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The observations of the anisotropies of the Cosmic Microwave Background (CMB) radiation,

by the WMAP satellite, has provided a determination of the baryonic density of the Universe

(Ωb·h2) with an unprecedented precision. Using this value, the primordial abundances of the light

elements can be calculated in the framework of the Standard Big–Bang Nucleosynthesis model

(SBBN). While the agreement is excellent forD and good for4He, there is a difference of a

factor of≈3 for 7Li. In addition, in a few halo stars,6Li has also been observed at a level well

above SBBN predictions. To enable a more reliable calculation of these7Li and6Li yields, two

nuclear reactions important for the nucleosynthesis of7Li and6Li have been studied experimen-

tally: D(α,γ)6Li and 7Be(d,p)2α. We also investigate the inportance of the np→dγ reaction in

SBBN. Even though, the lithium primordial production is notwell understood, BBN can be used

to constrain theories beyond the standard model.
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1. Introduction

Standard Big–Bang Nucleosynthesis (SBBN) can now be considered as a parameter free model
now that the nuclear reaction rates, the number of neutrino families and the baryonic density of the
Universe have been independently determined. In particular, the valueΩb·h2=0.0223±0.0008 has
been extracted from the observations of the anisotropies ofthe Cosmic Microwave Background
(CMB) radiation, by the WMAP satellite[36]. With this very precise value of the baryonic density
and the main nuclear reaction rates under control, it shouldbe possible to calculate precisely the
abundance of the light isotopes. When compared to primordial abundances deduced from observa-
tions, the agreement is excellent forD, good for4He but there is a discrepancy of a factor of≈3
for lithium and of orders of magnitude for6Li. Nevertheless, considering only4He andD, BBN
can be used to constrain non-standard models.

2. Primordial abundances
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Figure 1: Recent lithium observations in halo stars [33, 34, 25, 5]: lithium abundances as a function of
metallicity. The arrows represent the corresponding primordial abundances obtained by extrapolation to
zero metallicity.

Figure 1 shows the most recent observations of lithium in metal poor halo stars, display-
ing a plateau as a function of metallicity. Assuming that lithium has not been much depleted at
the surface of these stars, the presently observed abundance reflects to the primordial one[37].
From their observations, Ryan et al.[34] have obtained a relative primordial abundance of Li/H =
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(1.23+0.68
−0.32)×10−10 (95% c.l.) by extrapolation to zero metallicity (Fe/H=0). Their quoted uncer-

tainty takes into account systematic uncertainties including stellar depletion. The observations by
Asplund et al.[5] confirm these data, showing also a small increase in lithium abundance as a func-
tion of metallicity, leading to Li/H =(1.1−1.5)×10−10 at Fe/H=0. The observations by Meléndez
and Ramírez[25] do not show the same tendency and lead to a slightly higher primordial abundance
Li/H = ≈ 2.34×10−10 due to a different value of adopted effective temperature for the extraction
of the abundances. We assume that the presence of a plateau isan indication that depletion should
not have been very effective and adopt the Ryan et al. value.

Contrary to7Li which can be both produced and destroyed, deuterium, a very fragile isotope,
can only be destroyed after BBN. Clouds at high redshift on the line of sight of even more distant
quasars are thought to be the best candidates for the determination of its primordial abundance. We
adopt the average(2.78+0.44

−0.38)×10−5 of the observed D/H values in these cosmological clouds as
calculated by Kirkman et al[23].

4Heprimordial abundance is deduced from observations in HII regions of compact blue galax-
ies, considered as most primitive, and extrapolated to zerometallicity. Unfortunately, these abun-
dances are affected by systematic uncertainties: values ofYp = 0.242± 0.0021[19] andYp =

0.25± 0.001[20] were obtained from the same set of HII regions but different atomic physics
input. Hence, we prefer to use the safe interval of 0.232< Yp <0.258[29].

Contrary to4He, 3He is both produced and destroyed in stars so that the evolutionof its abun-
dance as a function of time is not well known. Because of the difficulties of helium observations
and the small3He/4He ratio,3He has only been observed in our galaxy. The3He abundances ob-
served in galactic HII regions display a plateau as a function of the galactic radius and in a limited
range of metallicities: -0.6< [Fe/H] < 0.1 [6]. It is however difficult to extrapolate this galactic
value (spanning only a limited range of Fe/H) to zero metallicity so that3He is not usually used to
constrain BBN. An upper limit on3Heprimordial abundance is given by Bania et al. [6]:3He/H =
(1.1±0.2)×10−5, based on their best observed source.

To these four isotopes whose origin is at least partially dueto SBBN, one is tempted to add
now 6Li, which has been observed[28, 7, 3, 5] in a few low metallicityhalo stars; i.e. the same stars
that exhibit a lithium (7Li+6Li) plateau. In particular, Asplund et al.[5] report the detection at a
2–σ level of 6Li in nine halo stars. These observations [28, 7, 3, 5] seems to indicate a plateau as a
function of metallicity at a level of6Li/7Li ∼0.05. The origin of6Li in these halo stars is not known
but to compare6Li observed abundances with SBBN, we will assume, based on these observations,
the approximate range: 10−12 < 6Li/H < 10−11.

3. Nuclear data

Even though many more reactions can be considered, there areonly 12 nuclear reactions that
govern4He, D, 3He and7Li primordial nucleosynthesis: p↔n, n(p,γ)D, D(p,γ)3He, D(d,n)3He,
D(d,p)3H, T(d,n)3He, T(α ,γ)7Li, 3He(n,p)3H, 3He(d,p)4He, 3He(α ,γ)7Be, 7Li(p,α)4He and
7Be(n,p)7Li.

The νe + n→e− + p and ν̄e + p→e+ + n rates are calculated within standard weak interac-
tion theory (with small corrections[15]) using Fermi distributions for the neutrinos and the neu-
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tron lifetime (885.7±0.8 s world average[16]) for normalization. Note, however,that a recent
measurement[35] gives a significantly different value for the neutron lifetime 878.5±0.7±0.3 s.

The np→dγ rate cannot be obtained from first principles but Chen and Savage [8] and Ru-
pak [32] have used “Effective Field Theory" (EFT) to derive the cross section. They give also the
theoretical uncertainty by estimating the magnitude of thefirst neglected term in their expansion:
4% [8] and 1% [32] repectively. In our previous calculations, we have used the Chen and Savage
theoretical rate.

The rates from for the ten remaining reactions are obtained from experimental data. Because
they are high enough, the cross sections can be measuredat the energies relevant for BBN. Compi-
lations and analysis of these experimental data have been done by Descouvemont et al.[14]. Using
the R–matrix formalism to fit the experimental data, they provide reaction rates and associated
uncertainties. Other rates for the≈20 remaining reactions connecting4He, D, 3He and7Li come
from various sources including the NACRE compilation[1] but their impact on BBN were found to
be negligible. An extended network (≈100 reactions) is used for6Li, 9Be, 10B and11B production.

More recent experiments, at BBN energies, have slightly reduced the uncertainties for the
D(d,p)T and D(d,n)3He[24], 3He(α ,γ)7Be[27] and other reactions (see § 5).

4. SBBN primordial abundances compared to observations

Figure 2 summarizes the concordance between the primordialabundances deduced from ob-
servations (§ 2) or from primordial nucleosynthesis and thebaryonic density provided by WMAP
within the ΛCDM model[36]. The Monte–Carlo calculations[9] were performed using the reac-
tion rates and uncertainties provided by Descouvemont et al.[14] or from theory for the twelve
most important reactions. It shows that the agreement is perfect for deuterium: when using the
WMAP baryonic density, SBBN gives D/H =(2.60+0.19

−0.17)×10−5 to be compared with the average
value(2.78+0.44

−0.38)×10−5 of D/H observations in cosmological clouds[23]. The exact convergence
between these two independent methods is claimed to reinforce the confidence in the deduced
Ωb·h2 value. The conservative limits on4He abundances accommodate easily the SBBN calcu-
lated one. The calculated3Heabundance corresponds to the upper limit deduced from the Bania et
al. observations[6]: an indication that3Hehas not much evolved since BBN.

On the contrary, the SBBN calculated7Li abundance, is a factor of 3.4 higher than the primor-
dial abundance deduced from their observations by Ryan et al[33, 34]: Li/H = (1.23+0.68

−0.32)×10−10.
These authors have extensively studied and quantified the various sources of uncertainty: extrap-
olation, stellar depletion and stellar atmosphere parameters. Nuclear uncertainties on the twelve
important reactions, reflected by the width of the7Li curve does not alleviate significantly the dis-
crepancy. They are taken into account, together with the uncertainty on the baryonic density in the
calculation of the SBBN range Li/H = 4.15+0.49

−0.45×10−10. It is surprising that the major discrepancy
affects7Li since it could a priori lead to a more reliable primordial value than deuterium, because of
much higher observational statistics, small scatter, and an easier extrapolation to primordial values.
Note that other SBBN calculations[13, 12] using other sources for the reaction rates also display a
similar discrepancy for7Li. Non nuclear depletion of lithium[31] have been invoked to solve this
discrepancy but it is also important to exclude any nuclear solution.
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Figure 2: Abundances of4He (mass fraction),D, 3He and 7Li (by number relative to H) as a function
of the baryon over photon ratioη or Ωb·h2. Limits (1-σ ) are obtained from Monte Carlo calculations[9].
Horizontal lines represent primordial4He, D and7Li abundances deduced from observational data (see text).
The vertical stripe represent the (68% c.l.)Ωb·h2 limits provided by WMAP[36].

The calculation of6Li BBN production was plagued by the nuclear uncertainty affecting the
cross-section of the D(α ,γ)6Li reaction. When using the NACRE[1] rate limits one obtained a
factor of 20 uncertainty on6Li yield: 2.3×10−15 < 6Li/H < 3.7×10−14, more than two orders of
below the observed values!
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5. New experiments concerning SBBN lithium production

It is well known that the valley shaped curve representing Li/H as a function ofΩb·h2 is due to
two modes of7Li production. One, at low baryonic density produces7Li directly via 3H(α ,γ)7Li
while 7Li destruction comes from7Li(p,α)4He. The other one, at high density, leads to the for-
mation of7Be through3He(α ,γ)7Be while 7Be destruction by7Be(n,p)7Li is inefficient because
of the lower neutron abundance at high density. Since the WMAP results point toward the high
Ωb·h2 region, a particular attention should be paid to7Be synthesis that will later decay to7Li. In
particular, the7Be+d reactions could have been an alternative to7Be(n,p)7Li for the destruction of
7Be, by compensating for the scarcity of neutrons at highΩb·h2. An increase of the7Be(d,p)24He
reaction rate by factors of 100 would alleviate the discrepancy[9]. The rate for this reaction can
be traced to an estimate by Parker[30] based on the single experimental data available[21] above
the energies relevant to Big Bang nucleosynthesis. An experiment[2] was performed using a7Be
radioactive beam at the Louvain-la-Neuve (Belgium) facility down to the 0.15–0.38 MeV energy
range comparable to the Gamow peak (0.15–0.56 MeV) at 1 GK. The cross section at BBN en-
ergy was found to belower[2] than the Parker estimate ruling out this nuclear solution to the7Li
discrepancy.

The D(α ,γ)6Li reaction used to be the main source of uncertainty (a factor of ≈20[40, 18]) in
6Li production when using the NACRE[1] rates. Despite these large uncertainties both in SBBN
yields and primordial abundance determinations, there is ahuge difference between them. How-
ever, before proceeding any further, it is important to clarify the nuclear physics aspects. The
D(α ,γ)6Li reaction is the main path for6Li SBBN production while destruction proceeds from the
6Li(p,α)3He. Both rates are available in the NACRE[1] compilation. While the latter reaction rate
is reasonably known at BBN energies, the former suffers froman uncertainty of more than one or-
der of magnitude. This is due to the difference between the only D(α ,γ)6Li data available at BBN
energies, measured indirectly via the Coulomb dissociation technique[22], on the one hand and
theoretical extrapolations from higher energies where direct measurements have been performed
on the other hand. The upper and lower rates found in NACRE originate from this difference be-
tween theory and experiment. A new Coulomb dissociation experiment was performed recently at
GSI[18] that provided data over a wide energy range from the high energy region where direct mea-
surements are available down to the BBN region. With a preliminary rate obtained by a R–matrix
fit to the D(α ,γ)6Li data (see Ref. [18] for details) we obtained an upper limitfor the 6Li yield
of 6Li/H<

∼1.5×10−14 at WMAP baryonic density, i.e. two orders of magnitudes below observed
values. The calculated uncertainty should now also includethose on the6Li(p,α)3He reaction rate
that were negligible before. Other potentially6Li producing reactions have a negligible contribu-
tion because they have negative Q-value (7Li(p,d)6Li and 4He(t,n)6Li) or a too low cross section
(3He(t,γ)6Li). For instance, multiplying the3He(t,γ)6Li reaction rate[17] by a factor of 1000 would
only increase the6Li yield by a factor of≈7 at WMAP baryonic density. Using a more realistic
factor would not affect significantly6Li production as shown by Fukujita and Kajino[17].

6. The theoretical reaction rates in SBBN

While various cross-sections have been reevaluated, one can wonder whether all nuclear physics
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has been explored in depth enough for the purpose of BBN. Our purpose is not to argue that current
nuclear data or theory cannot been trusted, we want to quantify to which extent BBN computations
are sensitive to these data and whether the7Li problem can find a solution in this sector. In our
previous works[9], we have used the Chen and Savage theoretical np→dγ rate with their associ-
ated uncertainties which were found to be negligible for BBNapplications. However, one would
prefer that this rate come, as the ten others, from experimental data at BBN energies. To evaluate
the impact of a change in the np→dγ rate we multiplied it by a constant factor. Surprisingly,7Li
is the most sensitive isotope to such a change while, for instance,D is little affected. In particu-
lar, a value of the rate smaller by 30% enables to re-concile7Li abundance, computed assuming
WMAP determination of the baryon density and spectroscopicobservations. This can be explained
by an increased neutron abundance leading to a higher7Be destruction by7Be(n,p), the dominant
destruction mechanism. It is thus important to investigatethe np→dγ cross section.

n+p→d+γ
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Figure 3: Theoretical np→dγ cross section compared to experiments. The solid line represents the total
cross section (left axis) while the dashed line correspondsto the relative M1 contribution to the total cross
section (right axis) as calculated by Chen and Savage[8]. The hatched area represents the Boltzmann factor
at a typical themperature (arbitrary units). The dotted line is its product with the total cross section showing
by its maximum that the main contribution of the cross section to the rate should lie around 25 keV.

In Fig. 3 is represented the total np→dγ cross section calculated by using the Chen and
Savage[8] prescription. Chen and Savage[8] and Rupak[32] compared their theoretical results
with the seven experimental data points from Ref.[4]. The agreement between theory and exper-
iment was very good but verified mostly outside of the region of interest where the cross section
is rather flat. On the same figure, is shown the product of the total cross section. with the Boltz-
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mann factorEexp(−E/kBT) for a temperature of 109 K. With the steep rise of the cross section at
low energy, the maximum of the product, and hence the dominant contribution to the rate, occurs
aroundECM ≈25 keV, much below the lowest experimental data point atECM ≈400 keV reported
in Ref.[4]. An other experimental check of the EFT calculations is provided by the work of Tornow
et al.[39] at the Duke Free–Electron Laser Laboratory. Withtheir polarized gamma ray beam,
they were able to determine the M1 versus E1 contribution in the dγ →np inverse reaction down
to ECM ≈170 keV. However, the energy range experimentally reached still remains too high and
while the data shows a good agreement for therelativecontributions to the cross section, they do
not constrain itsabsolutevalue. Fortunately there exist low energy experimental data[38, 26] since
the last review[4] that span the SBBN energy range (Fig. 3). It shows the excellent agreement
between EFT theory and experiment down to BBN energies excluding the 30% change that would
reduce the7Li yield to the observed one.

7. Conclusions and perspectives

Even though, the lithium primordial production is not well understood, BBN together with4He
andD observations can be used to constrain theories beyond the standard model. As an example,
we can mention scalar-tensor theories of gravity. These theories are motivated by high-energy
theories trying to unifying gravity with other interactions which generically involve a scalar field in
the gravitational sector, in particular, in superstring theories (see Ref. [10] for a recent investigation
of BBN within this framework). An other example is the study of the possible variation of the
fundamental coupling constants, between BBN time and now, that would affect, in particular, affect
the np→dγ rate and alleviate the7Li discrepancy[11].
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