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DISTRIBUTIONS OF AIR MASS THUNDERSTORMS

IN NEW ENGLAND

by
John James Owens, Jr.

Submitted to the Department of Meteorology on June 20, 1966 in partial
fulfillment of the requirements for the Degree of Easter of Science.

ABSTRACT

The SCR-615-B radar data was used to locate air mass thunderstorms and
hailstorms in New England. A total of 64 out of 71 air mass and 148 non-air
mass thunderstorm days between March and October of the years 1958 through
1965 had suitable radar data. A majority, 108, of the non-air mass thunder-
storm days were accompanied with cold fronts or quasi stationary fronts.

Various synoptic parameters that indicated stability and moisture on
the air mass days were recorded. It was fourd that 61 out of 64 days with
air mass thunderstorms had sea breezes and 40 out of 64 days had confluence
at 500 meters.

The -area covered by the radar was divided into a grid of ten-by-ten
mile squares, and the frequency of occurrences, formation and dissipation
of thunderstorms and hailstorms in each square were recorded. Detailed maps
are presented showing the distributions for days grouped according to the
500-mb flow. Areas of maximum frequency of occurrence were about a band
about 30 miles wide extending from just east of Concord, N.H. to central
Massachusetts and northern Rhode Island, the eastern sides of major river
valleys and near certain mountains. Regions of minimum frequency of occur-
rence were east of the 500-ft MSL contour in Maine and the south coast of
New England and. its adjacent coastal waters from New HavenpConnecticut to
Cuttyhunk IslandaMassachusetts.

Maps are presented showing the tracks of thunderstorms, They were
nearly all parallel to the 500-mb flow and most of the tracks had lengths
less than 15 miles. Tracks that were longer than 30 miles were made by
relatively large cells with one dimension greater than five miles.

Thesis Supervisor: Dr. Pauline M. Austin
Title: Research Associate
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1. INTRODUCTION

Almost all reliable observers are aware of preferred areas for thunder-

storms, but there has rarely been any quantitative and objective assessments

of the actual frequencies of occurrence within these areas.

The author decided to study only air mass thunderstorms as some previous

studies have been of squall lines and thunderstorms associated with cold fronts

in New England. Air mass thunderstorms usually have a smaller areal coverage

than other types and are simpler to analyze. Moreover, theoretical considera-

tions and European studies indicate that there would be more likelihood for

preferred areas of occurrence, as well as for formation and dissipation

because they would be less influenced by the larger scale circulation.

This type of study is best done by radar analysis, as a radar can

locate all thunderstorms and follow their life cycle. Data accumulated by

the Weather Radar Research project at the Massachusetts Institute of Tech-

nology was used for this project.

There are many benefits to be derived from this type of research and

it could be expanded into a climatological study. If there are preferred

areas of thunderstorm activity, weather forecasts could be improved and be

more specific regarding areas of possible occurrence. This would be important

in the summer when the majority of inland New England precipitation is of

the showery type. Climatological statistics could then be suitably modified

and this information would be useful to agriculturists and insurance companies.

It might also assist water conservationists in planning distribution

of water and building of dams to relieve water shortages and mitigate pollu-

tion problems.
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The question of whether or not thunderstorms will occur in some

general area depends on atmospheric conditions rather than topography.

The ideal conditions for occurrence of air mass thunderstorms are instab-

ility, con- :rgence at low levels, orographic uplif ., low level heating

and suffic :..nt moisture, while large hail requirer in addition, strong

wind shears and a freezing level near or above the 'Aoud base.

There is little doubt that orography and elevations do have an

effect on precise locations of thunderstorms. A number of studies of this

effect have been made in Europe and the mid western united States.

The author noted, during the years 1953 through 1957 and 1961 through

1964, that in the densely spaced (approximately 15 miles apart) network in

the United Kingdom, meteorological stations in positions with upslope flow

reported more thunderstorms and heavy showers than those with no upslope flow.

Ludlam (1962) studied the 18 June 1957 thunderstorms in the South of

England and found that hill and sea breeze circulations were pronounced over

peninsulas. There were definite preferred areas for thunderstorm occurrences

to the lee of the highest hills and ridges of high ground.

In Germany, Trautmann (1960) studied the hailstorms in Bayern during

the period 1952 through 1956. The regions most highly affected include the

Ober Bayern of the Alps where the elevation is over 2000 feet, the hilly

Mittel Franken near Nurnberg where the elevation is over 2000 feet and the

upper course of the river Frank Saale near Schweinfurt.

Ortmeyer (1952) in a study of the 1924 through 1941 data found streaks

of hail damage parallel to the Era Mountains, showing the effect of topography.
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Schleusener (1961) found that hail genesis regions in northeastern

Colorado during 1960 and 1961 were in the areas of topographical uplift,

when the cloud bases originated below 5000 feet MSL.

Zinkiewicz (1955) studied 2,257 hail cases during the period 1946

through 1950 in Poland and found the greatest frequency of hail on the

high plains.

Frisby (1962 and 1963) found that 72% of the Upper Great Plain

"straight line" hailstorms of 1951 through 1960 originated over higher

ground. When all types of hailatorms were included however, the number of

storms over equal areas of hill and valley were about identical. A study

of 1961 hailstorms showed no clear indication that elevation played any

part in hailstorm origins.

Stout and others (1959) stated that in the High Plains of the United

States, there is a definite increase of hail crop damage losses with in-

creasing elevation. However, they found that in Illinois, where there is

not much difference of elevation, that there is a marked regional variation.

Stout (1962) suggested that it could be explained by microphysical features,

such as surface slopes, terrain roughness and land use.

There is some evidence that land use affects the frequency of thunder-

storms. Certainly the ground temperature would have some effect on convective

activity and depends on the exposure to sunlight, the type of soil, moisture.

and other factors.

Trautmann (1960) found that arable lands in Bayern were more severely

damaged than forests and meadows.



Zinkiewicz (1955) stated that in the high elevations of Poland, the

forests may decrease the convective activity and reduce the hail frequency

In this study, detailed maps have been constructed showing the

frequency of occurrence of air mass thunderstorms and hailstorms in New

England, as indicated by quantitative radar observations. The number of

storm formations and dissipations have also been mapped. The results were

then compared with the various terrain features.
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2. PREV1O1 STUDIES OF 7HE DISTRIBW101 01 THUNDERSTORMS IN NEW GAN

A. Geeral topographical features.

Since terrain does have an effect on thunderstorm activity*, a detailed

study was made of the terrain within a radius of 120 statute miles of M.Z.T.

Figure 1, "General terrain map. of New England", shows the predominan* White

Mountains of central New Hampshire, the Green Mountains of Vermont, the

Berkshire Hills of Western MassachusettS and scattered mountains in south-

western New Hampshire and central Mseachusetts east of the Connecticut River.

Figure 2, "Hlevations in hundreds of feet",, shows smoothed contours at more

frequent height intervals.

B. Climatological Studies of thunderstorms and hailstorms.

The typical thunderstorm and hail frequency charts are bsed on reports

from widely scattered weather stations that provide only point frequencies

and may not be representative, even locally.

The typical U.S. Weather Bureau first order station now has a large

"background" noise so that distant thunder (thunderstorm reported as observed)

cannot be discerned as readily as desirable. 'Thunder is seldom heard farther

than 15 miles, with 25 miles the approximate upper limit and 10 miles being

a fairly typical range of audibility.

In addition to regular station reports, some severe weather incidents

are reported by private individuals. Recently there has been an improved

reporting system as well as an interest by the general public in reporting

severe weather. As more areas become heavily populated, more severe weather

reports can be expected. The U.S. Weather Bureau makes cost estimates of

damage and uses a newspaper clipping service for their "Local Storm" data

publication.



Fig. 1. General terrain map of New England.
Range marks in statute niles.
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Elevation in hundreds of feet

Values indicated are averages of heights of 4 surrounding
intersections of 15' of longitude and latitude.

Fig. 2. Smoethed tepegraphical map of New
England, Elevations in hundreds of feet.
(After Tweedy,1965).



The Crop-hail Insurance Actuarial Association gathers reports of crop

damage by hail and bases hail crop insurance rates on these data. The data

indicate that one hailstorm may be more damaging than several others, depending

on wind force, crop maturity, size and number of hailstones, nature of exposed

property and many other factors. Detailed, more reliable hail climatological

studies have been made in the Mid West and Illinois, based mainly on crop

damage reports.

Another important consideration in determining the actual distribution

of hail is the ratio of "area" to "point" frequency of hail occurrence where

area frequency is based on an increased network density. Although present

statistics are based on point frequencies, it appears that area frequency would

be more accurate. Alfred Angot of the French Meteorological Service estimated

that an ideal reporting network for obtaining realistic area frequencies of hail

should be one station for each four square miles.

Several studies have been made of the hail to thunderstorm ratio and they

all indicate that the ratio decreases with increasing network density, Table 1,

"Area to point hail frequencies", shows the effects of an increased network

density,

Table 1. Area to point hail frequencies.

Investigation: Region: Area mv red Number of Ratio of area to
(q. mstations: point frequency:

Shands (1944) Iowa 56,000 150 15:1
Beckworth (1957) Denver, Col0 , 72 40 4:1
Atlas (1965) Caucasus, 446 8:1

USSR 1,000 13:1
1,340 16:1

Figure 3, "Average annual number of thunderstorm days", is based on

U.S. Weather Bureau and selected cooperative stations with at least 20 years
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Fig. 4. Hail reports is Now England
based on the years 1953 through 1962.

0 S MILES

Fig. 3. Average annual number of
thunderstorm days, based on mere
than 20 years of record.

Fig. 5. Areas with highest hail crop
insurance rate4. Legends I tobscoel
I gmesrl Owps.



1
of data It shows only a small variation of thunderstorm days in New

England, although there is a minimum in northern New England and a maximum

of 28 days in the Housatonic River Valley at Pittsfield, Massachusetts.

The seasonal distribution of thunderstorms shows a maximum of less

than 15 days in the summer, four to seven days in the spring, less than

three days in the fall and less than one thunderstorm in the winter.

Table 2, "Diurnal variation of thunderstorm frequency", was obtained

from Hydrometeorological Report No. 5, Thunderstorm Rainfall, U.S. Weather

Bureau. The stations in extreme southern New England are grouped together

to show the affect of different regions. The table shows a pronounced max-

imum of thunderstorm activity during daylight hours in the summer, particu-

larly between the hours of 1200 and 1800 EST. In extreme southern New

England and its coastal waters, just as many thunderstorms occur during

nocturnal as in daylight hours during the spring and possibly fall.

The hail to thunderstorm ratio for New England, based on the years

1904 to 1943 is 3 to 5%, with the maximum near and west of the Connecticut

River in southwestern Massachusetts and northwestern Connecticut

1. Provided by Mr. Lautzenheyer, U.S. Weather Bureau Climatologist,
Boston, Massachusetts,
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Diurnal variation of thunderstorm frequency. (1906-1925)inclusive),
After Hydrometeorological Report No. 5, USWB 1945.

Number
cases:

Percentage of time during hours:
00-06 06-12 12-18 18-00

December-
February

March-
May

June-
August

September-
November

December-
February

Nantucket,
Mass.
Block Island,
R.I.
New Haven,
Conn.
Providence,
R.I.

Nantucket,
Mass.
Block Island,
R.I.
New Haven,
Conn.
Providence,
R I,

Nantucket,
Mass.
Block Island,
R.I.
New Haven,
Conn.
Providence,

R.I.

Nantucket,
Mass.
Block Island,
R.I.
New Haven,
Conn.
Providence
R.I.

Hartford, Conn.
Albany, N.Y.
Concord, N.H.
Portland, Me.
Boston, Mass.

45

7

104

101

119

100

211

210

360

286

25

30

15 s0

25 0

20 25

20 25

10 30

10 20

15 30

20 30

5 50

10 50

18 26

10 30

10 35

15 20

Table 2.

Months: Location:

25

45

35

45

20

30

30

40

30

26

30

35
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Table 2 (continued)

(1)

March-
May

June-
August

September-
November

(2)

Hartford, Conn.
Albany, N.Y.
Concord, N.H.
Portland, Me.
Boston, Mass.

Hartford, Conn.
Albany, N.Y.
Concord, N.H.
Portland, Me.
Boston, Mass.,

Hartford, Conn.
Albany, N.Y.
Concord, N.H.
Portland, Me.
Boston, Mass.

Table 3, "Total number of hail days", shows a maximum of hailstorms in

the interior regions of New England during the summer. Extreme southern New

England and its coastal waters have maxima during the spring and fall months,

First order U. S. Weather Bureau station data in New England indicate

only one to two hailstorm days per year. The author has seldom seen hail, and

it was less than one quarter in diameter in the vicinity of Vineyard Sound and

Buzzards Bay, Massachusetts. Hail occurred there only in cold, unstable air.

(3)

133
134
71
41
80

439
449
314
231
254

91
54
52
57

00-06
20
10
10
10
15

10
5
10
10
5

15
10
15
30

06-12
15
5
15
7
12

5
10
8
8

10
10
5
10

(4)

12-18
30
40
50
45
30

50
55
55
55
3

35
50

35

18-00
30
30
25
35
35

25
25
25
20
25

35
30
50
26
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T b1e S Total number of ha il days (After Hydrometeoro3ogical Report N) 5,
USWB, 1945)

Station: No. of
Years: Jan: Feb: Mar: Apr: May: Jun: Jul: Aug: Sep: Oct: Nov: Dec:

Nantucket, 40 0 0 4 5 3 1 0 0 1 1 4 2
mass.
Block Island, 40 0 1 5 5 2 2 1 3 2 1 4 1
R.I.
Naragansett 14 5 6 6 7 0 1 1 0 1 0 1 6
Pier, R.I.
Providence, 39 0 0 2 3 6 5 9 3 3 0 0 0
R.I.
New Haven, 40 1 1 3 4 10 4 5 3 1 2 1 0
Conn.
New York, 40 1 1 3 4 17 11 11 7 2 4 2 1
N,,Y.

Boston, 40 0 0 1 3 5 5 8 3 1 0 2 0

Mass.
Portland, 40 0 0 2 4 4 3 6 6 2 6 0 0
Me.
Hartford, 39 0 0 2 5 11 12 15 7 1 1 2 1
Conn.
Albany, 40 1 0 3 4 14 9 11 5 3 1 1 0
N Y.
Burlington, 37 0 0 1 1 5 4 7 3 4 1 0 0
Vt.,
Northfield, 35 1 0 1 1 6 11 6 5 2 3 0 0

Vt0

Galway (1963) plotted 123 hail reports (see Fig. 4), in New England.for the

period 1953 through 1962. He found a cluster of reports in north central Connecticut

approximately the tobacco growing belt, a crop which is quite susceptible to damage

by hail. Several reports of large hail were in east central Vermont, vn rrea which

was void of tornado reports. Severe weather reports clustered in the vicinity of

the heavier populated areas (interior river valleys) and with the exception of north-

eastern Massachusetts, away from the coastline.
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Insurance companies do not write a large amount of crop-hail insurance

in New England and consequently, the statistics would not provide an indica-

tion of the distribution of hailstorms.

Differences in rates have been made from statistics with a liberal

sprinkling of seasonal judgement.

Figure 5, "Areas with highest hail-crop insurance rates", shows the

areas where tobacco isggrown near Hartford, Connecticut and north of Spring-

field, Massachusetts. The highest rates in Connecticut are on the east side

of the Connecticut River, indicated by "plus" signs while the rates are lower

as close as five miles to the west.

The highest rates for general crops in Massachusetts are for Berkshire,

Worcester and Middlesex Counties while in Vermont, Addison and Ruttand Counties

have the highest rates.

C. Shorter period investigations.

As previously mentioned, most studies of thunderstorms in New England

have been concerned with squall lines or cold fronts. In a study based on

synoptic data for four years, Penn (1955) found that 40% of New England squall

lines formed east of 75oW (Massena, New York to Philadelphia, Pennsylvania)

and 63% to the east of 800 W (Toronto, Ontario to Pittsburgh, Pennsylvania),

Swisher (1959) studied radar data of five squall lines in New England

and found the regions of development to be the Pocono Mountains in eastern

Pennsylvania and the Catskill Mountains of New York. Next came the Berkshire

Hills of western Massachusetts and the largest increase of development was in

the Connecticut River Valley. The squall lines decreased in intenity near
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the coast of Maine and in the extreme southern coastal areas of New England,

where the bands dissipate. These results are in agreement with those of

Boucher (1958). Stem (1964) studied M.I.T, radar data during four days of

air mass thunderstorms, near Boston, Massachusetts and found that these

thunderstorms did not seem to form in a strictly random manner, There were

preferred areas of formation, based on a combination of the low level con-

vergence field (sea breeze effect) and local topography. He also observed

that the air mass thunderstorms began to lose intensity on approaching the

coast.

Some experienced forecasters, through personal communications, have

provided the following observations regarding air mass thunderstorms.

Mr. Larry H. Shaw, Chief Forecaster at Westover Air Force Base,

Chicopee Falls, Massachusetts said that air mass thunderstorms observed

with the AN/CPS-9 radar, appear to have a preferred area for formation near

Quabbin Reservoir, Massachusetts, perhaps on the west shore. This result

agrees with observations made by Mr. Thomas Pisinski with the VISR-1 radar

at Worcester, Massachusetts during the summers of 1960 through 1963.

Mr. Shaw noted another preferred area for formation in the northern Berkshire

Hills iind a few times that air mass thunderstorms formed about 15 miles south-

east of Westover Air Force Base, Massachusetts. Many of the thunderstorms

moving into western and central Massachusetts formed in the Adirondack or

Catskill Mountains of New York and moved eastward. They often dissipated

before reaching the Connecticut River Valley, or shortly thereafter.

Mr. Robert L. Carlson, MIC at Green Airport, Hillegrove, Rhode Island,

stated that in that region air mass thunderstorms occur primarily over



northernRhode Island and their frequency is greater during the evening hours,

Voyles and Zavos (1953) made a study of 1248 radar echoes of precipita-

tion cells in New England moving from the southwest and which dissipated over

water areas. The dissipations were 55% greater than would be expected under

a uniform distribution, particularly in the summer and autumn when the temper-

ature contrasts between water and land diminish. Six hundred fifty one cells

which moved in any direction formed near the Connecticut River Valley north

of Northampton, Massachusetts. Eighteen and seven tenth's per cent of all

cells formed in this area, whereas uniform distribution would account for

3.6% The frequency is 415% greater than would be expected if the distribu-

tion were uniform.

-- Is-
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3, EFFECT OF TERRAIN ON AIRFLOW

A. Orographic and thermal effect.

There is a dynamical or orographic effect as the wind is forced to

blow up a slope. This will start upcurrents and initiate the development

of storms. A valley wind would enhance convective activity by carrying

more moist air from low levels upward towards nearby hills or mountains

and the level of condensation would be lowered.

The thermal effect of terrain occurs when the slopes of hills or

mountains are more perpendicular to the sun's rays than the valley floors,

thus receiving more radiation per unit area. The slopes then are warmer

than any horizontal surface and there is effectively a "high level" heat

source. Streamlines would rise over the heat source and there is an

effective higher ridge.

B. Lee wave effect.

It was not until the 1940's that any serious study was made of mountain

waves. Observational evidence was obtained in Europe by Forchtgott, Manley,

Kuetter, and others and later theoretical studies were developed that finally

agreed with observations. The theory was mainly due to the works of Scorer

(1949, 1953, 1954, 1955) and Corby and Wallington (1956), in which a parameter

was related to the lapse rate and wind speed in the vertical. They found

that lee waves were more likely to occur with an increase of wind with height

and/or an increase of stability.

Berenger and Gerbier studied the effect of the size and shape of topo-

graphy on lee waves in the French Alpes in 1956, 1957 and 1958.
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Davis and Booker (1962) studied the lee waves in the Alleghany Mountains

of central Pennsylvania and related them to local formation and dissipation of

unstable cloud systems. They found that lee waves were more likely to occur

simultaneously with thunderstorms and theorized that outrush of cold low level

air from a thunderstorm would enhance lee waves.

Cumulus growth would be discouraged in the descending part of the wave

and growth might be enhanced in the rising portion, so that in some cases,

the cloud would attain a sufficient buoyancy to survive the following descent.

Thus waves could either encourage or discourage cumulus growth, depending upon

timing of the growth with respect to the wave and the phasing of the waves with

the terrain.

Figure 6, "Major terrain features near the watersheds of the ponds at

Lakeville, Mass", shows minor ridges to the west and southwest of Copicut Hill,

about every five nautical miles. This hill has a theoretically ideal condition

for thermals with a southwestward facing slope and a pronounced valley to the

southwest. A southwest wind would then start thermals because of the orographic

effect and the resulting clouds would not shield the slope from the sun.

One one occasion the author observed lee waves continuously forming

cumulus congestus clouds about five miles east of the 354 foot Copicut Hill,

They then moved eastward with the wind flow.

On 8 June 1965 from about 1330 to 1630 EST, the author observed a cumulo-

nimbus calvus cloud forming continuously to the lee of Copicut Hill. Individual

cells were obscured by surrounding clouds and the radar data unfortunately were

not available at this time. The author attempted to show that these air mass
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thunderstorms were enhanced at the areas of maximum uplift by lee waves, but

there was insufficient surface and radar data.

Mr. Miles Standish, State Conservation Officer confirmed that air mass

thunderstorms occur with an exceptionally high degree of frequency to the east

of Copicut Hill, according to his observations of the past 15 years,



4. DATA AND METHOD OF ANALYSIS

A. Use of radar to locate thunderstorms.

The quantity measured by a radar when observing precipitation is the

radar reflectivity per unit volume Vk When the scattering particles are

spherical and small, compared with the radar wavelength, and are composed

entirely of ice or water, 1 is proportional to the reflectivity factor

I Di being the diameter of the individual scattering particles

and the sum being taken over a unit volume. This is in the Rayleigh scattering

region and Il=, (1) where = 0.93 for water perticles and

0.197 for ice particles.

The limits of the Rayleigh region are not precise, but depend on the

degree of accuracy required. Actually it can usually be applied sE.tisfactorily

to particles considerably larger than but not as large as

When Z is obtained by applying equation (1) to measured ref~ectivities

rather than from observed drop diameters, it is called equivalent Z and denoted

by Ze. When the conditions for Rayleigh scattering are fulfilled, Z and Ze are

the same within the limits of experimental error. For hailstones, the Rayleigh

approximation is good within 2 db for diameters up to 3 cm when X= 10 cm

(Austin, 1962), but the suitability of using the relation for water particles

depends upon the distribution of water and ice in the hailstones,

A criteria is now being sought for recognizing thunderstorm, using Ze

Donaldson (1961, 1965), Wilk (1961), Arnold (1961) and Hitschfeld and Douglas

have made studies of the associated hail occurring with a given Ze using 3 cm

radar. These measurements are meaningful only if they are made at 20,000 feet

or higher, because of severe attenuation by water in the lower por%.ions of tho

storms.



Geotis (1963) found with the 10.7 cm radar that when log Ze was

greater than 5.5 near the ground, there was almost always hail in New

England. The units for Ze are mm6 /m 3, but it is more convenient to use

log units.

Ward (1965) used a 10 cm radar in Oklahoma and found that hail occurs

occasionally with log Ze as low as 4.0, but the hail was usually not larger

than about 1/4 inch in diameter. Ninety per cent of the reported hailstorms

had cores with log Ze > 4.0, most of the storms with log Ze slightly less

than 5.0 contained some significant hail, but the majority of hailstorms had

log Ze about 6.0. Log Ze was not often greatet than 6.0, even in severe

storms. These results agree with those of Geotis (1963) in Massachusetts.

In this study, a storm was considered to be a thunderstorm when log Ze

4.5, which was equivalent to 25 mm/hr of precipitation. A hailstorm was

assumed when log Ze.> 5.5, equivalent to 100 mm/hr, as observed by Geotis

(1963). These log Ze criteria are somewhat arbitrary but appear to be

reasonable since they are based on the observations just described.

B. Radar data used in this study.

To determine when thunderstorms were observed by the MA.T. SCR-615-B

radar, every PPI observation between March and October of the years 1958

through 1965 was examined to find storms with log Ze . 4.5. Intensity levels

appear five db apart, a factor of three in reflectivity or two in equivalent

rainfall rate.

The SCR-615-B radar has a wavelength of 10.7 cm and a beam width of

three degrees between half power points, which is 5 miles across at a range



of 95 miles, The elevation was usually set at one degree to get most of

the power above the horizon. The range was usually set at 120 statute miles

and occasionally at 60 statute miles.

The PPI radar data are averaged, range normalized signal intensity

contours, which can be interpreted as lines of equal Z values or of equal

rainfall rate.

Every calibration and check were plotted to maintain the accuracy of

Ze, Austin and Geotis (1960) have shown that when short period fluctuations

are averaged electronically, and when the radar is carefully and freBquently

calibrated, that measurements of radar reflectivity are accurate to about

2 db.

The M.I.T. radar is normally operated during the working hours 0800L

to 1700L, Monday through Friday and after 1700L if the precipitation continues

or is pretty clearly predicted. Nocturnal thunderstorms and weekend thunder-

storms are often missed, Great emphasis was placed on squall line and frontal

thunderstorms and some scattered air mass thunderstorms have been missed,

The lack of nocturnal thunderstorm data can be a significant loss in and near

the coastal areas of southern New England in the spring and fall months. The

author made a pilot study of every nocturnal thunderstorm from April 1958 to

April 1960 that was observed by 1st order U.S. Weather Bureau and military

weather stations in southeastern New England. It revealed 37 thunderstorm

days, and of these 28 were air mass thunderstorms, the remaining seven being

associated with cold fronts. At least four of the days with air mass thunder-

storms had troughs or closed lows near the 250 mb level, but not discernable

at lower heights.
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C. Selection of air mass thunderstorms.

Thunderstorms are assumed to be of air mass origin when surface fronts

are at least 200 miles away. Penn (1955) in a study covering four years of

New England squall lines found that the distance between the cold front and

squall line averaged 125 miles in the northern portion and 190 miles in the

southern portion. A typical example of a day with air mass thunderstorms is

a cold front in extreme western New York with scattered thunderstorms in

New England, If the cold front approached eastern New York, the thunderstorms

in southeastern Vermont would not be considered as air mass type.

D. Method of analysis.

The PPI films were viewed through a modified TDC Mainliner number 200

projector and a Holmes number 3852 projector. Tracings were then made of

"levels" that correspond to log Ze N4.5 and log Ze> 5.5. There would be an

error in these tracings if in the process of photography, the scope was

distorted or if there is a human tracing error when the image is projected,

Normally, a photograph was made of one level during each revolution

of the antenna, This resulted in an average of about four minutes between

successive photographs of the level corresponding to log Ze 4.5 or those

for log Ze> 5.5.

Since the air mass thunderstorms did not have an erratic behavior,

it was easy to interpolate their areal coverage and time durations, even

with time breaks, Tracing sheets had to be renewed about every 6C minutes

of PPI data to simplify any analysis.
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The area swept within the radar range was divided into a grid of 100

square mile areas. Each area had coordina.es N, S for the north-south axis

and W, E for the west-east axis, using M.I.T. for the origin. The frequencies

of occurrence, formation and dissipation of thunderstorms for each of these

areas were recorded as well as cell characteristics such as size and orienta-

tion. If a cell extended more than three miles into an area from an adjacent

area, it was considered as existing in both areas.

In order to find the effects of topography, a topographical barrier

chart for southern New England was drawn. Then the pertinent 500-mb charts

were examined for evidence of troughs and the general flow pattern, Since

most of the topographical barriers in southern New England are orierted north

northeast to south southwest, the 500-mb flow was grouped into the southwest,

northwest, north and southbast sectors as well as a closed low or pronounced

trough category. Then the formations, dissipations and durations of cells in

each area were recorded for all these 500-mb flow patterns. Cell tracks were

also drawn for each 500-mb flow pattern in order to determine their lengths

and direction of movement.

All available National Meteorological Center synoptic and facsimile

charts were scanned to record general features and any parameters that indicate

stability and moisture.



5. RESULTS

A. Number of days when thunderstorm echoes were observed.

As mentioned previously, the data consisted of radar records for the

months March through October of the years 1958 through 1965,

All storms with log Ze 4.5 were considered to be thunderstorms and

all with log Ze> 5.5 were called hailstorms. There were 212 days when thunder-

storms occurredSynoptic analysis indicated that on 148 days the thunderstorms

were not of the air mass type but were associated with the following large

scale weather features. Cold fronts (70) and quasi stationary fronts (38)

accompanied the majority of non-air mass thunderstorms. Warm fronts (21),

occluded fronts (7), warm sectors (3), hurricanes or tropical storms (3) and

cyclones (3) were responsible for the remaining cases. Appendices A and B

give brief summaries of these synoptic features.

B, Characteristics of air mass thunderstorm days.

Days when air mass thunderstorms occurred were classified as to the

500-mb pattern. The direction of wind flow or the presence of closed lows

and/or deep troughs with wind direction shear were recorded. Since the major

topographical barriers in New England are oriented in a north northeast to

south southwest direction, the flow direction was classified as southwest,

northwest, north, southeast and south southwest, as shown in Appendix B.

Out of 64 days with cells log Ze ,4.5, the flow was southwest to

west (clockwise) at 500 mb on 41 days, west northwest to north on 11 days,

a closed low or deep trough on eight days, south southwest flow on two days,

southeast to south southeast flow on one day and north flow on one day,



On 38 out of 64 days, some cells had log Ze!5 5 The 500-mb flow was souh-

west to west (clockwise) on 29 days, west northwest to north on six days and

there was a closed 500-mb low or deep trough on three days.

The low level flow was examined by recording the 500 meter winds for

Albany, NcY., J.F. Kennedy International Airport, N.Y., Nantucket, Massachu-,

setts and Portland, Maine. On 40 out of the 64 days when storms with log

Ze 4.5 were observed, there was confluence of the 500 m. wind flow at

either one or both of the southern radiosonde stations with respect to the

northern ones,

The surface winds for the coastal or near coastal stations of

Providence, R,&, Logan International Airport, Boston, Massachusetts and

Portland, Maine were examined, and showed that 61 out of the 64 days had

sea breezes, The Providence, R.I, surface winds would back and increase

in speed, indicating a gradient induced sea breeze convergence line, This

is similar to the circulations over the Brest peninsula of France and the

peninsula of southern Ergland,

Appendix C, "List of days and their characteristics when the SCR-615-B

radar recorded air mass cells with log Ze 4,45", gives a very brief descrip-

tion of the synoptic situation, data obtained from the US. Weather Bureau

Local Climatological Data, Synoptic and Daily Weather Maps, National Meteor-

ological Center facsimile charts and PPI radar data,

The Showalter index is used to indicate the stability and is computed

by lifting a parcel of air dry adiabatically from the 850 mb level until it

reaches saturation, assuming a constant mixing ratio. The saturated parcel

is then lifted wet adiabatically to the 500-mb level and the difference



there with the actual 500-mb environment in OC is the index, It is best to

use the Showalter index from the nearest radiosonde station in New England,

rather than to interpolatec The Showalter index and other parameters were

obtained from available National Meteorological Center facsimile charts

since 1962. The Showalter index was 4 +50C on all 35 days examined when

log Zee 4.5 for the air mass cells.

The vertical velocity, w in cm/sec at 600 mb was 2 0 cm/sec on 20 out

of 22 days examined when air mass cells with log Ze 4.5 were recorded,

The precipitable water is obtained by condensing out all the moisture

in a vertical column from the surface to 500 mb, where most of the available

moisture is, The precipitable water was greater than one half inch on all

39 days examined and 10 days had less than one inch.

The average relative humidity between 1000 mb and 500 mb was available

on 15 days and exceeded 50% on all of them,

C. Characteristics of air mass cells,

A "cell" is defined for this study as the area enclosed by a contour

"level" corresponding to log Ze = 4<5. This is then considered a thunder-

storm,

A total of 3878 individual cells were traced. The average daily number

of cells was 28 and that of hailstorms was five, The maximum number of cells

occurred on 10 July 1961 when there were 205 and 33 of these were hailsterns.

Cells vary in shape and sire during their lifetimes, so the ".verage"

cell size for each day was determined by inspection. This "average" cell size

-28-
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for each day is recorded in Appendix D and varied from 1 by 1 to 12 by 6 mdiles

For all days, the average was 5 by 3J miles.

The largest cell measured 26 by 8 miles on 10 July 1961 and 20 by 10

mile cells occurred on 14 June 1963, 6 July 1964, 12 and 31 July 1962, 29 July

1963, 10 August 1960 and 31 August 1959. The number of days with cells having

one dimension greater than 10 miles was compfled for each l0xlO mile area,

The number of cells per area ranged from 0 to 4 and minima for large cell

occurrences were in Maine and the coastal and sea areas off southern New England

Most cells were nearly circular but a few were very elongated, such as

the 20 by 5 mile cells on 19 July 1960 and 23 June 1965. The average orienta-

tion of the cell's major axis for each area is shown in F:.g. 7" Most of the

cells had a north to south or north northeast to south southwest orientation

of their axis. Beyond the 90 mile range, the axis became oriented perpendicular

to the radar beam which is very evident to the north of M I..T in central New

Hampshire. This indicates the beam filling effect, assum:ing that the cell's

main axis actually remains oriented in a north northeast ;o south southwest

direction,, Most of the cells had an axis orientation within 40 from the

average. These greater than 40 had a northwest to southeast orientation or

east to west orientation.

The quantitative analysis of cell duration was not made, but it was

noted that small cells (2 by 2 miles) usually did not lasi. more than about

12 minutes, The cell heights recorded on the RHI of the AN/CPS-9 radar were

available for 46 days. The average height of the cell tops was 34,000 feet

and on three days they reached 50,000 feet, Stem (1964) analyzed RhI data

of air mass cells and found that their life cycle was sim:.lar to one found

by Byers and Braham.
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It was noted on many days that cell groups consisting of small cells

(2x2 miles) appeared to be equally spaced. Groups of larger cells (one axis.

5 miles) tended to be lined up rather than scattered about in a random fashion

The average distance between cell groups on 39 days was 30 miles. This agrees

with Cochran (1961). The distance distributions are shown in Fig. 8, Any

number to the right of the plotted data represents the number of occurrences.

There was a tendency for twice the individual day's average cell group

distance when one or more cell groups were more distant from one another,

For example, on 19 July 1960, two cell groups were 55 miles apart

while the remaining 13 were 25-35 miles apart; on 10 July 1961, two were

45 miles apart and 20 were 20 to 30 miles aparts; on 31 July 1962 two were

40 miles apart and five were 20 miles apart and on 25 July 1963, two cell

groups were 70 miles apart while seven were 35 miles apart.

D, Cell motions,

The tracks of air mass cells were generally short (<15 miles), and

usually corresponded to small cells with a short duration, Table 4 shows

this distribution of cell track lengths. The four days that did not have

any noticeable tracks had 500 mb lows or deep troughs. The longest cell

track was probably at least over 100 miles, partly in the radar shadow area

on 9 June 1965. Other dates of long tracks were 23 June 1965, 14 August

1963, 12 September 1963, 31 May 1962, 12 July 1962. There were 17 days with

cell track lengths . 30 miles and 12 of these had cells with log Ze 5, 5,

All but one of the 17 days had cells with one dimension equal or greater

than five miles,
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Table 5 shows the distribution of 500 mb wind speed when long cell

tracks occurred. There were no wind speeds less than 20 kts.

Figure 9 shows the distribution of distances between cell tracks.

Days with large distances had few tracks. When they were widely scattered,

there was a tendency for distances to be in multiples of the average, 22 milesc

On 31 July 1959, cell tracks were 25 and 45 miles apart.

Table 4. Length of cell track

Length of cell Number of ce
track (mi) tracks

1-5 698
6-10 549

11-15 150
16-20 124
21-25 44
26-30 36
31-35 24
36-40 14
41-45 8
46-50 10
51-55 5

Total number of tracks: 1679

Total number of tracks < 15 mi

s on 60 days.

11 Length of cell
tracks (mi)

56-60
61-65
66-70
71-75
76-80
81-85
86-90
91-95
96-100

101-105

Number of cell
tracks

4
5
2
1
3
0
1
0
0
1

: 1397

Table 5. Number of days with cell tracks greater than 30 miles and their
500 mb wind speeds.

500 mb wind (kts) Number of days

20 3
25 2
30 1
35 6
40 3
45 1
50 1
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There is normally very little wind direction shear between 850 mb

and 500 mb during days with air mass cells, except near a closed low or

deep trough at 500 mb, This explains why the 500 mb flow was observed to

be nearly parallel to the direction of cell motion, as shown in later figures

of cell tracks,

Table 6 shows the distribution of wind direction shears (850 mb to

500 mb) on 24 days when air mass cells were near radiosonde stations, There

was usually a backing of winds with height and most wind shears were less

than 20.

Table 6. Wind direction shears (850 mb to 500 mb) when air mass cells occurred,
Positive is backing and negative is veering with height. Total number
of days was 24.

Wind shear (deg) Number of radiosonde reports

+400 1
+300 2
+20P 2
+100 7

0 9

-100 5
-200 0
-300 2
-400 1

On 18 July 1962 and 31 May 1962, the large intense cells moved at about

350 to the right of smaller cells, the latter moving parallel to the 500-mb

flowv, This movement is quite common with severe thunderstorms; Newton (1959).

On three days cells moved from the southwest to the northeast in southern

New England, whereas those in central New England moved from west to east,

The dates were 12 July 1962, 11 August 1961 and 31 July 1959 and the phenomena

could be explained by a small backing of the upper level winds in southern

New England,



On the afternoon of 24 July 1959, very unusual motion was observed-

Cells with log Ze 4.5, measuring about six by five miles in horizontal

dimension, moved eastward with the 500-mb flow in southern Connecticut, while

smaller cells (four by three miles) about 15 miles to the north moved north-

eastward. Figure 10 shows tracings of the cell positions at about four minute

intervals. The cells moved to the east in areas 5S, 10-5W and 6S, 9-8W

Other cells moved northeastward in areas 5S8W, 5S7W, 4S7W, 486W and 3S5W

The cells that moved eastward were in the Connecticut River Valley and

just south of the 500 foot contoured plateau in southern Connecticut while

those that moved northeastward started near Medhomasic Ht (800 feet) and were

confined to the hilly plateau of eastern Connecticut,

Table 7 shows west southwest flow at station 74486, J0F. Kennedy Inter-

national Airport, N.Y., which is similar to the Albany, N.Y. and Nantucket,

Mass, winds.

Fortunately some RHI observations were made with the AN/CPS-9 radar

and they showed small turrets with tops to 40,000 feet and 45,000 feet of

both cell groups that moved in different directions.

If field experiments near area 588W revealed complex lee waves with

intersecting maxima nodes extending in a southwest to northeast direction

over the plateau, the different cell movements could be explained.

E. Detailed topography of area.

A topographical chart of southern New England showing the orientation

of the axis of pronounced ridges and mountains is in Fig. 11. It was construci.e

by indicating where slopes are greater than 250 feet per mile in semi-flat plain
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areas where the mean elevation is less than 500 feet MSL, the mean 500 feet

MSL contour and the most prominent hills and mountains with steep slopes

where the mean elevation is greater than 500 feet MSL. Some major features,

other than those previously mentioned, are the steep escarpments along the

east side of the Connecticut River Valley in Connecticut and Massachusetts,

the plateau with elevation greater than 500 feet MSL in eastern Connecticut

and western Rhode Island and minor hills such as the 350 feet Copicut Hill

immediately east of Fall River, Massachusetts in area 5S1E. Table 8 lists

a few areas with their topographical features that are referred to.

Table 7. Upper air winds on 24 July 1959 when cells moved in different
directions near Middletown, Connecticut.

Station 74486 JFK

Wind directions are in degrees and wind speeds in m/ec

July 1959 Surface 150 m 300 m 500 m 1000 M 1500 m 2000 m

24/1200Z 240 03 242 08 246 11 258 13 261 12 248 12 240 l3
24/1800Z 240 06 241 07 242 09 243 10 250 11 251 12 248 1?

2500 M 3000 m 4000 m 5000 m 6000 n 7000 m 8000 T
24/1200q 239 13 242 14 255 17 260 19 269 17 261 19 250 12
24/180OZ 258 16 257 16 258 16 266 21 256 18 252 17 250 18

9000 m 1000 m 11000 m 12000 m 13000 m 14000 m 15000 m
24/1200Z 249 13 273 12 281 08 269 09 278 16 322 13 315 06
24/1800Z 249 15 250 13 251 15 251 16 253 17 264 15 290 05

16000 m 17000 m 18000 m
24/1200Z 304 05 026 02 029 03
24/1800Z 021 02 100 02 130 04

Some rivers are also shown, which are the long Conecticut River from

Long Island Sound northward through Connecticut and Massachusetts and forming

the boundary between New Hampshire and Vermont, The Ware and Quaboag Rivers



Fig. 11. Map showing tepographical barrier, 500 ft
centour and major rivers and lakes (dotted areas).



Table 8. Topographic features of 1Ox10 mile areas. Coordinates are
centered at M.IT.

Area: Topographical features:

12N 1W Valley, surrounded by mountains.
12N IE Valley, one mountain
1lW 4W Mountains in west
11N 3W Mt. Tecumseh (4,000 feet), Sandwich Mt. (3,993 feet and

Trypyramid (4,140 feet).
1lN 2W Sandwich Mt. (3,993 feet), Mt. Israel (2,636 feet), Squam Mts,
11N 1W Plateau
llN lE Valley
11N 2E One half of area <500 feet MSL.
1lN 3E Sebago Lake
ION 6W Moose Mt (2,300 feet)
ION 2W Ossipee Mts. (2,973 feet)
1ON lE One mountain (2,975 feet)
ION 2N One half of areas <500 feet MSL
ION 3E Area ( 500 feet MSL
lON GE Casco Bay
9N 5W Mt. Cardigan (3,121 feet) to east.
9N 3W Pemigawasett River Valley area
9N 2W Lake Winnipesaukee
9W 1E One mountain (1,745 feet)
9N 3E Area - 500 feet MSL
9N 4E Area< 500 feet MSL
SN SW Sunapee Lake
SN AW Mt. Kearsage (2,937 feet) and Ragged Mt. (2,225 feet),
8N 3W Pemigawasett River Valley
8N lE Moose Mt. (1,756 feet) and Parker Mt. (1,451 feet) to west,
8N 4E Saco Bay area
7N 3W Merrimac River Valley
7N 2W East of Merrimac River Valley
7N 1W Catamount Mt. (1,334 feet) and Blue Hills Range (1,220 feet).
7 lE One half of area < 500 feet MSL.
7N 3E Crescent Surf and coast
7N 4E Crescent Surf area
6N 4W Mt. Wallingford (1,197 feet) to south
6N 3W West of Merrimac River Valley
6N 2W Merrimac River Valley
6N 1W One half of area <500 feet MSL, Fort Mt. (1,410 feet)
6N 2E Piscataqua River Valley, Great Bay area
6N 3E York harbor area
6N 4E Gulf of Maine area
5N 8W Connecticut River Valley, Mt. Pisgah (3,605 feet) to west.,
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Table 8 (continued)

Area: Topographical features:

5N SW Lemster Mt. (2,743 feet), Lovewell Mt. (2,473 feet)
5N 4W Mt. Wallingford (1,197 feet) in north
5N 3W Merrimac River Valley to east
SN 2W Merrimac River Valley
5N 1W Area less than 580 feet MSL
5N 2E Hampton harbor and coast area
5N 3E Little Harbor area
4N 1OW 3,000 foot mountains near Bennington, Vermont.
4N 9W West of Connecticut River Valley
4N 7W Mt. Surrey (1,500 feet), Pisgah Mt. (1,510 feet)
4N SW Monadnock Mt, (3,165 feet)
4N 4W Pack Monadnock Mt. (2,130 feet)
4N 1E Merrimac River Valley
4N 2E Plum Island area
3N 6W Plateau
3N SW New Ipswich Mt. (1,848 feet)
3N 4W Pack Monadnock Mt. (2,310 feet) in northwest
3N 2W Merrimac River Valley
3N 1W Merrimac River Valley
3N 4E Massachusetts Bay off Rockport, Massachusetts
2N 7W Craig Mt. (1,500 feet), ridge in west
2N 6W Valley in plateau
2N SW Valley in plateau
2N 3W Three quarters of area less than 500 feet MSL
2N 2W Plain
2N 1W Plain
2N 1E Plain
2N 2E Gloucester harbor area
2N SE Massachusetts Bay east of Gloucester, Massachusetts.
IN 7W Mt. Lincoln (1,238 feet) and Brushy Mt. (1,260 feet) in

west. Quabbin reservoir,
IN 6W Valley in plateau
IN SW Plateau, Mt. Wachusett (2,006 feet), one hill
1N 4W Plateau
IN 3W Three quarters of area< 500 feet MSL, Wachusett reservoir,

ridge,
IN 2W Plain
IN 4E Massachusetts Bay, off Boston harbor
1s 8W Holyoke Range, Mt. Tom (1,200 feet) and Mt. Holyoke (878 feet)

in the Connecticut River Valley.
18 7W Ware River Valley
is 6W Ware River Valley, Ragged Hill (1,227 feet)
IS SW Plateau, hill (1,667 feet)
Is 4W Plateau
1s 3W Three quarters of area< 500 feet, hill (755 feet),
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Table 8 (continued)

Area: Topographical features:

18 2W Plain, Nobscott hill (500 feet) in north
2S 11W Plateau, Bradford Mt. (1,927 feet)
28 7W Connecticut River Valley, Minnechoag Mt. (931 feet) in east
28 6W Plateau, Moon Mt., Rattlesnake Mt, (1,000 feet)
28 SW Plateau
28 4W Plateau, one hill (1,411 feet)
2S 3W Three quarters of area less than 500 feet MSL.
2S 2W Plain
28 lE Plain, B3tue Hills to northwest
38 8W . Connecticut River Valley
3S 7W Connecticut River Valley, plateau in east
38 6W Plateau, Bald Hill
3S SW Plateau, Quinebaug River Valley
3S 4W Plateau, Jerimoth Hill (804 feet).
3S 2W Plain, Seekonk River Valley
38 lE Plain
4S 9W Connecticut River Valley, Rattlesnake Mt, (750 and 685 feet)
4S 8W Connecticut River Valley, plateau in east
4S 7W Plateau, Connecticut River Valley to west
48 6W Plateau
4S 5W Quinebaug River Valley
4S 4W Plateau, Cucumber Hill (685 feet)
48 3W Plain, plateau to west
48 2W Plain
58 8W Connecticut River Valley, Medhomasic Mt. (800 feet)
58 7W Three quarters of area is a plateau
58 6W One half of area is Shetucket River Valley
58 4W Plateau, 2 hills (629 feet and 555 feet)
5S 3W Plain
58 2W Upper Narragansett Bay
5S 1E Plain, Copicut Hill (354 feet) in west
6S 9W Connecticut River Valley, Beseck Mt, Higby Mt.
68 8W Connecticut River Valley, 3ear Hill
6S 7W Connecticut River Valley
68 5W Valley and hills
6S 4W Valley and hills
78 4E Nantucket Sound, east of Martha Vineyard Island.
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Fig. 12. Radar shadow areas observed
with the SCRm615-B radar at MIT.
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Fig. 13. Number of cells with leg
ze.t.5 which occurred in each lOxlO
mile square. Total number of cells on
6h days was 3878.
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join the Connecticut River in western Massachusetts. In eastern Connecticut,

the Shetucket and Quinebaug Rivers join to form the Thomes River leading to

the Long Island Sound. At least two rivers lead into Narragansett Bay, Rhode

Island; the Blackstone and Seekonk rivers and the Taunton River of Massachu-

setts leads into Mount Hope Bay, Rhode Island, as shown in Fig. 6. The

Merrimac River of central New Hampshire and northeastern Massachusetts is fed

by the Pemigawasett, Mad and Baker Rivers of northern New Hampshire.

F. Geographical distributions for all air mass thunderstorms.

The distribution of durations, formations, dissipations and tracks of

air mass cells whose log Ze>4.5 will be ;resented for the various 500-mb flow

patterns.

Before presenting the results, some PPI radar data problems should be

mentioned. There were radar shadow areas caused by surrounding buildings which

are shown in Fig. 12, They were mainly in the east to southeast Mand south

southwest sectors. This was unfortunate, as it is in the area of sea breeze

convergence lines, small hills on a general plain and a probable area of max-

imum nocturnal thunderstorms.

A thunderstorm at a great distance from the radar would fill less radar

beam, both horizontally and vertically, particularly if it were a relatively

small cell and thus might appear weaker, Surface weather observations from

Portland, Maine, 90 miles away, Providence, Rhode Island and Worcester, Mass-

achusetts both 50 miles, Concord, New Hampshire 60 miles and New Haven, Conn-

ecticut, 120 miles away were scanned when the SCR-615-B radar was operating.

This would determine if any thunderstorms were missed because of this beam

filling probbem or improper calibration or if the radar indicated a too high

value of log Ze,
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Fig. 1h. Number of days when air mass
cells with leg Zt 4. 5 occurred in
each l0x1O mile square. Total number
of days when leg Ze . .5 was 64.
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Fig. 15. Nuber of days when air mass
cells with leg ze .5 eccurred in
each lk1o Male square. Total umber
of days with Leg Z 5.5 was 38.
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Table 9 compares the surface with radar observations and shows that

the SCR-615-B radar can observe scattered, 'medium sized" thunderstorms to

120 miles, but it does suggest a range effect.

Table 9. Comparison of surface and radar observations of thunderstorms
Number of thunderstorm days observed by:

Surface Station SCR-615-B Radar

Providence, Rhode Island 12 13
Worcester, Massachusetts 10 11
Concord, New Hampshire 21 20
Portland, Maine 10 7
New Haven, Connecticut 2 1

Figure 13 shows that the total number of cells in each 10xlO mile

area. In every direction the number of cells observed decreases with range

beyond about 60 miles. This is an instrumental effect resulting from the

broad beam of the radar. Intense cores in the thunderstorms are often small

and fail to, fill the beam, so that at large ranges, the storms appear less

intense than at close ranges.

Areas of maximum frequency defined by more than 35 cells extend from

just east of Concord, New Hampshire, (7N 1W) southwest along a plateau and

plain to central Massachusetts, then southeastward to northern Rhode Island,

including the inland plains to the east,

The eastern side of the Connecticut River Valley has more cells thAn

the western side, This is particularly noticeable in Massachusetts and north-

ern Connecticut where there are some steep escarpments aid mountains on the

extreme eastern side of the valley. There is a rapid increase of cells inland
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from the coastal waters of northeastern Massachusetts and southern New Hamapshire

This must be related to the sea breeze which moves inland Davis, Schultz and

Ward in 1888 indicated that the maximum penetration of the sea breeze inland in

this region was 22 to 25 miles. The Pemigawasett River Valley of New Hampshire

(9N3W) and just to the east of it, the Lake Winnipesaukee area of New Hampshire

(9N2W) and the mountainous areas of 8N4W and 4N10W which contain Mt. Kearsage,

New Hampshire and 3,000 foot mountains near Bennington, Vermont, respectively,

shown weak maxima. Square 7N3W in the Merrimac River Valley of New Hampshire

has a maximum frequency of cell occurrence (36).

There is a minimum number of cells east of the 500 foot MSL contour in

Maine, especially areas 9N4E and 9N3E, and all the sea areas, particularly off

southern New England,.

Figure 14 shows the number of individual days when cells occurred in

each square and resembles Fig, 13, the number of cells, An area of maximum

frequency of thunderstorm days defined by more than 20 days extends from

area 7NlW along a plateau and plain to central Massachusetts. The east sides

of the Connecticut and Pemigawasett River Valleys have more thunderstorm days

than the west sides, Areas 8N4W and 4N1OW again have maxima and areas 4N4W

containing the Pack Monadnock Mt,, 7N1W with Catamount Mt. and Blue Hills Range,

2S7W in the eastern Connecticut River Valley, &96W just east of this valley and

4S5W, the Quinebaug River Valley, show definite maxima. There is a definite

decrease of thunderstorm days near the southern New England coastline and the

adjacent sea areas,, A similar decrease is seen in Maine eastward from the

500 foot contour and in the Gulf of Maine,
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Fig. 16. Number of cell formations who
log Z, inereases to 4.5 in each l0xlO
mile square.
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Fig. 17. Nuber of cell dissipations when
log 7. decreases to below 4.5 in each lOx1O
mile square.
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Figure 15 shows the number of hailstorm days and in general resembles

Fig. 14, the number of thunderstorm days. Squares of maximum frequency are

2N5W and 5N2W, 6N2W, 7N1W in and east of the Merrimac River Valley of New

Hampshire and 433W. The sea and coastal areas are practically devoid of

hailstorms except possibly in the radar shadow area of southeastern Massachusext

Figure 16 shows the formations of all cells and resembles Fig, 13, the

number of all cells. The area of most frequent cell formation extends from just

east of Concord, New Hampshire, 7N1W, southwestward along a plateau and plain

to central Massachusetts and then southeastward to northern Rhode Islands. The

Merrimac River Valley, except for the Pemigawasett River Valley of New Hampshire

3W, 9 to 121N has a maximum number of cell formations and "he east side of the

Connecticut River Valley has more formations and also more dissipations than

the west side,

There is an area of fewer than average cell formations east of the 500

foot MSL contour in Maine, which is the border between 2E and 3E. All the sea

areas show practically no cell formations.,

The number of cell formations and dissipations sometimes varied rapidly

from one 10 by 10 mile square to another. It was therefore decided to designate

a single square as a "significant ' maximum or minimum when it is 100% larger or

50% smaller respectively than the average of the surround:Ing eight squares,

"Significant" squares of maximum cell formation were 12NlE, 7N1W, 4N10W

and ISSW, which is in the eastern Connecticut River Valley with three small

mountains.
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rig. 18. Total time in tens Of minutes
when cells with leg ze:..5 were in eseh
lox1o mile square.
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Fig, 19. Total time in tens of minutes
when cells with leg Ze> 5.5 were in each
l0xl0 mile square.
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"Significant" squares of minimum cell formation were 12N1W, IN3W,

lINIE, 9N3W, 7N2W, 6N4E, 2NlE, IN2W, 182W, 5S3W and 6S4W. These areas have

terrain features varying from plains to mountains.

Figure 17 shows the dissipation of all cells. There is a maximum

number of cell dissipations along the 500-ft M1 contour in Maine, 2E from

7N to llN. This area then widens near 7NlE to east 'central Massachusetts

and northern Rhode Island. There is also a weak, narrow maximum about 25 miles

to the east of the Maine, New Hampshire and northeastern Massachusetts coast

line. "Significant" squares of maximum cell dissipation are 4N4W, 2N6W, IN4E

and 282W which have topographical features varying from ocean to mountain,

Areas of minimum dissipation are over the sea areas except for the

narrow strip off the east coast that was just mentioned, This minimum is

explained by a lack of cells over the sea.

"Significant" squares of minimum cell dissipation are llNSW, llNIE,

9N3W, 5N4W, 5N3E, 4N9W, 31N6W, 2N2W, 2S3W, 3S8W and 583W which again have varied

terrain features,

Cell formation minima and dissipation minima are in squares 1113W, lINlE

and 9N3W.

There were more cells than those forming and dissipating within a 90 mile

radius of M.I.T., which is explained by advection of cells. A few areas beyond

90 miles had more combined cell formations and dissipations than the total number

of cells because some cells would form and dissipate in the same square.

Figure 18 shows the number of tens of minutes of cells in each area and

resembles Fig. 14, the number of thunderstorm days. The areas of maximum times



Fig. 20. Locations and intensities of
cells with leg Z 6.0.

-12 -0 -9 -8'-7 -6 -5 -4 -3 -2 -1|| 23 4 5 6 7 8 9 10 11 12

Fig. 21. Number of days when air mass
cells with leg Ze 3 4.5 eceurred. 500-mb
flewtSW to W. Total number of days:7.



defined by more than 400 minutes extend from area 7NIE southwestward to east

central Massachusetts and then southeastward to southeastern Massachusetts

and northern Rhode Island. The east sides of the Merrimac River Valley of

New Hampshire and the Connecticut River Valley have maximum times,. There is

a secondary maximum area along the Maine coast, particularly square 7N4E off

Crescent Surf. "Significant" squares of maximum time are llN2W, ION6W, 7N4E,

237W, 5S7W and 6S5W,.

Areas of minimum time are just east of the 500-ft MSL contour in Maine

and the south coast and coastal waters from New Haven, Connecticut, 889W to

Cuttyhunk Island, 781W, near Martha's Vineyard, Massachusetts. "Significant"

squares of minimum times are llN3W, 1ON3E, 9744E, 9N3E, SN4E, 7N3E, 6N2E, 4N9W

and 6S8W.

Figure 19, the number of tens of minutes of hailstorms shows a maximum

time in the plains surrounding Boston, Massachusetts and in the area between

radar shadows to the southeast. "Significant" squares of maximum time are

llN2W, lN1W, 7NlE, 5N2W and 2NSW.

Minimum times occur in the Gulf of Maine and the south coast and adjacenT

sea areas from New Haven, Connecticut, 889W, to Cuttyhunk Island, Massachusett ,

781E. "Significant"minimum times are in squares 5N5W, 3N4W, lN4W, 286W and 2.511,

Figure 20 shows the locations and intensities of cells with log Ze 6,0

They were mainly in the northwest and southeast sectors.

G. Distribution for days with southwest flow.

Figure 21 shows the number of days with thunderstorms when the 500-mb

flow is southwest to west. It resembles Fig. 14, the total number of thunder-

storm days, as 47 out of 64 days had this flow.
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FIg. 22. Number of days when air mass
cells with log ze 5.5 eeurred. 500-mb
flowtSW to W. Total number of days,29.
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is southwest to west,
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and 500 mb flew



Relatively high frequency occurs in the following general are:

2E, 7-12N: all figures are at least twice as large as those in the ad.13ccnt

column 3E, 7-1214, where the latter is less than 500-ft NSL.

7NlE to 2N6W: 16 or more days were recorded in a number of squares throughout

this mainly plateau area,

SW, 4S to 1N and 6N to 9N: all figures are at least 1 times as great as

those in the adjacent column, 9WT Areas 8W, 4S to 1N are on the east side

of the Connecticut River Valley and areas 8W, 6N to 9N are to the lee of

the ridges.

Squares 2S7W in the eastern Connecticut River Valley, 4S5W in the

Quinebaug River Valley and 185W and 184W to the lee of the Ware River Valley

have max-imum numbers of days, The Pemigawasett River Valley of New aapshire.

3W, SN to 111N seemed to have little effect,

Minimum number of days occurred to the east of the 500-ft M6L contour in

Maine and the south coast and adjacent sea areas from New Haven, Connecticuo,

889W to Cuttyhunk Island, Massachusetts, 7Sl. Square 1113W had a

minimum,

Figure 22 shows the number of hailstorm days when the 500-mb flow was

southwest to west.

Maximum frequency occurs in the following general areas:

3W, 7N to 9W in the lower Pemigawasett River Valley of New Hampshire,

71W to 2N51-: four or more days were recorded in a number of squares in the

Merrimac River Valley and plateau.

5N7W and 4N8W in the Connecticut River Valley just north of Keene, New Hampshire

is, 7W to 4W in the Connecticut and Ware River Valleys and to the lee.
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Fig. 24. Number of cell dissipations when
leg Ze dooroeses to below 4.5 and 500 mb
flew is southwest to west,
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Fig. 25. Total time in tens of minutes
when ells with log X h.5 were in each
l(Io mile square. 5 mb flow:sw to W.
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"Signifieant" maximum number of days are in squares 9N3W the Pemigaw-

asett River Valley, 7NlW east of the Merrimac River Valley, 2S5W, lN7W the

Quabbin reservoir area, 2S1E and 483W just east of a plateau.

Minimum numbers of days occur in the same general areas as those of

Fig. 21, the number of thunderstorm days, except for some hailstorms over

the coastal waters of eastern Massachusetts, "Significant" areas of minimum

number of days were 6N3W, IN6W and 1N4W,

Figure 23 shows the number of cell formations when the 500-mb flow is

southwest to west ,

Maximum frequency occurs in the following general areas:

2E, 9N to 12N has twice as many formations as column 3E, the latter being leM

than 500-ft MSL,

7N1W to lN5W: 10 or more formations occurred in many of the squares of a plateuz

and the Merrimac River Valley.

7W from IN to 6N has 1j times as many cell formations than column SW, IN to 6N,

the former being on the east side of the Connecticut River Valley,

7W from 58 to 3S has 11 times as many cell formations than column 8W, 5S to 36,

the former being on the east side of the Connecticut River Valley,-

385W and 285W have a maximum number of cell formations e

The lower Pemigawasett River Valley has a weak maximum, "Significant"

maximum formations occur in areas 7N1W, 6N3E York Harbor, 4N1OW, 3S2W a pl,:in

with the Seekonk River and 582W the upper Narragansett Pay.

Areas of minimum formations are the same as areas of minimum number of

thunderstorm days, Fig. 21 and include the upper Pemigawasett River Valley o:

New Hampshire. "Significant" areas of minima formations are IlNIE, 1ONIW just
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Fig. 26. Total time in tens of minutes
when colls with log Za 5.5 were in each
lx1O mile square. 500-mb flewtSW to W.

Fig. 27. Cell tracks whe leg h. 5 and
500 Ab flew is southwest. Total number of
days s10.
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east of the Ossipee Mountains, SN5W, 7N2W, 3NIE, IN9W, IS7W part of the entram i

to the Ware River Valley, 3S8W and 583W,

Figure 24 shows areas of cell dissipations when the 500-mb flow we

southwest to west,,

Maximum frequency occurs in the following areas:

2E, 7N to lIN have maxima as compared to 3E, 7N to llN. The latter are below

500-ft MSL.

1E, 6N and 4N have maxima compared to 2E, 6N and 4 N. The latter are close to

the coast.

7W, 3S to IN have at least 3 times as many dissipations as 8W, 38 to IN The

former are on the east side of the Connecticut River Valley,

3N3W to 285W form a line of at least 10 cell dissipations in each square

4W, 8N to 9N and 8N3W have maximum cell diasipations. They are in the lee of

ridges.

"Significant" areas of maximum number of cell dissipations are llN4W,

l1N2E, 1ON2E, 8N4W, 71N1W, 4N1OW, 4N4W, 2S7W, 2S2W and 5S6W

Cell dissipation minima occur near and just west of the Connecticut River

"Significant" areas of minimum dissipation are l1N3W, 1iNiE, 9N3W, the Pemigawase

River Valley, 9N2W Lake Winnipesaukee, 7N7W, 7N2W, 5N3E, 4N2E, 3N6W, 2N2W, ISSW,

2S3W, 3S2W and 488W, Areas llNIE and 7N2W have a minimum number of both forma-

tions and dissipations.

In general, areas have both dissipation maxima and formation maxima.

Figure 25 shows the number of tens of minutes that cells occurred in

each area when the 500-mb flow was southwest to west. It resemble5 Fig, 21,

the number of thunderstorm days.



j_morris
Typewritten Text
Page 58 does not exist in the original document



-59-

Maximum frequency occurs in the following areas:

2E, 7N to 12N has at least twice as much time as column 3E, 7N to 12W. The

latter is below 500-ft MSL,

7NlE to 1S5W form an area about 30 miles wide where at least 30 tens of minutes

were recorded in each square; most of the area is in plain and plateau. Areas

4N2W, 3N2W and 3N11W in the Merrimac River Valley and 2N4W in the lee of Mt.

Wachusett have over 40 tens of minutes,,

2S2W to 483W form a narrow line of squares with over 30 tens of minutes and is

in a plain.

7W, 28 to 2N, 58 to 4S have at least li times as many minutes as column 8W, 2S

to 2N and 5S to 48. Column 7W is here on the east side of the Connecticut River

Valley0

6N7W in the Connecticut River Valley and 4N 1OW with high mountains, have maximun

numbers of minutes.

A "significant" maximum time is in area 6S5W, east of the Quinebaug River

Valley of Connecticut.

Areas of minimum time are east of the 500-ft contour in Maine, the sea

areas and particularly the south coast and adjacent sea areas from New Haven,

Connecticut (8S9W) to Cuttyhunk Island, Massachusetts (7SlE) -

"Significant" minimum times are in areas llN3W, 11N1E, 10N3E, 5S3W and

688W.

Figure 26 shows the number of tens of minutes of hailstorms when the 500-mb

flow was southwest to west,

Maximum frequency occurs in the following areas:

3N3W to 3NE forms a region about 20 miles wide where there are more thin five

tens of minutes recorded in each square. This area includes most of the Merrim.ce

River Valley and the lower Pemigawasett River Valley.
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7N, 3W to 1W; 5N, 4W to 1W and 3N, 2W to 2E form narrow rows of marimum times

The middle row starts on a plateau to the lee of hills.

2N1W to 284W forms a narrow area of maximum time and is chiefly in plains,

2N, 5 W to 4W have over five tens of minutes and are in a plateau area

2S2E and 4S3W possibly form the ends of an area of maximum time whose central

part is in the radar shadow.

'Significant" areas of maximum time are 2N5W, 187W, IS3W, 2SilW, 284W,

3S2W and 6S9W which are mainly valleys or close to the 500-ft MSL contour-

Minimum time areas are east of the 500-ft MSL contour in Maine and the

south coast and adjacent sea areas from New Haven, Connecticut C8S9W) to

Cuttyhunk Island, Massachusetts (781E).

"Significant" minimum times are in areas 5NSW, 1N4W and 2S6W.

Figures 27 through 31 show cell tracks for various flow patterns from

the southwesterly sector. There are fewer tracks in the radar shadow area of

southeastern Massachusetts and tracks end in Maine when the 500-mb flow is

southwest, compared with westerly flow, With west flow, the cell tracks increase

over the coastal waters of eastern Massachusetts, New Hampshire and Maine Any

tracks that appear to move in odd directions can be explained by backing of winds

trough passage, or by large intense cells moving to the right of the 500-mb flow

Figure 32 shows cell tracks when log Ze was slightly less than 4.5 and the 500-m

flow was southwest or west southwest. It was prepared to obtain more data in

southeastern New England where sea breeze convergence lines are common and to

show that heavy rainshowers occur in the same areas as thunderstorms.
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Fig. 28. Cell tracks when log ZQ>. i.5
and 500 mb flow is so'ithwest. Total
number of days:6. Range:60 miles.

Fig. 29. Cell tracks when leg z >4.5 and
500 tb flew is wet Southwest. Totai umber
of days was six.



Fig. 30. Cell tracks when log Zet 4 .5
and 500mb flow is west. Total number of
days was 22.

Fig. 31. Cell tracks when lop Zn > ).S
and 50) mU flow is west. Total nrmber
of days: 8. Radpr R-nge: 60 tTes.
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Fig. 32. Selected cell tracks when log Z,
is slightly le than 4.5. 500-mb flows
SW to WSW. Total number of days t. Radar
ranget60 miles.
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Fig. 33. Nber of days when air mass sells
with log Zg. .5 oemored. 500-mb flewtNW.
Total number of daysill.



1 -12-114-9-8-7----4-3-2 - 1 2 3 4 5 8 9 8 9 1011 12 1

Fig. 34. Number of days wben air mass cells
with leg 1 - 5.5 occurred. 500-mb flntS.
TOtal anber of days 6.

12 -11-10-9-8-7--5-4 -3-2 -1|| 2 3 4 5 6 7 8 9 1011 12

Fig. 35. Number of formations of air mass
cells whoa log Zo increased to 4.5 and 500 mb
flew is northwest.



H. Distributions for days with northwest flow

Figure 33 shows the number of thunderstorm days when the 500-mb flow

is west northwest to north. There were a total of 11 thunderstorm days.

Areas of maximum frequency (> 3 days) follows:

9N2W, Lake Winnipesaukee area

4N4W, Pack Monadnock Mt. and plateau

3N1W, Plain with Merrimac River Valley

ISSW to 2N13W form a narrow axis of maximum frequency, and is chiefly on a

plateau, Square 1N4W to the lee of Mt. Wachusett has five thunderstorm days.

3S7W to 6S5W form a region of maximum frequency and are chiefly on a plateau

or to its lee in the Quinebaug River Valley,

4S4W, to the lee of the Quinebaug River Valley,

Areas of minimum thunderstorm days are along the south coast and adjacent

sea areas from New Haven, Connecticut (8S9W) to Cape Cod, Massachusetts (5S3E'

Figure 34 shows the number of days with hailstorma when the 500-mb flow

is west northwest to north. There were only six days, so no-'definite conclu-

sions regarding distribution could be made, Squares 1S2W to 3SlW form a narrow

area of two hailstorm days and are in a plain.

Figure 35 shows the distribution of cell formations. Areas of maximum

formation (> 3 cells) follow:

9N2W, Lake Winnipesaukee

5N2W, Merrimac River Valley

4N4W, Pack Monadnock Mt. on a plateau

2N6W, Valley in a plateau

1N4W, plateau

3S7W, eastern Connecticut River Valley

-65-
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-12-1-10-9--7---4-e-2 -11 2 5 4 56 7 8 9 1011 12

Fig. 36. Number of dissipations of air mass
cells when leg ZO decreased below 4.5 and
500 ub flow is northwest.

F-2-1110- -74444-2 -|1 2 3 4 5 6 7 8 9 1011 12

Fig.37. Total tine in tons of minutes when
air mass cells with log zIs 4.5 wore in seah
10bi1 tie area. 500OO fiswtit.
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4S4W, to the lee of the Quinebaug River Valley

3S7W to 6S5W, form a narrow area of maximum frequency mainly in a plateau

and to its lee in the Quinebaug River Valley.

Areas of minimum formation are 3S6W and 3S4W and all the south co -st

areas.

Figure 36 shows the distributions of cell dissipations when the 500-mb

flow is west northwest to north. In general, the same areas have both forma-

tion maximum and dissipation maximum, including areas 2NSW and 1N4W,

Areas of maximum dissipation ( 3 cells) follow:

10NlW to the lee of the Ossipee Mts.

9N2W Lake Winnipesaukee

4N4W Pack Monadnock Mt0, on a plateau

3NlW in the Merrimac River Valley has four cell dissipations

2N6W Valley in a plateau

1N4W, a plateau has four cell dissipations

5S6W to the lee of a plateau in the Shetucket River Valley

6S6W in the Shetucket River Valley

Figure 37 shows the number of tens of minutes of thunderstorms when

the 500-mb flow was west northwest to north. There is a slight indication

that the east side of the lower Pemigawasett and Merrimac River Valleys of

New Hampshire have maximum times.

Areas of maximum times ( > 50 minutes) follow:

7N4E Crescent Surf, Maine, area

1W, 3N to 4N in a plain of the Merrimac River Valley
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Fig. 38. Cell tracks when leg Ze 4.5 and
500 ab flew is west aoathweut. Total number
of days was six.

-1-1o -9 - 7 4 - -4 -3 -2 - Ti 2 3 4 5

Fig. 39. Cell traoks when leg Ze Ne 5
and 500 ab flew is northwest. Total
number of dayst5.
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2N6W to IN3W form a narrow area of maximum frequency in a plateau area

2W, 38 to 2S in a plain to the lee of a plateau

5S3W to the lee of a plateau

7W, 5S to 2S mainly in the eastern part of the Connecticut River Valley

4S, 9W to 6W mainly in the eastern part of the Connecticut River Valley

Areas of minimum cell time are the south coast of New England.

"Significant" areas of minimum time are squares 9NIW, 8NIW, 8NlE, 4N3W, 3N5W,

S5W, 2S4W, 5S8W, 6S7W and 6SSW.

The number of minutes of hailstorms when the 500-mb flow is northwest

is too small to make any conclusion about distribution. There are areas of

maximum time in the Merrimac River Valley, the Connecticut River Valley in

southern Connecticut and the plains surrounding Boston, Massachusetts, which

may possibly be significant.

Figures 38 and 39 show pronounced cell tracks starting in the Connecticut

River Valley, the Merrimac River Valley and others just skirting the south of

Boston, Massachusetts.4

1. Distributions for days with closed lows or deep troughs at 500 mb.

Figure 40 shows the number of thunderstorm days in each area when there

was a closed low or deep trough at 500 mb. There was a total of eight thunder-

storm days.

There is evidence of a weak maximum number of days in the lower Pemi-

gawasett River Valley of New Hampshire and the Connecticut River Valley of

Massachusetts,
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Fig. 40. Number of days when air mass
cells Aih leg 42 4.5 eccurred with
closed low or deep trough at 500 ab.
Total number of days:8.

0 IUS

~I- -0 -- 7 6 -5 -4 -3-2 1  2 3 4 5 6 7 8 9 1011 12

Fig. Il. Number of formationes of air
nss cells whoa leg %, inereased to
1.5, with closed low or deep trough
at 500 ab.
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-12 -1--109-8- -6 -5 -4 -3 -24 1 2 3 4 5 6 7 8 9 1011 12

Fig. h2. Number of dissivations of air
mass cells when log Ze decreased to below
h.,5, with closed low or deep trough at 5OOmb.

-12-1-0-9-8 -7 4 -4 -3 -2 -111 2 3 4 5 6 7 8 9 1011 19

Fig. 43. Total time in tens of minutes
whon air mass cells with log Zeo 4.5 were
In each squarewhen there was a closed low
or deep trough at 500 mb.
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Areas of maximum frequency ( 4 days) follow:

6N2W to 4N1W, to lN2W form a narrow region of maximum frequency in and east

of the Merrimac River Valley which broadens in Massachusetts,

6N2W and 2N3W have five days and the entire area is in a plain,,

4N4W and 3N5W each have four days and are areas with a plateau and mountains.

2SlW to 5S2E may form a region of maximum frequency with the radar shadow

covering the central portion.

3S2W and 5S2W have four days and are in a plain.

There is a minimum number of thunderstorm days east of the 500-ft MSL

contour in Maine, to the north of Saco Bay, Maine (8N3E) and the south coast

and sea areas from New Haven, Connecticut (889W) to Block Island, Rhode Island

(983W).

There were only three hailstorm days, not enough to make any conclusion

regarding distribution. There were no hailstorms over the Culf of Maine or the

coast and sea areas from New Haven, Connecticut (889W) to Cuttyhunk Island,

Massachusetts (7SlE).

Figure 41 shows the distribution of cell formations. There are indica-

tions of a maximum number of cell formations in the Connecticut River Valley

of Massachusetts,

Areas of maximum frequency of cell formation (> 4 cells) follow;

7N3W to 6N2W in the Merrimac River Valley,

6NlE to 4NlW form a narrow area and are in an inland plain.

4N4W to IN3W and 3N, SW to 1W are the diagonals of a rectangle containing

maximum cell formations. This is an area of plains and plateaus with mountains-
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2E, IN to 2N in a coastal and water area.

3S3W to 5S2W, to the east of a plateau.

2E, 5S to 4S form an area between radar shadows that has a maximum cell

formation,

"Significant" areas of maximum cell formation are 12NlE, 4N4W, 3N2W,

IN3W and 4S3W.

Figure 42 shows areas of cell dissipations. In general, individual

areas can have both maximum number of dissipations and formations, including

areas 4N4W and lN3W.

Significant' areas with maximum number of dissipations are 6N3W, SN1W,

4N4W and I13W.

Figure 43 shows the number of tens of minutes when cells occurred.

There is a general maximum time with cells in the plains north and south of

Boston, Massachusetts.

The Connecticut River Valley in Massachusetts has a weak maximum as

well as near Lebanon, New Hampshire, areas 6W, 9N to 1ON.

Areas of maximum time frequency follow:

2W, 1ON to llN and lW, ION to llN in and near the Ossipee Mountains.

2rs, 9N to 10N has no time period to the east where the elevation is below 500

feet MSL.

1E, 3N to 8N and 2E, IN to 2N have many more minutes than the area to the east

which is near and over the sea.

3W, 4S to 28 and IN to 2N have at least twice as many minutes than any indi-

vidual areas to the west.



-74-

1 -12-110-9-8-7-6- -4-3-2 -1|1 2 3 4 5 6 7 8 9 1011 I2

Fig. 44. Total time in tons of minutes when
air mass clls with log ze2 5.5 were in each
square, when there was a closed low or deep
trough at 500 mb.

Fig. h5. Axis orientations of air mass cells
when log Ze >1.5, and when there was a cleed
low or deep trough at 500 mb.
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"Significant" areas of maximum time frequency are 8NlE, 7N1E, 6N6W,

6N3W, 4N6W, 2N2E, IS4W, 2S3W and 3S1E.

Minimum time frequency occurs generally east of the 500-ft MSL contour

in Maine, to the north of Saco Bay (8N4E), the Gulf of Maine and the south

coast and adjacent sea areas from New Haven, Connecticut (8S9W) to Block

Island, Rhode Island (9S3W).

Figure 44 shows the number of tens of minutes when hailstorms occurred,

There is a maximum time frequency of cells in the plains north and south of

Boston, Massachusetts and in the southern White Mountains of New Hampshire,

Areas of maximum time frequency follow:

11N, 2W, 1W and 1ON2W which contain mountains

2E, SN to 1ON have no areas to the east with hailstorms

5NlE to 2N2E form a narrow area of maximum time frequency near the coast.

481E to 6S2E form an area between radar shadows where there is a maximum

time frequency.

"Significant" areas of maximum time frequency are l1N2W, 1l1l1W, 7NIE,

6N6W, 6N3W, 4NlE, 2NIE, 2N2E, 2S3W, 3S3W, 4S2E and 5SlE.

Areas of minimum time frequency are east of the 500-ft MSL contour in

Maine, the Gulf of Maine and the south coast and adjacent sea areas from New

Haven, Connecticut (SS9W) to Cuttyhunk Island, Massachusetts (7S1E).

Figure 45 shows the axis of orientation of cells, The majority have

a north-south oriented axis. There were no cell tracks near the 500-mb low

or deep trough because advecting winds were light.
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Fig. 46. Tracks of cells with leg Z*?>4.5
for one day when 500 at flow was north.

Fig. 47. Tracks of cells with log Ze. 4.5
for two days when 500 ab flow was south
southwest.



J. Distributions for other directions of flow.

Figure 46 shows the short cell tracks that occurred on 25 July 1963

when the 500-mb flow was north, The locations are in the plains around

Boston, Massachusetts, parts of the Connecticut River Valley and plateau

areas,

Figure 47 shows the cell tracks that occurred on two days when the

500-mb flow was south southwest. The cell tracks are in the plain area of

Boston's northwest sect6r and very close to the 500 foot MSL contour.

Figure 48 shows cell tracks when the 500-mb flow was south southtast,

The date was 28 August 1962 and as Hurricane Alma approached, the cells near

its periphery were excluded. The cell tracks were short and generally bega,

in the plateau area near the 500 foot MSL contour of Massachusetts and New

Hampshire and just west of the lower Pemigawasett River Valley of New Hampshire

K. Discussion of results.

In a climatological study such as this, it would be ideal to have as

much data as possible. If there are many samples available, a representative

distribution should result in most areas. Then physical reasoning may explain

some of the results.

There were 41 out of 64 thunderstorm days that were accompanied by souf-

west to west flow at 500 mb for which radar data was available. This number

samples would be fairly representative of the distribution in most area.3

It has been shown that the SCR-615-B radar has a beam filling effect,

so that some small, low cells beyond 60 miles may have been missed, There were

also distinct radar shadow areas in the southeasterly and south southwestern
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Fig, 48, Tracks of cells with leg Ze>
4,5 for one day when 500 mb flew was
south southeast.



sectors. There may have been other small areas because of hills and buildings

near M.I.T. Squares llN3W and llNlE had consistent minima of thunderstorm

activity.

When radar tracks were plotted, it was found that southeastern Mass-

achusetts and Maine had fewer thunderstorms when the 500-mb flow was southwest,

rather than westerly. This suggests that sea breezes restricted the thunder-

storms to inland areas. With northwesterly flow, cell tracks usually ended in

southeastern Massachusetts, suggesting that slight downslopes flow to the east

of a plateau was sufficient to dissipate thunderstorms,

It is interesting to see what effect lakes have on air mass thunder-

storms. Quabbin reservoir, Massachusetts, (IN7W) had a "significant" maximum

number of hail days when the 500-mb flow was southwest to west, Thunderstorms

would occur there readily, without the presence of any 500-mb trough,

Sebago Lake, Maine, (11N3E) did not seem to have any significant effect,

but it was 110 miles away from the radar set.

Lake Winnipesaukee, New Hampshire, (9N2W) was 90 miles away and showed

a signigicant" maximum number of cell formations when the 500-mb flow was

west northwest to north and a "significant" minimum of cell dissipations when

the 500-mb flow was southwest to west.

The evaporation from inland lakes is apparently more important for occur-

rences of air mass thunderstorms than the "damping" effect of cooler water

surfaces. Even square 5S2W, the upper Narragansett Bay of Rhode Island has a

maximum number of cell formations when the 500-mb flow is southwest to west.



830-

All the sea and coastal areas have a minimum number of thunderstorms.

When the 500-mb flow has a larger component from land areas, there are more

thunderstorms over the sea. There was a maximum area of cell dissipation

about 25 miles off the east coast of New England.

Apparently the lack of turbulence over water and the relatively cool

surface temperatures inhibits thunderstorms, Voyles and Zavos (1953).

There is a rapid decrease of thunderstorms as they approach the coast

and sea from inland areas. This is apparently because sea breeze fronts can

move inland as much as 20 miles.

The terrain of inland New England becomes more complex because of hills,

valleys and mountains.

It was very apparent that the 500-ft contour line in Maine seemed to be

an excellent separation of thunderstorm frequency, with a minimum to the east.

This forested, sparsely inhabited area with occasional sea breezes is contrasted

by the rugged, high terrain to the west where thunderstorms are more frequent.

Square 7N1W which contains the Catamount Mt. (1,334 ft) and the Blue Hills

Range (1,220 ft) had a definite "significant" maximum of thunderstorm and

hailstorm activity.

Squares 4N1OW containing the Bald Mt. (2,700 ft), Prospect Mt (2,537 ft),

the Dome (2,754 ft) and the Elbow and 4N4W containing Pack Monadnock Mt. (2,310

ft) had maximum thunderstorm days, formations and dissipations of cells.

The uplift caused by these mountains apparently causes this maximum of

thunderstorm activity.



Square 2N5W had significant maximum number of hailstorm days and

time with hailstorms, when the 500-mb flow was southwest to west. Square

2N6W had a maximum number of cell dissipations and formations when the

500-mb flow was west northwest to north. They both are valleys in a

plateau.

It is interesting to see the effect of the major river valleys of

New England. There is a definite maximum frequency of thunderstorm activity

on the eastern sides of the Connecticut River Valley and the Merrimac River

Valley of New Hampshire. With the normal westerly flow, there would be up-

slope flow on the eastern sides of these valleys, especially where there are

steep escarpments on the east side of the Connecticut River Valley. The

surface temperatures should be higher on this east side during the afternoon

because the ground would be more perpendicular to the sun's rays and as a

result of the downslope motion which occurred on the west side of the valley.

The Ware River Valley (lS7W) which joins the Connecticut River Valley,

had a "significant" maximum time of hailstorms when the 500-mb flow was south-

west to west. Square 2S7W had a "significant" maximum of thunderstorm

activity when the 500-mb flow was southwest to west. It is in the eastern

Connecticut River Valley with the Minnechoag Mt. (931 ft). Square 3S7W in

the eastern Connecticut River Valley had a "significant" maximum of cell

formation when the 500-mb flow was west northwest to north.

Square 5N2W in the Merrimac River Valley of New Hampshire had "signif-

icant" maximum times and days of hailstorms for all combined flows and also

cell formations when the 500-mb flow was west northwest to north.
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Square 4S5W in the Quinebaug River Valley of Connecticut had a

"significant" maximum number of days for all combined flows and square 6M5W

had a "significant" maximum time of thunderstorms when the 500-mb flow was

southwest to west.

The Plains of northeastern Rhode Island have a 500 ft plateau immedi-

ately to the west and presumably have higher surface temperatures because of

slight downslope flow when westerly winds occur. They are also near the

average line of sea breeze convergence during the warm months.

Square 483W has a "significant" mgximum number of times and hailstorm

days when the 500-mb flow is southwest to west and has a "significant" maximum

number of cell formations when there is a closed low or deep trough at 500-mb.

Square 382W has a "significant" maximum number of cell formations when

the 500-mb flow is southwest to west and a "significant" maximum time of

thunderstorms when the 500-mb flow is west northwest to north.

It was noted that cell formations tended to reoccur on the same day

and in the same area on days with sea breeze convergence lines in southern

New England. The dates were 8 June 1965 and 9 June 1965 and cells reformed

in areas 155W, to the lee of the Ware River of Massachusetts, 4S5W in the

Quinebaug River Valley of Connecticut and 4S7W on a plateau east of the

Connecticut River Valley.

Some "significant" areas of maximum hailstorm activity have been

mentioned. The sea breeze convergenoe zone can explain the maximum number

of hailstorm days in extreme southeastern New England. The eastern side of

the Connecticut River Valley 'f Massachusetts, the Merrimac River and Pemi-

gawasett River Valleys of New Hampshire have more hailstorm days than on

the western sides,



Appendix C shows that there were 28 out of 64 days when a 500-mb

trough of any intensity was present. Less than 40% of thunderstorm days

in the Connecticut River Valley, western Massachusetts, most of southern

Vermont, central New Hampshire, the Portland, Maine area and east of

Portsmouth, New Hampshire had 500-mb troughs present.

Squares 136W, the Ware River Valley and 1N7W, the Quabbin reservoir

strikingly showed thunderstorm days with no 500-mb troughs serving as

"triggering" mechanisms.

Hailstorm days usually had 500-mb troughs present, except possibly

in areas 1S4W and 135W.
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6. CONCLUSION AND SUGOESTIONS FOR FUFURE RESEARCH

The SCR-615-B radar data, corroborated by other radar and surface

observations, show that there are preferred areas for air mass thunderstorms

in New England. They can partly be explained by local topographical features.

These areas can be very important as occurrence of air mass thunderstorms

during the daytime accounted for an absolute minimum of 30% of all thunder-

storm days for the period 1958 through 1965.

In general, most of the air mass thunderstorms were accompanied by

500-mb flow from a westerly sector And there was a maximum occurrence in

A band about 30 miles wide extending from just east of Concord, New Hampshire

to central Massachusetts and then to northern Rhode Island. There was a

minimum frequency of occurrence in Maine where the elevation was below 500-ft

MSL, in the sea areas off eastern New England and in extreme southern New

England and its adjacent sea areds. The seaward sides of sea breeze fronts

generally outlined areas of minimum frequency of occurrence.

The eastern sides of the Connecticut River Valley and the Merrimac

River Valley of New Hampshire consistently had more thunderstorms than the

western sides, The east side would normally have higher surface temperatures

and more upslope flow. The Quinebaug River Valley of Connecticut also had

a maximum number of thunderstorm days.

Hailstorms mainly occurred on the eastern sides of the Connecticut

River Valley of Massachusetts, the Merrimac and Pemigawasett River Valleys

of New Hampshire and in southeastern New England near the sea breeze con-

vergence lines.



The scale of resolution, 10 by 10 mile squares, was too crude to permit

detailed observation of the effects of individual mountains. Definite maxima

in frequency of occurrence or formation were observed, however, in the vicinity

of several of the most outstanding peaks such as squares 4N10W with four rugged

mountains nearly 3000 ft high and 4X4W containing Pack Monadnock Mt. (2,310 ft).

Area 7NlW, which is on a plateau containing four mountains, is a very significant

area for maxima days, time and formations of air mass thunderstorms. Apparently

the close proximity of the Merrimac River Valley and sea breeze fronts in this

hilly terrain explain these maxima.

Cell formations have maximum frequency in the eastern part of the

Connecticut River Valley where there are steep escarpments along the western

edge of a plateau, the Merrimac and lower Pemigawasett River Valleys.

Evidence of the effect of inland lakes is not conclusive, but does sug-

gest that they encourage thunderstorm Attivity. Apparently the availability

of moisture by evaporation is more important that any cooling effect at the

lake's surface.

Cell dissipations have a maximum about 25 miles off the eastern New

England coast north of Boston, Massachusetts, which agrees with surface obser-

vations at Truro, Cape Cod, Massachusetts, and immediately to the west of the

500-ft contour in Maine.

It is suggested that radar observations be made of nocturnal thunder-

storms to determine whether they occur in the same areas of southern New

England and to improve statistics of thunderstorm frequencies.

A new 10.7 cm radar withb etter resolution and without the haiow noa

in the southeast has been installed at M..T.



Sea breeze convergence fronts and accompanying thunderstorms or heavy

showers can now be studied in the southeastern sector. It would be interest-

ing to determine how far these thunderstorms travel before dissipating over

Cape Cod Bay and Massachusetts Bay.

With better resolution, it might be possible to determine whether or

not there is a significant lee wave effect. The only evidence now available

are visual observations near Copicut Hill, Massachusetts. The new radar can

observe this area and other possible sites.

The life cycles of these storms could be determined by RHI scans of

the3 vertical cell structures.

If any future climatological and synoptic studies of thunderstorms are

made, they should be separated into air mass and non-air mass thunderstorms.

Then it could be easily determined how important air mass thunderstorms are

during drought years. Upper air charts at and above the 300-mb level should

be analyzed for possible "triggering mechanisms".

This study could be enlarged to include thunderstorm distributions

associated with fronts and squall lines. Some of the latter studies indicate

similar distributions to those of air uass thunderstorms. It is the author's

opinion, based on surface observations near Vineyard Sound and Buzzards Bay,

Massachusetts, that thunderstorms accompanied by cold fronts would occur more

uniformly.

Finally, all results should be coordinated with hydrological and cloud

seeding projects to enable better planning for water conservation and depol-

lution.



A P P E N D I X A

List of days when the SCR-615-B recorded cells with log ZeZ6.5,
which were not of the air mass typeo

Year: Oate: Synoptic Situation:

1965 h May Cold front, nocturnal
10 May Cold front in northern New England extending

east-westo
13 May Cold front.
17 May Cold, warm fronts;complex. Early morning,

afternoon thunderstormso
27 May Warm front;squall line in eastern New Yorke
2 Jun Quasi stationary front

24 Jun Cold front
29 Jun Cold front in central New England
17 Jul Cold front extending east-west
18 Al Quasi stationary front in northern New England;

warm front in Long Island
2 Aug Cold front in central New York; warm front in

Now Jersey.
10 Aug Cold front
13 Aug Cold front extending east-west
17 Aug Quasi stationary front in central New England
19 Aug Cold front. Early nocturnal thunderstorms
28 Aug Cold front
16 Sep Warm front, Early morning thunderstorms
24 Sep Cold front
10 Oct Closed 500mb low0  Early morning, afternoon

thunderstorms. No radar data.
15 Oct Warm front. frough with southwest flow at

500mbo No radar datao

1964 26 Mar Warm front
15 Apr Occluded front
9 May Warm front

13 May Warm front
19 May Warm front

8 Jun Cold front
10 Jun Cold front
20 Jun Cold front, squall line
21 Jun Quasi stationary front
24 Jun Cold front
30 Jun Warm front, becoming air mass
1 Jul Cold front extending east-west
2 Jul Quasi stationary front

21 Jul Warm front
22 Jul Quasi stationary front in northern Now England
23 Jul Quasi stationary front in southern New England
29 Jul Cold front



APPEN DIX A (continued)

Year:

1964

13 Mar
14 May
18 May

3 Jun
6 Jun
9 Jun

28 Jun
2 Jul
8 Jul

17 Jul
18 Jul
19 Jul

8 Aug
23 Aug

3 Oct

24 May
1 Jun

19 Jun
26 Jun

9 Jul
13 Jul
21 Jul
23 Jul

26 Jul
1 Aug
7 Aug
8 Aug

14 Aug
17 Aug
20 Aug
29 Aug

24 Apr
26 Apr
16 may
26 May

J a te:

1963

1962

1961

Aug
Aug
Aug
Aug
Aug
Sep
Sep

Synoptic Situation:

Cold front
Cold front, squall line
Cold front
Cold front
Quasi stationary front
Cold front
Hurricane

Cold front; complex
Occluded front
Cyclone and warm front to the southwesto
Tropical storm to the southwest
Cold front in extreme northern New England
Cold front
Quasi stationary front
Warm sector; squall line in western New York
Occluded front
Stationary front
Warm sector
Cold front extending east-west
Within 12 hours of cold frontolysis
Quasi stationary front
Cold front

Front
Cold front
Cold; warm front
Quasi stationary front
Cold front
Cold front
Cold front
Quasi stationary front; cyclone in western
New York
Cold front
Occluded frontlysis
Cold front
Cold front
Cold front
Cold front
Cold front
Cyclone southeast of Cape Cod

Varm front
Occluded front; complex
Cold front
Cold front



APPENDIX A (continued)

Synoptic Situation:Year:

1961 29 May
6 Jun

9 Jun

10 Jun

Cold front
Cold front extending east northeast to west
southwest,
Quasi stationary fronto No radar data,
Southwest flow at S0ombo
Stationary fronto Trough with west flow at
500mbo
Warm front moving southward
Cold front
Cold front
Cold front. Investigated by Baily (1962)o
Warm sector
Cold front
Quasi stationary front in southern New York
Quasi stationary front
Quasi stationary front
Stationary front
Warm front, cyclone to southwest
Cold front
Hurricane E3sther
Tropical cyclone to the southwest
Quasi stationary front

Cold front
Quasi stationary front in southeastern
New England
Quasi stationary front off east coast
Cold front off Cape Cod
Occluded front
Cold front in central New York
Cold; quasi stationary front
Warm front; complex
Cold front in central New York
Warm front
Cold front
Cold front in New Jersey
Warm front
Quasi stationary front
Warm front; complex
Tropical cyclone
Cold front becoming quazi stationary
Warm; cold front
Cold front
Hurricane
Quasi stationary front in Toutharm New Zngl .n

Quasi stationary front in southern New Engled

Jun
Jun
Jun
Jun
Jul
Jul
Jul
Jul
Jul
Jul
Aug
Sep
Sep
Sep
Oct

1960 31 Mar
12 May

13
16
31
3
h

15
17
214
30
1
3

114
27
30
3
8

23
12
19
20

Hay
Play
May
Jun
Jun
Jun
Jun
Jun
Jun
Jul
Jul
Jul
Jul
Jul
Aug
Aug
Aug
Sep
Sep
Sep

Date:



APPENDIX A (continued)

Year: Date: Synoptic Situation:

1960 28 Sep Quasi stationary front off southeastern
New Englando

30 Sep Quasi stationary front southeast of Boston
20 Oct Cold front; cyclone
24 Oct Occluded front
16 Nov Front. Investigated by Mason (1965).

1959 2 Apr Warm front in New Jersey; occluded front in
central New Yorko

6 Apr Cold front
26 Apr Cold front
22 May Cold front in northwestern New England
10 Jul Cold front
13 Jul Quasi stationary front extenling northeast-

southwest
14 Jul Quasi stationary front extending northeast-

southwest
15 Jul Quasi stationary front off toutheastern

New England coast
21 Jul Oyclone, fronts
18 Aug Cold front
30 Aug Quasi stationary front in scuthern New England

1 Sop Quasi stationary front in eastern New York
3 Sep Cold front

15 Sep Quasi stationary front in scuthern New Engla-nd
24 Sep Cold front in central New Ergland extending

east northeast-west southwest
1 Oct Cyclone, cold front
6 Oct Quasi stationary front in southern New Engla-d
7 Oct Quasi stationary front in scuthern New England
9 Oct Quasi stationary front in southern New Engla.d;

complex
24 Oct Warm front; complex

1958 4 Aug Cold front
7 Aug Cold front
13 Aug Cold; warm front
14 Aug Quasi stationary front



A P P E N D I X

Number of days in each year, from March through November,
the SCfR-615-B recorded cells with log Ze-. 4.5,,,

when

Air mass (total usuable)

log Ze. 5,5

Synoptic situation:
Cold front

Quasi stationary front

Warm front

Occluded front

Warm sector

Hurricane or
tropical storm

Cyclone

Total non-air mass

500mb flow (clockwise)

Southwest to west

West northwest to North

Closed low or
pronounced trough

South southwest

Southeast to
south-southeast

North

T otal air mass

1958
0

0

3

:i

0

0

0

0

0

1959
8

2'

7

9

2

0

0

0

2

20

6

1

0

-1

-0

1960
10

3

10

7

5

2

0

2

0

26

5

2

3

0

0

1961
10

8

1

1

2

0

2hj

6

13

0

1

0

1962
13

5

12

2

0

1

0

0

1

16

7

3

2

0

1

1963
9

8

6

3

1

2

2

1

0

15

6

1

0

0

0 0 0 0 1

8 10 10 13 9



APPENJiIX B (continued)
Number of days in each year,
tho SCR-615-B recorded cells

Air mass (total usuable)

log 5a.5o5

Synoptic situation:
Cold front

Quasi stationary front

Warm front

Occluded front

Warm sector

Hurricaxe or
tropical storn

Cyclone

Total air mass

500mb flow (clockwise)

from March through November, when
with los s 5,5

1964
5

5

11

5

6

1

0

1

0

24

1965
9

7

12

3

4t

0

0

0

0

19

Southwest to west

'West northwest to nor th

Closed low or
pronounced trough

South southwest

Southeast to
south southeast

North

Total air mass

1958 to 1965
65

38

70

38

21

7

3)

6

3

148

log zees 5,5

0

6, .8



APPEIT IX C

List of days and their characteristics when the SCR-615-B radar
recorded air nass colls with log Ze> 5.5-

Hour
Start: End:Date:

500mb flow
Dog: Kts:

500 meter flow Stations
Deg:

AL
IDL

at:
m/sec reporting

sea breeze:
PWN
ACK

BOB; PWN;
PVD

1965 7 Jun ih 25

8 Jun 1217

9 Jun 1510

18 Jun 1125

23 Jun 1503

30 Jun 1208

1 Jul 1522

9 Aug 1040

18 AUG 1310

1964 3 Jul 1016

6 Jul 0930

7 Jul 1134

8 Jul 1200
1235
1357

9 Jul 1415
1703

1963 14 Jun 1241

17 Jun 1402
1540

14 Jul 1357

25 Jul 1531

1646 270

1656 260

2130 270

1515 Trough
360

2110 240

2013 270

2216 250

1709 230

1920 240

2136 260

1931; Trough

1517 290

1212
1333
1439
1420
2158

270

250

1703 300

1517
1705
1648

280

220

1810 340

25 190/18

270/0630 200
240/21

35 290/04
250/16
310/O4

05 350/11
35 230/13

240/26
40 03D/17

320/08
35 310/20

230/25;
35 MSG

200/25
30 ISG

180/08

40 220/12
249/20
338/14
340/12

25 311/14
234/10

20 175/18
208/14

20 125/04
095/10

20 112/16
184/18

25 216/08
2 18/10

40 173/30
184/311

I2P 230/0
218/08

300/02
240/22
260/10
240/27
250/04 BOS
240/26
330/05 BOS
010/03
220/24
230/34
280/03 BOB
170/06
290/04
240/36
210/22
220/32
230/11
210/19

208/18 BOS
MSG

077/02
MG

32.1/14 BOS
240/12
195/10 BOS
254/16

223/12
MSG

171/16
273/16
181/16
240/12
211/14
207/24
240/14k
258/16

PWN

BOS

BOS

BOS

BOB

PvD
PWN
PVD

PYD
PWN
PvO
PVD

PWN

PVD

PVID

PWN~
Pv3
PWN
PV1)

PVD
PWII
?VD

PVD

PWN

PFWN

PN
PVD
FWN
PVD



APPENDIX C (continued)

500 meter flow Stations
Deg: m/sec reporting

Hour
Date: Start: End:
1963 28 Jul 1454 1700

29 Jul 1258

7 Aug 1240
1502

14 Aug 0858

12 Sep 1027

1962 31 May 1353

6 Jun 1636

11 Jun 1113

15 Jun 1540

24 Jun 1335

12 Jul 1400

16 Jul 1235
1438

18 Jul 1217

19 Jul 1424

31 Jul 1011

6 Aug 1250

21 Aug 1131

28 Aug 1427
1602
1704

1961 22 May 1136

13 Jun 1434

500mb n

Troug

1634 220

1438 260
1855
1131 280

1716 240

2110 250

1808 300

1620 260

Trough

1557 240

1816 260

Trough

290

1515 300

1502 260

1724 240

1338 270

1600 330

2025 250

.w
Ms:

ALB
IDL

at:

hk 184/10
219/16

20 205/20
212/22

20 213/16
262/20

40 300/30
318/38

45 286/36
226/28

35 278/08
245/20

45 030/14
158/04

40 313/12
244/24
316
351/04

30 303/12
214/18

25 224/10
276/44
136/14
099/18

20 232/06
182/08

20 316/20
253/10

30 198/14
205/12

20 183/32
197/24

50 296/22
270/22

10 035/14
047/24

15 065/08
317/20

30 200/18
232/22

PW BI
ACK

203/16 BoS
227/12
209/22
230/30
287/20 BOS
224/24
316/28
303/32
217/40
211/52

265/06
252/36
024/14 BOB
020/28
295/24
239/o
045/20 BoS
250/12
202/34 BOSB
220/34
291/18 BOS
278/22
042/06 BOS
050/10
255/18 BOB
241/16
305/12 BOs
250/16
202/20 BOS

MSG
208/24
213/18
258/10 Bos
270/22
170/10 BOS
097/26

310/16 BoS
252/14
261/28
248/40

sa breeze:
DS; PWN;

PVD

PVD
PWN
PVD
PWN
PVD
PWN
PVD
PWN
PVD

PN
PVD
NN
PVD

PVD
PWN
PVD
PWN
PVD

PVD

PVD

PVD

PVD

PVD
PWN

PWN

PWN
PVD
PWN
PVD

1628

1422
1530
1637

1901535
1652
1704



APPENIX C (continued)

Date:
1961 21 Jun

Hour
Start: End:
1316 1458

6 Jul 1227

10 Jul 1237
1740

11 Jul 1235

13 Jul 1200

29 Jul 1225
14"4
1509

11 Aug 1314

23 Aug 0701

1960 18 May 0729

24 May 0648
1044

1 Jun 1605

11 Jun 1343

19 Jul 0834
1450
2036

20 Jul 0928
1338

5 Aug 0631

10 Aug 0736
1014
1051

11 Aug 0824

25 Oct 0752
0934

1959 6 Jul 1223

500mb
Dog:
220

1600 260

1654 270
2130
1400 290

1437 290

1307 270
1452
1630
1715 270

0710 24Q

1419 T

1020 280
1950
1630 T

280
1655 T

280
0922 240
1614
2316
1025 270
1518
0742 250

0818 250
1024
U13
0849 250

0803 320
0934

1807 220

roug

rougl

roug

flow
ts:

500 meter flow Stations
Dg: nm/sec reporting

at: sea breeze:
ALB
IDL

35 183/26
187/42

25 276/06
097/08

25 295/24
278/10

35 255/18
244/26

20 177/12
204/10

20 182/18
135/22

30 220/12
282/16

25 127/12
186/06

1 046/10
280/08

20 108/04
251/16

1 294/18
20 302/14

1 191/12
10 190/02
35 308/28

239/18

40 307/24
322/16

30 175/22
152/10

35 323/02
260/08

30 062/12
037/12

45 355/44
297/32

50 229/14
258/14

PWN
ACK

194/36
169/24
191/16 BOS,
202/06
250/10 BOS
262/18
262/24
244/34
050/16
237/18
227/22 BOS
194/02

263/20
244/34
025/04 BOS
120/06

112/14 BOS
165/08
089/18 BOS
181/32
076/10 BOS
229/10
231/18
156/08
226/10
246/20

319/20
?20/10
185/08
093/10
078/06
186/14

054/08
018/14

MSG
255/38

BOS

BOS

BOS

185/20 BOS
MSG

BOS; PWN;
PVD

PWN
PVD
PWN
PVD

PVD
PWN
PVD
PWN
PVD

PVD
PW

PWN
PVD

NWPVD
PWN

NO
PVD

PWN

PVD

PWN

PVD

PWN
PVD

PWN
PVD

PWN
PVD



APPENDIX C (continued)

Hot
Date: Start:
1959 22 Jul 1314

24 Jul 1335
1852

30 Jul 1625

31 Jul 2042

5 Aug 0800
0837
1032
1130

27 Aug 1448

31 Aug 0745

500mb
End: Deg:

1537 270

1658
2011
1625

240

260

2140 230

0804
1015
1044
1243
1706

250

300

1643 240

500 meter flow
Deg:

at:
AEB
IOL

flow
Kts:-
20 188/1

10 192/08
40 236/16

268/22
05 177/22

157/08
15 215/08

233/20
10 164/24

078/26

15 270/02
268/12

20 180/18
189/22

Stations
M/sec reporting

sea breeze:
PWN
ACK

268/14
255/26
239/24
242/28
205/14
175/10
201/32
217/10
130/02
148/06

019/14
244/12
217/18
236/12

BOS; PWN;
PVD

BOS

BOS

PWN
PVD
PWN
PVD
PWN
PVD
PWN
PVD
PWN
PVD

PWN
PVD
PWN
PMD

(1)~e (2)
D ate:1 Showalter index

ALB PWN ALB PW
IDL ACK IDL ACK

L)
7 Jun

8 Jun

9 Jun

(0)

(2)
07/12002 08/0000Z
+3 +5 +2 +4
.2 +8 +3 +7
08/1200Z 09/OOOOZ
+2 +2 +3 +3
+4 +4 -1 +5

lo/ooooZ
MSG +3 +1

+4 +3
18/1200Z

18 Jun +5 +4
+4 MSO

(3)
Freezing
level
(thousands
of feet)

(5)
Precipitable,
water (Surface
to 500mb)
(inches)

(3)
13o5

(4)
-%.50

(4)
Relative
Humidity
(Surface to
500mb) (%)

(6)
Vertical
at 6omb

(5)

velocity
(cm/seo)

(6)

13o5 *.50

12oo 75 %l

8eo 40-50 05

1965

-^l



APPENDIX C (continued)

(1) (2)
23/1200Z 2)4/00007

1965 23 Jun +3 +9 +4 -2
+5 +5 -1 +4
30/1200Z 01/OOOOZ

30 Jun +7 +8 +2 +3
+3 +6 +2 +4
14/1200Z 15/OOOOZ

14 Jul +5 +11 0 +1
+6 + 5 +4 0
09/1200Z 10/OOOOZ

09 Aug +2 +4 0 0
+1 +7 -2 2
18/1200Z 19/0000Z

18 Aug -1 +3 +1 +2
+4 +5 +2 +5
10/1200Z 11/0000Z

10 Oct MSG MSG MSG MSG
+3 MS0 +4 mS0

03/1200Z 04/000=
1964 3 Jul -1 +1 -2 -1

-1 +1 -3 MSG
06/1200Z 07/OOOOZ

6 Jul +1 -1 +3 +6
+5 0 +4 +6
07/120OZ 08/0000z

7 Jul +4 +3 +4 +2
+4 +4 +6 +6
08/1200Z 09/0000Z

8 Jul +3 +3 +3 +5
+2 +6 +7 +6
09/1200Z 10/0000Z

9 Jul +4 +4 +4 +4
+3 +9 +3 +4

28/1200Z
1963 28 May+18 +15

+16 +16
14/1200Z

14 Jun +6 +5
+9 +5
17/1200Z

17 Jun +4 +2
+8 +4
14/1200Z

14 Jul +7 +6
+2 +4

29/OOOOZ
+5 +13
+3 +13
15/0000Z
+2 +7
+3 +6

(3) (14)

13c5 -^ 50

1000 .50

1420 -%50

1400 --,%-50

14oO ^N60

7 0 70

(5)

al

O7

12o0 ^,60

9.0 -'50

10,0 50 0,75 MSG

9o5 -^50 1 +005

l005 r70 >

1200

940

UNK 0.75 MSG

U1NK ^-Oo6

UNK

15/0000z
+6 +2
+7 +10

10.5

o~6

-'1

"0

MSG

+0,5

(6)

145



APPENDIX C (continued)

(1) 4
25/1200Z

1963 25 Jul +1 -2
+4 +4
28/1200Z

28 Jul +3 +4
+2 +6
29/1200Z

29 Jul - 1 +2
0 +3

07/1200Z
7 Aug +2 +3

+4 +4
14/1200M

14 Aug +2 0
+4 +5
13/OOOOZ

12 Sep +3 +2
+1 +4

2)
26/0000

-.1
+4

29/0000
0

-2
0

08/O0oo
+2 +3
0 +10

15/0000Z
+7 +12
+9 +10

l2.0 a 60

31/1200Z 01/=000Z
1962 31 MaY 0 +3

+6 +13
06/1200Z

6 Jun +5 +2
+6 +5
11/1200Z

11 Jun 0 +1
+1 +5
15/1200Z

15 Jun +3 +3
+9 +7
24/1200z

24 Jun +1 +2
+1 0
12/1200Z

12 Jul +2 +1
+4 +3
16/1200Z

16 Jul +9 +14
+8 +5
18/1200M

18 Jul +5 +5
+5 +2
19/1200Z

19 Jul +4 +3
+6 +4

+1 +4 12.0

0,75 ~0,.o.010,5

13o0

1100

^000

0.0

o0.5

+2 +2
07/0000Z

+5 +7
+5 +11

12/OOOOZ
+5 +2
+1 +1

16/0000Z
-1 +11
+4 +2

25/OOOOZ
+1 -1 12.0 #*-. 1

0 1100
'1

.9 1000
LO

'3 10a5
'3

'5 11.5

1 ^00

0.8 evo.o

018 0.0

008 ft-0.0

+3
13/0000Z

-1
+0

17/OOOOZ
+16 +
+10 +1

19/0000Z
0

+2 +
20/OOOOZ

+6 +
+6 4

(3) (14) (5) (6)

130

14 .O .1

13o5

ln.5 .4.00

1 ^00

l14 ".1

^-. 1 ^ -0.0

00

^ 145 0.0

^ 1



APPENDIX 0 (continued)

(1)
01/0000Z

1962 31 Jul +4 +3
06/1200Z

6 Aug +3 0
+3 +14
21/1200Z

21 Aug +3 +4
0 +2

28/1200YZ
28 Aug +3 +5

+5 +5
05/120OZ

05 Sep +7 +14&
+4 MSG

(2) (3)

+2 +14
07/0000Z
+1 +1
+2 +7
22/0000Z
+4 +2
+5 +4
29/OOOOZ
+2 +14
+5 +2
06/OOOOZ
+3 +10
+1 +12

Date:

(14) (5) (6)

1 4010

1 +0425

1 +0.25

12.0

14o0

12.5

120

12.5 ^%.1

Synoptic situation:

1965 7 Jun

8 Jun

9 Jun

18 Jun

23 Jun

30 Jun

14 Jul

9 Aug

A quasi stationary front was in northern New England,
with west flow at 500mb

A warm front was in southern Canada, with a sea
breeze in southern New Englando Ther was a west
flow at 500mbo

Surface trough and a sea breeze were in southern
New England, with west flow at 500mbo

A weak surface trough was in northern New England,
and a trough at 500mb was in eastern New England.

A warm front was i n northern New England, with a
weak surface trough in the Hudson River Valleyo
There was southwest flow at 500mbo

A surface trough was in southern New England,
with a trough and west flow at 500mbo

A surface trough was in eastern New England with
west flow at 500mbo

A quasi stationary front was in northern New England,
with southwest flow at 500mbo
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APPENDIX C (continued)

Synoptic situation:

1965 18 Aug

10 Oct

1964 3 Jul

6 Jul

7 Jul

8 Jul

9 Jul

1963 28 May

14 Jun

17 Jun

A quasi stationary front was in northern New England,
with west flow at 500mbo

A surface cyclone was east of Boston and a trough
at 500mb had a southwest flowo

A warm front was in extreme northern New England
with a surface trough south of Albany, There
was a west flow with maximum winds near 43ON at
500mbo

A surface cyclone was east of Boston. There was
a closed 500mb low in northern New Hampshire, with
a trough in eastern New England.

A weak surface cyclone was near Portland, Maine.
There was a trough at 500mb near 600W, with
west northwest flow.

A surface cyclone was in the Gaspee peninsula,
and also in northern Virginia. There was a closed
500mb low in Gaspee, with a trough in northern
New England extending to the Great Lakes. The
500mb flow was west.

A surface cyclone was off the New Jersey coast
and near Montreal. There was a trough at 500mb
in extreme northern New England extending to the
Great Lakes, with west southwest flow in
New England.

A surface anticyclone was southeast of Cape Cod,
with west southwest flow at 500mbo

A weak surface cyclone was near Montreal and
West Virginia with a surface trough between them.
There was a closed 500mb low near Prince Edward
Island with west northwest flow0

A cold front was in extreme northern New England,
with a surface trough in eastern New Englandn The
500mb flow was west,

Date:



APPENDrX C (continued)

Date: Synoptic situation:

1963 l4 Jul A weak surface cyclone was in southern New Jersey,
with a warm front extending eastward. There was a
trough at 500mb with strong southwe3t flow.

25 Jul A quasi stationary fron4 extended from Nova Scotia
to New Brunswick. There was a trough at 500mb
extending southwestward from just southeast of
Nantucket, with north flow in New England.

28 Jul A surface trough was along the east coast of
New England with a trough at 500mb in central
New Englando

29 Jul A surface trough was in central New England and
the 500mb flow was southwesto

7 Aug A surface trough was in central New England with
west southwest flow at 500mbo

l4 Aug A surface trough was along the east coast of
New England. There was a weak 500mb trough in
central New England with west flow and a jet
stream along the south coast of New England

12 Oct A surface cyclone was moving through the
St. Lawrence Valley with a cold front moving
into New York from the Great Lakes. There was a
strong touthwest flow at 500mb.

1962 31 May A quasi stationary front was in central Maine,
with a squall line in southern New England. The
500mb flow was west.

6 Jun A surface cyclon was east of Boston. There was a
closed low at 500mb in southeastern New Brunswick
with a trough extending to Nantucket and the east
coast. The 500mb flow was northwest with a jet
stream extending from Syracuse to Nantucket.

11 Jun A surface cyclone was near Prince Edward Island
with a cold front moving into central New England
by sunset. The 500mb flow was westo

15 Jun A surface trough was in eastern New England.
There was a closed 500mb low over Long Island
with a trough in central New England,



APPEND)IX C (continued)

Date: Synoptic situation:

1962 24 Jun A surface cyclone was moving into the St. Lawrence
Valley near Montreal. There was southwest flow at
500mb, with a jet stream extending from Albany,
New York, to Caribou, Maine,

12 Jul A surface cyclone was near Montreal with an
approaching cold front in eastern New York and
a squall line in eastern New England. There was
southwest flow at 500mb with a jet stream off
the southern New England coast.

16 Jul A surface cyclone was in central North Carolina.
A pronounced 500mb trough extended east to west
through central New England, with a jet stream
in southern New England,

18 Jul Cold frontogenesis was in western New England
during the afternoon. There was a trough witA
west flow at 500mb and a jet stream was off tie
southern New England coast.

19 Jul A weak surface cyclone was in the Bay of Fundy
with a surface trough along the east coast of
New England. A trough at 500mb was off the east
coast with northwest flow.

31 Jul An occluded front was approaching central New
York. There was a trough at 500mb with west flow
and a jet stream was in southern New England with
diffluence in northern New Englando

6 Aug Stationary frontolysis was in western New England
with southwest flow at 500mb0

21 Aug A quasi stationary front was off the southern
New England coast0 A trough at 500mb hai west
northwest flow and a jet stream was in central
New England.

28 Aug Hurricane Alma was moving northward along the
Delaware Coast. A closed 500mb low was in central
New York and with the hurricane. There was south
southeast flow in eastern New England0

5 Sep A cold front was in western New England and a
surface cyclone was off the Delaware 4oasto There
was west southwest flow at 500mb,



APPFNDIX C (continued)

Date: Synoptic situation:

1961 22 May A surface cyclone was east of Cape Cod, with a
trough in eAstern New England. A trough at 500mb
was near 68'W and in Vermont, with northwest flow,

13 Jun A weak surface cyclone was in Nova Sootia, with
a cold front extending westward through north

central Maine. There was west flow at 500mb with
weak confluence.

21 Jun There was cold frontolysis in western New Englando
The 500mb flow was south southwest with a jet stream
from New York, NJ 0 , to Caribou, Maine.

6 Jul A surface trough was in central New England and
a trough at 500mb had west flow0

10 Jul A weak surface trough was in central New England
with a trough and west flow At 500mbo

11 Jul There was westerly flow at the surface and west
northwest flow at 500mbo

13 Jul A weak surface cyclone was in northern New York,
with a surface trough extending to Boston, Mass.
There was west northwest flow at 500mb with
confluence in eastern New York*

29 Jul A weak surface cyclone was in eastern Maryland,
with a surface trough extending northwest to
New York. There was a trough at 500mb with a
west flow.

11 Aug A weak surface cyclone was near northern New York.
There was west flow at 500mb with diffluence in
New England.

23 Sep A quasi stationary front extended from central
Ohio to Tennessee and the 500mb flow was
southwest,

1960 18 May A surface cyclone was moving southeastward off
the Delaware Coast with a surface trough in
New England. There was a trough at 500mb in
eastern New England.



APFPEN )IX C (continued)

Date: Synoptic situation:

1960 24 May A weak surface cyclone was in northern New York,
with a surface trough in southern New England.
There was a closed 500mb low in southern Vermont
with an elongated east to west oriented trough.

1 Jun A surface cyclone was near Montreal with a surface
trough extending into southeastern New England.
There was a closed 500mb low in northern New
Hampshire with a trough in eastern New England.

11 Jul A surface cyclone was off the Delaware Coast.
A closed 500mb low was near Nantucket with a
trough extending southwestward.

19 Jul A surface cyclone was east of Boston with a
quasi stationary front south of New Englando
A cold front was approaching central New England
by the late evening. There was a weak 500mb
trough in eastern New York with southwest flow.

20 Jul A surface cyclone was in the Gaspee peninsula
with a cold front southeast of Nantucket. There
was a closed 500mb low in the Gulf of Maine with
a trough in eastern New England and west flow0
The jet stream extended from Albany, N.Y., to
Boston, Masao

5 Aug A weak surface cyclone was in southern New York
with a quasi stationary front off the Jelaware
Coast. The 500mb flow was strong from the west
southwest.

10 Aug A surface cyclone was in New York, with a warm
front off the Delaware Coast0 There was west
southwest flow at 500mb with confluence in
northern New Englando

11 Aug A surface cyclone was east of Nantucket. There
was a weak 500mb trough in eastern New England
with west flow and confluence in southern
New England.

25 Oct A surface cyclone was off the southeastern Kaine
coast. There was a closed 500mb low in the Gulf
of Maine with northwest flow and a jet stream
extending from Vermont to Nantucket, Mass 0
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Date: Synoptic situation.

1959 6 Jul A surface trough was in the Hudson River Valley,
The 500mb flow was southwest, with a jet stream
extending from Pennsylvania to eastern New York,

22 Jul There was light southwest flow at the surface
and west flow at 500mbo

24 Jul A squall line was in the southern Hulson River
Valley and the 500mb flow was west southwest.

30 Jul There was light southerly surface flow and
southwest flow at 500mb0

31 Jul A surface cyclone was near Montreal with a cold
front in western New York. The 500mb flow was
west southwest*

5 Aug A surface cyclone was in eastern Pennsylvania
with a warm front extending southwestward off
the New Jersey coast. There was a closed 500mb
low in northeastern New York with a trough in
western New England and west southwest flow.

27 Aug A quasi stationary front was near 690W in the
Gulf of Maine with west northwest flow at 500mbo

31 Aug A quasi stationary front extended from the Gulf
of Maine to Portland, Maine and northeastern
New Hampshire, with southwest flow at 500mbo



APPENDIX D
Characteristics of radar echoes from air mass thunderstorms0

(2)
Number of cells
with log &e
?::4.5 Z5.5

(3)
Horizontal
cell size (mi)
log &eas60 5
"Average" Maximum

(5)
Number of cell
groups

(4)
Cell heights
(thousands of
feet)

(6)
Average
between
(mi)

distance
groups

1965

1964

(1)
7 Jun
8 Jun
9 Jun

18 Jun
23' Jun
30 Jun
14 Jul

9 Aug
18 Aug

3 Jul
6 Jul
7 Jul
8 Jul
9 Jul

1963 14 Jun
17 Jun
14 Jul
25 Jul
28 Jul
29 Jul

7 Aug
14 Aug
12 Sep

1962 31 May
6 Jun

11 Jun
15 Jun
24 Jun
12 Jul
16 Jul

(1)
Date:

(3)
12x5
lOx7
12x6

3x3
20x5
10xLI
124

8x4
5x5

(14)
30 to 140

UNK
25 to 50

UNK
30 to 50

30
140

25 to 140
18 to 22

(6)
25
20

20

20
-

20
-Z

(5)
3
0
6
0
14
0
14
0
0

(2)

18 :
46 l'
144
16 *
29
17 1
18 4

17 I

28
147 7,

11
15 j

8 -

22 1
12 :
31 4
16 11
36 11
10 11
32 11
13
20

26 2:
5 :
94

10
124
35 4
12 I

6x3
3x2
8x4
li

11x4
3x2
9x4
3x2
3x2

8x5
8x4
3x3
4x3
22

5x4
ijx3
6x4
8x6

1Ox 6

6x4
8x6
5x5

lOx6

22
2x2
2x2
22
8x6
2x2

15x5
20x10
10x6
10x5

x3

20x10
12.6
10x5

8x7
12x8
20x10
10x5
12x6

lbx5

13x8
8x5
5x5
3x3
22

20x10
3x3

20 to
15 to
30 to
35 to
28 to
37 to

UNK
10 to
20 to

35
25
35
40
40
43

30
35

25 to 4o
20

20 to 30
UNK
25

35 to 40
UNK
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(1) (2) (3) (4) (5) (6)
1962 18 Jul 12 4 8x8 12x8 20 to 29 3 23

19 Jul 1 0 3x2 6x3 UNK 0 -

31 Jul 23 8 10x8 20x10 20 to 35 7 30
6 Aug 15 7 6xA 10x6 UNK 2 25

21 Aug 3 0 xh 5x5 UNK 0 -
28 Aug 23 0 3x3 7x5 25 4 20

1961 22 May 56 11 6x5 lOx5 25 7 21
13 Jun 9 4 10x5 10x5 17 to 30 4 47
21 Jun 9 1 2x2 5x3 20 0 -
6 Jul 27 2 4x 7x7 15 to 30 2 30

10 Jul 205 33 10x6 26x8 13 to 30 21 25
11 Jul 5 2 3x3 7x7 30 3 60
13 Jul 3 0 2x2 2x2 25 0 -
29 Jul 54 18 2x2 8x6 UNK 5 25
11 Aug 23 3 2x2 5x5 17 to 39 2 23
23 Aug 2 0 lxi lxi 19 0

1960 18 May 29 0 2W2 3x3 20 0
24 May 80 4 2x2 3x3 22 0
1 Jun 5 0 x3 5x UNK 2 40

11 Jun 53 0 2W2 4x 10 to 32 3 45
19 Jun 46 2 5x5 20x5 30 to 35 15 35
20 Jul 16 0 x3 7x3 UNK 0 -

5 Aug 8 0 2x2 2x2 UNK 0
10 Aug 20 0 5x3 20x8 22 to 25 2 55
11 Aug 7 1 2W2 10x8 UNK 0 -
25 0ct 3 0 5x4 5x4 UNK 0 -

1959 6 Jul 26 0 x3 7x5 40 1 -
22 Jul 19 8 8x5 15k7 UNK 6 30
24 Jul 23 0 5x4 10x9 20 to 38 5 35
30 Jul 3 0 lx 2x2 30 0 -
31 Jul 21 0 3x3 10x1O UNK 2 20

5 Aug 25 0 2x2 10x5 UNK 0 -
27 Aug 54 0 10x8 loxio 3o to 40 2 25
31 Aug 195 15 12x6 23x8 35 to 42 16 23
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Date: Number of
tracks

W415miP15mi
1965 7 Jun 5 3

8Jun 9 8
9 Jun 24 19

18 Jun 2 0
23 Jun 24 10

30 Jun 25 3

Track lengths
Average (mi)
415i -15mi

9 20
10 26
9 37

7 22

14 Jul
9 Aug

18 Aug 114 4

10 Oct - C5

1964 3 Jul 27
6 Jul 6

8 18

- -D

20
11

Remarks

Two distinct tracks were
along a sea breese
convergence line. Cells
with log Zea 4.5 end by
2130 EST
No cells with log Ze a5.5
A band extending in a north
northeast to south south-
west orientation moved
eastward. Cells with
log Ze?14.5 end by 2110 EST.
Cells with log Zer5.5,
moved east southeastward. A
band of weak intensitiy has
a east northeast to west
southwest orientation.
Cells with log Zew-4.5 end
by 2011 EST.
Nocturnal thunderstorms.
A band of weak intensity
to the northwest of Boston,
Mass., extended in a
northeast to southwest
orientation. No cells with
log Zer5.5
Nocturnal thunderstorms,
No cells with log

No radar data available,
Line of thunderstorms
formed in the early after-
noon from NAS Quonset
Point, R.I. to NAS South
Weymouth, Mass.

Nocturnal Thunderstorms0
Cells with log zea55
had a diame ter of 20 miles
in the area about 40 miles
south southeast of Bos ton,
Mass. Cells with
log ZeZ4.5 dissipated by
1934 EST.
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Number of
Tracks

e-15mi :015mi

Track lengths
Average (ml)
415mi 715mi

1964 7 Jul
8 Jul
9 Jul

1963 28 May

la Jun 16
17 Jun 8

14 Jul 26 3 8 20

25 Jul
28 Jul
29 Jul

7 Aug

14 Aug 9 12

12 Sep 17 9

1962 31 My 12 33

6 Jun 3 1

10 38

10 31

10 32

10 20

11 Jun
15 Jun
24 Jun

12 Jul 31 14 8 27

16 Jul 0
18 Jul 5

19 Jul 1 0

A band with weak intensity is near
Boston, Mass.

AN/CPS-9 data. Investigated by
Nason (1965)

Cels with log Zeak.5 are north of
the 500mb maximum wind belto
No cells with log Zea5.5.
Investigated by Stem (1964)
Investigated by Stem (1964)
Investigated by Stem (1964)
Investigated by Stem (1964)
Cells with log Zoek4.5 dissipated by
1855 EST. Investigated by Stem (1964).

Cilptt log Z.,2 .5 are north
Ofrtmewit stre.iu
0ll in Vermont near a cold front
are excluded.

Cells with log Ze.5.5 are moving
east southeastward. Nocturnal
thunderstorms. Investigated by
Nason (1965).
Cells with log Zea.45 are northeast
of the jet stream.
No cells with log Zer545.
No celis with log Zen5.5
No cells with log Zer5.5. Cell with
log Zeo&.5 are southeast of the
Jet stream.
No cells with log Zer5.5. Cells with
log Zex4.5 are north of the Jet
stream,
No cells with log ZeM5,5-
Cells with log ZeAz.5 are north of
the jet stream. Larger cells are
moving from the northwest,
No cells with log Ze5,5,

Remarks
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Number of
tracks

415mi,015mi

RemarksTrack lengths
Average (mi)
-15mi15mi

1962 31 Jul 17 9

6 Aug
21 Aug
28 Aug

5 Sep

1961 22 Ma
13 Jun
21 Jun
6 Jul

10 Jul

11 Jul
13 Jul
29 Jul
U Aug

23 Aug

1960 18 may
24 May

1 Jun
11 Jul
19 Jul

16
2

23

54
7
7

24
288

3
3

26
21

2

20 Jul 12 1

10 33

23
35
18

5 25

5 Aug
10 Aug

Cells with log ZeZ 4 .5
are north of the jet
stream. A band with weak
intensity is in New
Hampshire0

No cells with log Zem5.5.
No cells with log ZeZ5.5.
Cells with log ZerLk.5
near the hurricane are
excluded0
AN/CPS-9 Datao

Nocturnal thunderstorms -

Band developed after
1740 EST. Cells with
log Zer45 dissipated by
2130 EST. 'arous cells
and short tracks0

No cells with log Ze55

Cells with log Zez 4.5
move from the southwest
to the south of Boston0
No cells with log Ze5.5

No cells with log Ze=55
Nuierous cells. Cells with
log Ze&4.5 end by
1950 EST.
No cells with log Ze=5.5
No cells with log Zea.5o5
Nocturnal thunderstormsa
Bands to the west south-
west of Boston are
associated with cold
frontolysis.
No cells with log ZeM5.5.
Cells with log Zez4.5 are
north of the jet streamo
No cells with log Zec5.5
No cells with log Zea.5

Date:

-m
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Date: Number of
tracks

41,5mi-p15mi

frack lengths
Average (mi)
45mi 1P15mi

1960 1 Aug 7 0

25 Oct 3 0

1959 6 Jul

22 Jul
24 Jul

26

14
17

30 Jul 2 0

31 Jul 15 5

5 Aug
27 Aug
31 Aug

7 18

25
51

183

Remarks

Cells with log Zex4.5
end by 0849 EST.
No cells with log Zem3,5.
Cells with log Zer-4.5
are northeast of the
jet stream.

No cells with log Zea5.5.
Cells with log Ze4.5 are
southeast of the jet
stream.

No cells with log Ze$5.5.
Two tracks in the
Connecticut River Valley
area are oriented south-
west to northeast. Cells
with log Zer.4.5 end by
2011 FZT.
Sea breese front to 5000
feet. No cells with
log Zea5.5.
No cells with log Ze*5.5o
Two tracks of nocturnal
thunderstorms are oriented
southwest to northeasto
No cells with log Ze.54
No cells with log Ze5.5o5
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