non-vanishing quadrupole

moments, for instance Q66 = Q77 = −1
4R

2. More generally, the quadrupole moments

vanish for every distribution that is identical on the A and B planes and which has no

dependance on the angular coordinate of the plane.

3.5 NS5-branes on a line and symmetry considerations

A final configuration we would like to consider is that of NS5-branes put on a line, for

instance in the B plane and along the x8 direction. In that case we have A = 0 and

B = B∗ and all couplings λj;j+1,j+1, their conjugates as well as λ0;0,0 are generically non-

zero. Notice that our discussion here is independent of the actual distribution on the line.
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The configuration we consider is invariant under an SO(3) group of transverse symmetries

and a natural question is how this symmetry manifests itself in the CFT deformations.

Before tackling this problem, let us start with a generic configuration of NS5-branes

in the transverse R
4 where both A and B are non-zero. The various cases will be

discussed in reference to figure 1 below which summarizes and depicts them geometri-

cally. Then, generically, all the couplings λj;±(j+1),±(j+1) and λ0;0,0 are non-zero and the

SO(4) = SU(2)L × SU(2)R symmetry is completely broken. Instead, an arbitrary defor-

mation on a single plane should preserve the SO(2) symmetry associated with rotations in

the plane orthogonal to the first one. For instance, spreading the branes in the B plane

triggers the (chiral, chiral) and (antichiral, antichiral) operators corresponding to the cou-

plings λj;j+1,j+1 and λj;−j−1,−j−1 respectively, as well as λ0;0,0. The purely bosonic pieces

of the associated deformations are

J+J̄+Φj;j,je
−q(j+1)φ , J−J̄−Φj;−j,−je

−q(j+1)φ , J3J̄3e−q(j+1)φ . (3.29)

All these operators are invariant4 under the generator J3 − J̄3 of SO(2)A.5 Notice that,

had we spread the branes in the A plane, the purely bosonic deformations would have been

proportional to

J+J̄−Φj;j,−je
−q(j+1)φ , J−J̄+Φj;−j,je

−q(j+1)φ , J3J̄3e−q(j+1)φ . (3.30)

These are now invariant under J3 + J̄3, i.e. the generator of SO(2)B , as they should.

If we put now the NS5-branes on a regular polygon on the B plane, which approaches a

smooth circle in the k →∞, the symmetry we expect is SO(2)A×Zk, while its continuous

limit should be SO(2)A × SO(2)B . The commutator of the SO(2)B generator J3 + J̄3 with

the j = m = m̄ = 0 deforming operator is zero, while with the only other operator that is

turned on, i.e. that with j = (k − 2)/2, it yields

kJ+J̄+Φ k−2

2
; k−2

2
, k−2

2

e−q(j+1)φ (3.31)

and similarly for its conjugate. In other words the deformation has charge k and therefore

is invariant under rotations by 2π/k, i.e. there is indeed a discrete Zk symmetry. More

generally, operators with a given j have an invariance under Z2j+2 since they correspond

to the deformations of [7] that have indeed such a geometric symmetry.

Before discussing the case of the bar, let us point out that there are two relevant SO(3)

subgroups of SU(2)L×SU(2)R, the latter being generated by J±, J3 and J̄±, J̄3. The first,

which we call SO(3)B is generated by

SO(3)B : J3 + J̄3, J+ + ǫJ̄+, J− + ǫ−1J̄− (3.32)

with ǫ an arbitrary complex number and one of its quadratic invariants is

ǫ−1J+J̄− + ǫJ−J̄+ + 2J3J̄3 . (3.33)

4As usual, when we refer to the action of the currents we mean the action of their zero-modes and hence

what we should check is the simple pole in their OPE with the operator under consideration.
5We consider J3 instead of J3 since we focus on the purely bosonic deformations but obviously the same

argument extends to the fermion bilinear pieces.
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This invariant is part of the full Casimir constructed out of the generators (3.32); the latter

is actually the sum of (3.33) and of the usual Casimirs made out of J3, J± and J̄3, J̄±, for

SU(2)L and SU(2)R, respectively.

The other relevant SO(3) subgroup of SU(2)L × SU(2)R, which will be denoted by

SO(3)A, is generated by

SO(3)A : J3 − J̄3, J+ + ǫJ̄−, J− + ǫ−1J̄+ (3.34)

and its invariant, analogous to (3.33), is

ǫ−1J+J̄+ + ǫJ−J̄− − 2J3J̄3 . (3.35)

Notice that demanding reality of these invariants requires ǫ to be a phase. The corre-

sponding SO(2)A/B subgroups are generated by J3 ± J̄3 according to the convention we

established at the beginning of this section.

Let us consider now a configuration of NS5-branes arbitrarily spread along a line in

the B plane passing by the center. Such a line is described by B = eiϕB∗ where ϕ is twice

the angle it makes with the x8 axis. For j = 0 the standard trace and the tilde one are

identical and we find that the couplings λ0;1,1, λ0;−1,−1 and λ0;0,0 are related as

λ0;−1,−1 = e−iϕλ0;0,0 , λ0;1,1 = eiϕλ0;0,0 . (3.36)

Subsequently, the purely bosonic part of the corresponding deformation is given by the

operator

λ0;0,0(e
iϕJ+J̄+ + e−iϕJ−J̄− + 2J3J̄3)e−qφ , (3.37)

where the factor of 2 in front of the last term appears because in (2.22) we are instructed to

add the complex conjugate of every term. According to the discussion above, this operator

is indeed invariant under SO(3)A for ǫ = −e−iϕ.

A similar situation would have arisen if we had put the NS5-branes on a bar in the

A plane, with SO(3)B being now the relevant symmetry group. Notice also that this ar-

gument works in reverse. If we have a configuration with SO(3)A symmetry (and such

that tr(B2) 6= 0), the unique invariant that depends on both holomorphic and antiholo-

morphic currents is ǫ−1J+J̄+ + ǫJ−J̄− − 2J3J̄3 and therefore it dictates the following

relations between the couplings: λ0;1,1 = −ǫ−1λ0;0,0 and λ0;−1,−1 = −ǫλ0;0,0. In other

words, tr(B2) = −ǫ−1tr(BB∗) and tr
(
(B∗)2

)
= −ǫtr(BB∗), therefore implying that ǫ is

a phase and furthermore that6 B = −ǫ−1B∗. Hence, only a configuration of NS5-branes

along a line can have SO(3)A/B symmetry.

Since operators with j > 0 are also turned on, corresponding to the couplings

t̃r(B2j+2) which are generically non-vanishing, one should also check that the associated

6Proof: we would like to show that if tr(B2) = eiϕtr(BB∗) then B = eiϕB∗. Define Γ = e−iϕ/2B

so that tr(Γ2) = tr(ΓΓ∗). B and hence Γ are diagonal matrices and let rie
iθi by the elements of the

latter. We can re-write the trace condition on Γ as
P

i(r
i)2(e2iθi − 1) = 0. The real part of this equation

gives −2
P

i(r
i)2 sin2 θi = 0, therefore implying that θi is an integer multiple of π. Hence Γ = Γ∗ and

consequently B = eiϕB∗.
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Figure 1: Various NS5-branes configurations and their symmetries in the continuous (k → ∞)

limit: (i) generic distribution in R
4 with no symmetry, (ii) generic planar deformation with SO(2)

symmetry, (iii) circle with SO(2) × SO(2) symmetry, (iv) bar with SO(3) symmetry, (v) 3-sphere

with SO(4) symmetry.

deformations are SO(3)A invariant. The purely bosonic piece of the deformation corre-

sponding to t̃r(B2j+2) is J+J̄+Φj;j,je
−q(j+1)φ and we have to include also its conjugate

J−J̄−Φj;−j,−je−q(j+1)φ. These operators are separately invariant under J3− J̄3 as we have

already pointed out. However, they are not invariant under the other two generators of

SO(3)A since they correspond to deformations of higher order in the deforming parameter

and we expect that the actual generators of the SO(3) symmetry are also corrected beyond

the leading order. It would quite interesting to uncover the corrected form of the symmetry

generators beyond the leading order. However, this task is tantamount to constructing the

CFT underlying this configuration and therefore it should be quite non-trivial.

We have summarized the symmetries of various NS5-brane configurations in figure 1.

4. “Non-holographic” CHS deformations

A four-dimensional metric conformal to a hyperkähler one supports generically N = (4, 1)

world-sheet supersymmetry with torsion, provided that the conformal factor is a harmonic

function of the hyperperkähler metric. The background fields are

ds2 = Hds2HK , Hijk = ǫijk
l∂lH , e2Φ = H , (4.1)

with ∇2
HKH = 0 and where the indices are raised with the hyperkähler metric. We present

below one such example that was worked out as a gravity solution in [14, 15] and we

formulate it in the language of SU(2)k × Rφ deformations. The corresponding operator is
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not chiral (or antichiral) primary and hence, according to our proposal in subsection 2.5,

does not correspond to a geometric NS5-brane deformation.

Subsequently we examine the case where the hyperperkähler space is provided by

R
4 and present an interesting application concerning the leading correction of SU(2)k ×

Rφ towards the full NS5-brane solution. The correction is triggered by one of the non-

normalizable operators found in section 2 which preserve N = 4 supersymmetry but do

not have holographic interpretation.

4.1 Conformal Eguchi-Hanson metric

This example is provided by taking the Eguchi-Hanson as the hyperkähler metric [16]

ds2EH

2k
=

r4

r4 − a4
dr2 + r2(σ2

1 + σ2
2) +

r4 − a4

r2
σ2

3 , (4.2)

where σa, a = 1, 2, 3 are the Maurer-Cartan SU(2) right-invariant 1-forms, normalized as

dσa = ǫabcσb ∧ σc . (4.3)

We have also introduced an overall scale 2k for later convenience. Assuming that the

conformal factor H depends only on the radial variable r, we easily establish that

H =
A

2a2
ln

(
r2 + a2

r2 − a2

)
+B , (4.4)

where A and B are integration constants. In addition, we note that the antisymmetric NS

3-form field strength is independent of a and is given by

H = 2σ1 ∧ σ2 ∧ σ3 . (4.5)

We select A = 1 and B = 0 so that for small a, or equivalently large r, the conformal factor

becomes

H =
1

r2

[
1 +

a4

3r4
+O

(
a8

r8

)]
. (4.6)

In this limit the background corresponds to a deformation of SU(2)k × Rφ, with the

leading worldsheet correction being proportional to

a4
(
J1K̄1 + J2K̄2 − 2J3K̄3

)
e−2qφ , (4.7)

where we have changed variables as

r = eqφ/2 =⇒ Φ = −q
2
φ (4.8)

in order to make the dilaton linear to leading order. We have also performed a φ-dependent

reparametrization that keeps the coefficient of dφ2 equal to one.

The currents that appear in the deformation (4.7) are given by

Ja = −itr(∂gg−1τa) , K̄a = −itr(∂̄gg−1τa) , a = 1, 2, 3 , (4.9)
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with τa being the Pauli matrices. Note that, whereas the current Ja is the chirally conserved

current of SU(2), obeying ∂̄Ja = 0, the current K̄a is not its antiholomorphic counterpart,

i.e. ∂̄Ka 6= 0. However, one can write

K̄a = CabJ̄
b , Cab =

1

2
tr(τagτbg

−1) , (4.10)

where the currents

J̄a = −itr(g−1∂̄gτa) , (4.11)

are indeed antiholomorphic obeying ∂J̄a = 0. The matrix Cab is in the adjoint representa-

tion.

In order to make contact with the expressions for the SU(2) primaries of spin 1 consider

the group element in the spin 1/2-representation parametrized as

g =

(
g++ g+−
g−+ g−−

)
, (4.12)

from which we compute that7

C±± = −2g2
±∓ , C±∓ = 2g2

±± ,

C3± = ±2g∓∓g±∓ , C±3 = ∓2g±±g±∓ , C33 = g+−g−+ + g++g−− . (4.13)

On the other hand let us recall the transformation rules

δ±g∓a = g±a , δ3g±a = ±1

2
g±a , a = ± , (4.14)

for the left SU(2) action on the group element, a similar one for the right action and the

fact that for spin j state with m = m̄ = j is given by

Φj;j,j = g2j
++ . (4.15)

The other members of the representation are then obtained by acting with the above

transfromation rules. It is important to normalize the states generated in this way in a

fashion compatible with the OPEs (2.5). This is done if

Φj;m±1,m̄ =
1

j ∓m δ±Φj;m,m̄ , (4.16)

for the left as well as for the right SU(2) transformations.

Using this method we easily find

Φ1;±1,±1 = g2
±± , Φ1;±1,0 = g±±g±∓ ,

Φ1;±1,∓1 = g2
±∓ , Φ1;0,±1 = g±±g∓± , Φ1;0,0 =

1

2
(g++g−− + g+−g−+) . (4.17)

7We use the basis σ± = σ1 ∓ iσ2, σ3, where the indices are raised and lowered with the metric η33 =

2η+− = 2η+− = 1.
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Comparing now these expressions with (4.13) we can finally write the elements of the

matrix Cab in terms of the primaries Φj;m,m̄ for j = 1:

C±± = −2Φ1;±1,∓1 , C±∓ = 2Φ1;±1,±1 ,

C3± = ±2Φ1;0,∓1 , C±3 = ∓2Φ1;±1,0 , C33 = 2Φ1;0,0 . (4.18)

The currents K̄a can be written in terms of the antiholomorphic currents J̄a as

K̄± =
1

2
C±+J̄− +

1

2
C±−J̄+ + C±3J̄3 ,

K̄3 =
1

2
C3+J̄− +

1

2
C3−J̄+ + C33J̄3 , (4.19)

and by using the relations (4.18) we obtain the explicit representation

K̄+ = −Φ1;1,−1J̄
− + Φ1;1,1J̄

+ − 2Φ1;1,0J̄
3 ,

K̄− = Φ1;−1,−1J̄
− − Φ1;−1,1J̄

+ + 2Φ1;−1,0J̄
3 , (4.20)

K̄3 = Φ1;0,−1J̄
− − Φ1;0,1J̄

+ + 2Φ1;0,0J̄
3 .

We can now rewrite the deformation (4.7) as

a4

(
1

2
J+K̄− +

1

2
J−K̄+ − 2J3K̄3

)
e−2qφ , (4.21)

and then, by using (4.20), we can finally express the deformation as

a4

[(
−1

2
Φ1;1,−1J

− +
1

2
Φ1;−1,−1J

+ − 2Φ1;0,−1J
3

)
J̄−

+

(
1

2
Φ1;1,1J

− − 1

2
Φ1;−1,1J

+ + 2Φ1;0,1J
3

)
J̄+ (4.22)

+
(
−Φ1;1,0J

− + Φ1;−1,0J
+ − 4Φ1;0,0J

3
)
J̄3

]
e−2qφ .

Comparing the first line above with (2.45) we find that they match for j = 1 and m = 0.

From (2.46) we get that µ± = ±1/
√

2 and µ = −2. Then (2.45) reproduces the first line

in the expression above. Similarly, the other two lines in the above expressions match

precisely, up to a multiplicative factor, with (2.45) for the same values of j,m, µ± and

µ. Therefore, the results of the first section imply that the holomorphic pieces of the

deformation (4.7) preserve N = 4 supersymmetry. Instead, the antiholomorphic ones,

given by K̄± and K̄3 in (4.20), preserve neither N = 2 nor N = 4 supersymmetry. Hence,

the total supersymmetry of the background (4.1) is N = (4, 1), in agreement with the

analysis of [14, 15].

We note that, by considering more general solutions than (4.4) for the conformal factor

H, we can construct perturbations corresponding to operators with spin j > 1.

There is also an interesting interpretation of the background (4.1) in terms of NS5-

branes. It is easy to see that the backreaction of a configuration of NS5-branes put trans-

versely on a hyperkähler space corresponds exactly to the fields in (4.1). In the particular
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case where the transverse hyperkähler space is the orbifold limit of an ALE space, such

systems were studied in the context of LST holography in [17]. The fact that worldsheet

supersymmetry is reduced from N = (4, 4) to N = (4, 1) can be understood from this

point of view as follows. Consider type IIB theory where the worldvolume of a set of

parallel NS5-branes, with transverse R
4, supports N6 = (1, 1) supersymmetry (by N6 we

mean six-dimensional supersymmetries). If instead of the NS5-brane geometry we had a

hyperkähler space, the supersymmetry in the remaining six-dimensional Minkowski space

would be N6 = (2, 0). Hence, superimposing the NS5-branes with the hyperkähler space,

so that they share a common six-dimensional Minkowski spacetime, leads to N6 = (1, 0)

supersymmetry. The latter necessitates the presence of N = (4, 1) in the worldsheet the-

ory, in accordance with the previous discussion. Had we considered type IIA string theory,

the NS5-brane supersymmetry would have been N6 = (2, 0) whereas the hyperkähler space

would have preserved N6 = (1, 1), therefore leading to the same result.

4.2 Conformal R
4: beyond the near-horizon

In the case where the hyperkähler space in (4.1) is R
4, we deal with a background that cor-

responds to a configuration of NS5-branes whose distribution is specified by the harmonic

function H. Such backgrounds generically exhibit N = (4, 4) superconformal invariance.

A very simple but quite interesting application of that construction is the following.

Recall that the near-horizon geometry SU(2)k × Rφ arises from the original solution cor-

responding to a point-like configuration of NS5-branes by going to the near-horizon limit

r →∞, which is tantamount to dropping the ”1” from the harmonic function. We would

like to consider the restoration of the full solution, i.e. creating a constant term in the

harmonic function, as a deformation of the CHS background. This deformation reads

(
J1K̄1 + J2K̄2 + J3K̄3

)
eqφ =

(
1

2
J+K̄− +

1

2
J−K̄+ + J3K̄3

)
eqφ , (4.23)

where we performed the usual coordinate redefinition r = eqφ/2.

Using the explicit form (4.20) of the currents K̄3, K̄± we can re-write this deforma-

tion as
[(
−1

2
Φ1;1,−1J

− +
1

2
Φ1;−1,−1J

+ + Φ1;0,−1J
3

)
J̄−

+

(
1

2
Φ1;1,1J

− − 1

2
Φ1;−1,1J

+ − Φ1;0,1J
3

)
J̄+ (4.24)

+
(
−Φ1;1,0J

− + Φ1;−1,0J
+ + 2Φ1;0,0J

3
)
J̄3

]
eqφ .

Another form, equal to the previous, is obtained by using the fact that the SU(2) part

in (4.23) is the quadratic Casimir and hence we can replace the right-invariant currents

Ja, K̄a with left-invariant ones J̄a,Ka:
(

1

2
J+K̄− +

1

2
J−K̄+ + J3K̄3

)
eqφ =

(
1

2
K+J̄− +

1

2
K−J̄+ +K3J̄3

)
eqφ . (4.25)
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Hence, the deformation can be written in an equivalent way as

[(
−1

2
Φ1;−1,1J̄

− +
1

2
Φ1;−1,−1J̄

+ + Φ1;−1;0J̄
3

)
J−

+

(
1

2
Φ1;1,1J̄

− − 1

2
Φ1;1,−1J̄

+ − Φ1;1,0J̄
3

)
J+ (4.26)

+
(
−Φ1;0,1J̄

− + Φ1;0,−1J̄
+ + 2Φ1;0,0J̄

3
)
J3

]
eqφ .

In the first expression (4.24) we see that the N = 4 preserving non-normalizable

operator of section 2 appears for the values of j = 1,m = 0. In the second expression (4.26)

the same operator appears, this time in in the antiholomorphic sector, with j = 1, m̄ =

0. Therefore the deformation preserves N = (4, 4) superconformal invariance as well as

spacetime supersymmetry, in accordance with the fact that the full NS5-brane solution

exhibits that amount of supersymmetry. Notice that this deformation was expected to be

non-normalizable since the near-horizon CHS background and the full NS5-brane solutions

have different asymptotic geometries. For other values of j,m, m̄ they should correspond

to more general solutions for the harmonic function H.
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