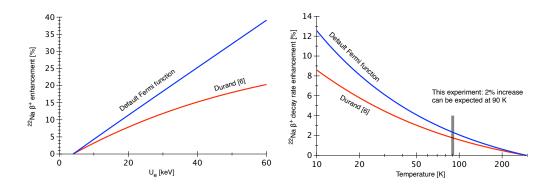




# The influence of electron screening on half-lives

G. Ruprecht $^*$ , L. Buchmann, D. Hutcheon, D. Ottewell, C. Ruiz, P. Walden, C. Vockenhuber, K. Czerski $^+$ 

TRIUMF National Laboratory, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada 


<sup>+</sup> Institute of Physics, University of Szczecin, Szczecin, Poland

E-mail: ruprecht@triumf.ca

Electron screening strongly changes nuclear reaction cross sections at energies below 1000 times the screening energy  $U_e$ . It has been found that  $U_e$  can be one order of magnitude larger than predicted by theory [1] if the target atoms are hosted in a metallic environment. As a consequence, a change of lifetimes of low-energy  $\beta$  and  $\alpha$  emitters may also be considered if they are situated in a metal. In addition, a temperature dependence of the screening effect has been proposed [2], dramatically changing some half-lifes if the metal is cooled [3, 5]. We checked these claims experimentally by measuring the decay rate of  $^{22}$ Na in a piece of aluminum activated by a 70 MeV proton beam. We observed the  $^{22}$ Na activity both at room temperature and when cooled down to nearly LN<sub>2</sub> temperatures. As a result, a 10% increase as proposed by [3] can be clearly excluded. Furthermore, a  $1/\sqrt{T}$  temperature dependence of  $U_e$  as it was proposed by [3, 5] when the Debye-Hückel model is applied is unlikely.

International Symposium on Nuclear Astrophysics — Nuclei in the Cosmos — IX June 25-30 2006 CERN, Geneva, Switzerland

\*Speaker.



**Figure 1:** Left: Screening enhancement vs. screening energy  $U_e$  for the <sup>22</sup>Na  $\beta^+$  decay. The screening model of Durand [6] best describes the effect. Right: Enhancement of the <sup>22</sup>Na  $\beta^+$  decay rate vs. temperature.

## 1. Theory of the $\beta$ decay electron screening

The number of end states per energy interval for the the  $\beta$  decay can be described by a product of a phase space factor, the Coulomb penetration function P(E), and the nuclear matrix element  $|M|^2$ :

$$\frac{dN}{dE} \sim (E + mc^2)(E - Q)^2 \sqrt{E^2 + 2Emc^2} \times P(E) \times |M|^2,$$

where E is the kinetic energy of the emitted  $\beta$  particle, Q the Q-value of the decay, and m the rest mass of the electron. In a simple picture, the electron screening can be described by an enhancement of the energy of the emitted  $\beta$  by replacing P(E) with  $P(E \pm U_e)$  where  $U_e$  is the screening energy and + is for  $\beta^+$  and - for  $\beta^-$  decay, respectively. Therefore, the decay rate is enhanced for the  $\beta^+$  decay and reduced for  $\beta^-$  decay. However, even for very low energies the  $\beta$  particles must be treated relativistically and this simple picture of an "energy boost" fails. In a more detailed description [6] the Dirac or Klein-Gordon equation (if the spin plays no rule) must be solved for the Coulomb potential modified by the electron shell. This leads to the enhancement curves for the  $^{22}$ Na decay shown in Fig. 1, left, for the  $E_{\text{max}} = Q = 545$ -keV  $\beta^+$  transition to the 1274-keV level of the  $^{22}$ Ne daughter nucleus. The default Fermi function that is usually used for  $\beta$  decay analyses can only be used for very small screening values.

#### 2. Temperature effect

We are interested in possible temperature effects if the decaying  $\beta^+$  emitter is hosted in a metallic environment. If the screening energy  $U_e$  scales with  $1/\sqrt{T}$  where T is the absolute temperature, the  $\beta^+$  decay rate should increase if the metal is cooled down. In the experiment (see below),  $^{22}$ Na was hosted in Aluminum. The screening energy at room temperature can be estimated by multiplying the d + d screening value for Al by the charge number of the  $^{22}$ Ne daughter nucleus. Since there are large deviations for  $U_e$  between [1] and [2] for d + d screening we use a mean value of 400 eV here.

The increase of the decay rate vs. the temperature is shown in Fig. 1, right. Since the absolute amount of implanted <sup>22</sup>Na is not very well known only changes at different temperatures can be

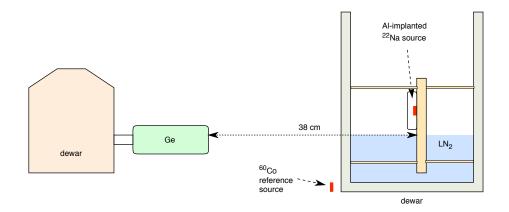
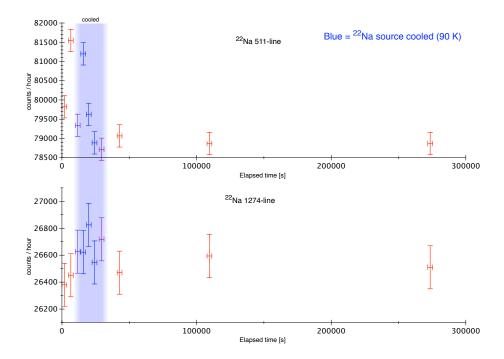



Figure 2: The set-up for the <sup>22</sup>Na lifetime measurement.

observed. Therefore, the curves are normalized to the enhancement at room temperature (295 K). About 2% increase of the rate can be expected at 90 K.


## 3. The experiment

The <sup>22</sup>Na source was produced at TRIUMF by sending a 70-MeV proton beam through an aluminum disk. Via the reaction <sup>27</sup>Al(p, <sup>6</sup>Li) most of the <sup>22</sup>Na is produced deep in the metal, as required by the claim in [3]. The source produced this way had an activity of 670 kBq.

The activated Al/ $^{22}$ Na probe was then mounted on a copper bar which was fixed with screwable rods at the walls of a dewar (see Fig.2). A  $^{60}$ Co reference source was placed directly before the dewar. The  $\gamma$ -rays were detected with a Germanium detector. With a thermocouple mounted directly at the cover of the  $^{22}$ Na source, the temperature could be determined. Measurements have beend done several times with and without LN<sub>2</sub> in the dewar. The temperature at the source with LN<sub>2</sub> filled in was about 90 K. After these measurements the dewar was rotated by 180° to exclude a change of the rate by a possible displacement of the source caused by mechanical stress and the measurements have been repeated.

#### 4. Results

The results for both  $^{22}$ Na lines are shown in Fig.3. When cooled to 90 K, a small decrease of the 511-keV rate can be observed. However, similar fluctuations can also be seen at room temperature. The reason may be that 511-keV  $\gamma$ -rays can be produced by many other sources and are not unique to  $^{22}$ Na. (The measurements have been performed in the ISAC hall where many other experiments are running). However, the 1274-keV line is clearly tied to our source. No correlation with the temperature can be seen for this line. If the 5 measurements at room temperature and the 3 measurements at 90 K are summarized each a small increase of  $(0.70\pm0.45)\%$  can be observed. Therefore, an increase of 10% as it follows from a 40% increase at 10 K as claimed by [3] can be clearly excluded. Comparing this result with the expected enhancement at 90 K of 2% for the model by Durand and the non-relativistic screening enhancement, a visible effect is also unlikely (note that the default Fermi function is not suitable for high screening values as they are used here).



**Figure 3:** Results of the <sup>22</sup>Na lifetime measurement.

Concluding, high screening values at low temperatures as they result from a  $1/\sqrt{T}$  dependence as predicted by the Debye-Hückel model could not be observed within 3 standard deviations. The results are within 1.5 standard deviations in agreement with the expected Thomas-Fermi screening for dense electron plasmas predicting no temperature dependence.

## References

- [1] K. Czerski et al., Europ. Lett. 54(2001)449
- [2] F. Raiola et al., J. Phys. G 31(2005)1141
- [3] C. Rolfs, public lecture at SLENA 2006, Kolkata, India
- [4] B. Limata, Eur. Phys. J. A 28(2006)251
- [5] K. U. Kettner, et al., J. Phys. G 32(2006)489
- [6] L. Durand et al., Phys. Rev. 135(1964)B310