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We try to limit the neutrino oscillation parameters from the supernova neutrinos by studying the
MSW matter effect. The supernova neutrinos are generated in the core and propagate through the
envelope. It is pointed out that shock wave propagation has strong influences on the supernova
neutrino oscillation through the change of density profile.
Using an implicit Lagrangian code for general relativistic spherical hydrodynamics (Ya-
mada,1997), we succeeded in calculating propagation of shock waves which are generated by
adiabatic collapse of iron cores and pass into the stellar envelopes for more than∼5s.

We examined how the influence of the shock wave appears in the neutrino spectrum, using density

profile obtained in our calculation. We confirmed that the influence of the shock wave appears

from low-energy side and moves toward high-energy side according to the shock propagation. In

addition, we calculated the neutrino signal that will be observed on the earth, and found that this

manner of the neutrino signal depends remarkably on the neutrino oscillation parameters. There-

fore, there is a possibility of constraining the neutrino oscillation parameters from the supernova

neutrino spectrum. Moreover, there is a possibility of finding the influence on the nucleosynthesis

by changing the neutrino spectrum.

International Symposium on Nuclear Astrophysics — Nuclei in the Cosmos — IX
June 25-30 2006
CERN, Geneva, Switzerland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:shiou@th.nao.ac.jp�


P
o
S
(
N
I
C
-
I
X
)
1
2
5

Neutrino signal of SN shock propagation S. Kawagoe

1. Introduction

There are still a lot of mysteries on the mechanism of the core-collapsed supernova and nature
of supernova neutrinos. They have been studied by numerical simulations in worldwide [1, 2, 3, 4,
5]. The neutrino oscillation has been studied in various experiments[6, 7]. But, even if the recent
results from many experiments are taken into account, one cannot determine the remaining three
neutrino oscillation parameters, i.e. the sign of mass difference(∆m13), the mixing angle(θ13) and
the CP violating phase(δ ).

Since most of the supernova neutrinos are released for about 10 s after the core bounce, it
was initially thought that the shock wave hardly influences the neutrino oscillation of supernova
neutrinos[8]. However it has recently been found that the shock wave changes the density profile
around the resonance point in a few seconds after the core bounce.

The mass eigenstate of the neutrino changes according to the density profile of the star and
there are two resonance points on the way[9]. The high density side is called H-resonance and the
low density side L-resonance. When the evolution of neutrinos passes into adiabatic condition at
the resonance point, the mass eigenstates are being kept. On the contrary, when it passes into non-
adiabatic condition, the mass eigenstates flip. The effect of the shock wave manifests as a decrease
in average energy ofνe in the case of normal mass hierarchy (orν̄e in the case of inverted mass
hierarchy) at stellar surface[10]. If sin22θ13 is large, the average neutrino energy as a function of
time decreases according to shock propagation[11]. The expected event rates of neutrino detection
depend on the magnitude ofθ13 [12]. The time structure of the expected of event rates in a specific
energy range was calculated for variousθ13 values[13, 14]. They use simplify parametrized shock-
wave profiles.

Therefore, it is worthwhile to study the shock wave propagation for a longer time scale∼10 s,
which is generated by adiabatic collapse is our theoretical calculations using hydrodynamic code.
For our realistic density profile, we can reexamine the dependence on of time evolution of the
supernova neutrinos on the undetermined neutrino oscillation parameters.

2. Numerical Method

2.1 Supernova Model

In order to calculate the detailed density profile, we use the one dimensional simulation result
of the supernova for the studies of the MSW effect of supernova neutrinos. We model the supernova
explosion using an implicit Lagrangian code for general relativistic spherical hydrodynamics[15].
As the first step, we perform simplified calculations of core collapse and bounce by letting them
follow adiabatic collapse with fixed electron fraction. This is because we intend to construct an
approximate model of prompt explosion in order to follow shock wave propagation for a long
time scale∼10 s[16]. We adopt the presupernova model of 15M¯ star provided by Woosley and
Weaver (WW95) [17]. The numerical tables of Shen’s relativistic equation of state (EOS)[18] and
Timmes’s EOS[19] are adopted for the high and low density matters, respectively. We calculate the
region from the central core (∼ 1015g/cm3) through the stellar envelope (∼ 1 g/cm3) simultaneously
in a single numerical code.

2



P
o
S
(
N
I
C
-
I
X
)
1
2
5

Neutrino signal of SN shock propagation S. Kawagoe

Having the extended EOS table, we succeeded in the calculation of propagation of shock for
more than 10 s, which is generated by adiabatic collapse of iron core passing through the stellar
envelope consistently[20]. In the following sections we discuss how the shock propagation affects
the oscillation of the supernova neutrinos.

2.2 Neutrino Oscillation

The calculation of neutrino oscillations requires the solution of the time evolution of the neu-
trino wave function along the density profile of our supernova model[21]. The neutrino oscil-
lation parameters are taken from the analysis of the various observations, except forθ13 [22]:
sin22θ12=0.84,sin22θ23=1.00,∆m2

12=8.1×10−5eV2 and∆m2
13=2.2×10−3eV2. Using four values

of sin22θ13 = 10−2,10−3,10−4 and10−5, we calculate the neutrino survival probabilities.
The neutrino energy spectra which will be observed on the earth are calculated by multiplying

the survival probability by original neutrino spectra that change in time[23]. The expected event
rate of neutrino detection in water Cherenkov detector can be expressed as

d2N
dEedt

= Ntar ·η(Ee) ·
1

4πd2 ·
d2Nν

dEνdt
·σ(Eν) · dEν

dEe
, (2.1)

whereN is the detection number of neutrinos,Ee[MeV] is the energy of electron/positron,Eν [MeV]
is the energy of neutrino,Ntar is the target number,η(Ee)[MeV] is the efficiency of the detector,

d[m] is the distance from the supernova,d2Nν
dEν dt [/s /MeV] is the neutrino spectrum andσ [cm2] is

the cross section[9]. We assume detection at the Super-Kamiokande. The fiducial mass of Super-
Kamiokande is 32000 ton and the solvent is water. The reactionν̄ep→ e+n mainly contributes to
neutrino detection at the Super-Kamiokande because the cross section of this reaction is largest.
The finite energy resolution of the detector was neglected here. The event rate is integrated over
the angular distribution of the events. The energy of the electron is assumed to beEe = Eν +mp−
mn−me for ν̄ep → ne+, andEe = Eν − me

2 for νe→ νe. To make the estimate, we assumed as
follows: η(Ee) = 0 for Ee < 7 [MeV], and η(Ee) = 1 for Ee ≥ 7 [MeV]. We also assumed that the
supernova appears near the center of the Milky Way (d=10[kpc]). We neglect the earth effect[24].

3. Result

In our simulation the shock wave reaches the H-resonance point in about 2 s[25]. The electron
number density at the resonance point is

ne,res≡
1

2
√

2GF

∆m2

E
cos2θ , (3.1)

where GF is Fermi coupling constant,∆m2 is the mass squared difference,θ is the mixing angle,
and E is the neutrino energy.∆m2 andθ correspond to∆m2

13 andθ13 at H-resonance and to∆m2
12

andθ12 at L-resonance, respectively. As the shock wave propagates outward, the density at the
shock front decreases progressively and the resonance condition is satisfied for higher energy neu-
trinos. Therefore, the influence of the shock appears at first in low-energy region (see Eq.(3.1)) and
moves toward high-energy region as the time passes by with the shock wave propagation[25].
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Figure 1: The upper part shows expected event rate ofν̄e at the Super-Kamiokande as a function of time, in
the case of the inverted mass hierarchy. The lower part shows the ratio of event rate ofν̄e with and without
shock.

The upper part of Figure1 shows the expected event rate in the Super-Kamiokande as a func-
tion of time after bounce in the case of inverted mass hierarchy. The observation of neutronization
νe burst at Super-Kamiokande can determine the time at bounce. Whensin22θ13 is large, a lot of
ν̄e events are expected. We found that there is a difference by about 500 events at most, but the
detail depends on the parameterθ13. In the case of the inverted mass hierarchy, the adiabaticity of
νe is not influenced by the shock wave becauseνe has no relation with the H-resonance. Therefore,
the event rate ofνe is almost the same because the spectrum ofνe does not change independently
of parameter values. It is to be noted that the constraint onθ13 is imposed by all event rate over the
for whole energy range[14]. In the case of the normal mass hierarchy, H-resonance relateνe to νx.
Therefore, behavior ofνe is similar to the case of̄νe though the absolute event rate is different.

The lower part of Figure1 shows the ratio of the event rate with and without shock in the case
of inverted mass hierarchy. The dashed and dotted lines show the cases ofsin22θ13 = 10−3 and
10−5, respectively. The shock front does not reach H-resonance point before for 3 s. In the cases
of sin22θ13 = 10−3 after 3 seconds, the event rate with shock is smaller than that without shock.
This is because the influence of the shock appears mainly for high-energy neutrinos as the shock
propagates. On the other hand, in the case ofsin22θ13 = 10−5, the difference is not clearly seen at
any time. Therefore, we conclude that the influence of the shock wave appears at late times only if
sin22θ13 is large.

4. Summary and discussion

We calculated the propagation of shock wave in the adiabatic collapse of iron core and the
stellar envelope in order to study the shock effect on neutrino oscillation. We followed the shock
wave propagation for long time∼10 s after core bounce and used more realistic density profile. We
calculated the expected event rate of neutrino detection at Super-Kamiokande. The time evolution
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of the event rate ofν̄e was calculated for variousθ13 values. Depending on the parameterθ13,
the observed event rate of̄νe is found to be different in the case of the inverted mass hierarchy,
while the event rate ofνe is different in the case of the normal mass hierarchy. We point out that
the constraint onθ13 can be inferred by the integrated event rate over the whole energy range.
Whensin22θ13 = 10−3, the influence of the shock wave appears after 3 s in the observation ofν̄e.
Therefore, observing the time evolution of the event rate would limit the mixing parameterθ13.

The interaction between neutrinos might be important because of their huge flux immediately
after they have come out of the proto-neutron star. This could change initial neutrino spectrum
from what we assumed in an exponential decay model of the present study. Balantekin et al. [26]
discussed that it virtually makes several interesting effects on the neutrino signal, the r-process
nucleosynthesis, and the neutrino-process nucleosynthesis. However, we enjoy a success in mod-
eling these nucleosynthesis processes by using the exponential decay model [27, 28, 29] so that the
calculated elemental abundances can reproduce the observed data of r-process elements and LiB
which are produced in core-collapse supernovae. We therefore interpret that the neutrino-neutrino
interaction does not strongly destroy these results although it may change explosion models which
provide environmental condition for the nucleosynthesis. We will consider this effect in more
realistic calculations of the neutrino signal in the future.

If the detailed information of supernova neutrinos is obtained in future supernova events, it
would reveal the effect of the propagation of the shock wave through the comparison between
observation and theoretical predication. Moreover, it might feed back to the construction of the
theoretical modeling of detailed explosion mechanism, and to tie with more detailed mechanism
clarification. Moreover, there is a possibility of finding the influence on the nucleosynthesis in
supernova by changing the neutrino spectrum[28].
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