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Abstract

The first part of this thesis is concerned with reflection and
transmission of acoustic waves at layer boundaries in boreholes. These
scattering effects produce events that are oblique with respect to the main
wavefield on iso-offset sections. Such events have been recorded by the
full waveform acoustic logging tool EVA., Wave type conversions are also
currently observed. Ray modeling reveals the sensitivity of the apparent
velocity of such events to the dip angle of the interface. Two sections of
real data are presented and interpreted : dip angles of the interfaces are
estimated.

In thinly-bedded formations, the exact location and amplitude of
velocity contrasts across boundaries are sometimes difficult to estimate.
These features are greatly affected by the minimum spacing between the
probe receivers. Improvements of the spatial resolution can be made,
however, when the spatial sampling of the formation is less than the tool
minimum spacing. The second part of this thesis proposes a recursive least
squares inversion of travel times for formation slownesses based on the
Kalman filter. This formulation emphasizes the noise content of the data
as a factor limiting resolution. A data adaptive inversion scheme is also
developped in order to sharpen large contrasts in formation properties.
Results from synthetic data as well as real data processing are presented.

Thesis Supervisor : M.N. Toksbz
Title : Professor of Geophysics
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CHAPTER 1 : INTRODUCTION

Acoustic wave propagation in a fluid-filled borehole has been

extensively investigated by numerous authors (Biot, 1952, White and

Zechman, 1968, Tsang and Rader, 1979, Cheng and Toksbz, 1981,

Schoenberg and Marzetta, 1981). These studies succeded in describing and

predicting the features of the wavetrain resulting from an impulsive source

set on the borehole axis. Because of its sensitivity to the formation

petrophysical parameters, Full Waveform Acoustic Logging tools proved to

be very informative. The considerable amount of data provide very

complete lithologic information. Recent developments extended

investigations toward ever more complex borehole environments such as

cased boreholes or permeable zones (Tubman, Cheng and Toksaz, 1984,

Mathieu and Toksbz, 1984)

More recently, data recorded by the EVA tool from Soci6td Nationale

Elf Aquitaine (Production) showed that waves are scattered at acoustic

discontinuities intersecting the borehole. Resulting events can be

analysed in terms of reflection at and transmission through layer

boundaries.

An important feature of these events is that some are their ability to

be converted at interfaces from one wave type to another (i.e. P to S, S to

P, Stoneley to S). Therefore, energy of individual modes, as can be deduced

-9-



from the theory of propagation in homogeneous formation, is constantly

re-distributed among all participating modes when propagating in a

layered formation. For body waves, such phenomena cannot take place at

interfaces intersecting the borehole normally. Therefore, an important

part of the present study is to show the sensitivity of these events to the

dip of the interface. The analysis shows that the dip of interfaces can be

estimated from this information.

A simple and better-known example of transmission event is obtained

when the propagation mode is preserved across layer boundaries when

waves travel from source to receiver. Here, again, such phenomenon will be

characterized by its apparent velocity as seen from the tool moving along

the borehole. This apparent velocity strongly depends on the source

receiver separation. In other words, the travel time of a given type of wave

will not correspond to any of the individual layers travelled through but

rather to a travel time average of all encountered layers.

In a second part a method to determine the velocities for individual

layers is introduced. A reccursive least squares inversion of travel times

for transit times (i.e. formation slowness) is proposed. The choosen

formulation allows control over the depth resolution. It will be developped

for single travel time determination tool and will be extended to

incorporate multiple travel time determinations.
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Although issues discussed in this work involve the same phenomena in

essence, their study requires specific methods. Therefore, we choose to

treat them under two separate chapters which will be formatted as two

self- contained papers.
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CHAPTER 2: EFFECTS OF LAYER BOUNDARIES

ON FULL WAVEFORM ACOUSTIC LOGS

AND DIP ESTIMATION

Introduction

In September 1983, recordings were made in the Burch well in

Michigan using the full waveform acoustic logging tool EVA of Societe

Nationale Elf Aquitaine (Production). EVA is composed of 5 transmitters at

the top spaced 25 cm apart. Twelve receivers are located below the

transmitters, each separated by 1 meter. The uppermost receiver is 1

meter below the lowest transmitter. This original geometry achieves

spacings between transmitter and receiver that range from 1 meter to 13

meters. The sources are fired in sequences of increasing spacing values.

Shoots are triggered every 150 ms. The tool was run at the very slow speed

of 6 ft per minute with only 12 combinations of transmitter and receiver,

yielding a particularly dense spatial sampling of the formation. A

convenient way to display the recorded data is to plot sections of only one

combination of transmitter and receiver versus depth (see Figure 1).

These iso-offset sections may be qualitatively read as conventional logs

showing the various arrivals, headwaves (P and S), guided waves (pseudo-

Raleigh and Stoneley), with their relative velocities and amplitudes. In

addition, the records show rather unusual events: waves are scattered at
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the interfaces propagating with constant apparent velocities. Since they

cut across the usual arrivals at an angle, these waves will be referred to as

oblique arrivals. Figure 2 shows some examples from the Burch well. Such

arrivals have been observed at other sites, (Koerperich, 1978; Serra, 1984).

They are related to bed boundaries or other discontinuities intersecting

the borehole. In this paper we study these events using ray theory.

An important aspect of these waves is that a P wave incident upon the

interface has generated both P and S transmitted and reflected waves.

Such a conversion cannot take place at a smooth boundary normal to the

borehole. One explanation is that P to S conversion takes place because of

the dip of the interface. The models we calculate show that both the

generation of converted waves and the velocities of the "oblique" arrivals

are sensitive to the dip. In fact dip can be calculated from oblique wave

properties. In the next section we model the "oblique" arrivals using optical

(high frequency approximation) ray theory. In the last section we analyze

examples from the Michigan data and compare these with other logs.

-13-



1 Modeling oblique events

The generation of oblique events is related to acoustic discontinuities,

either bed boundaries or fractures. First we use simple time-average

representation to account for the slope of the events on iso-offset sections.

This slope has the dimension of a velocity. We shall refer to it as an

apparent velocity and use the notation V. Ray tracing provides us with a

way to understand what is happening from the standpoint of arrival times.

Amplitudes would be harder to determine, and this is not included in our

present study. The source-receiver spacing is larger than a wavelength (a

minimum of 1 m vs 30 cm), so that we can neglect near field effects. We

shall also assume that Snell's law is applicable. Figure 3 shows the various

geometric configurations of rays that are transmitted across and reflected

at interfaces.

1.1 Horizontal interfaces

[A] Transmission across a bed boundary

In this case, the tool is astride the discontinuity. Only the waves

transmitted through it are recorded. In the case of body waves, the direct

arrivals are compressional waves emitted at the source in the borehole

fluid and criticaly refracted in the formation. These travel as headwaves in

the formation and are criticaly refracted back in the fluid to excite the

receiver.
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We now assume that a wave travelling in the formation with a velocity

7o is converted at the interface into another type of wave travelling with a

velocity vj. This wave will arrive some time between the direct wave of

velocity vo and the one of velocity v, such as P to S conversion. This

conversion will give rise to an oblique event whose apparent velocity is

Va = (1 -v&'>)- (1)

Note that the apparent velocity is independent of the source receiver

separation.

This phenomenon is somewhat similar to what happens at a sharp

boundary between two different lithologies; the tool averages the velocities

over its length and the record shows a linear gradient. The apparent

velocity obeys the same formula as above. In this case no conversion

occurs and the same type of wave is propagated through at a different

velocity.

One should note that this phenomenon may yield very high apparent

velocities. Let us consider, for instance, the case of a boundary between a

carbonate with v. = 22 kft/s and v, = 12 kft/s and an evaporite such that

vv = 14.5 kft/s and v, = 9 kft/s. In this situation the event will have a

slope (dz/dt = (1/vo - 1/vi)1) of 42.5 kft/s for the P to P wave

transmission event and of 36 kft/s for the S to S wave event. Moreover, a

conversion from P to S wave will have an apparent velocity of 15.2 kft/s,



whereas the reverse, from S to P wave will reach a tremendous 69.6 kft/s.

[B] Reflection on a bed boundary

When the tool is completely above or below the interface, some of the

rays are reflected back to the receiver. These waves are delayed relative to

those following the direct path. With the geometry shown in Figure 3 the

extraneous path travelled by the reflected waves is twice the separation

between receiver and reflector, thus the apparent velocity is

Va =vo/ 2. (2)

Since we shall discuss dipping interfaces later, let us consider the situation

where a conversion occurs at the boundary. In that case, half of the path

is travelled at vo and the other half at v I, the velocity of the converted

wave. Thus, the apparent velocity will be:

V2 = ( o-1 +Vo0 )~i (3)

[C] General pattern

To illustrate the oblique events, we consider a simple geometry with

one source and one receiver only. Let us consider a single horizontal

interface as shown in Figure 4. As the tool moves toward and across the

interface, different sets of transmitted and reflected events are generated.

When the recording tool is run up the hole, with the transmitters at

the top of the tool, the source meets the discontinuity first. Before the
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source reaches the discontinuity the receiver sees only the direct arrivals

and the reflections. When the transmitter is above the interface, the

raypaths cross the interface. When the tool has been moved an amount

equal to the spacing, the receiver is then above the discontinuity and

reflections can occur again. Thus, from a single interface, two events will

appear on the section at two separate depths when the depth interval is

equal to source-receiver distance. Hence, on iso-offset sections, reflections

will give rise to two symmetric patterns, a tool length apart, amidst which

transmission patterns may be seen.

Oblique events start at discontinuities or at a tool length from

discontinuities. To start an interpretation, one must look for paired events

and locate the discontinuity. To do so, it is advantageous to compare

sections with various spacings and correlate other logs with a section. One

can discriminate between reflection and transmission and address the

right model. We now understand that a single heterogeneity may give rise

to a large number of oblique events, even when only a restricted number of

wave types are involved. The theoretical pattern for two waves is shown in

Figure 4.

1.2 Dipping interfaces

Dipping interfaces considered hereafter are plane interfaces

intersecting the borehole with an angle a with respect to the vertical. We

shall denote apparent theoretical velocities computed for horizontal
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interfaces with vgo and those for dipping interfaces with vQ.

[A] Transmission

Transmissions with conversion on a dipping discontinuity are modelled

using simple ray theory. The details of the model are given in Appendix A.

A useful parameter is V = v 0/v 1 . In the appendix calculations were

carried out only for the case V < 1. In this case transmission occurs on the

part of the plane nearest to the transmitter. This is the geometrical

configuration displayed in Figure A-1. These results can be transposed to

the case where V > 1. In this situation the geometry is that of the previous

case where receiver and transmitter have been interchanged and the

raypaths reversed. The travel time curve and apparent velocity remain the

same.

For the geometry shown in Figure A-I we consider two cases:

1) V < cosa. Over the span of the tool the arrival time of the transmitted

wave varies between to, arrival time of the quickest body wave considered,

and t2,

t2 = Vcosa + N1 -- V2sina (4)to

The apparent velocity varies slowly with the position of the tool and one

can approximate its value, v, with the following formula

-18-



V9 0 _ Vcosa + V1 - V2sina - V (5)
Va 1 - V

2) V> cosa In this case, the situation is much the same as for a

horizontal interface.

Va = V 9 0

Those results are presented in Figure 5 as well as in Figure A-2. One should

remember that, unless we deal with waves such that

cosa <v 0 /v 1 < 1/cosa, a dipping interface will increase the apparent

velocity of any transmitted wave. In the case of conversion from P to S

wave or vice versa, this phenomenon should only appear for values of a

less than 55' , meaning a dip angle greater than 350, if formation Poisson's

ratio is v = 0.25 or up/ v = 3.

[B] Reflection without conversion

Again, the tool is completely above or below the discontinuity. We

modeled this case in Appendix B using the simple geometry of Figure A-3.

An exact analytical solution can be worked out. As opposed to the

horizontal interface case, the apparent velocity is now a function of the

distance to the reflector and the dip angle. A useful parameter is obtained

by scaling the vertical distance Lo the source receiver separations, let us

then define z=Z/S. The angle a is taken with respect to the vertical.

Va V_1 +_4z (z - 1)sin2 a (6)
-90 (2z - 1)sin2x
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The travel time curves are non-linear, but their curvatures are small for

small dips. The apparent velocity varies very quickly with dip angle. This

phenomenon may yield very high apparent velocities, up to five times the

formation velocity for an angle of a = 20'. Figure 6 presents a plot of

V,/voo versus a. Figur6 A-4 displays identical plots for various values of z.

These curves are located between the curves 1/sina and 1/sin2 a,

corresponding to the limiting cases of z=oo and z=1.

We shall take advantage of the sensitivity of the apparent velocity for

the dip angle to determine dips. From the previous remarks, we expect to

have a good angle resolution for medium to large dip angles.

[C] Reflections with conversion

A body wave travelling in the formation at the velocity vo impinges on

a plane boundary, dipping from the vertical with an angle a, and is

reflected back toward the receiver with the velocity v . Convenient

parameters are V = v 0/vI and z, the vertical distance from the source to

the discontinuity normalized with respect to the source-receiver spacing,

S. This case is modeled in Appendix C.

We computed the arrival time and apparent velocities in the situation

where the tool is completely above the discontinuity. Using the symmetry

of the problem, we can transpose the results to the situation where the

tool is below the discontinuity at a distance z < 0 from it. In such a case,

-20-



the results are similar to those in the previous case obtained for the

parameters 1/V and 1 - z. That is : va(a,V,z) = v(a,1/V,1-z). The

general behavior of the apparent velocity is very similar to the case of

reflection without conversion. Let us look at two cases.

1) V < cosa. In this situation, when the tool is completely above (or

below) the discontinuity, the reflected wave arrives at the receiver along

the interface at time t 2 , as defined in equation (5), earlier than the direct

arrival. The reflection point is some distance from the borehole. As the

tool is pulled up, the reflection point moves back into the formation. The

closer V is to cosa , the smaller the movement and the smaller the

variation in arrival time. Hence, the apparent velocity will increase with V.

2) V> cosa. The reflected wave arrives at the receiver at the same

time as the direct arrival, when the tool is completely above the interface

and the reflection point is on the borehole wall. When the tool is pulled

upward, this point recedes further into the formation; the greater the V,

the further it recedes. The apparent velocity will then decrease.

Thus, for a given angle, the apparent velocity will present a maximum

for V = cosa as we can see in Figure 7. It follows that, for a given

geometry, two different values of V will yield a single value for v,/v 9 0 . In

Figure 8 we show v/Vgo plotted versus a for a given V. These curves are.

shifted to higher apparent velocity as V increases. This trend is reversed

for V > 1. In this case we obtain slowly varying curves, very similar to those
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obtained when no conversion occurs. The curves are much more sensitive

to V when V < 1 because of the possibility of having a grazing emergence in

this situation. Moreover, these curves will intersect one another due to the

occurrence of the maximum described previously.

Unlike the horizontal interface, for a dipping interface the apparent

velocities of the reflections for a tool above or below the interface will not

be the same. For large z the apparent velocities tend to decrease for a

given angle of dip.

[D] Scattering point analogy

The problem of transmitted and reflected events can be viewed as a

diffraction problem. In the case of an interface normal to the borehole,

the loci of diffracting points are rings around the borehole. A scattering

point becomes a secondary source when excited by an incident wave from

the transmitter. Conversion phenomena can be taken into account by

setting an outgoing velocity different from the incoming one.

When the scattering point sits right next to the borehole wall, the

model yields a single hyperbolic arrival time curve (Appendix D) and one

obtains at the limit exactly the same results as those discussed in the

previous sections dealing with horizontal interfaces. That is, in the way

analyzed previously - two reflection events "linked" by a transmission

event. Figure 9 displays the travel time curves obtained with a scattering
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point embedded in the formation at one-tenth of the source-receiver

spacing for three velocity ratios. If no conversion occurs, the transmitted

event corresponds to the direct arrival. If a conversion occurs, we have

two reflection branches with an apparent velocity close to (vo~i + v -1 )1

and a transmission branch with an apparent velocity close to

(vo- 1 -v 1~1). For a scattering point deeper in the formation (Figure 10)

the travel time curve is shifted toward later times and becomes smoothed

out yielding higher apparent velocities.

The point that we want to emphasize here is the continuity between

the two reflections and the transmitted event. A similar analogy can be

made for the dipping interface.

Since any type of wave can, theoretically, be converted into any other

type, we expect complex features from real data. Surface, pseudo-

Rayleigh, and Stoneley waves are, by definition, restricted to the borehole

wall. However, at an interface they could scatter into both body (P and S)

and guided waves. Such diffraction patterns have been observed where

fractures intersect the borehole (Mathieu and Toks6z, 1984 report).

2 Analysis of real data acquired by EVA

In this section we analyze EVA data from the Burch well in Michigan.

The tool was run at a slow speed that enabled us to study oblique events
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over a 1000 foot thick section of the well. We chose two examples for

detailed analysis.

(1) The Brown Niagarian formation (see Figure 1) shows a number of

oblique events that can be produced by a single discontinuity in a

rather homogeneous formation.

(2) The second one consists of the sharp interface between the A-1

carbonate and the A-2 evaporite (see Figure 1).

Conventional logs corresponding to the section studied are presented

in Figure 11.

Results of the processing developped by Marc Larrere (1984) at ELF

AQUITAINE have been used. The processing has been designed to enhance

the oblique events and to separate events with different apparent

velocities. A detailed description of it has been reported in appendix E.

2.1 Example 1

The full waveform section of the Brown Niagaran formation is

displayed in Figure 2. The source-receiver spacing is 12.75 meters. We

shall concentrate on the events at depth 4900 ft, shown in enhanced form

in Figure 12.

By comparing sections with various spacings we note that the events

originating at about 4900 ft stay at the same location, whereas those at a
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depth of 4860 ft move with the different values of the spacing. Thus the

complex pattern is generated by a single discontinuity located at 4900 ft.

The events at depths deeper than 4900 ft and shallower than 4860 ft are

reflections and the intermediate ones are transmissions. These

transmissions are the first indication of a dipping interface.

These events start at the arrival time of either the P arrival or the S

arrival at the 4900 ft depth, and end respectively at the S arrival or P

arrival at 4860 ft a spacing length apart. Their measured apparent

velocities are about 24.6 kft/s. With up = 20.8 kft/s and us = 11.3 kft/s,

the theoretical apparent velocity is 24.7 kft/s. Several reflections can be

seen originating either from the P or S arrival. We designate them by Rp or

Rs. We have two R, and two Rs reflections. They are defined by their

apparent velocity in the table. In addition to the slight curvature affecting

Rei and Rs2, and the fact that some of the velocities are much higher than

those we would get from reflections on a horizontal plane, we also infer the

presence of a dipping boundary.

To determine the dip angle, we have to compute the v90 's , apparent

velocities yielded by a reflection on a horizontal reflector for each possible

situation.

Reflection of a P wave without conversion : 10.4 kft/s

Reflection of an S wave without conversion : 5.65 kft/s

Reflection P to S wave and vice versa : 7.3 kft/s



Now, for each of the reflections, we determine the ratio of the apparent

velocity to the corresponding 7v90 and then derive the angle a.

TABLE 1

No Conversion

va /10.4

1.25-594
0.93-+90*

va /5.65

1.96-+40*
1.24--59'

Conversion

oa / 7.3 with V=1.8

1.78--38*
1.33->52*

va /7.3 with V=0.5

1.52->53*
0.97-*90*

Discussion

From the values in Table 1, we come up with a set of three possible

angles. One set of data gives a = 904 (i.e., a horizontal interface). This

case, which does not exclude having a dipping reflector, only means that

the reflection occurred very close to the borehole wall.

The remaining angles are close to either 40' or 55' within reasonably

small intervals. The question is : which of these two will account for ALL

the measured apparent velocities ?

-26-

Rpl:
RP2.

Rsi:
Rs2 :

Va

13.0 kft/s
9.7 kft/s

11.1 kf t/s
7.0 kft/s



We notice first that angles close to 55" appear four times in the table

whereas the other value is approached only twice. Furthermore, Rp2 and

Rs2 can be explained in two ways, considering reflections either on a

horizontal interface or on a 55* dipping reflector. Both events are also

stronger than their faster neighbors. Finally, the transmission event

matches very well the theoretical apparent velocity for the horizontal

interface situation. From our modeling we know that this can only happen

when V=vo/vi is greater than, or equal to cosa. In our case, V=0.54 yields

an angular limit of 57'. In conclusion, we believe that a correct estimation

for a is 550, meaning a dip angle of 35'.

The final results of the interpretation are indicated in the table below.

The question mark underlines the ambiguity of having a conversion on a

horizontal interface.

TABLE 2

event wave type wave type angle
before after reflection

Rp 1  P - P yes

Rp P P no
S - P yes

Rsi P - S yes

Rs2 S - S yes
P + S no?
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2.2 Example 2

Iso-offset sections for Example 2 are displayed in Figures 13 and 14.

The offset is 12.75 meters. Figure 13 shows how the processing enhance

oblique arrivals. We shall concentrate on all events related to the sharp

boundary at depth 4750 ft.

The velocity of the compressional wave for the A-1 carbonate is about

21.7 kft/s, whereas, for the A-2 evaporite, it is 15.0 kft/s. The shear

velocities are, respectively, 12.6 and 8.7 kft/s. The caliper log indicates a

change in the borehole radius from 8 in to 14 in when passing from the

carbonate to the evaporite (see Figure 11). This may account for the very

strong events recorded.

Five reflections can be seen on the filtered section in Figure 13: from

the P arrival an oblique event with the apparent velocity of 12 kft/s and a

second one at about 5 kft/s. From the S arrival, one at 6.6 kft/s, a second

at 4.2 kft/s and a third one at about 3 kft/s. A sixth event has been

detected in the P arrival wavetrain using the technique of separation

(Figure 15, event 3), with the apparent velocity 8.3 kft/s. These events have

been sketched in Figure 16.

With the given formation velocities, the theoretical apparent velocities

are : 10.85 kft/s for the P to P wave reflection and 6.3 kft/s for the S to S

wave reflection. These values yield ratios va/v 9O between 1.1 and 1.05 for
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the quickest events originating from the P and S direct arrivals. The

corresponding events may then be interpreted as reflections on a dipping

interface whose a is about 750, meaning a dip angle close to 15*.

The event detected by applying the separation method corresponds to

the S to P conversion, with the theoretical apparent velocity 7.97 kft/s.

Again, the ratio v,/v 9O is greater than one, showing a non zero dipping

value.

The remaining velocities are too low to be explained by reflections

involving body waves only. We need to take into account slower surface

waves which cause these reflections to occur in the vicinity of the borehole

wall. We have reflections of the Stoneley wave converted into a P wave,

yielding the apparent velocity of 5 kft/s, and also converted into a S wave,

yielding the apparent velocity of 4.2 kft/s. The Stoneley wave is also

reflected without conversion, explaining the event at 3 kft/s.

These velocities are a little high compared to the theoretical ones

computed from a velocity of the Stoneley wave of 5.6 kft/s: respectively,

4.5, 3.9 and 2.8 kft/s. Nevertheless, they are not high enough to permit

considering any body waves. An alternative would be to consider the first

mode of the pseudo-Rayleigh wave. It happens in the laboratory. In either

case, we should note the strong effect of the borehole radius variation on a

surface wave. A non negligible amount of its energy is being reflected back,

either directly or converted into body waves.
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The properties of the evaporite do not fully appear as long as the

receiver has not left the carbonate. This produces sloping events whose

apparent velocities can be worked out in a similar fashion as for

transmission with conversion. This part forms a "transition zone". We also

find transmission with conversion events related to the sharp interface: A P

to S wave conversion yielding a measured apparent velocity of 67 kft/s,

compared to a theoretical 78.7 kft/s. The S- to P-wave conversion is also

visible at about 12 kft/s, versus a theoretical 14.5 kft/s. The record

presents also S to Stoneley wave conversions with a measured apparent

velocity of 12.5 kft/s to be compared to a theoretical 15.7 kft/s for a

velocity of the Stoneley wave of 5.9 kft/s. Here, the agreement is relatively

poor. In addition to the fact that the theoretical expression for

transmission events is particularly sensitive to small formation velocity

variations, multiple interferences in the transition zone made the picking

of the events difficult. In particular, events are generated at discontinuities

located in the evaporite within a tool length of the sharp interface (see

Figure 14). Such events are discussed in Appendix F.

3 Conclusions

After step by step modeling of different cases most likely to occur

within a layered medium, we tried to show the consistency between

transmission and reflection events in the case of a horizontal interface as
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well as in the case of a dipping interface. We also presented numerous

events that can be associated with a single discontinuity. From our

modelling of dipping interfaces, one should remember that they increase

the apparent velocity of the events relative to the value obtained with a

horizontal interface. One can take advantage of the relative increase to

derive dip angles. It illustrates also that one can think of retrieving some

lateral information from full waveform acoustic logging data, and could

add to the on-going efforts of fracture characterization. Since oblique

events are most likely to occur at interfaces with high impedance contrast,

fractures could be studied by this method.

The examples presented here show that the real data could be very

complex. Data processing, velocity filtering and separation of events

enhance the oblique events and improve the accuracy of the results. We

observed the general patterns that one can predict from theory. We were

able to match the slopes of oblique events and determine the dip of each

interface. These dips are consistent with dip-meter data as shown in

Figure 17.
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Figure 1. Iso-offset section from EVA tool. The spacing is 12.75 meters.
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Figure 2. Oblique events on iso-offset section. Source receiver separation is 12.75
meters.
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Figure 3. Geometric configurations modelled in this paper. The source is on top
of the tool.



Figure 4. Schematic iso-offset sections displaying the events that can be pro-
duced by a single discontinuity involving all possible combinations between only
two types of waves noted A and B. The lefthand side of the figure corresponds to
an heterogeneity embedded in an homogeneous formation while the righthand
side corresponds to the case of a sharp interface.
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Figure 5. Normalized apparent velocity, v/ v 9 0 , resulting from the transmission
with conversion through a dipping plane intersecting the borehole with an angle a
to the vertical. Plots have been drawn for velocity ratios (velocity of the incoming
wave over the velocity of the outgoing wave, vo/v 1 ) ranging from 0.1 to 0.9.

-37-



80 60 40 20 angle of dip-

10

Va

2

angle 0

20 40 60 80

Figure 6. Plot of the apparent velocity v,, normalized to half the formation veloci-

ty versus the angle of dip at z=1 for a reflection without conversion on a dipping
plane interface.
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Figure 7. Normalized apparent velocities obtained for a reflection with conversion
on a dipping plane interface. Velocities are plotted versus the velocity ratio deter-
mining the conversion, v0/vi, for given angles a ranging from 25* up to 70*.
Each curve has a maximum at cosa.
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Figure 8. Plot of the apparent velocity obtained for a reflection with conversion
on a dipping plane interface. The velocity is normalized with respect to the ap-
parent velocity in the horizontal plane case and plotted versus the angle a: for
given velocity ratios deterrining the conversion.
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Figure .9. Travel time curves obtained from a scattering point in the formation.
Depth units are in spacing length. The point is at depth 0 and .1 deep in the forma-
tion. Time units are in tA, arrival time of the wave of type "A". Two types of
conversion have been considered and noted B-+A and C-*A, corresponding to
velocity ratios, V, of 0.4 and 1.7.
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Figure 10. Travel time curves obtained from a scattering point. Conversions have
not been considered. The point is 0.1 or 1.1 deep in the formation. The apparent
velocities are smoothed out and increased.
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Figure 11. Section of the logs run in the studied well. Location of the two examples
choosen for detailed analysis are indicated by a star label.
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Figure 12. Example 1.Iso-offset section of Figure 2 after fan-filtering and schemat-ic sketch of the events with apparent velocities in kft/s.
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Figure 13. Iso-offset sections before and after fan-filtering corresponding to exam-
ple 2.
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Figure 14. Example 2. Iso-offset section from EVA for a 12.75 meter source re-

ceiver separation.
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Figure 15. Example of separation. Events 1, in (b), and 2, in (c), are extracted from
(a .1h eiua aeri (d) shows two weak arrivals. Notice that event 3 was in-

visible in (a). (Event 4 is related to a different discontinuity).
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Figure 16. Sketch of the events presented in the text corresponding to the iso-
ofTset section in Figure 14.
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Figure 17. Dipmeter data for the section of the well covering examples 1 at depth
4900 ft and 2 at depth 4750 ft
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Figure A-1. Geometrical configuration in the case of Appendix A for a transmission
with conversion through a dipping plane interface. The source is on top of the
tool. In this situation, 0o is larger than v 1.
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Figure A-2. Transmission with conversion through a dipping plane interface case.
Isovalue curves for the average of vo/v 90 in the (a, V) plane, that is in the plane
angle versus velocity ratio 'vo/0 1. The average is taken for z varying from 0.0 to
0.8.



Figure A-3. Geometrical configuration and notations used in Appendix B for the
case of reflection on a dipping interface without conversion.
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Figure A-4. Plot of the apparent velocity normalized to half the formation velocity
against the angle of dip for a reflection on a dipping interface without conversion.
Three positions of the tool have been considered, z = 1,2,3 and in the limit, -.



Reflection

v

Transmission

V'

Figure A-5. Schematic iso-offset sections showing events produced in the case of a
single discontinuity within a tool length of a sharp interface.Dashed lines indicate
events strictly related to the sharp interface.



OBLIQUE EVENTS IN FUIL WAVEFORM ISO-OFFSET SECTIONS:

Introduction to appendices A B C and D

In the following appendices we consider the simple case of a plane

surface intersecting the borehole axis with an angle a. Note that a is the

angle between the interface plane and borehole axis. The dip of the

interface is -0 = 90 - a

The headwaves are refracted from the fluid into the formation.

Regular arrivals observed in full waveform logging correspond to critical

refraction, and thus to a downward propagation (in the case where the

transmitters are at the top of the tool) along the borehole wall in the

formation. Nevertheless, a certain amount of energy propagates away and

may impinge on any discontinuity, such as a dipping surface. Using this

simple geometry enables us to compute approximate raypaths for body

waves travelling away from the borehole and being redirected back to it on

the discontinuity.

The general scheme is to compute the arrival time using geometrical

relations, and derive the apparent velocity differentiating the travel time

curve. Whenever conversion occurs, the exact problem cannot be solved

analytically and numerical solutions are necessary.



APPENDIX A: Transmission through a dipping interface

Computation of the arrival time

The tool is astride the discontinuity in the geometrical configuration of

Figure A-1. This is also the case where vo/vi < 1. Due to the conversion,

the apparent velocity of that event cannot be computed in a

straightforward manner. We have to define, at first, the point of the

interface where transmission occurs. This point is at the intersection of

three straight lines in the plane containing the borehole axis and the

normal to the reflector. Those lines are

- The incoming ray

- The outgoing ray

- The trace of the interface in the plane.

We may express the equations of those lines in a system of planar cartesian

coordinates with its vertical axis (z) matching the borehole axis and

originating at the intersection with the reflector, and an horizontal axis

(z) In this system, our three lines are

z - Z -tan (i + a) x

z - (Z - S) tan(/ 2 - r -a)x ; (A-1)

z = tan(Tr/2 - a)x

Where Z is the location of the source, and S, the source to receiver

separation. The incident angle, i, and the reflection angle, r, refer to the



normal to the reflector; whereas, a denotes the angular separation

between, the vertical and the reflector. The lines having a common point,

we have then:

(Z/S)( tan(i + a) - tan(r + a)) = tan(i + a) + tan( - a) (A-2)
2

Following some trigonometric manipulations, we get

tana [ (Z/ S)tan i + (1 - Z/ S)tan r ] = 1 (A-3)

Snell's law provides us with a second equation:

i-sin i = -'-sin r (A-4)
o V 1

We found it more convenient to use V, the ratio vo/vj. In the numerical

computations, the angles are worked out by tests using these two

equations. Hence i and r are supposedly known in the following

calculations. Consequently, the arrival time of the wave can be ruled out :

= sina[ Z/S + (i - Z/S)V] (A-5)
to cosi cosr

to is the arrival time of the headwave, refracted in the formation under

critical incidence and propagated in the formation with the velocity vo

directly toward the receiver, that is, under the assumptions made here,

S/v 0 .



Apparent velocity of the arrival.

Equation (A-1) yields an expression (A-6) for the apparent velocity by

differentiating both sides with respect to Z or more conveniently, with

respect to ZI S. Let z = Z/ S vary between 0 and 1.

dz= tosina [ 1 -
dz Cos ?I

V (z -1)V sin r dr
cos r cos2 r dz

The derivatives of i and r with respect to z can be solved by solving the

linear system obtained by differentiating equations (A-3 and A-4). Thus, we

have :

dr = tan r - tan icos r- -,dz zV + (1-z)
cos 3i cos 3r

and cos i = V cos r
dz dz

Substituting those two equations in equation (A-6) leads to the final result:

'90 _ sina[ i - V cos r] (A-8)
Va itV

Where va is the apparent velocity that we have been looking for, and vj9 0

the velocity reached for an horizontal interface,

v 9 0 =( 0 ~1 ~ 1

Discussion

In the different algebraic simplifications made to get equation (A-1), we

avoided difficulties arising as the receiver approaches the discontinuity; a
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situation where r reaches n/ 2. This yields numerical instabilities as z

tends to 0 and, sometimes, invalidity. Two cases are to be considered:

V > Cosa

The possible range for incident angles i does not allow r to reach Tn/ 2

and the computation can be done. The converted wave arrives at the same

time as the direct arrival : t = to at z = 0 whereas t = t = S/v 1 at z = 1.

The computation shows that v, is always near unity. This remains

consistent with the fact that for large values of V, the point where

transmission occurs stays in the vicinity of the borehole.

v < cosax

Equation (A-i) does not allow r to be equal to n/ 2 which happens in

this case at z = 0. The converted wave arrives earlier than to yielding

higher apparent velocities. While the tool moves along the borehole, the

transmission point remains somehow at the same place, thus leading to a

slowly varying apparent velocity. This enabled us to compute a meaningful

average of va computed over a limited range of z with the numerical

procedure described above.

The results of this computation, restricting z to the interval [0,0.8],

are drawn in Figure (A-2) under the form of an iso-value chart for v. in the

plane a,V. Note that the values should be slightly excessive since the

apparent velocity decreases continuously, and since we have averaged over
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the first part of that small variation.

A second way to present results is to consider that v is constant. In

such a case, one may use the arrival time at z = 0, t 2 :

2-=Vcosa + sina1 -20 (A-9)

Hence the apparent velocity :

V90 Vcosa + sina 1 -1V2 - V
1 - V

(A-10)

These results, presented in Figure 4, are consistent with those of Figure A-

2.

APPENDIX B: Reflection on a dipping surf ace

without conversion

The tool is completely below or above the discontinuity. The

geometrical problem can be solved directly. Refer to Figure A-3 for all

notations in the following section.

Computation of the arrival time.

Because of Snell's law on reflection angles, the geometry presents two

isometric triangles. FRR1 and FEE1 yield the relation:
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(Z-S)sin a
Zsina

that is : b, = (1-S)b2z

We also have:

b, + 62 = Scosa (B-2)

We may solve those two equations for 61 and b2 , and substitute into the

following equations to get a1 and a 2 :

a2 = b2 + (Z -S) 2sin 2 a and a2 = b + Z2sin2cX (B-3)

After some easy algebra, we end up with:

a1 + a 2 = IS 2cos2aa + (2Z - S) 2sin2 a (B-4)

This formula yields the trivial result, 2Z - S when a is taken to 904 We

choose to express the result in terms of the nondimensional ratio of the

arrival time of the reflected wave, t, over the arrival time of the direct

wave, to = S/vo and the ratio of the distance, Z, over the spacing S. Let z

= Z/ S. The final result is:

i + 4z (z - 1)sin 2 C (B-5)

Computation of the apparent velocity of the reflected arrival

Differentiating the two squared terms of the previous equation with

respect to t leads to :
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1 t - d (2z - 1)sin2 a (B-6)2 t2 - ct

Let d(S.z)/dt be v, the apparent velocity of the reflected wave. We

express this equation in terms of non dimensional ratios as va/v 9 o, where

v 9 o is the velocity for a horizontal interface, namely, vo/ 2.

t 1 (B-7)
V 9o to (2z - 1)sina

Substituting the expression of t/ to yields

Va_ _ 12 + 4z(z - 1)sina (B-8)
V 9 0  (2z - i)sin a

This result is consistent with a velocity of vo/2 obtained for a horizontal

plane, that is for a = 900. For increasing z, the apparent velocity

decreases. We note that for large z, v,/ vgo behaves as 1/ sina and for z=1,

it behaves as 1/sin2 a. Figure A-4 presents plots of va/vgo for z = 1, z = 2,

z = 3 and for z -> oo.

APPENDIX C : Reflection on a dipping surface

with conversion

With the same geometrical configuration as in Appendix B, we shall

work out the apparent velocity of a headwave traveling in the formation at

velocity v 0 impinging on our plane surface and being reflected with velocity
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v 1 . The apparent velocity of the wave cannot be computed in the same

straightforward manner as in Appendix B.

The geometrical problem is very similar to that of Appendix A, except

for some sign changes. Following those developments, we first define the

reflection point as the intersection of three straight lines analytically

defined in a cartesian system of coordinates.

Arrival time

The system is solved, yielding the equation

tana [ (Z/ S)tan i + (Z/S - 1)tan r] = 1 (C-1)

Snell's law provides us with a second equation, which, together with

equation (C-i), defines uniquely the angles, and thus the point of

reflection.

sin i = Vsin r (C-2)

where V = vo/v 1 . In the numerical computations, the angles are worked

out by trying successive values until they satisfy both equations (C-1) and

(C-2).

Once i and r are known, the arrival time of the reflected event can be

ruled out. Let z = Z/ S:
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= sina[ z _ (1-z) V] (C-3)
to 0Cos i cos r

to is the arrival time of the headwave, refracted in the formation under

critical incidence and propagated in the formation with the velocity vo

directly toward the receiver, that is, under the assumptions made here, to

= S/v 0 .

Apparent velocity of the reflection arrival

By differentiating both sides of equation (C-3) with respect to z, we

obtain an expression for the apparent velocity:

= tosina[ i + +z sini i- (1-z)Vsin r dr ]Cos cosr cossi dz cos2 r dz (C-4)

The derivatives of i and r with respect to z can be obtained by solving the

linear system obtained from differentiating equations (C-i) and (C-2).

Thus, we have:

cos r = tan r + tan i

dz + zV
cos3r cos N

and cos .i- = V cos r-
dz dz

Substituting those two equations in equation (C-4) leads to the final result :

= sin-a [cos i + V cos r]
Va 1 + V

(C-6)

where vQ is the apparent velocity that we have been looking for, and ego

the velocity reached for a horizontal reflector, namely, (vo~1 + V -1~.
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Again, as described in Appendix A, problems are to be expected

because of the simplifications made to reach the last result. Two cases are

discussed in the text. We escaped the numerical difficulties by computing

the apparent velocity at some distance from the interface through an

accurate determination of the angles (equations C-1 and C-2). Namely, we

took z = 1.1 to generate Figures 8 and 9.

APPENDIX D : Scattering point in the formation

In this model we consider a point in the formation at the distance E

from the borehole axis. Body waves coming from the transmitter at a

velocity vo encounter this point and are re-emitted instantaneously with a

velocity v i toward the receiver. The point acts as a "perfect" scatterer.

The algebra is very straightforward.

Arrival time

Let Z be the location of the source; Z - S that of the receiver. The

distance from the source to the scattering point is Z2 + E2 , while (Z-S)2 +

E2 is that from the point to the receiver. Normalizing all the distances

with respect to the spacing 3, and the time with respect to the arrival time

of the direct wave at the velocity vo, we can write:



t = z 2 +e+ VV (z --1)2 +2es
to

where z=Z/S; e=E/S.

Apparent velocity

As done previously, we differentiate the travel time curve to get the

apparent velocity, v,.

V-= Z + ] (D-2)
Vc Yz 2 +e 2  V(z-1) 2 +e 

We can check that as z -+oo, v- tvo + v 1

APPENDIX E : Data processing >n

( by Marc Larrere)

Since oblique events are the result of reflection, conversion, and

transmission travel paths, they are generally weaker in amplitude than

"regular" arrivals. In order to achieve an accurate detection and a good

determination of the slope of these events we need to separate them from

the main wavefield. In formations where velocities vary slowly with depth,

the main wavefield is roughly horizontal (infinite apparent velocity)

whereas reflection and transmission events show finite apparent velocity.

The F-K filtering technique allows us to extract the oblique events that

interest us. We can go further and extract two given types of waves using
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the method of separation described by Seeman and Horowicz (1983).

Velocity filtering

Velocity filtering is a widely used technique in seismic processing that

can be readily applied to iso-offset sections. However the following

conditions have to be satisfied.

1) Constant logging speed is required in order to achieve constant spatial

sampling.

2) Cut-off velocities must be chosen in order to preserve the highest finite

apparent velocities. The optimization may be different for different

formations and at different arrival times on the section.

3) Spatial aliasing must be avoided to guarantee accurate results from

filtering algorithms. This leads to the constraint that the spatial sampling

must be less than AZ(Nyquist) = V,/2Fmax for all types of waves. This

condition requires generally a very dense spatial sampling.

Let us consider, for example, reflections from a horizontal interface

involving P and Stoneley waves in a hard formation. The upper frequency

of the P wave is close to 25 kHz whereas the Stoneley frequency is less

than 6 kHz. The P and Stoneley wave velocities are 20 kft/s and 5.6 kft/s

which yield reflected events with apparent velocities 10 kft/s and 2.8 kft/s.

In both cases the theoretical minimum sampling rate is close to 2.5 inches.
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However, a practical upper bound of 4 inches still provides good numerical

results.

Figure 12 shows results obtained when appling a symmetrical fan filter

to the EVA section of Figure 2. Despite the high cut-off velocity required to

preserve the transmission events, the filtering has strongly enhanced

oblique events. A second example is presented in Figure 13. Again, velocity

filtering allows us to pick oblique arrivals more precisely.

Separation of waves

Unambiguous interpretation of interfering events sometimes requires

further processing to separate the events with different velocities. A good

approach is the method used in VSP to separate the up- and downgoing

waves. The method is based on the assumption that each recorded signal is

the superposition of two coherent waves with different apparent velocities

and a random component. The solution is obtained by a least square

minimization of the residual wavefield in the frequency domain. This

technique requires the picking of travel times of the two events we want to

separate.

Figure 15 shows results of this separation applied on previously dip-

filtered data. As expected, the two main signals we were able to pick are

well separated. Furthermore, the residual error shows two weak events we

were unable to detect even on filtered data.
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Separation techniques are very useful to study a given type of wave

and to detect possible weak events. The method can be extended to any

number of waves (Panziera and Arens, 1985), and therefore would be more

appropriate in our case.

APPENDIX F: Multiple interfaces effects

In this appendix we consider the data of example 2 (as in Figure 14).

Events originate from the "transition zone". Here, the presence of several

discontinuities, next to the sharp interface and within a tool length, is

expressed by intermingled oblique events. Each one of these originates

from a discontinuity that can be found on the conventional logs. These are

mainly variations in borehole diameter and in density (see Figure 11).

The proximity of the nearby sharp interface implies that the apparent

velocity of any event visible in the transition zone will be a function of the

two different media. In our reasoning, the tool is not yet completely above

the sharp interface. Furthermore, reflections occuring on such

discontinuities, but recorded in the first medium will, naturally, involve

properties of this medium.

Let us consider only plane interfaces as in figure A-5. A sharp

interface separates two media, the "first" and the "second" media. A wave
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emitted in the first medium with the velocity vo propagates upward toward

the interface. At this point, it is transformed into a wave with a velocity V .

Propagating in the second medium, it is reflected back with conversion on

a secondary discontinuity with the velocity v i, and is finally transformed

through the first boundary into a wave with the velocity v 1. This complex

event will have the apparent velocities :

((7J) 1 + (v2)-1)- 1 in the zone between the two interfaces.

((j 1 + (v 1 )~ bef ore the sharp interface.

In other words, reflections on a farther discontinuity observed through

a nearer one, may appear on the records with exactly the same velocity as

direct reflections on the nearer interface, with only a time lag. This

phenomenon may account for the strength and extent of the reflections

with an apparent velocity of 6.6 kft/s.

We now consider apparent velocities within the "transition zone".

Some of them are 8.7, 6.7 and 5.5 kft/s. Those are to be compared,

respectively, to

8.9 (15.0-1 + 21.7-1)-i

6.8 = (15.0-1 + 12.6-1)-i

5.1 = ( 8.7-1 + 12.6-1)-i

The first velocities used in these formula belong to the A-2 evaporite,

while the second ones correspond to the A-1 carbonate. Considering the

time at which those events take place, one can work out the type of
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conversion occuring on the second discontinuity. They can start at the P-

to P-wave transmission arrival time curve, the S- to S- wave, or the S- to P-,

or the P- to S- curve, due to the sharp interface.

Transmission patterns due to a second discontinuity may be also

affected by the sharp interface (see figure A-5 for notations). Let us

consider a wave travelling in the second medium at the velocity Vo, then

converted, after transmission through the second discontinuity, into a

wave with the velocity v /, and, again, changed at the sharp interface into a

wave travelling in the first medium at the velocity V2. The resulting

oblique event will have the apparent velocities :

- (v )-1)1 in the transition zone.

((o2) 1 - (2)-1)- 1 before the transition zone.
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CHAPTER 3:

INVERSION OF TRAVEL TIME FOR VELOCITY USING

MULTI-SPACING SONIC TOOLS

Introduction

In full waveform acoustic logging, the general trend has been to

increase the source to receiver separation as well as the receiver spacing,

in order to obtain a deeper penetration of the unperturbed formation and

to measure velocity more accurately. The increases of the spacing

between receivers and the length of the receiver array have the

undesirable effect of smoothing out the variation of velocities over short

depth increments. This could cause reduction in spatial resolution,

especially in cases where thinly layered stratigraphic units are present. In

this study we introduce a method to help resolve the velocities and

thicknesses of the thin beds.

Willis (1983) introduced a least squares inversion scheme to determine

the transit times and velocities for individual beds. This inversion method

is relatively slow and can become cumbersome when applied to large

sections. We propose a stochastic formulation that enables us to

recursively solve for the transit times. This procedure amounts to

removing the effect of the tool length, which acts as a running sum filter. It
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can also be viewed as a deconvolution process of the tool response. In the

following sections we describe the method and its applications to synthetic

as well as real data.

1. Forward problem

The travel time of acoustic waves is a function of the borehole radius,

the velocity of compressional waves in the fluid and the formation body

waves, as well as the length of the tool.

As a first approximation, let us neglect the borehole effects, and

calculate the travel time for a wave propagating vertically in the formation

between the source and the receiver :

z
T(Z) = f t (z)dz (1)

SZ-s

where S is the source receiver separation, t(z) the formation slowness,

and T(Z) is the travel time per unit length at depth Z, assuming that

source and receiver are located at depths Z and Z - S, respectively.

As seen in Figure 1, a sharp interface between two formations would

appear, basically, as a ramp of the tool length. A thin layer would be

spatially "smeared" so that its exact location, as well as its "true" transit

time, would be hard to resolve. There is a need for improving the spacial

resolution of acoustic logs.
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Following Foster et al. (1962), we believe that a finer resolution can be

gained from logs where measurements are repeated at every fraction of

the source receiver separation. In this case the problem can be set in a

straightforward manner using the discrete depth version of equation (1):

T= ti (2)
Ni=j-N+1

In this equation, discrete depth intervals are taken to be the fraction of

the tool length by which it is shifted between successive source firings. N is

the number of discrete depth intervals over which the tool stretches.

Again, ti is the transit time of the ith depth interval and T the travel time

scaled to one discrete depth interval when the top of the tool is at depth j.

Depth indices start at bottom.
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2. Single-space travel time inversion

2.1 Exact inverse

When the tool is run from depth 0 up to depth n, we can set a linear

system of equations such as :

NTO=t1-N+t2-N+

N.T1=t 2 -N + t3-N +

NTN = 1 + t 2

N.Tn = tn-N+1 + tn-N+2 + - - -

--- +t- 2 +t- 1 +t0

--- + t _1 + t 0 + t 1

S'tN-2 + tN-1 + t N

+ tn-2 + tn _1 + t n

This system has n+N unknowns and n equations and is therefore

underdeterrmned. If we know the first N-1 transit time values, then the

system can be exactly inverted for the remaining unknowns. However, we

shall show that this solution is not acceptable in practical situations.

Let us assume that we have obtained the true transit time series up to

depth m-1. We add an extra observation Tm and solve for tm using :

(3)tm = N. Tm - tm-1 - .... - tm-N+1

Let us Z-transform both series, T(Z) and t (Z), with Z=eJ .

t(Z)(1+Z- 1+-- +Z-N+l) = N.T(Z)

We can solve for t (Z)

(4)



t (Z) = N(I-Z-) .T(Z) (5)
(1 -Z-N)

The transfer function obtained is precisely the inverse of the Z-tranform of

the tool response. Therefore, we have designed the exact inverse filter.

Such inverse filter presents N-1 poles at the frequencies : c = n(k/N) for

k = 1,...,N-i. In the ideal case where exact travel time readings are made,

T(Z) does not contain any energy at these frequencies and the poles

should not perturb the inversion. We should be able to recover the true

transit time series with the exception of the contribution of the

frequencies at the pole locations. However, in a real case, measurement

noise contributes to the travel time values. Consequently, the series T may

contain a significant amount of energy at these frequencies. The exact

filter applied to that data would infinitely amplify the noise content at

these pole locations so that noise would dominate the output.

Foster(1962) pointed out that the exact filter for this problemwas useless.

From that discussion, we may conclude that in real world situations

the measurement noise will significantly limit the depth resolution we may

hope to reach. In order to attenuate this effect, more equations need to be

added to the system of equations. Hence, we shall have an over-determined

system of linear equations that will require a least squares solution.

When dealing with multi-source and multi-receiver tools, extra

constraints are naturaly provided by the other travel time measurements.

Inverting the whole resulting system is, basically, the solution proposed by
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Willis (1983). However, if we are to invert for a large section of the

formation, this inversion scheme requires, unfortunately, the handling of

large matrices. Moreover, assuming that the problem has been solved for

the first n depths, the question is whether the whole system should be

inverted again if we add one extra observation ?

These remarks apply to our present single spacing inversion problem.

Therefore, in the following, we shall seek constraints that can be added to

our problem, and also be looking for a least squares solution of the

resulting over-determined system that can be computed recursively.

2.2 Recursive least squares inversion formulation

A look at any section of sonic logs shows the vertical sequentiality of

the physical characteristics in a sedimentary section.

In order to transform this piece of information into analytical

constraints for our inversion problem, we recast the whole problem in

terms of a stochastic process. The transit times and the travel times will

be considered as random variables. Their depth series can be viewed as

stochastic processes. We chose an independent increment process to

represent the behavior of the depth sequence of the tf's. That is,

tj+ = ti + (6)

In this equation, wj is assumed to be a zero mean white noise process
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independent of tj. Testing on real and synthetic data have shown that

acceptable results can be obtained with equation (6). The word "noise"

should not mislead the reader. wj represents the departure from a

homogeneous formation. It is characterized by a variance q. This

variance is a measure of the variability of the formation. Large variances

(several orders of magnitude larger than the measurement error variance)

will indicate that equation (6) is not a good representation. On the other

hand, small variances denote that little variation is expected in the

formation. Finally, we understand that q represents an a priori

knowledge we may have of the formation and how it can be weighted

gradually.

At this point, let us perform some formal changes which will not affect

the generality of our discussion

It- [1/N iV 1 0 0 0
=t. I/ 1 0 0 0

Let t- h and F 0 1
t2 .N 1 ... - .--. 0 0

t 0 0 1 0

Then, our transit time depth sequence is ruled by:

tj = F tj_1 +wy (7)

The original system of equations can be re-created by successive

applications of :
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T = h i, + Vy (8)

where hT is the transpose of matrix h. v2 is the noise due to reading

errors. Assume v is white noise with covariance R. The covariance

matrix, Qj = E[Wywf] characterizes xj . Its only non zero entry is the first

one in the first row: gy.

Our present specific problem is to estimate, or invert, for n successive

values of Cy given n successive measurements or observations T related to

the tj's through equation (8), under the n linear constraints

consecutive equations (7). In addition to its better constrained nature, the

structure of this problem yields estimate computations that can be

organized conveniently in a recursive algorithm. This is the Kalman filter.

Kalman filter formulation :

The remainder of this section will be devoted to the Kalman model

formulation.

Two equations define the model:

(9)

(10)T = H(j) fy +,75

Notations are explained hereafter.
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Equation (9) represents the time dependent behavior of a linear

dynamic system. The system is completely characterized by its state

vector Fj. Matrix F(j) linearly relates the two successive state vectors at

time j and j-1. It is also driven by the input %i which, in this application,

is a white noise with covariance Qj . This matrix expresses the confidence

we have in this finite difference equation. Matrix G(i) allows the input

vector Uy to be linearly transformed before acting on the state vector ti.

Following Control Theory terminology, this equation, as well as its

counterpart in our present problem, equation (7), will be referred to as the

State equation.

We perceive the dynamic system only through periodic measurements.

The vector of observations, 7j, is linearly related to the state vector via

matrix H(j) in equation (10). Moreover, the measurement is corrupted by

a white noise Vj of covariance Ry. Rj is related to the confidence we have

in those measurements. This equation will be referred to as the

Measurement or observation equation.

As for any linear system described by a recursive equation, the initial

state has to be known. Here, it is specified through the mean and

covariance of fo. Additional assumptions regarding the independence of

the various stochastic processes are to be made. Namely, the noises Uj and

!Uy are to be independent of to. Moreover, at a given time both noises are

uncorrelated and each, taken at two different times, presents values that

-80-



are uncorrelated. Figure 2 summarizes the different filter inputs.

The estimate of ij, ty which minimizes the error covariance

E[(t-)(' -ft) T ], is E[f I ,..., TO], the conditional expectation of 1j

given all past and present observations. This estimate is a linear function

of the observations when all random variables are Gaussian. However,

when this is not valid (probably our case), the linear function obtained in

the Gaussian case still yields the minimum of the error covariance in the

set of all possible linear estimators. This is the linear least squares

estimator. In the following, E[XI Y] is used as the linear least squares

estimator of X given Y.

Given the model (equations (9) and (10)) and the related assumptions

described previously, the problem solved by Kalman is to provide tj, the

linear least squares estimate of tj given the measurements To Lhrough T.

Basically both the estimate t, and its error covariance are propagated in

time through a two step recursion. We first define some notations to

differentiate between the two steps

t(j Ij-1) = E[Ij I T_,.., TO]

and P(jlj-1) =E[ ( j--t(jj-1)) ( f '(jj1)) T ]

an = tf(jIEj) = E[,-1,Tj .T , TO]

and P(j\j3 = E[ ( fj -Ej Ij) )( I -Ej I j ) ) T]
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The state equation is fruitfully employed to propagate the estimate

from time j -1 to the next time increment using the same set of

observations. Thus a prediction of t; is made: t(j j-1). This estimate of

t is based on the first j observations. The measurement at time j then

adds a new piece of information that is decomposed into a predictable part

and an innovative part, which helps correct the prediction through a gain

factor K(j) and yields the corrected estimate t(j ij). For the sake of

clarity we omitted the possible time dependence for the matrices F, G and

H. The recursion is as follows:

Step (0) initiatization

t (0 -1) : guess of the initial "true" transit times

P(O -1) : confidence we have in this guess.

Step (1): correction

f(j j) =f(j i j -1) + K(j)v(j); P(j j) = P(j I j -1) -K(j) H P(j j -1);

K( j) = P( j I j -1) H( [H P( j I j -1) H j 4]1 (j) y-Y j -).

Step (2) :prediction

f(j ij-1) = F fj-1|j-1); P(j j-1) = F P(j-l j-1) FT + G Qj GI.
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These equations can be directly programmed with the matrices defined

for equations (7) and (8) to solve our problem.

2.3 Synthetic results

Let us test our processing to illustrate the relevance of the various

filter inputs. We modelled first the case of a tool with N=5. This may

correspond approximatively to a 2' 5" spacing tool shooting at 1/2 foot

intervals.

The tool has been moved across a sharp interface between two

homogeneous layers. They are characterized by transit times of 100 and

150 units respectively. Time units are arbitrary since all time

measurements have been scaled to the same unit length. The resulting

noise free travel time data is displayed Figure 3. Numbers of discrete

depth intervals have been reported on the horizontal axis.

[1] The noise free data set is filtered. Outputs for various parameters

Q and R are displayed in Figure 4. Q has been kept at a constant value of

1000. while R has been decreased from 10000. down to .01. Results of the

least squares processing vary from a smooth and slowly rising curve (a), to

somehow noisier and quicker rising curves (b) and (c), and, finally to the

exact initial model (d). Keeping R constant at the value of .01 and

decreasing Q from 1000. down to .001, in order to achieve the same ratios

Q/R as in the previous figure would yield exactly the same results
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respectively. It suggests that the result of the least squares inversion

depends uniquely on the ratio of expected formation variability to

expected noise variance in the data (Q/ R ratio).

[2] Observations of Figure 3 have been corrupted by a random additive

perturbation with a maximum amplitude of 7 arbitrary units. Figure 5

displays the results of the least squares inversion for the same four Q/ R

ratios as in Figure 4. Curve (a) is similar to its counterpart in Figure 4,

while the remaining ones are much noisier. The same general trend can be

noted : Curves vary from a smooth and slow rise to a quick but noisy rise

with increasing Q/R ratio. However, this time the exact model has not

been inverted and the corresponding curve (d) is very noisy.

[3] Let us try to understand the meaning of the ratio Q/ R.

For a high Q/R ratio, the result is mainly affected by the noise content

of the data. No a priori knowledge of the formation is input and even a

large variability is expected. The filter gives more weight to the data and

merely uses the state equation. It responds quickly to the step input but

shows a high noise content. This is the quick Kalman filter case. In the

limit, for an infinite ratio, the state equation is ignored and only the

observations are used. This case corresponds to the exact inverse filter

developped section 2.1 : A noise free data set yields the exact model

whereas an inversion performed on noise corrupted data blows up the

noise content.
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For a small Q/R ratio, the result is a smoothed version of the original

model. One does input a more or less valid a priori knowledge : Given that

the formation velocity is V at depth i, it is very unlikely that a much

smaller or greater velocity than V comes up at depth i+1. The filter gives

more weight to the state equation and smoothes out the noise. The noise

content is small, the resolution poor. This is the slow Kalman filter case.

These considerations underline a trade-off between noise reduction

and resolution. The filter will determine a real variation in the transit

times for which we invert only if the variations in the data set are more

likely to be due to formation variability (given specification of Q) than to

noise corruption (given R).

2.4 Real data results

In this section, this formulation is tested on real data. A sonic log has

been recorded by a 2' 5" spacing Schlumberger probe. Spatial sampling of

the formation is 1/2 foot. The length of the discrete response function of

the tool is taken to be 5.

Figure 6 displays four transit time curves ordered by increasing spatial

resolution. Curve (b) is the original data and the remaining ones are

outputs of recursive least squares processings for different state noise

specifications, Q. R has been kept at a value of 10, while Q has been

increased from 10 (a), to 100 (c), up to 1000 (d). From (a) to (d), bed



boundaries are sharper and more details are available to the interpretor.

These results are consistent with our discussion in section 2.3 : As

resolution increases, measurement noise is amplified and it becomes

difficult to discriminate between noise contribution and very thin layering.

A 200' of a thinly layered section from the same well is analysed.

Figure 7 displays the original data (b) as well as outputs of recursive least

squares processings. As previously, the error measurement variance, R was

kept constant at 10 and Q was varied. This time, Q was pushed even

further up to 10000. In this case, as expected, noise dominates the

resulting log (e). The same general remarks as in Figure 6 can be made.

2.5 Steady states

Kalman filtering is computationally time consuming. However, one

could compute and store the gains K(j) and error covariances P(j lj)

ahead of time. In doing so, one would quickly notice that for Q and R

parameters kept constant in the computation, the gain vector and the

covariance matrices converge toward constant vector and matrices.

Moreover, these constant values do not depend on the initial state

covariance input, P(0 -i). Erroneous initial guesses also are corrected.

This shows that the filter reaches a steady state which uniquely depends on

Q/R.
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A steady state would enable the user to apply a constant gain K. The

resulting process would no longer be optimal in terms of minimizing the

error covariance, but, after some time, it would be very near optimality.

The steady state approximation would be a more computationally efficient

process to apply and just as quick as any finite response filtering.

Appendix A investigates the conditions under which a steady-stade filter

exists. Spatial resolution of such filters are also considered.

2.6 Data adaptive filtering

[1] In all results presented here, we have kept R and Q constant.

Nevertheless, it must be remembered that this is not a limitation of the

method, only a choice made for the sake of greater simplicity. We can vary

the R and Q values in the course of the algorithm without any change.

Doing so would amount to designing an adaptive filter. This is one of the

most appealling features of Kalman filtering as opposed to Wiener filtering

for instance.

[2] What is the meaning of changing Q and R during an inversion ?

Usualy, one would expect the error measurement characteristics to remain

stationary. On the other hand, it seems natural to expect characteristics of

the transit time series to vary. In particular, it is a common knowledge

that large sections of formation can be decomposed into smaller units with

similar physical characteristics. These may correspond, for instance, to

stratigraphic or geologic units or, at a smaller scale, to homogeneous
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layers. At the boundary, major changes occur and produce a "sharp"

interface. In this case, the increment between consecutive transit time

values across the interface is large compared to the increments within

each unit. Modelling the transit time series as a random walk with

increments of constant value would be an erroneous assumption and would

prove to over-smooth the interface as we have seen in the previous

examples (Figure 4). A better model would be to localy increase the

variance of the state noise, Q, at the level of the sharp interface.

An histogram of the increments between successive transit time values

is clearly non gaussian. However, it is not unrealistic to consider the

observed distribution as resulting from a mixture of two distributions. The

most frequent one would be characterized by a small variance and

correspond to small increments within a same urit. The other one would

characterize increments across sharp interfaces and present a larger

variance. This analysis is conceptually similar to some studies conducted

on the statistical distribution of reflection coefficients in surface seismic.

From a more prosaic point of view, varying Q means that we do not

have the same confidence in the state equation everywhere. We do not wish

to always input the same a priori knowledge into the inversion. As a result

of this, we might expect an even better resolution of sharp interfaces

without increasing the noise content everywhere on the log. In other

words, once we have decided on a given resolution/noise-reduction trade-
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off, we do not have to stick with it until the inversion is done, as we would

in the case of a damped least squares inversion of the whole system.

[3] The difficulty in designing an adaptive inversion scheme consits of

finding an efficient criterion that will trigger variations in the Q and R

specifications at the right location. It seems natural to focus our attention

on the discrepancies between measurements and predictions. These are

characterised by the innovations, v(j), as computed in Step (1) of the

algorithm in section 2.2. Locally, a high innovation denotes the innacuracy

of the previous prediction step. One might expect then a large formation

change. In certain cases, especially when processing large sections of

data, it might be desirable to refer that quantity to a data dependent

knowledge that has been previously acquired in the course of the

inversion. For instance, the sample variance of the innovation series may

be used to scale innovations.

Consequently, the state vector is predicted first (t(j j-1)) and the

corresponding innovation evaluated. The ratio of the squared innovation

at the current depth (j) to the sample variance of the innovation

computed up to this depth may be calculated. Comparing this ratio or the

squared innovation to a pre-determined threshold set by the user will

determine which state variance is to be used in predicting the current

error covariance (P(j j-1)). Whenever, it passes the threshold a larger

state variance, Q, is used.
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[4] Let us see how does these considerations stand with our simple

configuration used in 2.3-[3]. A step-shaped formation change is observed

by a tool with N=5 and measurements are corrupted by a random additive

perturbation with a maximum of 5 units. Our filter triggers a change in the

Q value from 0.1 to i000 whenever the squared innovation passes four

times its variance. The output is displayed Figure 8 as a continuous curve.

Results of processings with constant Q and R have been reported for

comparison. R is kept constant at 1 for all curves. As a result of the

adaptability, the initial model is nearly exactly inversed. Resolution of the

interface is very good and the noise content is greatly reduced. In fact,

spatial resolution is even better than that of the quick Kalman case (short

dashed line). In the adaptative case, when a larger state variance is locally

input, correction gain coefficients are perturbed and the first coefficient

that applies to the first component of the state vector is suddenly

increased so that the corrected estimate catches up the error made in the

prediction. Even though, we specified the value of Q to be 1000 in both

cases the local gain in the adaptive case is that of the transient state for Q

equal to 1000 and corrects more the first component of the state vector

than does the constant Q and R quick Kalman case that was already close

to steady state when it reached the interface. These details will help in

understanding some of the features associated with adaptive filtering

namely, its tendancy to overshoot corrections.
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A second synthetic example was run to show the filter ability to pick a

thin layer. A small layer of two discrete depth interval thickness was

embedded into a homogeneous formation after a sharp interface. The

model is represented Figure 9-(a). The same tool and same error

measurement as previously have been used to simulate field data (b). The

thin bed is smoothed out. A slow Kalman filter is first used (c). Resolution is

poor but the noise content is small. A quick Kalman filter (d) amplifies the

noise and does a better job in locating interfaces. Finally, an adaptive filter

is set to have the same Q value as the latter filter when the squared

innovation passes five times its sample variance and that of the former

elsewhere. This filter (e) resolves the thin layer in a better way than any of

the other filters without increasing the noise content everywhere. We shall

note the spike after the step as an example of over-shooting.

[4] We applied this type of filtering to the real data examples of Figure

6 and 7 In the first case, we set the adaptive filter to use a larger value for

Q when the absolute value of the squared innovation passes a given

threshold. Figure 10 displays output curves corresponding to the first real

data example. Logs (a) and (e) are the original field log and the least

squares processed log for Q and R set to 1000 and 10 respectively. We

investigate the effect of lowering the threshold from 10 to 5 in (b) and (c)

when Q is either 1000 or 10. As expected, more sharp interfaces are

picked. At those interfaces sharp angles are observed. These are related to

over-shooting as described before. The noise content after each sharp
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interface in very small. In appendix A we define an "instantaneous

resolution". We also show that, with this definition, the resolution produced

by the transient state first increases at sharp interfaces beyond that of

the steady state for Q set to 1000 and then decreases after the interfaces

below that of the steady state for Q equal to 10, before reaching steady

state. This produces clear-cut interfaces. In (d), we set Q to be either 1000

or 100. Consequently, we reduced the amplitude of the perturbation and

avoided some of the previous features.

Figure 11 corresponds to the second real data example. The field log is

curve (a). The adaptibility criterion is the same as previously with a

threshold set at 50 for curves (b) and (c). In all three examples R is kept

constant at 10. Q value is set at 10 except when discripancies are detected

in which case it is increased to 100 in (b) and up to 1000 in (c) and (d).

Instabilities seems to develop when passing from curve (b) to (c). This is

due the higher Q value used in (c) which thin layering triggers more often.

In (d) the criterion uses the ratio of the squared innovation to its sample

variance with threshold set at 30. Q and R specifications are the same as

(c). Instabilities are somehow removed together with a loss in spatial

resolution toward the deeper end of the log. Actually, this is caused by a

sudden increase of the current variance when the inversion arrives at the

thinly layered section of the log, it artificially increases the level at which

discrepancies trigger a state variance change.
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[5] In these examples appeared the advantages as well as the

drawbacks of using adaptive filters. We also saw how results could vary

depending on the a priori knowledge input through the specifications set

and the criterion employed. However, it should be remembered that

criterion used are the simplest ones and that only two different Q are used.

We would expect some improvements using more reffined criterions as well

as Q values proportional to the observed discrepancy. Going any further

in that direction would require from log analysts a better definition of the

objectives to reach.

3. Multiple-space travel time inversion formulation

3.1 Extension to multiple spacings

The first two paragraphs of part 2.2 showed how we could bring our

inversion problem in the case of a single spacing tool to a somewhat

improved constrained problem. We then presented the formulation in a

more general situation, in particular that of multiple observations. This

showed that our inversion could easily be extended to multi-source, multi-

receiver tools. To do that we only have to arrange equation (8) where the

T's become column vectors with as many entries as off-sets to be

considered, and h has to be turned into a matrix according to the tool

configuration. Assuming it has an integral value, N will be equal to the

length of the largest source receiver separation divided by the change in
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depth of the tool between two completed firing sequences.

Although formation variability and noise covariances can be depth

dependent, we kept them at a constant value throughout subsequent

applications, in order to simplify the problem and aid in the understanding

of the process.

To use this inversion scheme we had to choose a tool configuration. We

modelled the case of a two source/two receiver tool such as the one shown

in Figure 12. Two sources are placed 2 ft apart at the bottom of the sonde,

and two receivers are placed 2 ft apart at the top of the sonde. The

distance between the lower receiver and the upper source is 8 ft. This

configuration provides source-receiver separations of 8, 10, 10 and 12 ft for

each firing sequence. We also assumed in all examples that a complete

sequence of shots was fired at 1 /2 ft intervals.

3.2 Least squares processing

With these specifications our state vector ty has 24 entries. H is a 4 by

24 matrix to accommodate four measurements at every depth increment.

The observation equation (8) becomes

T = Htj + U

T- (10')
T- (8')

' ~ T(12') '
T (10')
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1/20 1/20 1/20 1/20 1/20 .. 1/20 0 0 0 0
0 0 0 0 1/ 16 .. 1/ 16 0 0 0 0

1/24 1/24 1/24 1/24 1/24 .. 1/24 1/ 24 1/ 24 1/ 24 1/ 24
0 0 0 0 1/20 .. 1/20 1/20 1/ 20 1/ 20 1/ 20

We remember that our Kalman filter provides us with vector estimates

of tj. The scalar function of depth estimates presented next will be the

last entry of each state vector estimate. This means that we "wait" until

the tool has been completely pulled above the corresponding depth before

keeping the estimate. In other words, in order to estimate the formation's

"true" transit times, we use the maximum of observations this formulation

permits. Formally, the selected estimate will be :

E[tj I Tj+N-l, - j> - - o]

3.3 Conventional processing

A conventional processing of the travel times from all four source-

receiver combinations could :

(1) Consider all four possible common source and common receiver

combinations and compute the At's corresponding to 2 ft intervals.

(2) Refer each At to the middle 1/2 ft layers in the 2 ft interval.

(3) Average all At's corresponding to the same 1/2 ft layer.

Note that in this case, each transit time determination will involve only

8 travel time measurements. We also expect the resolution of such

processing to be limited to the smallest spacing, no matter how densely the
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formation is sampled. We are now ready to try both processes on synthetic

travel time data.

3.4 Synthetic results

[1] Figure 13 displays synthetic travel time curves versus depth for the

four source-receiver combinations in a sharp interface case. The time

scale is arbitrary since all travel times have been scaled to a unique

reference length. All transit time estimations will be scaled to that same

reference length in order to ease comparisons. Numbers of discrete depth

intervals of 1 /2 ft have been plotted on the horizontal axis.

The four curves have been processed by both the conventional and

recursive least squares methods. Outputs from both methods are shown in

Figure 14.

The conventional processing has an effective resolution equal to the

smallest source or receiver separation while the least squares processing

inverts exactly for the transit time model discretized every 1/2 ft when

input parameters Q and R specify that very little noise is expected in the

data.

[2] We corrupted the travel time data of Figure 13 with a random

additive perturbation having a maximum amplitude of 20 arbitrary units.

In the resulting data set, shown in Figure 15, travel time curves are

indistinguishable one from another.
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The least squares inversion scheme was tried first. In Figure 16-(a) we

kept the input parameter R at a constant value of 20, and increased

parameter Q, which describes the f orration variability, from a value of 0.1

up to a value of 300, ending with the dashed curve. The filter response to

the step change in transit times varies from a slow and smooth change to a

quick but noisy rise. Next, in Figure 16-(b), we started from the last Q and

R specifications that yielded the dashed curve and progressively increased

R, the observation noise variance, from a value of 20 up to 1000. The

filtered output deformed back to a slow rising and smooth curve.

These results confirm the discussion in section 2.3. Results of the

least squares processing depends mainly on the Q/R ratio specification.

This ratio sets a choice in the noise reduction versus resolution trade-off.

[3] Figure 17 compares results of the conventional processing for that

same noise corrupted data set with those of a quick Kalman filter case

(note the slight change of scale from previous figures). The two are very

similar. In other words, they depend greatly on the noise content of the

data set. This suggests that, in terms of noise reduction, it is possible to

do better with the help of some a prori knowledge than one can with

conventional processing. Both cases have good spatial resolution of the

sharp interface, but include variations that do not exist. A slower Kalman

filter would not show any variation, unless given likely state /noise variance

specifications.
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We shall also note that measurement errors are more drastic than for

the single spacing synthetic simulations. The longer spacing used as well as

the number of different spacings yield more equations that help stabilizing

the inversion in noise corrupted situations.

3.5 Role of initial guesses: Steady-state filter

Figures 18-(a) and 18-(b) investigate the consequences of starting the

recursion with erroneous guesses in the case of a noise free data set and in

a noise corrupted situation respectively. In both situations the filter

corrects the error. The only difference is the time it takes to do so. As for

single spacing filters, this is related to the existence of a steady state

which depends only on the ratio Q/R. (See Appendix A for details). In this

case, controllability is verified. Moreover, assuming observations are made

in such a way as to involve all entries of the state vector at least once,

observability is always guaranteed. (This last condition is sufficient but not

necessary). Given our choice for a tool, we may conclude the existence of

a steady-state filter.

3.6 Other synthetic examples

Figures 19 and 20 display results for three and four layer models

respectively, involving thin layers of 5 ft and 2.5 ft thicknesses (note the

change of depth scale in Figure 20). In all the cases presented, least

squares inverses show a better noise reduction than their conventional
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counterparts.

It appears that recursive least squares inverses tend to under estimate

transit time variations. Moreover, even in the case of a symmetric contrast

such as in Figure 19, the inversion does not keep that feature. This is

related to the causal nature of the Kalman filter. However, better

estimates could be obtained by combining both forward and backward

Kalman filters (Smith, 1975).

3.7 Real data example

We processed a 150 foot limestone section of travel time data. The tool

configuration is that of Figure 12. Firing rate and logging speed are the

same. Figure 21 displays one 10 ft offset travel time data scaled in ys/f t.

(We had only one of the two 10 ft offset travel time determination available

and we duplicated it with the correct shift of 2 ft).

Figure 22 shows results of the "conventional" processing. Outputs of

least squares processings for various statistical specifications are

presented in Figures 23, 24 and 25. Each one of these needs about 10 sec

of cpu time to complete 50 depth increments on a VAX 11/780 with a non-

optimized program. Statistical specifications are kept constant

throughout the inversion. The expected formation variability, Q, is 100 for

all three figures. The noise variance, R, is 1, 10 and 100 for Figures 23, 24

and 25 respectively.
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As for inversions conducted on synthetic data, outputs of conventional

and least squares processings are similar for a small value of R (quick

Kalman filter case) except for differences in the sharpness and magnitude

of some of the picks. The three least squares processings further illustrate

the resolution/noise reduction trade off discussed earlier and the need for

an adaptive processing. In particular, the moderate resolutions obtained

show that resolution is critically limited by the noise content of the data.

Each one of these output curves corresponds to different hypotheses

concerning the relative importance of the noise content versus the

formation variability. Obviously, knowledge of the actual noise content

prevents exaggerated smoothing out of the results. Still, even knowing its

actual characteristics will not help the filter to discriminate between real

formation changes and noise corruption.

4. CONCLUSIONS

As one can see from these examples, there is a need for a better

definition of resolution. Resolving power is usually taken to be the smallest

layer thickness one can distinguish in a homogeneous formation. This is

also the ability of the output to rise promptly when a step function is

input. This is true in noise-free situations. Nevertheless, resolution

through noise corrupted data is a more complicated matter as underlined

by the few examples presented in this study. Resolving a thin layer is
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important, but not showing a layer when there is none is also important.

This is part of a well known trade-off that occurs in any estimation

problem.

Least squares inversion provides us with a reliable way of obtaining

reasonable answers to this problem using probabilistic constraints. It

takes into account a very general piece of geological information -- the

vertical sequentiality of physical parameters. It uses the best of the

statistical redundancy that is not used normally in the case of a single

spacing tool, and is poorly used in the case of multi-spacing tools.

The Kalman filter formulation makes processing affordable from the

standpoint of storage size, and its great flexibility makes it a very powerful

and promising approach. However, further work is needed to design an

inversion process which would include borehole radius and would also be

adaptable to large formation changes.
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Figure 1 : Smoothing effect of the source-receiver separation on travel times in
the cases of a sharp interface and a thin layer.
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Model: State H(j),Q
'Observation F(ji ,R,
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(Arrival time data)
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Figure 2 : Summary of the different inputs and initial specifications for Kalman
filtering.
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discrete depth

Figure 3 : Synthetic noise
across a sharp interface.
the vertical axis is in time

free travel time data simulated for a tool of length 5 ran
Horizontal axis is in discrete depth interval number and
units scaled to an arbitrary reference length.
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Figure 4 Outputs of recursive least squares processings with the state variance,
Q set at 1000. The error measurement variance, R is 10000, 100, 1 and .01
in (a), (b), (c) and (d) respectively. (d) is also the exact initial model.
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Figure 5 : Same as Figure 4 but with an additive random perturbation of maximum
amplitude 7.
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3520

Figure 6 : Real
outputs (a),(c),
1000 (d).

data example(1). Original field log (b) and recursive least squares
and (d). R is kept at 10 in all three and Q equals 10 (a), 100 (c),
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40 60 80

3000 r

3100-

3200L
(a) (b) (c) (d) (e)

depth
(f t)

Figure 7 : Real data example(2). Original field log (b) and recursive least squares
outputs (a),(c),(d) and (e). R is kept at 10 in all four and Q equals 10 (a), 100 (c),
1000 (d) and 10000 (e). In (e) the amplitude scale has been compressed a little.
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time

150 e

1-0

0 10 20

discrete depth

Figure 8 : Data adaptive filtering of the synthetic data of Figure 3, corrupted by a
perturbation with a maximum amplitude of 5. R is kept constant at 1 in all three
curves. Q is 0.1 everywhere except at the interface where it take the value of
1000 in the continuous curve. Q is kept constant at 0.1 in the long dashed curve.
Q is kept constant at 1000 in the short dashed curve.
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e

1 0 0 L

0 100 200

(depth)

Figure 9 : Synthetic model with a thin layer. (a) Model, (b) Simulated recorded

data for a tool of length 5 with a measurement noise error of maximum amplitude
5, (c) Output of slow Kalman filtering with Q/ R set at 1/20, (d) output of quick
Kalman fitltering with Q/ R set at 1000/20 and (e) data adaptive filtering with R set

at 20 and Q either 1 or 1000.
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depth(ft)

3430

3460

3490

3520

60 80

Figure 10 : Real data example (1). (a) original field log and (e) least squared pro-
cessed log with Q/R set at 1000/10. R is 10 for all others. Q is either 10 or 1000
depending on the value of the squared innovation compared to a threshold value
set at 10 in (b) and 5 in (c). In (d) Q is either 1000 or 100 with the latter threshold.
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Figure 11 : Real data example (2). (a) is the original field log and the remaining
ones are outputs of data adaptive Kalman filtering with R equal to 10. In (b) Q is
either 100 or 10 depending on the value of the squared innovation compared to a
threshold value of 50. (c) same criterion and same threshold but Q is either 1000
or 10. In (d) Q is allowed the same variations but a different criterion is used : the
innovation is divided by its sample variance up to the current depth and then
compared to a threshold value of 30.
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RECEIVER

RECEIVER

SOURCE

SOURCE

8'

2'

SPACINGS: 10' 8' 12' and 10'

A complete sequence is fired every 1/2'

Figure 12: Tool geometric configuration used for synthetic data.
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200

- ' Arrival times for
/-' the 4 source-receiver

combinations

50
discrete depth #

5 45

Figure 13 : Synthetic arrival-time curves for the tool of Figure 12 in the case of a
sharp interface. Scale units are explained in the text.
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200G

Figure 14 : Outputs of conventional and recursive least squares processing in the
case of the noise-free data set of Figure 4.
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200

Figure 15 : Synthetic arrival-time curves of Figure 13 have been corrupted by an
additive random noise of maximum amplitude 20.
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200-

R increases

50
(b) Constant state variance. 300

Variable noise variance = 20-100-300-1000

5 45

200

O increases

IVI

50
Constant noise variance = 20

(a) Variable state variance = 0.1-1-10-100-300

5 45
Figure 16 : Outputs of the recursive least squares processing for various noise
specifications ( Q and R ). A correct initial guess has been assumed.
(a) R, the observation noise variance is kept constant, Q increases
b) Q, the "expected" formation variability is kept constant, R increases

In both figures, the dashed curve is obtained with the same R and Q.
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Figure 17: Outputs of both conventional and quick Kalman processing.
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noisy data
initial guess =15
initial state erro
state variance =
noise variance =

50

200-

50.
noisy data :
correct initial guess=100
initial state error variance =0
state variance =100
noise variance =30

5 45

Figure 18 : Output of recursive least squares processing in the case of erroneous
initial guesses.
(a) with the noise-free data set. (b) with the noise-corrupted data set.
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LSq. Inverse for.
noise free data
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data ( ±20)

5 45

Figure 19 : Results of both conventional and recursive least squares processing for
a three layer model. The medium layer is 5' thick.
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Figure 20 : Results of both conventional and recursive least squares processing for
a four layer model. The thinner layer is 2.5' thick.
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Figure 21: Arrival time determinations for a 10 foot spacing used as part of the in-
put for the next real data processing examples.
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45
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Figure 22 (top) Conventional processing example on the real data of Figure 21.

Figure 23 (bottom) : Least squares processing of the real data of Figure 21. Q=100
and R=1.
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Figure 24 (top) : Least
R=10.

squares processing of the real data of Figure 21. Q=100 and

Figure 25 (bottom) : Least squares processing of the real data of Figure 21. Q=100
and R=100.
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Figure A-1 Impulse responses of steady-state Kalman filters designed for a tool
length of 10 and Q/ R values of 10, 200, 400 and 4000.
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Figure A-2 Discrete time Fourier transforms of the impulse responses in Figure
A-1.
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Figure A-3 Product of the discrete time Fourier transforms of Figure A-2 and the
tool response Fourier transform.
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spatial
resolution

100 200 300

Figure A-4 : Theoretical spatial resolution as defined in text for steady-states
filters of length 4, 10, 16, 20 and 24 as a function of the ratio Q/ R.
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depth(ft)
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Figure A-5 : The five correction gains corresponding to Figure 11-(c), K(j), are
plotted as a function of depth in the top part. The resulting "instantaneous resolu-
tion" is displayed in the bottom part.
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APPENDIX A:

Spatial resolution for steady-state Kalman filters

In section 2.5 of the text, we mentionned the occurence of a steady

state for our inverse filter. Actually, the Kalman filter formulation

provides us with theoretical results.

Based upon the properties of the linear system under consideration,

namely its Observabiity and Controllability, it is possible to conclude the

existence of a steady-state filter. Intuitively, observability means that,

when the state equation is taken without input noise, one can retrieve the

initial state from an exact observation of the system over a finite period of

time. Controllability means that it takes a finite period of time to bring the

system to any given state through chosen deterministic inputs. Both

properties are verified by our single spacing linear system.

Because of the occurence of a steady state, we are able to compare

filters for various Q/ R ratios in a more general situation.

We first generated impulse responses for Q/IR values of, 10, 200, 400

and 4000 for a tool of length N=10. These are displayed Figure A-i. The

higher the ratio, the longer the significant part of the impulse response is.

Practically, this means that "past" observations bear more importance for

the current estimation for higher ratios than for smaller ones. In the limit

of high ratios, the impulse response is infinitely long and corresponds to
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the exact inverse response. In this case, an erroneous start will influence

the whole inversion. Another consequence is that the steady state is

harder to reach in quick Kalman cases.

The exact inverse impulse response consists of an infinite serie of two

+N,-N samples separated by N samples equal to zero. Our impulse

responses consist of a succession of peak and trough whose period is 10.

Transition between groups of peak and trough is sharper as Q/ R is higher.

For completeness, we transformed those impulse responses in the

frequency domain. The resulting transforms displayed Figure A-2 shows

nine resonances corresponding to the nine poles of the exact inverse for a

tool length of 10. As expected, these peaks are finite and all the sharper as

QI R increases. To get an idea of the quality of the inversion we multiplied

each of these transforms by the transfer function of the tool. The results

are plotted Figure A-3. The exact inverse would yield a constant value of 1

at all frequencies except for null values at pole locations. We see that for a

small Q/ R ratio, resolution is poor and, once again, as the ratio increases,

"resolution" at all frequencies tend to that of the exact inverse.

In order to get a more quantitative idea of resolution in depth, we

filtered noise-free data resulting from the simplest model of a sharp

interface as in Figure 3 using steady-state gains determined for various

Q/R ratios and for various tool lengths. Namely, we took N=4,10,16,20

and 24. We defined the "resolution in depth" as being the number of depth
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increments that the output would take to reproduce a given transit time

contrast extrapolating the steepest rise between two successive samples.

These values have been reported Figure A-4 as a function of the Q/R ratio.

This figure compares resolutions obtained for different tool lengths at

constant firing rate or'those obtained for the same tool at different firing

rates. Resolution improves very quickly in the range of small Q/R ratios

and converges very slowly toward unity at higher values. It is not

surprising that longer spacing have more difficulties to improve their

"rresolution" than shorter ones for a given ratio. However, one should

expect a smaller noise content with longer tool than with smaller ones that

would enable the former to do a better job in the inversion.

Finally, we may extend this notion of spatial resolution to non steady-

state filters. Namely, we define an "instantaneous spatial resolution" by

considering the correction gain vector K(j) at each depth increment as

one for a steady-state. Consequentely, at each depth we run a filter with

these constant coefficients to deconvolve a tool recording for a step

formation change. The output yields a value for resolution. In Figure A-5,

we plotted the value of each of the gain coefficients at each depth

corresponding to the adaptive filter used in Figure 11-(c). The resulting

values of "resolution" are displayed in the bottom part of Figure A-5. When

starting the filter, resolution decreases rapidly to a value of 5. This part

corresponds to the transient state for a filter with Q/R=1. The filter

converges quickly toward its steady state. We also note that for such a
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ratio, the resolution is the same as that of the original field data. This is

understandable since variations in the transit time serie and those yielded

by error measurement are assumed to be equally likely. Each time the

adaptibility criterion triggers an increase in the local Q value, resolution

improves and its value suddenly decreases to 1.5, which is close to the

theoretical maximum of 1. The former value is even below that for the

steady state with Q/R equal to 1000/10 at about 2.1. Afterward, the

resulting transient state gives resolution values above those of the steady

state for Q/R equal to 1. When, sharp interfaces are closely spaced, the

transient state is even more unstable as can be seen in some later sections

of the plot.
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CHAPTER 4: SUMMARY

Very finely sampled Full Waveform Acoustic data recorded by the EVA

tool revealed unexpected features. These features, related to the stratified

structure of subsurface, show that the way from an homogeneous

formation as considered in borehole propagation theory to a more realistic

earth model is complex. The various modes of propagation are scattered at

layer boundaries. Resulting events add energy to the main waveform in a

coherent manner so as to produce coherent "oblique events" on iso-offset

sections.

Ray modeling of reflections on and transmissions through horizontal

layer boundaries proved to be insufficient to account for all observed

features. Apparent velocities of some of the "oblique events" were to high

to be explained. In addition, body wave conversions at boundaries forced

us to consider interfaces that intersect the borehole with an angle.

When modeling such situations, it has been shown that dip angles could

significantly increase apparent velocities of "oblique events".

Furthermore, advantage of this can be taken to estimate the dip of

acoustic interfaces.

After data processing, velocity filtering and separation of events

applied to real data iso-offset sections and designed to enhance the

"oblique events", the interpretator is able to pick apparent velocities with



reasonable accuracy. Results obtained with real data proved to be in

satisfactory agreement with the dip-meter data.

Although the azimuth of the dip cannot be determined with present

logging tools, such method has the advantage of "sampling" the interface

much deeper in the formation than the conventional dipmeters. Typically,

with a ten meter offset, acoustic waves can penetrate in the formation as

much as two meters. In addition, several events related to the same

interface may yield redundancy and improve' the quality of the dip

estimate. Moreover, in well-bounded cased boreholes dip could be derived

with this method, while dipmeters relying on electrical properties fail.

As a result of transmission of acoustic waves through the different

layer interfaces encountered on their travel path between source and

receiver, travel times are smoothed out. Therefore it may be difficult to

estimate the location and amplitude of acoustic contrasts especially in

finely-layered geologic units. This problem is even more acute with the

longer source-receiver offsets and receiver-receiver spacings used in full

waveform logging.

Depth resolution of transit time determinations can be significantly

improved when the tool moves between successive shots by increments

smaller than its offset. Although an exact solution exists, measurement

errors made in determining travel times between source and receiver or
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moveouts between two common source receivers limit the resolution in

depth. In short, noise contamination seriously affects the exact

deconvolution process that would remove the tool response.

In addition to multiple travel time or moveout determinations, a

stochastic model reasonably representing the statistical behavior of the

transit time series can be used to stabilize an inversion for transit times.

Such "a priori" knowledge is readily incorporated in a least squares

inversion with Kalman's linear dynamic system formalism. In such a

formulation, inversion of transit times is implemented in a reccursive

algorithm that considerably reduces the amount of storage required to

perform a regular least squares inversion of a large section of well data.

This formulation which locates the travel time information as it has

been recorded is particularly suited for multi-offset tool data. Moreover,

because of the particular formulation choosen, control over the effective

resolution in depth is possible. Noise corruption is greater when a fine

resolution is sought and inversely. In addition, a data adaptive inversion

scheme can be easily implemented in order to locate sharp interfaces

without increase of the noise content everywhere else.
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