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ABSTRACT

A NEW MICRO-ANALYTICAL SYSTEM FOR REDUCING
SUGARS - APPLICATIONS TO SEDIMENT AND SEAWATER

Kenneth Mopper

Submitted to the Department of Earth and Planetary
Sciences on September 1, 1970 in partial fulfillment
of the requirement for the degree of Master of Science.

The distribution of carbohydrates in the marine environment has been
largely ignored by investigators in the field of organic geochemistry. The
primary hindrance to this type of research has been the lack of appropriate
analytical techniques to 1) quantitatively extract sugars from natural
samples and 2) separate and identify these sugars.

The latter difficulty has been resolved by construction of an auto-
matic sugar analyzer which is: 1) rapid-monosaccharide mixtures are fully
resolved in three to four hours; 2) highly sensitive- 10-10 to 10-11 moles
of sugar are detected; 3) capable of excellent reproducibility; and 4)
capable of yielding high resolution.

The design of the sugar analyzer system is based on an automatic amino
acid analyzer, however totally different columns and stains are employed.
During the construction of this new system many parameters had to be adjusted,
including: 1) resin-type and particle size; 2) length and diameter of resin
bed; 3) temperature of the column; 4) type of eluant; 5) pumping mechanisms;
6) pumping rates; and 7) stains.

The completed system separates sugars by pumping 89% ethanol under pressure
(400 psi) through a long narrow column (110 x .28 cm) packed with an ex-
tremely fine-grained, strongly anionic resin in the sulfate form (Technicon
Type 5 Resin, 20 microns). The eluted sugars are stained during reaction
with an alkaline solution of tetrazolium 'blue'. This dye is considerably
more sensitive and less corrosive than dyes used by other investigators.
Until now it had not been employed in analytical systems for sugars because
of the concomitant precipitation of diformazan which clogs capillary tubing.
However, extensive laboratory experimentation by this author have succeeded
in rendering tetrazolium 'blue' applicable.

This sugar analyzer has a three-sample-a-day capacity, however the out-
put will be tripled by construction of additional columns. Furthermore, all
peaks recorded by the spectrophotometer will soon be automatically inte-
grated and digitized in order to facilitate the quantification of large
amounts of data.

Prior to analyzing carbohydrates in seawater and sediment samples,
extraction procedures were tested with standard sugar solutions in order to
determine if: 1) all sugars were quantitatively extracted; and 2) synthesis
or destruction of sugars were occurring. Adequate procedures were finally



established for the extraction of free sugars from seawater, sediments and
seston; and of combined sugars from seawater and seston.

Of the several problems that remain one that is particularly relevant
is presently being investigated in our laboratory. Seawater samples are
usually de-salted on ion-exchange resins. However,. in this study it
became obvious that ion-exchange techniques led to almost complete de-
struction of one sugar, desoxyribose, and partial destruction of a
second, ribose. Infra-red spectroscopy has been, and will continue to
be, employed to study in detail the perseverance and/or alterations in
sugars during ion-exchange desalting.

Extraction of combined sugars from sediments proved to be exceedingly
difficult. Apparently mineral surfaces in the sediment catalyze the
destruction and molecular re-arrangement of monosaccharides released
during acid hydrolysis of polysaccharides. Enzymatic hydrolysis tech-
niques are beingexamined as a viable alternative.

Additional evidence for mineral surface-sugar interactions was
observed after a slurry of ignited sediment (8000C for three hours) and
standard sugar solutions were refluxed for 16 hours. Lyxose and one as
yet unidentified sugar were produced by molecular re-arrangement of the
pre-existing sugars. Further research on this proc-ess is being pursued
in our laboratory. In addition, synthesis of sugars from simple organic
molecules (e.g. glycerine and formaldehyde) on clays is being attempted.

The first quantitative analyses for free monosaccharides in Black
Sea sediments indicates that these sugars represent several percent of
the total organic matter. Furthermore, comparison of these data with
analyses of free sugars in lake sediment (Vallentyme and Whittaker,1957)
suggests that depositional environment is definitely linked with the
sugar content of the sediment. Therefore, sediments from different en-
vironments (open ocean, polluted and unpolluted estuaries, rivers, and
salt marshes) are presently being analyzed to test this idea.

Preliminary laboratory experiments indicate -that the free sugar
concentration of lake and seawater affects the growth of some plankton
species. Plankton density in a water body may likewise affect the con-.
centrations of free sugars 'there. Therefore, detailed studies of the
sugar content of dissolved and particulate organic matter from several
areas of high biologic productivity are being initiated in order to ex-
amine such interrelationships.

It is known that carbohydrates account for 60 to 70% of the organic
matter in domiesfic and industrial wastes. The new sugar analyzer system
is an ideal apparatus for measuring and identifying the sugar contient of
polluted areas, such as the effluent of the Revere Sugar Company, Boston,
Massachusetts and the sewage disposal area in New York Bight.

Thesis Supervisor: Egon T. Degens

Title: Senior Scientist, DepartmEnt of Chemistry
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts
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PART ONE

I ANALYTICAL SYSTEM-AUTOMATIC ANALYSIS

OF MICROGRAM QUANTITIES OF MONOSACCHARIDES
BY COLUMN CHROMATOGRAPHY

INTRODUCTION

In September, 1969, at the Woods Hole Oceanographic

Institution, a study of the distribution of free and

combined carbohydrates in the marine environment was

initiated. For this study it was necessary to construct

an analytical system to: 1) separate sugar mixtures into

component monosaccharides; and 2) identify these sugars.

Since monosaccharides demonstrate similar chemical

and physical properties, the usual fractionation tech-

niques (e.g., fractional crystallization) are inadequate

for separating complex sugar mixtures. Therefore several

chromatographic techniques, including paper, thin-layer,

gas-liquid, and column chromatography were examined. Of

these, column chromatography was found most desirable,

since it could be readily adapted to the automatic separa-

tion and quantification of sugars.

Construction of the automatic sugar analyzer is

described in the following section.



II ANALYTICAL TECHNIQUES CONSIDERED
PRIOR TO THE CONSTRUCTION OF THE

AUTOMATIC SUGAR ANALYZER - BACKGROUND

1. Gas Liquid Chromatography:

A gas chromatograph is designed to separate mixtures

of readily volatile compounds. Although sugars are not

volatile, by forming volatile derivatives these compounds

can be analyzed. Derivatives are formed by reacting

appropriate compounds with the hydroxyl groups on the

sugar molecule (Hammarstrand and Bonelli, 1968). Some

derivatives are methyl ethers, actates, acetals (or

ketals) and trimethylsilyls (Wells, et al. 1964). The

trimethylsilyl (abbreviated TMS) derivatives are commonly

used. The process of forming TMS derivatives is called

silylation and is illustrated below.

CHO

HCOH

H-C-OH

HO-C-H

HO-C-H

H-C OH

CHO

H-C-OSi (CH3 )3 .

H-C-OSi (CH 3)3

+5 Cl - Si<.CH3  (CH3 ) SiO-C-H

CH 3  (CH3 )3SiO-C-H

H-C-OSi (CH3 )3

(1)



Silylation is rapid (about five minutes at 250C)

and also quantitative (Sweeley, et al. 1963). The

silylated solution is injected directly into the gas

chromatograph. The separation of five sugars is ill-

ustrated in Figure 1.

Although this method appears simple and also highly

sensitive (nanogram quantities are detected), many com-

plications arise. For example, the main advantage of

gas chromatography (i.e., its extreme sensitivity) is also

the main disadvantage. Volatile contaminants will show

up on the chromatogram and possibly interfere with sugar

peaks. For instance, Blumer (1965) found organic com-

pounds coming from laboratory air ventilator filters to

be significant sources of contamination in his G. C.

analyses. In addition, natural samples (i.e., sediment,

sea water, etc.) contain volatile compounds (hydrocarbons,

aromatics) which may also interfere. However, even when a

standard sugar solution is silylated, a complex chromato-

gram results. Figure 1 illustrates the separation of five

sugars; fourteen peaks are present. The complication

arises from the fact that alpha and beta anomers of sugar

enantiomorphs are detected. This is especially significant

for galactose (see Figure 1). Since both L and D enantio-

morphs occur naturally, four peaks will result: o -L-



galactose, -L-galactose, o: -D-galactose and e-D-galactose.

In addition, even when only one anomer of a sugar is present,

most silylation techniques cause anomerization to occur

to varying degrees (Wells, et al. 1963). However, a tech-

nique involving the use of hexamethyldisilazane for sily-

lation has been recently developed which minimizes anomeri-

zation (David Boylan, pers. comm., 1969).

Derivatives of some sugar enantiomorphs are difficult

to separate; peaks 3 and 4, 9 and 10, and 12 and 13 in

Figure 1 are not resolved. This makes the problem of

peak identification difficult since the use of the usual

chromatographic parameter, the retention time, is not

reliable enough to identify peaks in a complex chromatogram

(especially when contaminants are present). Therefore, an

alternate method for peak identification must be employed:

mass-spectrometry. However, mass-spectrums of TMS deri-

vatives are complex because a large number of 'fragmentations

occur (Figure 2). Interpretations of these spectra are

difficult and time consuming.

For the reasons given above, I decided that the

technique of gas chromatography is not suitable for the

separation and identification of unknown mixtures of sugars.



2. Paper Chromatography:

Paper chromatography is an old, yet reliable method

for separating complex mixtures into their components.

Sugars are separated in a one-dimensional descending run

which has the advantage that many samples plus standards

can be spotted on the same sheet and can be analyzed

simultaneously.

Paper chromatography has several short-comings. For

instance, bulky developing tanks are required; pyridine,

which is commonly used in the mobile phase (Degens and

Reuter, 1969), is an unpleasant reagent to handle (its

vapors are flammable, noxious and pungent); and long

developing times are necessary (anywhere from 2 to 7 days

depending upon the composition of the migrating solvent

and the degree of separation required). Most dyes used to

visualize the separated sugars will also stain the paper

itself, thereby adding a background 'noise' which will

vary in intensity depending upon the reactivity of the

dye and the dyeing time and temperature selected. This

background limits the sensitivity of the technique to

the 1 to 5 microgram range (Whittaker and Vallentyne,

1957). In addition, quantification is difficult; crude

estimates are made by running standards along side of

samples and visually estimating spot size and density



(other-methods will be described later). For these reasons,

paper chromatography is not employed in the present analy-

tical scheme.

3. Thin-Layer Chromatography:

The deficiencies of paper chromatography are resolved

by thin-layer chromatographic techniques. The theory

behind thin-layer chromatography (abbreviated TLC) is the

same as that behind paper chromatography (as well as other

chromatographic techniques). A mobile phase, a stationary

phase, and a sample are present. Separation occurs because

component compounds in the sample are preferentially

retarded by the stationary phase by processes such as

adsorption, partition, ion-exchange and molecular sieving

(Brenner, et al. 1965).

TLC differs from paper chromatography in that the

absorbent media can be varied. Typical absorbents are:

silica gel, alumina, cellulose, and polyamide.- These

absorbents can be manually applied to a glass plate, or,

pre-coated plastic sheets can be purchased.

The choice of the stationary phase and the mobile

solvents is dependent upon the chemistry of the substances

to be separated. optimum separation conditions are

established for each type of compound to be investigated.

For example, partition chromatography is the most effective



mechanism for separating neutral and ionic hydrophilic

compounds; i.e., carbohydrates, amino acids, peptides,

sterols, vitamins, etc.- A highly polar mobile phase is

employed to dissolve and separate these compounds.

Commonly water, methanol, ethyl acetate, and acetone are

used in various proportions in the solvent (Kirchner, 1967).

Stains used to locate sugars on a paper chromatogram

are employed in T.L.C. Degens and Reuter (1969) recommend

the use four percent triphenyltetrazolium chloride (tet-

razolium 'red') in methanol. Other reagents such as

anilino-phosphoric acid (Medgysi, 1965), benzidine (Lins-

kene, 1959) and anisaldehyde-sulfuric acid (Waldi, 1965)

have been successfully employed to locate sugars on chroma-

togra rs. Some dyes are specific for ketoses, hexoses,

uronic acids, sugar alcohols, and desoxysugars (Waldi, 1965).

Commercially pre-coated TLC sheets containing fluorescent

indicators are available. Sugars, as well as contaminants,

show up as dark spots on a colored background under ultra-

violet light. This method is not as sensitive and as

selective as staining, however, the time saved makes its

use desirable.

Silica gel does not react with the stains, therefore,

when it is used as the stationary phase, background colora-

tion is non-existent. This adds considerably to the

-----------



sensitivity (0.01 to 0.1 micrograms can be detected).

In addition to being more sensitive than paper chroma-

tography, TLC separations are faster. With the proper

choice of mobile and stationary phases, separations can

be achieved within an hour after spotting. However, like

paper chromatography, TLC is difficult to quantify. As

before, crude estimates can be made by visually comparing

spot size and density of the sample against a series of

standards (20 to 30 percent accuracy, Whittaker and Vall-

entyne, 1957). When greater precision (in both TLC and

paper chromatography) is required, several instrumental

methods are available. Two examples are: photo-densito-

metric determination and elution-spectrophotometry. In

the first method, the chromatograms are photographed by

standardized photographic procedures and the negatives are

then evaluated in a specially constructed optical inte-

grator (densitometer). A calibration curve is constructed

by plotting sample quantity versus spot density. This

technique is most effective at low sample concentration-,

( 4 0.2 ug/ml) where the calibration curves approach

linearity. Under optimum conditions, accuracies of 5 to

10 percent can be achieved (Caster & Andrews, 1969)~.



In the second method (elution-spectrophotometry),

the stained spots are cut out and eluted with a suitable

solvent (i.e., water or aqueous ethanol) and the absorb-

ances are measured on a spectrophotometer. Calibration

curves of sample quantity versus absorbance are plotted.

This technique is most effective at high concentrations

( > 1 g/ml) because the color intensity of the extracted

spots is lowered by the dilution necessary to fill the

spectrophotometer cuvette. The accuracy is 5 to 10 precent

(Ganshirt, 1965; and Dubois et al., 1956)

Both TLC and paper chromatography depend upon Rg

values for qualitative determinations. Rf measurements

are empirically determined as follows:-

R distance of center of spot from origin
f distance of solvent front from origin

Factors affecting the Rf values are: temperature,

running distance, degree of chamber saturation, quality

and nature of solvents used, quantity of sample applied,

degree of activation of absorbent, thickness of absorbent

layer, and technique of development (either ascending or

descending). Therefore, strictly standardized conditions

are required for reproducible Rf values (Bobbitt, 1963).

Even then, positive identification is not assured unless

standards are run on the chromatogram under identical

conditions.



Presently, TLC is being employed as a qualitative

check on column chromatography (see proceeding section).

The use of two different chromatographic methods (with

different stationary phases) assures the positive identi-

fication of the sugars present in the samples.

An analytical procedure for the TLC separation of

sugars described by the Distillation Products Industries

has been adapted. Eastman Chromatogram sheets 6061 (silica

gel) 20 cm. long, are pretreated with a solution of sodium

acetate in ethyl-alcohol. (The sodium acetate and silica

gel behave as the stationary phase.) After air drying,

the sheet is: 1) activated at 1000C for 20 minutes; 2)

spotted 2 centimeters from the lower edge with samples and

standards; and 3) developed to a distance of 10 centimeters

with acetic acid/chloroform/methanol/water (80:10:10:5).

Visualization is achieved with an alkaline solution of

p-anisyl tetrazolium chloride (or tetrazolium 'blue').

This dye is extremely sensitive; quantities on the order

of 10-10 to 10-11 moles can be 2etected. (The reagent will

be described in detail in a later section of the thesis.)

A typical TLC separatio'n is illustrated in Figure 3. The

separation of several sugars in this chromatogram is poor.

The resolution is improved, however, by a second development.



III AUTOMATIC SUGAR ANALYZER

The previous section indicated that analytical tech-

niques for the separat-on of complex sugar mixtures (with

subsequent detection) based on gas-liquid chromatography,

paper chromatography, and thin-layer chromatography were

undesirable for one, or several, of the following reasons:

1) insensitivity; 2) poor reproducibility; 3) insufficient

resolution; 4) long analyses time; and 5) interferences

by contaminants.

These problems were overcome by the author through

the construction of a fully automatic analyzer capable of

detecting 10-10 - 10-11 moles of sugar. A sample is

loaded at the top of the column (filled with ion-exchange

resin) and the sugars are separated, stained, and spectro-

photometrically recorded within 3-4 hours..

The schematic of the auto-analyzer built -by the author

is depicted in Figure 4. Its design is based on an auto-

matic amino acid analyzer (Moore and Stein, 1951; and Degens

and Spencer, 1966).

Previously designed sugar analyzers (Jonsson and

Samuelson, 1966; and Kesler, 1967) suffered from three

flaws: 1) use of concentrated sulfuric acid as a major

reagent; 2) low sensitivity; and 3) non-reproducible results.



Concentrated sulfuric acid is dangerous to manipulate

and difficult to employ in an analytical system because of

its corrosive effects. Johsson and Samuelson (1966), for

example, had to construct a teflon-covered piston for the

reagent pump because the original steel piston became

corroded while feeding the dye-sulfuric acid solution into

the analyzing system.

The low sensitivity (the -limit of detectability is

10~ - 10-8 moles) is attributable to the dye mechanism.

This is discussed in detail in the 'Dye' section.

Poor reproducibility was caused by the use of a

multichannel peristalic pump (designed by the Technicon

Corporation). The pump tubing rapidly became exhausted

and was replaced at regular intervals resulting in varia-

tions in the flow rates which, in turn, affected the

quantification of the chromatograms (Jonsson and Samuelson,

1966).

During the construction of the sugar analyzer, I

have over avoided these problems through the careful

manipulation of the following variables: 1) resin (type

and particle size); 2) length and diameter of resin bed;

3) temperature of column; 4) type of eluant; 5) pumps

(mechanical versus nitrogen pressure); 6) pumping rates; and

7) stains.



The difficulties encountered during the construction

of the sugar analyzer are described in the following

section, preceded by descriptions of the technical specifi-

cations of the instrument and procedures.

1. Technical Specifications and Procedures

a. Hardware

Figure 4 is a schematic diagram of the system used to

analyze complex sugar mixtures. A nylon column having an

inner diameter of 0.28 cm. was filled to a height of 110 cm.

with Technicon Type S resin.. This resin consists of 10%

cross-linked styrene-divinyl benzene beads with an average

particle diameter of 20 microns. The column is placed in

a glass heating jacket in which the circulating water is

kept at a uniform temperature with a Haake Type F constant

temperature circulator. Another Haake circulator is

employed in the reaction bath. A Gilford 2000 spectro-

photometer with a 5 mm. flow-through cuvette is used for

all color recognition and recording. Teflon spaghetti

tubinj (20 meters long) is incorporated in the system from

the column exit to the cuvette exit in order to prevent

mixing which occurs in larger diameter tubing. All tubing

connections are stainless steel and were obtained from

Swagelok. The eluant and dye are pumped with Beckman

Accu-Flo piston pumps (maximum pumping rate of 3 ml/min).



b. Chemicals

Sugars for the preparation of standard solutions were

obtained from Fisher Scientific and Eastman Organic Chemicals,

and are of reagent grade (>95% purity).

The tetrazolium'blue' reagent consists of 2.0 grams of

p-anisyltetrazolium chloride (obtained from K and K Labora-

tories) dissolved in one liter of 0.18 molar sodium hydroxide.

The reagent is kept in a light-proof aspirator bottle with

a delivery stopcock and, when not in use, is stored at 4*C

in the dark.

Sodium sulfate, analytical reagent grade, 0.50M, is

used to regenerate the column after every ten analyses.

The eluant is made by diluting 95% ethanol (not

denatured) to 89% with distilled water.

The distilled water was tested for its sugar content.

1000 milliliters were evapornted under reduced pressure to

1 milliliter and an aliquot was analyzed; no sugars were

detected.

c. Procedure

The column was filled by injecting a slurry of the

resin into the top of the column. The-resin was allowed

to settle overnight. Additional resin was added the next

day and then, connecting the eluant pump to the column,

the bed was packed at the flow rate and temperature to be



used during analyses. The resin, initially in the borate

form, was converted to the sulfate form by pumping 200 ml.

of 0.5 M Na2 SO through the resin bed. The column was

washed with water and conditioned overnight with the eluant.

The column was then ready for chromatographic analyses.

Packing, conversion, washing, regeneration and analysis

were conducted at 76*C. The resin bed was recessed 14

centimeters in the heating jacket in order to preheat the

eluant to the temperature of the column.

Eight monosaccharides were dissolved in water to make

a standard solution (1000 ug/ml of each): desoxyribose

(d-Ri), rhamnose (Rh), ribose (Ri), arabinose (A), xylose (X),

mannose (M), galactose (Ga), and glucose (Gl). The standard

was made 10% in isopropanol and stored at 4*C in order to

prevent bacterial degradation.

Aliquots of the standard were placed on the column

with a microsyringe and forced into the resin bed with

40 to 50 p.s.i. nitrogen. The tubing wall above the resin

bed wac washed with ethanol which was also forced into the

resin with nitrogen pressure. The space above the resin

bed was filled with 89%' ethanol and the eluant pump (set

at 0.5 ml/min) was connected to the top of the column. The

dye pump (set at 0.2 ml/min) was connected to the column

eluate, and the recorder was switched on.



d. Standardization

The elution order of the monosaccharides was determined

by spiking one sugar at a time into the standard. The

retention time of each peak relative to desoxyribose was

measured and found to be reproducible (Table 1). Quanti-

tative calibration of the system was achieved by use of

peak area. Aliquots of the standard (5, 10, 15, 20, 25 ul)

were analyzed. Figure 5 depicts the relationship between

peak area (measured as the product between the peak height

and the width at half height) and the amount of sugar

represented by each peak.

Peak height was also found to be proportional to sugar

concentration. However, the use of peak volume is more

desirable since most sugars react on nearly a mole for

mole basis with the reagent, thereby, yielding almost

identical peak areas when equal moles of sugars are

analyzed. Therefore, by using an internal standard (i.e.,

addition of a sugar not present in the sample), most peaks

presenc on the chromatogram are quantified by comparison

with the peak area of the internal standard. -In addition,

difficulties in reproducibility arising from fluctuations

in temperature, flow rate, ethanol concentration, and dye

efficacy are overcome by the use of an internal standard.



2. Construction of Sugar Analyzer: Discussion

The system as depicted in Figure 4 is described accord-

ing to its two major components: the column and the dye

reagent.

a. Column-

The following parameters had to be adjusted during the

construction of the sugar analyzer: 1) type of resin; 2)

length and diameter of resin bed; 3) column temperature;

4) type of eluant; 5) pumping mechanism; and 6) eluant pump-

ing rate.

These variables were found to be interdependent and,

therefore, in order to examine the effect of any one of them

on the resolution and sensitivity, it was necessary to hold

the others constant.

1) Resins

Columns can be packed with various materials. Activated

carbon, Fuller's earth clay, carbohydrates, ion-exchange

resins, and calcium acid silicate have been employed with

varying success to separate sugars (Lederer and Lederer, 1955).

Of these, ion-exchange resins were found to yield excellent

separations through partition chromatography and, therefore,

are employed in the present analytical system.

Strongly cationic and anionic exchange resins have been

employed in sugar analyzers described in the literature.



For example, anion exchanger Dowex 21K (1 to 16 microns) in

the chlorinated and sulfonated forms (Larsson and Samuelson,

1965) and cation exchanger Dowex 50 W-X8 (14 to 17 microns)

in the potassium, sodium and lithium forms (Samuelson and

Stromberg, 1968) have been successfully applied. Any strong

ion-exchange resin can be used, however, the success of

separation is dependent upon the particle size and sorting

(Samuelson, written communication, 1969). Examination of

Figure 6 reveals that fine-grained resins of uniform

particle size give the best resolution. For this reason,

the Technicon resin (Figure 6) was found to be superior to

Dowex 21K (37 -74 11), Dowex 50W - X8 (37 - 74 n), and Dowex

1 - X8 -(37 - 74 u).

2) Length and Diameter of Resin Bed

Columns of various dimensions were packed with the

Technicon resin. Qualitatively, longer resin beds yielded

the greatest resolution while narrower resin beds yielded

the greatest sensitivity. Since low sugar concentrations

are being examined, a long (110 cm.) resin bed having a

narrow (0.28 cm.) diamter is employed.

3) Column Temperature

Peaks became sharper and better resolved at elevated

temperatures. Figure 7 illustrates this effect. Chromato-

gram A was run at 600 C, and B at 760C. At 600C, galactose



and glucose are poorly resolved, while at 760C they are

completely separated. The effect of elevated temperature

is due to an increased rate of diffusion inside the resin

particles, which, in turn, reduces both the time for analy-

sis and the pressure drop across the column (at eluant flow

rates of 0.5 ml/min., pressures of 400 to 500 p.s.i. were

encountered at 76*C, while pressures of 600 to 700 p.s.i.

were measured at 600C).

4) Type and Concentration of Eluant

Two elution methods are commonly used: NaCl - borate

eluant; and ethanol - water eluant. In the first method,

sugars interact with the borate ion to form negatively

charged complexes. The separation of the sugar - borate

species arises from electrical interaction between these

ion complexes and strongly anionic resins (Kesler, 1967).

In the second method, the separation of sugars is due

to an uneven distribution of water between the resin and

mobile phases. The amount of water in the resin is higher

than in the external solution -ad since sugars are polar,

they are held more strongly by the resin phase. In general,

the more polar groups contained in a sugar molecule, the

stronger it is held by the resin. Therefore, the general

order of elution is: pentoses, hexoses, disaccharides,

trisaccharides, etc. (Arwidi and Samuelson, 1965).



Both the NaCl-borate and ethanol-water elution tech-

niques yield excellent sugar separations. However, the

ethanol eluant was chosen because the kinetics of the

tetrazolium 'blue'-sugar reaction were found to be extremely

sensitive to the high concentrations of dissolved salts

present in the NaCl-borate eluants.

The effect of varying the ethanol concentratration was

determined. High ethanol concentrations (;;,92%) led to

increased retention times, large elution volumes, peak

broadening, and excessive separations. The analysis

depicted in Figure 8, which was run with 92% ethanol, was

completed in three and a half hours. Chromatogram B in

Figure 7 (89% ethanol) was completed within two hours. At

concentrations under 85% ethanol, peaks were insufficiently

resolved to allow for' quantitative evaluation. Therefore,

the working ethanol concentration represents a compromise

between the degree of separation and the time for analysis.

The ethanol concentration presently being used is 89%.

5) Puntping Mechanisms

Both the eluant and the dye are fed into the system

with piston pumps., However, initially, the dye was

forced into the system with nitrogen pressure. This tech-

nique was found unsatisfactory because fluctuations in the

'tank' pressure (from 1. minor leaks in the nitrogen line;



and 2. lowering of the dye reservoir) resulted in erratic

baselines and poor reproducibility of peak areas.

6) Eluant Flow Rate

High flow rates led to decreased elution times and

poor resolution. Figure 9 illustrates these effects.

Xylose and mannose in chromatogram A are non-resolvable at

a flow rate of 1.2 ml/min. However, these peaks are well

separated in chromatogram B which was run at 0.6 ml/min.

In addition, higher pressure drops across the column were

measured at the faster flow rate placing considerable strain

on the column tubing. At a flow rate of 1.5 ml/min, one

column burst (76*C, 800 p.s.i.).

b. Dye Reagent

.Insensitivity and corrosiveness of the dye reagents

are major difficulties in automatic sugar analyzers built

by other investigators. These dyes include: orcinol-

sulfuric acid (Arwidi and Samuelson, 1965), anthrone-

sulfuric acid (Dregwood, 1946), phenol-sulfuric acid

(Duboiz et al., 1956 and Handa, 1966), n-ethylcarbazole-

sulfuric acid (Zein-Eldin and May, 1958) and cysteine-

sulfuric acid (Dische, 1949). The stain mechanism depends

on the dehydration of sugar by concentrated sulfuric acid

to form furfural and a large number of intermediate products

related to, or derived from furfural (Fieser and Fieser, 1961):
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The furfural and the intermediary products (i.e., furfural

alcohol) react with the dye, to form colored complexes.

However, the nature, and hence the reactivity, of the

intermediary products varies with each sugar being analyzed

(Dische, 1950). Therefore, individual calibration curves

must be constructed.

In addition, because of the varying reactivities of

the intermediary products of sugar dehydration, the intensity

of the final solution is lower than if only furfural were

reacting. The limit of detectability of these stains is

107 - 10-8 moles.

These difficulties are avoided in the present system

by employing a uniquely sensitive, and relatively non-

corrosive dye: p-anisyl tetrazolium chloride (or tetra-

zolium 'blue'). Up till now, this dye has not been usec in

automatic sugar analyzers because of the precipitation of

diformazan (reaction 3) which would clog the capillary

tubing. However, through extensive laboratory tests by the

author, the problem of the precipitation was solved, there-

by, rendering tetrazolium 'blue' applicable to the automatic



sugar analyzer.

Work on the reaction kinetics between tetrazolium

salts and oxidizable organic compounds, such as sugars,

was done by Cheronis and Zymaris (1957). However, their

results were intended to apply to total sugar analyses of

blood samples and, therefore, could not be directly in-

corporated into the sugar analyzer because of the pre-

cipitation of diformazan (reaction 3).

(reduced sugar--+oxidized sugar)
N N

RC = N RC + NAr 2E~ RC NAr
NAr- -

N = Cl N == N -Ar' N N - Ar
Are 'Cl

H + Colored Soluble
-- diformazan anion

OH
N

(3) RC N - Ar
H

N N - Ar'

colored insoluble
diformazan

In the procedure of Cheronis and Zymaris (op. cit.), this

problem is overcome by dissolving the precipitate in dioxane

or acetone. Their procedure is as follows: 0.1 ml. of a

1.0% solution of tetrazolium 'blue' in ethanol, 0.3 ml. of

0.3 M NaOH, and aliquots of sample were pipetted into test

tubes (19 x 150 mm). Water was added to bring the final

volume up to 1 ml. The mixture was heated at its boiling



point for one minute and cooled in a 20'C water bath for

three minutes. The diformazan precipitate was dissolved

by the addition of 9 ml. of either dioxane or acetone.

The absorbance was determined spectrophotometrically at

615 mui; the color was stable for at least an hour..

The above precedure has been adapted to the analysis of

the total sugar content of natural samples; however, in

order to use this reagent in the automatic sugar analyzer

it was necessary to prevent the diformazan from precipitat-

ing.

Dioxane and acetone were partially substituted for

water in the procedure of Chernois and Zymaris (op. cit.).

It was thought that these solvents would dissolve the

precipitate while it formed. However, blank analyses

(absence of sugars) indicated that both dioxane and acetone

greatly upset the reaction kinetics causing large quantities

of diformazan to precipitate during the boiling step.

When ethanol (95%) was substituted for water in the

procedure, blank analyses indic&'ced that: 1) only the solu-

ble diformazan anion formed (reaction 3); and 2) when the

reaction mixture contained 60% (or less) ethanol, only a

faint pink coloration resulted. Aliquots of a standard

glucose solution ranging from 0.05 ug. to 70 ng. were

analyzed in 1 ml. of the reagent solution containing 60%



ethanol. The results are plotted in Figure 10. This figure

indicates that if the sugar concentration is below 50 ug/ml,

diformazan precipitation does not occur.

It was mentioned -n the standardization section that

most sugars appeared to react on a mole for mole basis

with the tetrazolium reagent. This equivalency was also

observed by Cheronis and.Zymaris (op. cit.) who determined

that 2.78 x 10~7 moles of glucose precipitated 2.68 x 10 7

moles of diformazan from a standard tetrazolium 'blue'

solution. The basis for this equivalency is evident in

reaction (3). For every mole of sugar oxidized, a mole of

tetrazolium 'blue' is reduced. Therefore, by using an

internal standard, most peaks in a chromatogram can be

quantified. This contrasts with other stains where each

sugar reacts differently with the dye reagent.

In addition, the tetrazolium dye is slightly basic

(pH = 12.5) and, therefore, is non-corrosive (relative to

concentrated sulfuric acid). The reagent is pumped with '

normal piston-type pump employing steel connections.

All absorbances are being read at 520 mu. Figure 11

shows the absorbances of a standard sugar solution at

different wavelengths.
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IV CONCLUSIONS AND PROSPECTUS

An automatic sugar analyzer has been constructed

which is rapid (3-4 hours), highly sensitive (10-10 moles),

reproducible, and which yields high resolution.

Improvements in the system are being initiated to:

1) Increase the resolution; construction of columns

160 cm. long assures the complete separation of all

monosaccharides present in natural samples as well as

laboratory standards;

2) increase the output; by constructing two additional

columns, three samples can be analyzed simultaneously (and

a total of six a day);

3) automatically integrate and digitize the peak

areas; this will facilitate the quantification of large

- amounts of data; Figure 12 depicts a chromatogram which

was digitized (numbers inside peaks) by a Dual-Channel

Digital Integrator and Printer (Infotronics, Inc.); the

instrument is an integral part of an automatic amino acid

analyzer built by Egon T. Degens in our laboratory.



PART TWO

I: EXTRACTION OF SUGARS FROM SEDIMENT AND SEAWATER -

FIRST ANALYSES

INTRODUCTION

Extraction of sugars from natural samples is difficult

because the procedures previously employed by other

researchers result in the alteration and destruction of a

fraction of the released sugars. Therefore, prior to

analyzing carbohydrates from the marine environment, it

was necessary to determine very precisely the effects of

the extraction procedures on standard solutions. Then,

sugar losses or alterations occurring in the extraction

of the natural samples can be calibrated with the amount

of loss of the standard solutions.
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1. Extraction of Soluble Sugar

a. From Water:

Figure 13 is a flow diagram depicting the following

procedures for the ey':raction of soluble sugars from salt

water. The initial volume of the sample (one to ten liters)

is measured accurately. The sample is then suction-filtered

through glass fiber filter pads (pore size, 0.3 microns).

-Particulate matter is stored at 4*C awaiting further treat-

ment. The filtrate is reduced to 20-30 ml. in a flask evap-

orator and then split. One half is analyzed for monosacchar-

ides; the other half is hydrolyzed in order to convert the

soluble oligosaccharides and polysaccharides to their mono-

meric constituents. Hydrolysis is achieved by refluxing the

sample in 0.5 N H2 SO4 for eight hours under a blanket of

nitrogen. The H2 SO4 is neutralized by BaCO 3. With the add-

ition of BaCO3 large quantities of BaSO4 precipitate formed.

It was thought that this precipitation might have induced a

partial "co-precipitation" of some sugars (Jeffrey and Hood,

1958; Bader et al., 1960). To test this, the precipitation

was carried out with 1 ml. of a standard solution of eight

monosaccharides (1000 ug/ml of each). The precipitate was

filtered out of the solution and washed thoroughly with

20 ml. of hot 70% aqueous ethanol. The filtrate and

washings were then combined and reduced to a standard



volume and analyzed. All sugars were quantitatively

recovered with the exception of desoxyribose which was

reduced by 40%. The loss of this sugar, however, was

undoubtedly due to the acidification step prior to neutral-

ization and not to a "co-precipitation" effect. Further

evidence for the fraility of this sugar in acid solutions

will be presented later in this thesis.

Desalting of the samples (both the hydrolyzed and

unhydrolyzed fractions) is accomplished in three connected

ion-exchange columns. The upper and lower columns contain

AG50W-X8, a strong cation exchange resin (H + form). The

middle column contains AG3-X4, a weak anion exchange

resin (OH~ form). Both resins were obtained from Bio-Rad

Inc. The upper cation and middle anion columns function

to deionize the sample, while the lower cation column

serves to modify the pH (final eluate pH-5). The pH

control is essential since the eluate from the anion

exchange column is mildly alkaline, a condition which can

cause sugar isomerization, fragmentation and intra-molecular

oxidations and reductions.

This method of desalting removes all basic and acidic

organic molecules 'such as amino acids, carboxylic acids,

and amino sugars. Monosaccharides are neutral and, there-

fore, are not held by the exchange resins, although they



may be altered in the anion exchange column. Therefore,

tests were conducted to determine the effects of ion-

exchange resins on standard sugar solutions. For example,

1 ml. of an eight-component standard solution (1000 ug/ml

of sugar) was placed on the first ion-exchange column and

eluted with 300 ml. of H20. This test was then repeated

using 300 ml. of 70% ethanol as the eluant. The results

are tabulated in Table 2. In both tests, all the sugars

were recovered quantitatively (±10%) with the- exception of

.desoxyribose. This loss is readily apparent in the chroma-

tograms reproduced in Figures 14 and 15. The low recovery

of desoxyribose was again due to its fragility in acidic

solutions.

To test whether new sugars were being produced by

molecular re-arrangement of desoxyribose on the resins, a

standard solution consisting only of desoxyribose and ribose

was placed on the ion-exchange columns. The result is

illustrated in Figure 16. Fifteen percent of the ribose

was lost and ninety percent of the desoxyribose was

destroyed. Trace amounts of five other sugars were formed

in this experiment. However, the amountsproduced do not

nearly equal the amount of desoxyribose that was lost.

Therefore, other processes are responsible for the des-

truction of desoxyribose.



IR analyses of pure desoxyribose and 'desoxyribose'

that was passed through ion-exchange columns are shown in

Figures 17 and 18 respectively. The IR chromatogram of

pure desoxyribose is identical to that of other mono-

saccharides with the exception of the absorbance peak at

1450 cm which is characteristic of methylene ( '3CH2 ) ben-

ding. The chromatogram of the resin-treated 'desoxyribose'

clearly indicates that the original molecule is totally

destroyed (fragmented). Further tests are being conducted

to verify these data.

Destruction of desoxyribose may be prevented by

buffering the exchange resins by keeping pH slightly

acidic. Ammonium bicarbonate is a desirable buffer because

all traces of this compound can be removed during flash

evaporation of the eluate.

To quantitatively isolate dissolved organic compounds

from sea water is exceedingly difficult. Several methods,

in addition to ion-exchange, considered during this study

were: dialysis, electrodialysis, column adsorption,

solvent extraction, and co-precipitation with iron (III)

hydroxide. A detailed description of these methods is

given in Jeffrey and Hood (1958). Several difficulties are

common to all these techniques. For example, the ratio of
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dissolved organic matter to inorganic salts in seawater is

approximately 10~4; in other words, 3 to 4 mg/l of organics

must be separated from 35,000 mg/l of salts. In addition,

sugars (as well as other organic nutrients) are subject to:

1) bacterial attack; 2) destruction or alteration by heat;

and 3) modification by change in the chemical environment.

The loss of desoxyribose on ion-exchange resins is a

relevant example of this labileness. Furthermore, some

organic compounds strongly adsorb to glass or- polyethylene.

Methods which treat these problems must invariably involve

a compromise between final salinity and organic yield.

of the desalting techniques listed above only column

adsorption and solvent extraction appear acceptable.

Several adsorbents have been tested and their capabilities

to attract carbon-14-labelled organic compounds dissolved

in sea water have been measured (Jeffrey and Hood, 1958):

activated carbon: 100% adsorption; acid alumina, 65%;

silica gel, 15%; and calcium carbonate, 50%. Activated

carbon is the most efficient adsorbent. A sample can be

rapidly desalted by simply filtering it through a column

of this material followed by washings with distilled water.

However, several difficulties. are inherent in this tech-.

nique. For instance, many amino acids are so strongly

adsorbed that no effective method has been found to desorb



them (Jeffrey and Hood, 1958). Sugars, however, are

readily recovered by elution with aqueous ethanol (Whistler

and Durso, 1950).

Organic solvents which can be employed to extract

sugars from sea water are: n-butanol and pyridine. N-

butanol is used in a liquid-liquid extraction technique.

Water is only partially soluble in n-butanol so that when

they are mixed two phases form. One phase will be pre-

dominantly organic, the other aqueous. The sugars, being

organic in nature, will be more soluble in the organic

phase than in the aqueous phase. The salts, however, being

more hydrophilic than sugars, will remain in the aqueous

phase (Boylan, pers. comm., 1970). Several extractions will

remove most of the sugars to the n-butanol phase. The

combined n-butanol extracts can then be back-extracted with

pure water to remove any remaining salts. The water from

this extraction is then back-extracted with n-butanol to

remove any sugars which might have dissolved in the water.

A somewhat simpler method involves the use of pyri-

dine. A salt water sample is reduced to dryness in a

flash.evaporator. The residue is then treated for several

minutes with hot pyridine. The resulting solution is cooled,

filtered, and evaporated to dryness. This residue is then

re-extracted with pyridine to lower further the salt concen-

tration.

I--.------- M



b. From Sediment :

Figure 19 is a flow diagram depicting the extraction

procedure for removing soluble sugars from sediments. Ten

to fifteen grams of wet sediment are weighed into a 125 ml.

Erlenmeyer flask (24/40 standard taper neck). Twenty-five

milliters of 70% aqueous ethanol are added. The sample

is dispersed with a magnetic stirrer and then refluxed for

16 hours under a blanket of nitrogen. The sample is then

transferred to centrifuge tubes and centrifuged at 10,000

r.p.m. for 8 minutes. The extract liquid and washings are

combined and suction-filtered through 0.3 micron glass

fiber filter pads. The volume is reduced to 10 ml. and

deionized or ion-exchange resins. The eluate is concen-

trated in a flash evaporator to a precise volume and then

analyzed.

Initially two methods for extracting the sugar, one

using water and one involving 70% aqueous ethanol, were used.

A Black Sea core sample was first extracted with water

and then with 70% ethanol. Chiomatograms of the two

extracts are reproduced in Figures 20 and 21. It is appar-

ent from these chromatograms that the ethanol extraction

procedure is considerably more efficient.

Further tests were conducted to determine if ethanol

extractions were 1) effectively removing all soluble sugars



adsorbed onto clays and 2) causing selective destruction

and/or synthesis of sugars. Sediment from a Black Sea

core was ignited at 800 0C for three hours to remove all

organic compounds. One milliliter of a standard solution

of eight monosaccharides (1000 ug/ml of each) was added to

two grams of the residue. The slurry was stored at 40C

for three days and then refluxed with 70% ethanol. The

resulting chromatogram is shown as Figure 22. All sugars

were recovered quantitatively (±10%) with theexception of

desoxyribose (30% lost). In addition, two new sugars were

synthesized in trace quantities. The peak (Figure 22)

between arabinose and ribose has been tentatively identified

as lyxose. The peak preceding desoxyribose has not been

identified. The process resulting in the synthesis of

these sugars is not yet understood. However, minerals

(i.e., clays) in the ignited sediment might provide active

catalytic surfaces for intra-molecular rearrangement of some

of the original sugars. (Studies on this process are

underway in our laboratory.)

2. Soluble Sugars - Discussion and Preliminary Analyses

Although soluble sugars can be readily extracted

from organisms, sea water, and sediment pore water, very

little work has been done on enumerating the types and

quantities of sugars present in these systems, therefore,



the exact nature of the interrelationships and fraction-

ations of soluble sugars in the marine environment is

largely unknown. However, preliminary laboratory work by

Bristol-Roach (1928), Lewin and Lewin (1960), Taylor

(1960a,b) and Allen White (pers. comm., 1970) indicates

that the growth of certain plankters is directly related

to the glucose concentration in the culture media and that

these organisms preferentially absorb this sugar in the

presence of other food sources.

It is also known that plankton can influence the dis-

tribution and concentration of soluble sugars in natural

environments. For example, Okaichi (1967) was able to

correlate Red tides in the Seto Inland Sea with the

concentrations of total dissolved carbohydrates. He found

that under normal conditions the surface waters of the

Seto Inland Sea contained 0.5 mg/l dissolved carbohydrates;

while during Red tides as much as 1.2 - 6.8 mg/l were present.

In addition, seasonal and diurnal fluctuations in the total

dissolved carbohydrates have been observed by several

investigators (Walsh, 1965a,b; 1966: Sugawara, 1965;

Sprinivasagan, 1965; Walsh and Douglass, 1966; Semenov and

Vlasova, 1967; Semenov and Ptskialadze, 1968; and Handa,

1967). For instance, Walsh (1966) discovered seasonal

fluctuations of dissolved carbohydrate in Oyster Pond,



Massachusetts. He observed that in February, when bio-

logical activity was at a minimum, total dissolved carbo-

hydrates was approximately 1.3 mg/l; while in April during

a spring algal bloom, he recorded a value of 2.9 mg/1. All

Walsh's quantitative determinations were achieved with the

anthrone-sulfuric acid dye technique. This reagent, as

pointed out by Hoffpauir (1952), is not specific for sugars,

since dissolved proteins and organic acids will also react

to produce colored compounds. In addition, inorganic salts

can interfere with the determination. Therefore, the data

measured by Walsh (op. cit.) should be considered only

'qualitatively' correct.

No detailed analyses of the monosaccharide composition

of dissolved carbohydrates in lake or ocean waters exists

in the chemical literature (with the exception of Vallentyne

and Whittaker, 1956). Only total dissolved sugars have

been measured and many of these analyses involved poor

analytical techniques.

Therefore, a detailed qualitative and quantitative

study of dissolved carbohydrates in water from various

environments is long overdue. Environments that should be

examined include: open ocean, anoxic basins, polluted and

unpolluted estuaries, rivers, lakes, and salt marshes.

Factors which may control the monosaccharide composition of



water in these environments are: 1) the composition of the

source material; 2) the productivity of the waters; 3) the

susceptibility of the compounds to microbiological degrada-

tion; and 4) sample depth in the water column.

Such a study would be useful from a biological stand-

point, since many species apparently are influenced by, and

may indeed depend upon the sugar concentrations in their

micro-environments (White, pers. comm., 1970).

Research on the waste effluent of the Revere Sugar

Company in Boston, Massachusetts is now being initiated in

our laboratory. This plant dumps enormous quantities of

dissolved sugars into adjacent rivers and in doing so

completely disregards the effects of its effluent on the

ecological cycles in the river systems. These effects

will be examined.

The distribution of soluble sugars in sediments has

also received little attention since researche'rs have a

priori believed that high bacterial concentrations at the

sediment-water interface would effectively remove all

labile nutrients, such as free sugars (Vallentyne, 1963).

However, studies by Vallentyne and Bidwell (1956), Whitta-

ker and Vallentyne (1957), and Abrosimov and Kornilova

(1967) have documented the presence of free sugars in

sediments of fresh water lakes. Abrosimov and Kornilova



(op. cit.) only determined total soluble sugar concentra-

tions. The studies of Vallentyne and Bidwell (op. cit.)

and Whittaker and Vallentyne (op. cit.) however analyzed

the individual monosaccharides and oligosaccharides and

found that maltose and glucose were the dominant sugars;

sucrose, fructose, galactose, arabinose, xylose, and

ribose were present in trace amounts. However, since these

studies contained noteworthyexperimental errors (i.e., 1.

60 - 90% ribose, xylose, glucose, and galactose werelost

during the desalting process; and 2. the sugars were separ-

ated and detected on paper chromatograms, a method with an

inherent 20 - 30% error), these results can only be consid-

ered preliminary.

Up till now only one analysis has been reported on

the distribution of free sugars in oceamic sediments

(Plunkett, 1957). The analysis was only qualitative;

sucrose, glucose, fructose, galactose, arabinose, and

xylose were identified. The present investigator has

analyzed sediment from a Black Sea core for free sugars.

The chromatogram is shown in Figure 21. By comparing my

data with that of Whittaker and Vallentyne (op. cit.),

one can readily observe quantitative and qualitative

differences. In the Black Sea sediment, the pentoses are

as important (if not more so) than the hexoses; while in



lake sediments (Whittaker and Vallentyne, op. cit.), the

reverse is true.

The studies described above suggest that the types and

quantities of free sugars found in sediment are controlled

by their environment of deposition. Work is presently

being conducted on sediment from several different environ-

ments, i.e., open ocean, closed basins, polluted estuaries,

unpolluted estuaries, etc. to test this idea.

Degens (1967) has postulated that free organic com-

pounds migrate in the sediment column and become separated

by chromatographic processes. His hypothesis stems from

the discovery that there is a separation of amino acids

in the sediment of Santa Barbara Basin off California. A

study is being undertaken to test his hypothesis on sedi-

ments from the Black Sea which, like Santa Barbara is an

anoxic basin. The primary attribute of an anoxic basin

which recommends it to this type of study is that organic

debris accumulate undisturbed in the sediments. This is

due to the fact that below a czrtain depth in the water

column the concentration of dissolved oxygen falls to zero.

Therefore, with the exception of hydrogen sulfide-producing

anaerobes, the basin sediments are abotic. (For a full

discussion of the preservation of organic matter in anoxic

marine environments see Richards, 1968). Under these



circumstances free organic molecules, such as sugars and

amino acids, will migrate upward in the interstitial water

during diagenesis. By this process, free organic mole-

cules may become selectively adsorbed and desorbed on clay

particles. A chromatographic separation of the organics

may result. Degens (op. cit.) demonstrated this process

for the amino acids in the Santa Barbara Basin sediments

(see Figure 23).

Figure 24 includes relevant information on Black Sea

core #1474K. From this figure, it can be seen that the

segment between 30 and 70 cm. contains approximately 15%

organic carbon. This part of the core is being analyzed

in great detail in hopes of detecting a chromatographic

separation of the free sugars.

One additional problem remains to be solved: the ori-

gin of free sugars in sediments. Three sources are being

considered: 1) gradual depolymerization of polysaccharides;

2) excretions released from living plants and animals; and

3) enzymatic hydrolysis of polysaccharides by bacteria.

The latter mechanism was proposed by Pochon and Chalvignac

(1951) for the breakdown of starch in soil. The relative

importance of each of these mechanisms will no doubt vary

with the depositional environment.



III INSOLUBLE SUGARS

1. Hydrolysis Procedures

Two types of material are of interest: particulate

organic matter in sea water (seston) and residual carbo-

hydrates in sediments after extraction with aqueous ethanol.

Several methods have been described in biochemical litera-

ture for the depolymerization of polysaccharides (i.e.,

Waksman and Stevens, 1928; Heuser, 1944; and Whistler and

Smart, 1953). These methods rely on the action of dilute

mineral acids to hydrolyze the glycoside bond. Unfortunately

none of these methods can totally depolymerize all the

polysaccharides present in the sample yet not destroy to

some extent the fragile monomeric sugar units. In other

words, if the acid concentration is too dilute only partial

hydrolysis will occur. If the acid concentration is too

strong molecular-rearrangement and dehydration of monomeric

sugars will occur (see reaction 2 ).

The concentration of acid used will depend upon the

sample being examined. For example, if the sample consists

essentially of mannans (i.e., seaweeds), then refluxing for

8 to 10 hours in 0.1 N H2 SO4 will be sufficient. However,

if the sample consists mostly of cellulose, a more highly

cross-linked polysaccharide, 1.0 N H2 SO will be needed. The

latter procedure is as follows (Degens and Reuter, 196q):



the sample (10 to 20 mg. of seston or 5 to 10 g. of sedi-

ment) is cooled to 40C; 0.5 to 2.0 ml. of pre-cooled

H2SO4 (98%) is added. The sample is allowed to sit in the

concentrated acid for two hours at 40C. This treatment

swells the lattices of even the most resistant polysac-

charides and renders them soluble in dilute acid. Ice is

then added until a final concentration of 1 N is reached.

The sample is refluxed under an atmosphere of pure nitrogen

for eight hours. The sample is then centrifuged at

10,000 r.p.m. for 8 minutes. The hydrolysis liquid is

decanted and the residue is thoroughly washed with hot

distilled water and then re-centrifuged. The hydrolysis

liquid and washings are combined. The H2 SO4 is removed by

neutralization with BaCO 3 as described previously. Inorganic

salts and charged organic compounds (i.e., amino acids and

aminosugars) are removed on ion-exchange resins. The eluate

is reduced to an exact volume and analyzed.

2. Tests of Hydrolysis Procedures

Figure 25 depicts a chromatogram of a standard sugar

solution of eight monosaccharides (1000 ug/ml of each) of

which 1 ml had been 1hydrolyzed' as described above. By

comparing the chromatogram with that of the untreated

standard solution (Figure 14), it is apparent that only

desoxyribose was affected by the procedure. Since it was



demonstrated earlier that this compound is labile in even

mildly acidic solutions, this result was expected.

1 ml. of the same.standard solution was again 'hydro-

lyzed' as above, however, this time, two grams of ignited

- Black Sea sediment (800'C for three hours) were added.

The results are shown in Figure 26. Comparison of this

chromatogram with that of the untreated standard (Figure 14)

demonstrates that all sugars were destroyed to varying

degrees. The losses are tabulated in Table 3.

It was previously hypothesized that catalysis on

mineral surfaces was active in the formation of new sugars

from pre-existing sugars while refluxed in 70% ethanol

(Figure 22). Therefore, it is reasonable to believe that

minerals in the ignited residue were also active in

catalyzing the destruction of the sugars during acid

'hydrolysis'. Further work is being conducted to verify this.

HCl was also tested in the hydrolysis procedure. This

acid would be desirable to use since, after hydrolysis,

most of the HCl can be evaporated under vacuum, thereby,

-avoiding the tedious process of neutralization (Petersson

et al., 1969). The procedure outlined by Tracey (1955) for

the hydrolysis of chitin was ex.amined. In his procedure,

the sample was treated with 6 N HCl for six hours at 100'C.

One milliliter of an eight component standard sugar solution



(1000 ng/ml of each sugar) was used to test the procedure.

The results are indicated in Figure 27. Comparison of this

chromatogram with that of the untreated standard (Figure 14),

clearly indicates that all the sugars were 7 95% destroyed

during the 'hydrolysis'. The analysis was repeated with

1.5 N HCl. The results are shown in Figure 28. The

chromatogram indicates that sugars are also sensitive to

dilute HCl. Furthermore, a "hydrolysis" test with 1.5 N HCl

in the presence of two grams of ignited Black Sea sediment

(800*C for three hours) resulted in even further losses.

The fractional losses from the hydrolysis tests

mentioned above have been tabulated in Table 3. Sulfuric

acid is safer than hydrochloric acid for the hydrolysis of

clay-free carbohydrate material (i.e., particulate organic

matter in sea water). However, for analyses of sediment,

neither technique will yield a true representation of the

monosaccharide composition present. Variability in the

size and composition of the mineral fraction in sediments

will result in variability in the fractional losses of each

sugar during acid hydrolysis.

Other hydrolysis techniques are under examination.

These include the use of 1) strong cation exchange resins

in the hydrogen form (Abdel-Akher, 1958); 2) dilute mineral

acids such as HC10 4 , BCl, and BF; and 3) enzymes.



3. Discussion

Despite (or perhaps ignorant of) the difficulties

discussed in the previous section, several investigators

have extensively examined sugars released from rocks and

sediments by acid hydrolysis (Prashnowsky, et al., 1961;

Swain, 1966; Swain et al., 1967; Havrankova, 1967; Formina

and Nappa, 1967a,b; Prashnowsky and Schidlowski, 1967;

and Swain, 1969). For example, Swain et al., (op. cit.)

hydrolyzed a variety of rock types from different geological

periods with dilute H2 SO4 . Based on these analyses, they

made interpretations about paleoenvironments. These inter-

pretations were based upon three assumptions: 1) the

qualitative and quantitative composition of polysaccharides

in the sediments from different environments is variable;

2) lithification of the sediments did not affect the more

resistant polysaccharides; and 3) all polysaccharides are

extracted quantitatively from the samples.

The first assumption is probably correct. Since, as

was demonstrated earlier, the composition of the soluble

sugars in sediments is influenced by the depositional envir-

onment, it is reasonable to believe that the composition of

the insoluble sugars will also be so influenced. The degree

to which the second assumption is correct depends upon

various factors: 1) the geological history of the rock



(i.e., extent of metamorphic alteration by heat and pressure,

periods of folding and faulting, etc.); and 2) the extent

to which the rock has remained a closed system (i.e., its

permeability to percolating solutions). Therefore, rock

samples which have experienced only mild geological and

chemical metamorphism will contain approximately their

original polysaccharide composition. The third assumption,

however, does not hold up. It was demonstrated in the

previous section that hydrolysis of a standard sugar

solution with dilute H2 SO4 in the presence of minerals

(i.e., clays) resulted in the partial destruction of most

of the monosaccharides (Figure 26). Swain et al. (1967)

noted that " the sum of the monosaccharides extractable by

hydrolyzing the [rock] sample with weak acid is much lower

than the total carbohydrates extracted in the form of fur-

fural with strong acid." Therefore, until polysaccharide

extraction procedures have been greatly improved, continued

analysis of sediments and rocks will yield only partial and

biased results. Conclusions drawn from these results will,

therefore, be inaccurate.

From an analytical viewpoint, the analysis of particu-

late organic matter (and other clay-free substances) is

more rewarding. Particulate organic matter, also known as

seston, consists of living organism (phytoplankton, zoo-



plankton, and bacteria) and detritus.

Several total carbohydrate analyses of seston material

have appeared in the biological literature (i.e. Birge and

Judy, 1926; Raymont and Krishnaswamy, 1960; Raymont

and Conover, 1961; and Kostilov, 1966), however, only in a

very few instances has the monosaccharide composition of the

sestonic carbohydrates been determined (Hough et al., 1952;

Whittaker and Vallentyne, 1957; and Parsons and Strickland,

1962).- Therefore, detailed carbohydrate analyses of seston

from different environments is long overdue. Profiles

from the following environments are being considered: open

ocean, closed basin, lakes, and polluted bays'and estuaries.

If the carbohydrate composition varies significantly between

these environments, one may, for example, follow the mixing

of polluted and unpolluted waters by analyses of the particu-

late organic matter. This study would be 'relevant' be-

cause carbohydrates account for 60-70% of the organic

matter in most domestic and industrial wastes (Teletzke,

et al., 1967).



IV CONCLUSION and PROSPECTUS

An automatic sugar analyzer, sensitive to 10- 10 to

10 moles, based on column chromatography has been

constructed in order to examine the distribution of

carbohydrates in marine environments.

Procedures were established for extraction of 1) free

sugars from seawater, sediments, and seston; and 2) com-

bined sugars from seawater and seston. However, extraction

of combined sugars from sediments by dilute acid hydrolosis

proved to be exceedingly difficult. Apparently mineral

surfaces in the sediment catalyze the destruction and

molecular re-arrangement of monosaccharides released durina

acid hydrolysis of polysaccharides. Enzymatic hydrolysis

techniques are being examined as a viable alternative.

Additional evidence for mineral 'surface-sugar inter-

actions was observed after a slurry of ignited sediment

(8000C for three hours) and standard sugar solutions were

refluxed for 16 hours. Lyxose and one as yet unidentified

sugar were produced by molecular re-arrangement of the

pre-existing sugars. Further research on this process

is being pursued in our laboratory. In addition, synthesis

of sugars from simple organic molecules (e.g. glycerine and

formaldehyde) on clays is being attempted.



The first quantitative anlyses for free monosac-

charides in Black Sea sediments indicates that these sugars

represent several percent of the total organic matter.

Furthermore, comparison of these data with analyses of

free sugars in lake sediment (Vallentyne and Whittaker,

1957) suggests that depositional environment is definitely

linked with the sugar content of the sediment. Therefore,

sediments from different environments (open oceanpolluted

and unpolluted estuaries, rivers, and salt marshes) are

presently being analyzed to test this idea.

Preliminary laboratory experiments indicate that the

free sugar concentration of lake and seawater affects the

growth of some plankton species. Plankton density in a

water body may likewise affect the concentrations of free

sugars there. Therefore detailed studies of the sugar

content of dissolved and particulate organic matter from

several areas of high biologic productivity are being

initiated in order to examine such interrelationships.

It is known that carbohydrates account for 60 to 70%

of the organic matter in domestic and industrial wastes.

The new sugar analyzer system is an ideal, apparatus for

measuring and identifying the sugar content of polluted

areas, such as the effluent of the Revere Sugar Company,

Boston, Massachusetts and the sewage disposal area in New

York Bight.
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FIGURE 2. Mass spectrum of TMS derivatives. Extensive frag-
mentation of TMS sugar derivatives makes inter-
pretation of their mass spectrums difficult and
time consuming.
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Figure 1. The 70-eV.mass spectrum of 1,2,3,4,6-penta-O-trimethylsilyl-a-o-glucopyranose (1); molecular weight, 540.

Figure 2. The 70-eV mass spectrum of methyl 2,3,4,6-tetra-O-trimethylsilyl-O-D-glucopyranoside (12); molecular weight, 482.

Figure 3. The 70-eV mass spectrum of ethyl 2 ,3,5,6-tetra-O-trimethylsilyl--D-galactofuranoside (16); molecular weight, 496.
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FIGURE 3. TLC separation of sugars.

Rs
Alue

2 3 4 5 6 7 8

Number of Sugar

Separation of monosaccharides on Eastman Chromogram Sheet 6061
(silica gel) impregnated with sodium acetate. Developed once with
acetone/ chloroform/ methanol/ water (80:10:10:5); visualization:
tetrazolium 'blue'. Samples: 1) galactose, 2) glucose, 3) mannose,
fructose, 5) arabinose, 6) ribose, 7) xylose, and 8) mixture.
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FIGURE 5.
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Quantification of sugar analyzer by peak area.
Slopes for most sugars are nearly identical
which indicates that most sugars react on a mole
for mole basis with the tetrazolium 'blue' reagent.
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FIGURE 6. Influence of resin. Fine-grained, uniform resins
gave the best resolution. 40 ug of desoxyribose
d-Ri), rhamnose (Rh), ribose (R), arabinose (A),

xylose (X), mai'ose (M), galactose (Ga), and glu-
cose (Gl) were analyzed by:

A. Dowex 50W-X8 (37-74 u); resin bed 0.4 x 90 cm;
column temperature 7 6) C' flow rate 0.5 ml/min;
ethanol concentration 88.

B. Technicon Type S (20 u); resin bed 0.28 x 110
cm; column tempbrature 760 C; flow rate 0.5
ml/min; ethanol concentration 88f.
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FIGURE 7. Influence of temperature. Peaks became sharper
and better resolved at elevated temperatures.

A. 600 C; Technicon Type S resin; resin bed
0.28 x 110 cm; flow rate 0.5 ml/ min;
ethanol concentration 88%; 20ug of each
sugar.

B. 760 C; Technicon Type S resin; resin bed
0.28 x 110 cm; flow rate 0.5 ml/min;
ethanol concentration 89%; 35 ug of each
sugar.

Peak notation as in FIGURE 6.



FIGURE 7A. 60 'C
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FIGURE 8. Influence of ethanol concentration of eluant.
High tthanol concentrations led to increased re'-
tention times, large elution volumes, peak broad-
ening, and excessive separations. The chromato-
gram depicted in this figure was run with .92%
ethanol and was completed in three and one-half
hours. Chromatogram B in FIGURE 7 (89" ethanol)
was completed in two hours. Both analyses were
run under identical conditions with the except-
ion of the ethanol concentrations.
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FIGURE 9. Influence of eluant flow rate. High flow rates led
to decreased elution times and poor resolution.
Xylase (x) and mannose (M) in chromatogram A are
non-resolvable at a flow rate of 1.2 ml/min. How-
ever, these sugars are completely separated in
chromatogram B which was run at 0.6 ml/min.

A. Flow rate = 1.2 ml/min; Technicon Type S resin;
regin bed 0.28 x 110 cm; column temperature
76 C; ethanol concentration 88%; 20 ug of each
sugar.

B. Flow rate = 0.6 ml/min; 40 ug of each sugar;
the rest is the same as for FIGURE 9, A.

Peak notation as in FIGURE 6.
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FIGURE 10. Analysis of a standard glucose
solution with tetrazolium 'blue'
in 60% ethanol. The absibances
are linear for sugar concen-
trations under 50 ug/mi.s
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FIGURE 11. Absorbance versus wavelength of a
standard sugar solution (20 ug/ml)
dyed with tetrazolium 'blue.'
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FIGURE 12. Automatic integration and digitization
of peak areas recorded by a spectro-
photometer. Numbers printed inside
peaks were calculated automatically by
by a Dual-Channel Digital Integrator
(Infotronics, Inc.).
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FIGURE 13 - Flow diagram for the extraction
of soluble sugars from seawater.
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FIGURE 14. Analysis o- a standard sugar solution, 20 ug. of each:
desoxyribose(d-Ri), rhamnose (Rh), ribose (Ri),
arabinose (A), xylose (X), mannose (M), galatose (Ga),
glucose (01). Running conditions in text.
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FIGURE 15. Test no.1 of desalting resins. An aliquot of the
standard depicted in FIGURE 14 was eluted through
the desalting columns with 300 ml of H 0. Desoxy-
ribose was 80fo destroyed, and ribose, 30f.

FIGURE 16. Test no.2 of desalting resins. Desoxyribose and
ribose were eluted through the desalting columns
with 300 ml of H20. In addition to the loss of
these sugars- new sugars (rhamnose, arabinose,
and xylose) were produced in trace quantities.



FIGURE 15. Test no. 1 of desalting resins.[A.UC]
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FIGURE 16. Test no. 2 of desalting resins.
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FIGURE 17. IR spectrum of pure desoxyribose. This spectrum
resembles that of the other monosaccharides except
for the absorbance at 1450 cm- 1 which is due to
methylene bending.

FIGURE 18. IR spectrum of Idesoxyribose' passed through de-
salting columns. By comparison with FIGURE 17
complete destruction (fragmentation) of desoxy-
ribose is evident.
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FIGURE 19 - Flow diagram for the extraction
of soluble sugars from sediment.
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FIGURE 20. H20 extraction of a segment of Black Sea
core 1474K (46-47 cm.)
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FIGURE 21. 701% ethanol extraction of a segment of Black Sea
core 174K (46-7 cm.). By comparing this figure
with the chromatogram of the H20 extraction (Figure
20), it is evident that the ethanol extraction was
considerably more efficient.
Pentoses predominate over hexoses. In addition,
fucose (Fu) is characteristic only of certain marine
algae (Whistler and Smart, 1953).
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FIGURE 22.

93

0O.4

Test of the effects of ethanol extractions on a
standard sugar solution. A slurry of ignited
sediment (8000 C for 3 hours) and an aliquot of
a standard solution (depicted in Figure i4) were
refluxed for 16 hours with 70% ethanol. MIinor
destruction of the sugars occurred, however,
lyxose and one as yet unidentified sugar were
produced.
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FIGURE 24. Percent organic carbon and nitrogen, and CaCO3 in Black Sea core 1474K. The
segment between 30 and 70 cm. is being analyzed in detail in hopes of detecting
chromatographic separation of free sugars (Figure 23).
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FIGURE 25. Test no.1 of acid hydrolysis procedures. An ali-
quot of a standard sugar solution (depicted in
FIGURE 14) was refluxed in 1 N H2SO for 8 hours
under a blanket of nitrogen. On~y desoxyribose
was appreciably affected.

FIGURE 26. Test no.2 of acid hydrolysis procedures. An ali-
quot of a standard sugar solution (depicted in
FIGURE 14) plus two grains of ignited sediment
(8000 C for 3 hours) were refluxed for 8 hours
in 1 N H2SO4 . All sugars were affected to vary-
ing degrees as a result of catalytic destruction
on the mineral (clay) surfaces.
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FIGURE 26. Hydrolysis test: IN H2SO 4 plus 2 g. ignited sediment.
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FIGURE 27. Test no.3 of acid hydrolg'sis procedures. An'ali-
quot of a standard sugar solution (depicted in
FIGURE 14) was refluxed for 8 hours in 6 N HCl.
All sugars were > 95o destroyed.

FIGURE 28. Test no.4 of acid hydrolysis procedures. An ali-
quot of a standard sugar solution (depicted in
FIGURE 14) was refluxed for 8 hours in 1.5 N HCl.
This analysis indicates that sugars are sensitive
to dilute HCl.
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FIGURE 28. Hydrolysis test: 1.5N HCl.
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FIGURE 27. Hydrolysis test: 6N HC1.
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Table 1 Retention Tines

quantity of
sugar (ug)

retention time:distance of'peaks from d-Ri
in cm.

d-Ri Rh Ri A X M Ga G1
5

10

15

20

25

4.9

4.7

4.8

4.8

5.0

8.7

8.5

8.6

8.9

8.9

14.3

13.9

14.0

14.5

14.5

17*9

17.b

17.b

18.1

18.1

21.8

21.2

21.3

22.3

22.1

31.1

30.3

31*7

31.3

37.14

36.3

36.5

38.2

37.7

Table 2 Sugar Losses on Desalting Columns

eluant

H;0

70% ethanol

d-Ri

80

50

percent loss

A

10

20

X M Ga G1

0 0 0 0

0 0 0 0



Table 3. Losses of Sugars during
Acid Hydrolysis Tests.

acid fractional loss

Id-Ri Rh Ri A X IM Ga Jl

IN H2304  1.0 0 0 0 0 0 0 0

1N H S0 1.0 .4 .8 .7 .7 .6 .3 .3
plug

2 g. ignited
sediment

6N HCl .95 .95 1.0 .95 1.0 .95 1.2 1.

1.*5N HC1 1.0 .2 .8 .5 .6 .3 .2 .2


