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XXZ spin chain with nondiagonal boundary terms, and interacting many-body lattice systems
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Wilson algebra. The importance of our study is motivated by the representation of one of
the boundary algebra generators as the second order difference operator for the Askey-Wilson
polynomials, known to be exactly solvable. The difference equation for the Askey-Wilson
polynomials becomes equivalent to the diagonalization problem for a general quadratic form in
the quantum group generators, interpreted in a proper way as the Hamiltonian of a physical
system with boundary Askey-Wilson symmetry. We argue that the boundary Askey-Wilson
symmetry is the deep algebraic property allowing for integrability of the physical system in
consideration.
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1 Introduction

The definition of integrability in the classical mechanics is due to Liouville. It says, that the
classical Hamiltonian of a finite-dimensional system is completely integrable if there exists a
set of independent integrals of motion commuting with respect to the Poisson brackets {Ii, Ij},
their number (including the Hamiltonian) being half of the dimension 2N of the phase space.
The system is superintegrable if it possess more that N integrals of motion. To generalize the
Liouville’s definition for complete integrability to the quantum case one requires the existence
of N commuting operators [Ii, Ij] = 0 (including the Hamiltonian). Accordingly, a quantum
system is called integrable if it is possible to exactly calculate some quantities of physical in-
terest, namely the common spectrum of commuting quantum integrals of motion and some
correlators. This is the basic idea of the developed algebraic approach, known as the quantum
inverse scattering method [1] to integrable models. It uses new algebras, the R matrix algebras,
and the existence of a family of commuting transfer matrices, depending on a spectral param-
eter, to describe the dynamical symmetry of integrable systems. The transfer matrices give
rise to infinitely many mutually commuting conservation laws. This is the abelian symmetry
of the system. The infinitely many commuting conserved charges can be diagonalized simul-
taneously and their common eigenspace is finite-dimensional in most cases. Thus the abelian
symmetry reduces the degeneracies of the spectrum from infinite to finite which is the reason
for integrability. In addition many systems possess nonabelian symmetries. They determine
the R matrix operator, a solution of the Yang-Baxter equation, up to an overall scalar factor
and are identified as the quantum bulk symmetries. In the presence of general boundaries
the quantum symmetry, and the integrability of the model as well, are broken. However with
suitably chosen boundary conditions [2, 3] a remnant of the bulk symmetry may survive and
the system possesses hidden boundary symmetries, which determine a K-matrix, a solution of
a boundary Yang-Baxter equation and allow for the exact solvability. Such non local boundary
symmetry charges were originally obtained for the sine Gordon model [4] and generalized to
affine Toda field theories [5], and derived from spin chain point of view as commuting with the
transfer matrix for a special choice of the boundary conditions [6] or analogously as the one
boundary Temperley-Lieb algebra centralizer in the ”nondiagonal” spin 1/2 representation [7].
The derivation of the nonlocal charges used the algebraic technique based on the quantum affine
symmetry in the bulk and the known boundary reflection K-matrices. They were obtained as
coideals of the bulk quantum symmetry and interpreted as generating a new symmetry.

In a recent paper [8] we have defined the Askey-Wilson (AW) algebra as a coideal subalgebra
of the quantum affine Uq(ŝl(2). (See also [9] and [10, 11, 12] for previous discussions of these
problems.) We have constructed a K-matrix in terms of the Askey-Wilson algebra generators,
which satisfies a boundary Yang-Baxter equation (known as a reflection equation). As an
example of an Askey-Wilson boundary symmetry we have considered a model of nonequilibrium
physics, the open asymmetric exclusion process with most general boundary conditions. This
model is exactly solvable in the stationary state within the matrix product ansatz to stochastic
dynamics and it can be shown that the boundary operators generate the Askey-Wilson algebra.
The model is equivalent to the integrable spin 1/2 XXZ chain with most general boundary terms,
whose bulk Hamiltonian (infinite chain) possesses the quantum affine symmetry Uq(ŝl(2)).
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There is a natural homomorphism of the Askey-Wilson algebra to a tridiagonal algebra, known
as deformed Dolan-Grady relations or deformed Onsager algebra. Recently Baseilhac and
Koizumi [13] have explicitly constructed the deformed analogue of the Onsager algebra for the
XXZ spin chain. Using the representation theory of the q-Onsager they diagonalize the transfer
matrix of the spin 1/2 XXZ chain of L sites with general integrable boundary conditions and
generic anisotropy parameter q with |q| = 1. They argue to have obtained the complete exact
spectrum from the roots of the characteristic polynomial of dimension 2L.

Even though the ASEP is equivalent to the integrable spin 1/2 XXZ chain with most
general boundary terms, yet the two models describe different physics. The XXZ chain is a
Hamiltonian system, while the ASEP is a dynamical process, which has a nonvanishing current
in the steady state. The exact solution of the model in the stationary state was achieved
in terms the Askey-Wilson polynomials, the irreducible modules of the hidden boundary AW
(and tridiagonal) symmetry. It has been emphasized that the steady state solution of ASEP
is ultimately related to the AW polynomials. In this paper we obtain the exact spectrum of
the transition rate matrix Γ (equivalently the Hamiltonian) of the ASEP on a one-dimensional
lattice of L site. We construct the complete set of 2L eigenvalues whose eigenspaces have
dimension one. The unique ground state of the stationary ASEP belongs to the complete set of
eigenvectors. This is done in the auxiliary space with discrete basis, constructed with the help
of the roots of the AW polynomial of order L. There is a representation in this space of the
tridiagonal algebra in the form of the deformed Dolan-Grady relations which can be interpreted
as the exact q-analogue of the Dolan-Grady relation for the Ising model.

In our opinion, it is quite remarkable that affine Toda field theory (the special case of which
is the sine Gordon model), the XXZ spin chain, and the interacting lattice many-body system
with a flow, through its equivalence to the XXZ spin chain, have the common characteristic to
possess a quantum affine symmetry Uq(ŝl(2)) (or Uq(ŝu(2)) in the bulk and boundary nonlocal
charges generating an Askey-Wilson algebra, a coideal subalgebra of the quantum group bulk
symmetry. The existence of an operator-valued reflection matrix, expressed in terms of the
AW algebra generators and satisfying a boundary Yang-Baxter equation is the deep algebraic
property behind these models allowing for integrability. This puts forward a connection to a
Bethe Ansatz solution for the spectrum of the relevant physical quantities.

As known the nondeformed analogue of the tridiagonal algebra are the celebrated Dolan-
Grady [14] relations

[A∗, [A∗, [A∗, A]]] = k∗[A∗, A], (1)

[A, [A, [A,A∗]]] = k[A,A∗]

It has been proved (see [14] for the details) that if the above relations hold the Hamiltonian

H = f ∗A∗ + fA (2)

where f ∗, f are some (coupling) constants, belongs to an infinite family of mutually commuting
operators - integrals of motion of H. It was shown in [14] that for the Ising model only the
first relation in (1) was satisfied, the other one followed from duality properties of the operators
A∗, A. In our study we observe the same property for the deformed algebra of the ASEP.
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In this paper we first define the AW algebra with N generators as a coideal subalgebra of
the quantum affine Uq(ŝl(N)) by a generalization of the homomorphism in the Uq(ŝl(2)) case.
We define the tridiagonal algebra with N generators through the natural homomorphism to
the Askey-Wilson algebra.

We then consider a related spectral problem exact solution of the asymmetric simple exclu-
sion process as a consequence of its boundary symmetry based on the Askey-Wilson algebra.
The importance of the AW algebra related spectral problem is motivated by the identification
of one of the generators with the second order difference operator for the AW polynomials in the
basic representation. The difference equation for the AW polynomials [15] becomes equivalent
to the diagonalization problem for a general quadratic form in the quantum group generators
(commonly interpreted as the Hamiltonian of a proper physical system). We present a diago-
nalization of the transition matrix by Bethe Ansatz procedure for the second order difference
operator for the Askey-Wilson polynomials and obtain the complete spectrum for the lattice
system with boundary AW symmetry, namely the asymmetric simple exclusion process. The
AW polynomials are the infinite-dimensional irreducible modules of the boundary AW alge-
bra, as well as of the boundary TD algebra. The finite-dimensional irreducible modules can
be naturally obtained through a constraint on the boundary parameters. This corresponds
to the known XXZ Bethe ansatz solution of Nepomechie et. al and Cao et al. However
this is not applicable to the open asymmetric exclusion process since any relation between the
boundary parameters spoils the nonequilibrium behaviour. We construct the finite-dimensional
irreducible module of the tridiagonal algebra for arbitrary range of the parameters. From the
properties of the tridiagonal algebra representation we derive the complete set of states and
exact spectrum of the ASEP transition matrix of dimension 2L, such that all the eigenvalues
are real and distinct. In view of the importance of the AW algebra for the ASEP stationary
exact solution we consider the proposed method for diagonalization of the transition matrix the
most efficient for this model of nonequilibrium physic. The algebraic scheme can be applied to
other systems with boundary Askey-Wilson algebra upon the identification of the second order
difference operator with a proper Hamiltonian and with the specific properties of the model
taken into account.

2 The quantum affine Uq(ŝl(N))

In this section we recall the definition of the affine Uq(ŝl(N)) [16, 17, 18, 19]. We fix a real
number 0 < q < 1 (in the general case q is complex) and use the q-symbol in the form

[x] =
qx/2 − q−x/2

q1/2 − q−1/2
≡ [x]q1/2 (3)

The quantum affine Uq(ŝl(N)) is defined as the associative algebra with a unit with generators
E±

i and qHi , i = 0, 1, ..., N − 1 in the Chevalley basis and defining relations

qHiq−Hi = q−HiqHi = 1 (4)

qHiqHj = qHjqHi
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qHiE±
j q

−Hi = q±aijE±
j (5)

[E±
i , E

∓
j ] = δij

qHi − q−Hi

q1/2 − q−1/2

together with the q-Serre relations

1−aij
∑

0

(−1)r

[

1 − aij

r

]

q

(E±
i )rE±

j (E±
i )1−aij−r = 0 (6)

where
[

m
r

]

q

=
[m]!

[r]![(m− r)]!
(7)

and aij is the extended Cartan matrix of type AN−1, i.e. aii = 2, aij = −1(i = j + 1), a0N =
−1, aij = 0 (otherwise).

For Uq(ŝl(2)) the simple roots can be chosen such that ~α0 = −~α1, |~α1|2 = 2. Hence a01 = −2.

Let aV
i , i = 0, ..., N − 1 be the labels of the dual Dynkin diagram [20]. The element

c =
∑i=N−1

i=0 aV
i Hi is central and its value is the level of the affine Uq(ŝlN). The algebra is

endowed with the structure of a Hopf algebra. Namely, the coproduct ∆, the counit ǫ and the
antipode S are defined as

∆(E+
i ) = E+

i ⊗ q−Hi/2 + qHi/2 ⊗ E+
i (8)

∆(E−
i ) = E−

i ⊗ q−Hi/2 + qHi/2 ⊗ E−
i

∆(Hi) = Hi ⊗ I + I ⊗Hi

ǫ(E+
i ) = ǫ(E−

i ) = ǫ(Hi) = 0, ǫ(I) = 1 (9)

S(E±
i ) = −q∓1/2E±

i , S(Hi) = −Hi, S(I) = 1 (10)

Let α0 denote the longest root and ρ be 1/2 the sum of positive roots. We consider the Uq(ŝl(N))
algebra with a scaling element d, defined by (d, α0) = 1 ( (, ) is the nondegenerate bilinear form
on the Cartan subalgebra) and denote h = (α0, α0) + 2(ρ, α0). With a finite-dimensional
representation πV of Uq(ŝl(N)) one associates the quantum R-matrix RV V (λ) which acts in
V ⊗ V and satisfies the Yang-Baxter equation. One has also [d ⊗ d,R] = 0. The universal
R-matrix R(λ) is uniquely defined [21] by the first terms in its expansion in powers of the
Chevalley generators of Uq(ŝl(N))

R = qc⊗d+d⊗c+
∑N−1

i=0
Hi⊗Hi

(

1 ⊗ 1 + (q1/2 − q−1/2)
N−1
∑

i=0

qHi/2E+
i ⊗ q−Hi/2E−

i + ...

)

(11)

One can define an automorphism Tλ

TλHi = Hi, TλE
±
i = λ±E±

i , i = 0, ..., N − 1 (12)

and put R(λ) = (T (λ) ⊗ id)R. For a fixed finite-dimensional representation (π, V ) of the
quotient algebra Uq(ŝl(N)), obtained by setting c = 0, one hasRV V (λ) = (π⊗π)R(λ). Following
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[21], one introduces the currents L±(λ) ∈ EndV ⊗Uq(ŝl(N)), given by L+ = (id⊗πV )(R), L− =

(id⊗πV )(Rt), which are explicitly expressed in terms of the Chevalley generators of Uq(ŝl(N)).
The operators L±(λ) generate a Hopf algebra A(R) and their matrix coefficients generate an
algebra A0(R) ⊂ A(R). Let L(λ) denote the quantum current

L(λ) = L+(λq)(L−(λ)−1 (13)

with a finite Laurent series expansion

L(λ) =
∑

n

lV (n)λ−n−2, n ∈ Z (14)

A theorem (by Reshetikhin and Semenov-Tian-Shansky [21]) states that the element t(λ) =
trq(L(λ)) lies in the center of the quotient algebra of A(R), obtained by setting c = −h. Hence
from the explicit expressions of the currents L± in terms of the Chevalley generators follows
that t(λ) is the generating function of the Casimir elements of the quotient algebra of Uq(ŝl(N)),
obtained by setting c = −h.

For our purposes we will need a slightly different realization of the algebra in terms of the
Chevalley generators and following [9] for N = 2 we define a new basis in Uq(ŝl(N)) generated
by Hi, Q

s
i , Q̄

s
i

Qs
i = (q1/2−q−1/2)

√

[2]E+
i q

−Hi/2+q−Hi , Q̄s
i = −(q1/2−q−1/2)

√

[2]E−
i q

−Hi/2+q−Hi (15)

In terms of the operators Qi = E+
i q

−Hi/2 and Q̄i = E−
i q

−Hi/2 the deformed q-Serre relations
can be expressed in a very simple form

adj
1−aij

Qi
(Qj) = adj

1−aij

Q̄i
(Q̄j) = 0 (16)

Let now ui, vi, i = 0, ...N − 1 be some scalars (in general complex). We denote

Ui = uiQ
s
i , Vj = vjQ̄

s
j , (17)

There is no summation over repeated indices in eq.(17). Then we have

qViUi − q−1UiVi = (q − q−1)viui (18)

q1/2UiVi+1 − q−1/2Vi+1Ui = (q1/2 − q−1/2)uivi+1q
−Hi/2−Hi+1/2 (19)

q1/2Ui+1Vi − q−1/2ViUi+1 = (q1/2 − q−1/2)ui+1viq
−Hi/2−Hi+1/2 (20)

The operators Ui, Vj satisfy the following relations which are the direct consequence of (16)

U3
i Ui+1 − [3]U2

i Ui+1Ui + [3]UiUi+1U
2
i + Ui+1U

3
i = 0, i = 0, 1, ..., n− 1 (21)

U3
i+1Ui − [3]U2

i+1UiUi+1 + [3]Ui+1UiU
2
i+1 + UiU

3
i+1 = 0 (22)

V 3
i Vi+1 − [3]V 2

i Vi+1Vi + [3]ViVi+1V
2
i + Vi+1V

3
i = 0 (23)
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V 3
i+1Vi − [3]V 2

i+1ViVi+1 + [3]Vi+1ViV
2
i+1 + ViV

3
i+1 = 0 (24)

[Ui, Uj] = 0, [Vi, Vj] = 0, |i− j| ≥ 2 (25)

We can now form the linear combinations

Ai = Ui + Vi (26)

It can be verified directly by using the q-commutation relations (18-20) between the operators
Ui, Vj and the relations (21-25) that the operators Ai satisfy the following relations, which are
a set of tridiagonal relations for the pairs Ai, Ai+1

A3
iAi+1 − [3]qA

2
iAi+1Ai + [3]qAiAi+1A

2
i + Ai+1A

3
i = uivi(q − q−1)2[Ai, Ai+1] (27)

A3
i+1Ai − [3]qA

2
i+1AiAi+1 + [3]qAi+1AiA

2
i+1 + AiA

3
i+1 = ui+1vi+1(q − q−1)2[Ai+1, Ai]

where [3]q = q + q−1 + 1 and [X,Y ] = XY − Y X. In the following section we are going to
consider a general realization of the Askey-Wilson algebra (AW) and a tridiagonal algebra (TD)
with N generators as coideal subalgebras of the quantum affine Uq(ŝl(N)).

3 The Askey-Wilson algebra with N generators

We consider linear combinations of the generators of the quantized affine algebra Uq(ŝl(N)),
N ≥ 3.

Proposition I: Let ui, , vi, , ki, i = 0, ..., N−1 be some scalars. The operators Ai, i = 0, ..., N−
1 defined by

Ai = uiE
+
i q

−Hi/2 + viE
−
i q

−Hi/2 + kiq
−Hi , i = 0, ..., N − 1 (28)

(It is assumed that E±
i in (28) are rescaled by ±(q1/2 − q−1/2) according to (15).) satisfy the

following algebraic relations

[Ai, Aj] = 0, |i− j| ≥ 2, i, j = 1, ..., N − 1 (29)

[[Ai, Ai+1]q, Ai]q = −ρiAi+1 − ωi+1Ai − ηi+1
i (30)

[Ai+1, [Ai, Ai+1]q]q = −ρi+1Ai − ωi+1Ai+1 − ηi
i+1

with i = 0, ..., N − 2 and

[[A0, AN−1]q, A0]q = −ρ0AN−1 − ω0A0 − ηN−1
0 (31)

[AN−1, [A0, AN−1]q]q = −ρN−1A0 − ω0AN−1 − η0
N−1

where [Ai, Aj]q is the q-commutator

[Ai, Aj]q = q1/2AiAj − q−1/2AjAi, 0 ≤ i, j ≤ N − 1 (32)
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and the structure constants on the RHS are representation dependent

−ρi = uivi(q − q−1)2, (33)

ωi+1 = (q1/2 − q−1/2)2kiki+1q
−µ(i)−µ(i+1) (34)

ηi+1
i = (q − q−1)2uiviki+1q

−2µ(i)−µ(i+1), ηi
i+1 = (q − q−1)2ui+1vi+1kiq

−2µ(i+1)−µ(i) (35)

with ω0, η
N−1
0 , η0

N−1 following from (34) and (35) by replacing on the RHS i → 0, (i + 1) →
(N − 1). The representation module is type 1 [22] V = ⊕µVµ with weight space Vµ = (ν ∈
V |qHiν = qµ(i)ν), a joint eigenspace of the commuting operators qHi ,i = 0, ..., N − 1.

The homomorphism to the level zero quantum affine Uq(ŝl(N)) algebra is straightforward to

verify using Jimbo evaluation homomorphism [16] for Uq(ŝl(N)) where it becomes transparent

in terms of the basis given by the elements Êij(i 6= j) such that

Êij = ÊikÊkj − q±ÊkjÊik i ≶ k ≶ j (36)

These elements have the property of the simple roots. Then

Êi−1i = E+
i , Êii−1 = E−

i (37)

Let (êij)kl = δikδjl. The evaluation representation πλ is defined as

π(q±Hi) = q±(êii−êi+1i+1), π(E+
i ) = êii+1 π(E−

i ) = êi+1i (38)

for i = 1, ..., N − 2 and π(q±H0) = q±(êN−1N−1−ê00),

π((E+
0 ) = λqê00+êN−1N−1−1êN−10, π((E−

0 ) = λ−1q−ê00−êN−1N−1+1ê0N−1 (39)

Using the evaluation representation it is readily verified that for the particular values of the
structure constants, namely

ρ0 = ρ1 = ... = ρN−1 = −1, (40)

ωi = 0, ηi = 0, i = 0, ..., N − 1 (41)

which is achieved by rescaling the generators Ai and setting

ki = 0, (42)

then the algebra (29 - 31) is equivalent to the algebra U ′
q(soN) introduced by Gavrilik and

Klimyk [23] as the nonstandard deformation of the universal enveloping algebra of the Lie
algebra of so(N).

Formula (28) defines the homomorphism of the AW algebra with N generators to the quan-
tum affine Uq(ŝl(N)). The AW algebra with N generators obeying the relations (29) and (30,
31) is an associative algebra with a unit, depending on the structure constants determined by
eqs.(33-35).
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Definition 1: The AW algebra (29-31) with N generators Ai, i = 0, ..., N − 1 defined by
the homomorphism (28) is a deformation in the parameters ρi, ωi, η

i+1
i , ηi

i+1, η
N−1
0 , η0

N−1, i =

0, ..., N − 1 of the q-Serre relations of level zero quantum affine Uq(ŝl(N)).

Taking the commutator of both sides of the first and second line in (30), (31), with Ai and
Ai+1, A0 and AN−1, respectively, we obtain the relations

[Ai[Ai[Ai, Aj]q]q−1 = ρi[Ai, Aj], (43)

[Aj[Aj[Aj, Ai]q]q−1 = ρj[Aj, Ai]

where j = i+ 1 or i = 0, j = N − 1 and

[Ai, Aj] = 0, |i− j| ≥ 2, i, j = 0, ..., N − 1 (44)

Relations (43) define a tridiagonal algebra (TD) with N generators through a natural homo-
morphism to the Askey-Wilson algebra.

Taking the limit q → 1 in (43) one obtains relations that generalize the well known Dolan-
Grady relations [14] for the case N = 2. Eq.(43) can be interpreted as tridiagonal relations
following from a deformation of the Serre relations of level zero affine sl(N).

From the explicit realization of the operators Ai it follows that they generate a linear
covariance algebra for the Uq(ŝl(N)) which has the property of a coideal subalgebra. Let

Bq(ŝl(N)) denote the algebra generated by Ai.

Proposition II: The Askey-Wilson algebra defined by the homomorphism (28) is a coideal
subalgebra of Uq(ŝl(N)). The proof is straightforward by using the comultiplication (8). One
has

∆(Ai) = I ⊗ Ai + (Ai − kiI) ⊗ q−Hi i = 0, ..., N − 1 (45)

where the expressions on the RHS of (45) obviously belong to Bq(ŝl(N)) ⊗ Uq(ŝl(N)).

The chain of homomorphisms TD → AW → Uq(ŝl(N)) determines the tridiagonal algebra

as a coideal of Uq(ŝl(N)).

Definition 2: The tridiagonal algebra with N generators is the associative algebra with a
unit, a coideal subalgebra of Uq(ŝl(N)) and defining relations (43, 44) where the N structure
constants are given by eq. (33).

The Askey-Wilson algebra with two generators A,A∗ was first considered in the works of
Zhedanov [24, 25] who showed that the Askey-Wilson polynomials give raise to two infinite-
dimensional matrices satisfying the AW relations. In [26] the AW algebra has been equivalently
described as an algebra with two generators and with structure constants determined in terms of
the elementary symmetric polynomials in four parameters a, b, c, d, abcd 6= qm,m = 0, 1, 2...; q 6=
0, qk 6= 1, k = 1, 2, .... The tridiagonal relations have recently been discussed in a more general
framework [27, 28] where tridiagonal pairs A,A∗ have been classified according to their depen-
dence on the sequence of scalars [27, 28, 29] and a correspondence to the orthogonal polynomials
in the Askey-Wilson scheme was given. The coideal tridiagonal subalgebra was considered in
[11] for a particular case of the homomorphism to Uq(ŝl(2)).
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The Zhedanov algebra was introduced as a linear covariance algebra for Uq(sl(2)). In [8] the
general homomorphism of the AW algebra with generators A,A∗ to the quantum affine algebra
Uq(ŝl(2)) was studied. Special cases of this homomorphism is the representation considered by
Terwilliger [27] with ρ = ρ∗ = 0 and the one by Baseilhac and Koizumi [12] with u = v∗ and
v = u∗. The Zhedanov realization [25] corresponds to the evaluation representation for the
Uq(ŝl(2)) generators

πν(E
±
1 ) = E±, πν(E

±
0 ) = ν±1E∓, πν(q

H1) = qH , πν(q
H0) = q−H (46)

where E±, H are the Uq(sl(2)) generators.

4 Boundary Askey-Wilson symmetry

We can now summarize the known results on the nonlocal conserved charges for the models in
consideration.

A. Two-dimensional field theory models
The sine-Gordon model can be viewed as a perturbation of a free bosonic conformal field theory,
with the action on the whole line (with the condition φ(−∞, t) = 0)

S =
1

4π

∫

d2z∂φ∂̄φ+
λ

2π

∫

d2zΦpert(x, t), (47)

with the perturbing operator

Φpert(x, t) = eiβ̂φ(x,t) + e−iβ̂φ(x,t), (48)

where β̂ is the Toda coupling constant. The Uq(ŝl2) symmetry of the sine-Gordon model with
deformation parameter

q = exp

(

2iπ(1 − β̄2)

β̄2)

)

(49)

is generated by the charges

Q± =
1

4π

∞
∫

−∞

(J± −H±), Q̄± =
1

4π

∞
∫

−∞

(J̄± − H̄±) (50)

together with the topological charge

T =
β̂

2π

∞
∫

−∞

dx∂xφ (51)

The explicit expressions of the currents J±, J̄±, H±H̄± are given by formulae (3.5), (3.6) and
(3.7) in [5]. The charges are related to the conventional basis in Uq(ŝl2) Q± = E±qH , Q̄± =
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E±q−H , T = H. To restrict the sine-Gordon model to the half line x ≥ 0 one imposes the
Neumann boundary condition ∂xφ = 0 at x = 0. The sine-Gordon model was found to be
classically integrable with rather more general boundary conditions

∂xφ = iβλb

(

ǫ−e
iβ̂φ(0,t) − ǫ+e

−iβ̂φ(0,t)
)

(52)

which can be considered as a perturbation to the Neumann boundary conditions with a per-
turbed operator

Sǫ = SNeumann +
λ

2π

∫

dtΦpert
boundary(t), (53)

with the boundary perturbing operator

Φpert
boundary(t) = ǫ−e

iβ̂φ(0,t) + ǫ+e
−iβ̂φ(0,t) (54)

It has been shown in [5] that with these boundary conditions the nonlocal charges,

Q̂− = Q− + Q̄+ + ǫ̂−q
−T (55)

Q̂+ = Q+ + Q̄− + ǫ̂+q
T

where

ǫ̂± =
λbǫ±
2π

(1 − β̄2)

β̄2)
(56)

are conserved and generate a coideal subalgebra of Uq(ŝl2). It is now straightforward to show

that the algebra of the charges Q̂± is the Askey-Wilson algebra of the pair

A = Q+ + Q̄− + ǫ̂+q
T , A∗ = Q− + Q̄+ + ǫ̂−q

−T (57)

with structure constants corresponding to the value l0V = q1/2 + q−1/2

ρ = ρ∗ = −(q − q−1)2, (58)

ω = (q1/2 − q−1/2)2
(

ǫ̂+ǫ̂− + (q1/2 + q−1/2)2
)

(59)

η = η∗ = (q − q−1)2(ǫ̂+ + ǫ̂−) (60)

The tridiagonal boundary algebra of the sine-Gordon model on the half-line is defined by the
structure constants (58).

A Hamiltonian, describing a sine-Gordon model on the half-line coupled to a non-linear
oscillator at the boundary, was proposed in [30] and has been shown to be integrable at the
classical level. The model was then studied at the quantum level [31] and nonlocal charges
Ê±, corresponding to the dynamical case, were constructed, which were natural extensions to
the known nondynamical ones. These nonlocal charges have been shown to generate a coideal
subalgebra of Uq(ŝl2), defined by the algebraic relations

(q + q−1)Ê+Ê−Ê+ − Ê2
+Ê− − Ê−Ê2

+ = −c2(q1/2 + q−1/2)2Ê− (61)

(q + q−1)Ê−Ê+Ê− − Ê2
−Ê+ − Ê+Ê2

− = −c2(q1/2 + q−1/2)2Ê+
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where c2 = i2µ(q − 1)/λ2, λ = 2/β̂2 − 1, µ is the boundary perturbation parameter and
q ≡ exp−2πi/β̂2. These relations define the AW boundary algebra of the dynamical model
with structure constants

ρ = ρ∗ = −c2(q1/2 + q−1/2)2 (62)

ω = 0, η = η∗ = 0 (63)

The more general class of models is the affine Toda field theory associated to every affine Lie
algebra of rank N and defined by the Euclidean action for an N -component boson field in two
dimensions

S =
1

4π

∫

d2z∂φ∂̄φ+
λ

2π

∫

d2z

N−1
∑

j=0

exp

(

−iβ̂ 1

|α2
j |
αj · φ

)

(64)

where the exponential interaction potential is expressed by the simple roots αj, j = 0, ..., N−1,

λ is the mass parameter and β̂ is the coupling constant. The quantum symmetry Uq(ŝl(N)) is
generated by the topological charges

Tj =
β̂

2π

∞
∫

−∞

dxαj∂xφ (65)

and the nonlocal conserved charges

Qj =
1

4π

∞
∫

−∞

(Jj −Hj), Q̄j =
1

4π

∞
∫

−∞

(J̄j − H̄j) (66)

where j = 0, ..., N − 1, Qi ≡ E+
i q

Hi/2, Q̄i ≡ E−
i q

Hi/2, Ti ≡ Hi. The explicit expressions for
Jj, J̄j, Hj, H̄j are given by the formulae (4.4), (4.5) and (4.6) in [5]. The linear combinations
Qj +Q̄j are parity invariant and conserved on the half-line with Neumann boundary conditions.

Adding to the action a boundary perturbation

Sǫ = SNeumann +
λ

2π

∫

dtΦpert
boundary(t), (67)

where

Φpert
boundary(t) =

N−1
∑

j=0

ǫj exp

(

−iβ̂
2
αj · φ(0, t)

)

(68)

we obtain a more general boundary condition

∂xφ = −iβ̂λb

N−1
∑

j=0

ǫjαj exp

(

−iβ̂
2
αj · φ(0, t)

)

, x = 0 (69)

The new conserved charges are

Q̂i = Qi + Q̄i + ǫ̂iq
Ti , ǫ̂i =

λbǫi
2πc

(1 − β̂2)

β̂2
, i = 0, ..., N − 1 (70)
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The nonlocal charges of affine Toda field theory generate the AW algebra with N generators and
with structure constants, depending on the weights, are given by (no summation over repeated
indices)

ρi = ρi+1 = −(q − q−1)2, (71)

ωi+1 = (q1/2 − q−1/2)2ǫ̂iǫ̂i+1q
−µ(i)−µ(i+1) (72)

ηi+1
i = (q − q−1)2ǫ̂i+1q

−2µ(i)−µ(i+1), ηi
i+1 = (q − q−1)2ǫ̂iq

−2µ(i+1)−µ(i) (73)

The nonlocal charges of affine Toda field theory generate the tridiagonal algebra with structure
constants ρi given by eq.(71).

B. The XXZ spin chain and the open asymmetric simple exclusion process (ASEP)
The ASEP is an interacting many-body system with wide range of applications [32, 33, 34]. It
is described in terms of a master equation for the probability distribution P (si, t) of a stochastic
variable si = 0, 1, at a site i = 1, 2, ....L of a linear chain. In the set of occupation numbers
(s1, s2, ..., sL) specifying a configuration of the system si = 0 if a site i is empty, or si = 1 if
the site i is occupied. On successive sites particles hop with probability g01dt to the left, and
g10dt to the right. The event of hopping occurs if out of two adjacent sites one is a vacancy and
the other is occupied by a particle. The symmetric simple exclusion process is the lattice gas
model of particles hopping between nearest-neighbour sites with a constant rate gik = gki = g.
The asymmetric simple exclusion process with hopping in a preferred direction is the driven
diffusive lattice gas of particles moving under the action of an external field. The process is
totally asymmetric if all jumps occur in one direction only, and partially asymmetric if there
is a different non-zero probability of both left and right hopping. In the case of open systems,
the lattice gas is coupled to external reservoirs of particles of fixed density and additional
processes can take place at the boundaries. Namely at the left boundary i = 1 a particle can
be added with probability αdt and removed with probability γdt, and at the right boundary
i = L it can be removed with probability βdt and added with probability δdt. Without loss
of generality we can choose the right probability rate g10 = 1 and the left probability rate
g01 = q. The totally asymmetric process corresponds to q = 0. The time evolution of the
system is governed by the master equation dP (s,t)

dt
=
∑

s′ Γ(s, s′)P (s′, t) which is mapped to

a Schroedinger equation in imaginary time dP (t)
dt

= −HP (t) for a quantum Hamiltonian with
nearest-neighbour interaction in the bulk and single-site boundary terms. The ground state of
this Hamiltonian, in general non-Hermitian, corresponds to the steady state of the stochastic
dynamics where all probabilities are stationary. A relation to the integrable spin 1/2 XXZ
quantum spin chain is obtained through the similarity transformation Γ = −qU−1

µ HXXZUµ (see
[35] for details); HXXZ is the Hamiltonian of the Uq(su(2)) invariant quantum spin chain [36]
with anisotropy ∆ and with added non diagonal boundary terms B1 and BL

HXXZ = −1/2
L−1
∑

i=1

(σx
i σ

x
i+1 + σy

i σ
y
i+1 − ∆σz

i σ
z
i+1 + h(σz

i+1 − σz
i ) + ∆) +B1 +BL (74)

The transition rates of the ASEP are related to the parameters ∆ and h, and the boundary
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terms in the following way (µ is free parameter, irrelevant for the spectrum)

∆ = −1/2(q + q−1), h = 1/2(q − q−1) (75)

B1 =
1

2q

(

α+ γ + (α− γ)σz
1 − 2αµσ−

1 − 2γµ−1σ+
1

)

BL =

(

β + δ − (β − δ)σz
L − 2δµqL−1σ−

L − 2βµ−1q−L+1σ+
L

)

2q

Bethe Ansatz solution (BA) was possible [37, 38] through the mapping to the XXZ chain
Hamiltonian with most general nondiagonal boundary terms whose diagonalization on its turn
was recently achieved [39, 40] (by means of algebraic Bethe ansatz) provided the parameters
satisfy a condition which in terms of the ASEP notations reads

(qL+2k − 1)(αβ − qL−2k−2γδ) = 0 (76)

In (76) k is an integer such that |k| ≤ L/2. Given k, the first factor zero in (76) assumes q
to be a root of unity and the second factor zero imposes a relation between the bulk and the
boundary parameters. For generic q, however, one can satisfy the constraint [37] by choosing
k to be k = −L/2.

Matrix Product State Ansatz (MPA): The idea is that the steady state properties of the
ASEP can be obtained exactly in terms of matrices obeying a quadratic algebra [41, 42]. For a
given configuration (s1, s2, ..., sL) the stationary probability is defined by the expectation value

P (s) =
〈w|Ds1Ds2 ...DsL

|v〉

ZL
, where Dsi

= D1 if a site i = 1, 2, ..., L is occupied and Dsi
= D0

if a site i is empty and ZL = 〈w|(D0 + D1)
L|v〉 is the normalization factor to the stationary

probability distribution. The operators Di, i = 0, 1 satisfy the quadratic (bulk) algebra

D1D0 − qD0D1 = x1D0 −D1x0, x0 + x1 = 0 (77)

with boundary conditions of the form

(βD1 − δD0)|v〉 = x0|v〉 (78)

〈w|(αD0 − γD1) = −〈w|x1.

The exact solution in the stationary state was related to Askey-Wilson polynomials [43, 44].
Emphasizing the equivalence of the open ASEP to the Uq(ŝu(2)) XXZ invariant quantum spin
chain with added general boundary terms we have shown [45] that the boundary operators
generate the AW algebra with the structure constants (x1 = −x0)

ρ = x2
0βδq

−1(q1/2 + q−1/2)2, ρ∗ = x2
0αγq

−1(q1/2 + q−1/2)2 (79)

−ω = x2
0(β − δ)(γ − α) − x2

0(βγ + αδ)(q1/2 − q−1/2)Q (80)

η = q1/2(q1/2 + q−1/2)x3
0

(

βδ(γ − α)Q+
(β − δ)(βγ + αδ)

q1/2 − q−1/2

)

(81)

η∗ = q1/2(q1/2 + q−1/2)x3
0

(

αγ(β − δ)Q+
(α− γ)(αδ + βγ)

q1/2 − q−1/2

)
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where Q is the central element of the finite-dimensional Uq(su(2)) representation. The corre-
sponding AW algebra for the XXZ spin chain, proposed in [10], is a particular case of the
ASEP boundary AW algebra. It is generated by the operators

A =
1

c0
Q+ + Q̄−, A∗ = Q− +

1

c0
Q̄+ (82)

with c0 an arbitrary parameter and structure constants are given by

ρ = ρ∗ =
(q1/2 + q−1/2)2

c0
(83)

ω = − ω(j)

c0(q − q−1)
, η = η∗ = 0 (84)

where ω(j) = (qj+1/2 + q−j−1/2) denotes the eigenvalue of the Uq(sl2) Casimir in the spin j
representation. The tridiagonal algebra as a coideal subalgebra of the Uq(ŝl(2)), explored for
the exact spectrum of the XXZ chain with general boundary terms in [13] has also equal
structure constants ρ = ρ∗ = k+k−, where k+, k− belong to the boundary parameters at the
left end of the chain.

We emphasize the different form of the structure constants in the boundary AW algebras
for the ASEP and XXZ spin chain. Despite the equivalence of the ASEP to the XXZ spin
chain through a similarity transformation they describe different physics. A relation among the
structure constants of the type ρ = ρ∗ is unacceptable for a model of nonequilibrium physics
as the ASEP is because it will restrict the physics of the system.

5 Representation of the Askey-Wilson algebra

We summarize the most important formulae and notations about the representations of the
AW algebra with two generators A,A∗ which we will need to present the related spectral
problem. Let pn = pn(x; a, b, c, d) denote the n-th Askey-Wilson polynomial [46] depending on
four parameters a, b, c, d

pn =4 Φ3

(

q−n, abcdqn−1, ay, ay−1

ab, ac, ad
|q; q

)

(85)

with p0 = 1, x = y + y−1 and 0 < q < 1. There is a basic representation of the AW algebra
[28, 26] in the space of symmetric Laurent polynomials f [y] = f [y−1] with a basis (p0, p1, ...) as
follows

Af [y] = (y + y−1)f [y], A∗f [y] = Df [y] (86)

where D is the second order q-difference operator [46] having the Askey-Wilson polynomials pn

as eigenfunctions. It is a linear transformation given by

Df [y] = (1 + abcdq−1)f [y] +
(1 − ay)(1 − by)(1 − cy)(1 − dy)

(1 − y2)(1 − qy2)
(f [qy] − f [y]) (87)

+
(a− y)(b− y)(c− y)(d− y)

(1 − y2)(q − y2)
(f [q−1y] − f [y])
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with D(1) = 1 + abcdq−1. The eigenvalue equation for the joint eigenfunctions pn reads

Dpn = λ∗npn, λ∗n = q−n + abcdqn−1 (88)

and the operator A∗ is represented by an infinite-dimensional matrix diag(λ∗0, λ
∗
1, λ

∗
2, ...). The

operator Apn = xpn is represented by a tridiagonal matrix. Let A denote the matrix whose
matrix elements enter the three-term recurrence relation for the Askey-Wilson polynomials

xpn = bnpn+1 + anpn + cnpn−1, (89)

where p−1(x) = 0, p0(x) = 1 and

A =









a0 c1
b0 a1 c2

b1 a2 ·
· ·









(90)

The explicit form of the matrix elements of A reads

an = a+ a−1 − bn − cn (91)

bn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
(92)

cn =
a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
(93)

The basis is orthogonal with the orthogonality condition for the Askey-Wilson polynomials
Pn = a−n(ab, ac, ad; q)npn

1
∫

−1

w(x)

2π
√

1 − x2
Pm(x; a, b, c, d|q)Pn(x; a, b, c, d|q)dx = hnδmn (94)

where w(x) = h(x,1)h(x,−1)h(x,q1/2)h(x,−q1/2)
h(x,a)h(x,b)h(x,c)h(x,d)

and h(x, µ) =
∏∞

k=0[1 − 2µxqk + µ2q2k], and

hn =
(abcdqn−1; q)n(abcdq2n; q)∞

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
(95)

6 Related spectral problem

The importance of the AW algebra related spectral problem is motivated by the identification
of the generator A∗ with the second order difference operator for the AW polynomials in the
basic representation. It has been known [47] for quite a long time that the standard quantum
algebra Uq(sl(2)) can be obtained as a contraction of a degenerate Sklyanin algebra [48] and the
diagonalization problem for a general quadratic form in the generators (commonly interpreted
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as the Hamiltonian of a proper physical system) is equivalent to the difference equation for the
AW polynomials [15].

We consider the eigenvalue equation (88) for the operator D in (87) for a polynomial of a
given finite degree n

ϕ(y)(pn(qy) − pn(y)) + ϕ(y−1)(pn(q−1y) − pn(y)) = (q−n − 1)(1 − qn−1abcd)pn(y) (96)

ϕ(y) =

∏4
ν=1(1 − wνy)

(1 − y2)(1 − qy2)
, w1 = a, w2 = b, w3 = c, w4 = d (97)

and use the procedure of algebraic Bethe Ansatz [15]. Expanding the function pn as a product
of its zeros

pn(y) =
n
∏

m=1

(y − ym)(y − y−1
m ) (98)

we plug it in eq.(96) dividing thereafter both sides by pn(y). Since the LHS is a meromorphic
function, the RHS is a constant. One needs to cancel the singularities which at LHS are located
at y = 0,∞, ym. The singular part at y = 0 vanishes identically. (It is assumed that ym 6= 0.)
When one implements Uq(su(2)) algebraic Bethe-Ansatz to quasi-exactly solvable operators,
i.e. operators in a linear or bilinear form in terms of the Uq(su(2)) generators, the vanishing of
the residue at infinity determines the degree of the polynomial n ≡ L = 2j. The second order
AW difference operator is exactly solvable and the LHS is regular at ∞ from the beginning so
that no restriction for the degree of the polynomial follows. Annihilation of poles at y = ym

gives the Bethe-Ansatz equation [15] for the zeros of the Askey-Wilson polynomials

4
∏

ν=1

yk − wν

wνyk − 1
=

L
∏

l=1,l 6=k

(qyk − yl)(qykyl − 1)

(yk − qyl)(ykyl − q)
(99)

These equations are valid for any L < 2j+ 1, so that for any L there is exactly one polynomial
(98). This means that for each L(< 2j + 1) the Bethe equations have exactly one solution for
the set yk, k = 1, ..., L.

We will use the unique solution for the AW zeros Bethe-Ansatz equation to construct a
finite-dimensional representation of the AW algebra in the space of Laurent polynomials of a
given degree.

The operator Apn = xpn is represented by a tridiagonal matrix A whose matrix elements
are obtained from the three-term recurrence relation (89) for the Askey-Wilson polynomials.
A natural way to obtain the finite-dimensional representations of the AW algebra is to set
bn = 0 which is achieved by the vanishing of one of the factors e.g. (1 − abqn), (1 − adqn) or
(1 − abcdqn−1) in the numerator of (92). We need find a way to terminate this sequence at pL

without using conditions, such that the parameters a, b, c, d become qL because for some models
this might impose a restriction on the physics of the system.

Proposition III: For any finite n = L the tridiagonal algebra, obtained through the natural
homomorphism TD → AW to the Askey-Wilson algebra has an irreducible finite-dimensional
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representation in the space of Laurent polynomials of degree L− 1, related to the polynomial
representation, associated with the highest weight vector of the irreducible finite-dimensional
representation of the quantum affine Uq(ŝl(2)).

In the following we present our argumentation for the proof of this proposition.

The theory of the orthogonal polynomials, and in particular the Askey-Wilson polynomials,
is based on the three-term recurrence relation, eq.(89) with the initial conditions p0(x) = 1,
p−1(x) = 0. There is a characterization theorem (see [49, 50]) concerning the orthogonality
of the polynomials with respect to some measure. Namely, when the matrix elements are
real, then the measure can be chosen real-valued and nondecreasing and the integration in the
orthogonality condition is the real line (as it is the case with Askey-Wilson polynomials with
real parameters, or if complex, in conjugate pairs). Then all zeros xs, s = 0, 1, ...L − 1 of any
polynomial are real and simple [46]. Hence, these zeros can be used to construct a discrete
orthogonality relation for polynomials of degree lower than L. In the finite discrete case the
three-term recurrence relation is a discrete analogue of the Sturm-Liouville two-point boundary
value problem with boundary conditions p−1(x) = 0, pL(x) = 0. If all the zeros x0, ...xL−1 are
real and distinct (see a theorem by Atkinson [51] for a complete proof) then the orthogonality
condition can be written in the from

L−1
∑

s=0

Pm(xs)Pn(xs)ws = hnδmn, m, n = 0, 1, ..., L− 1 (100)

and the weight function is

ws =
hL−1

pL−1(xs)p′L(xs)
(101)

where the prime indicates the first derivative. The theorem was proved in [51] for real an and
positive bn, cn.

As mentioned above, to terminate the three-term recurrence relation at any finite (n+1) ≡ L
for a discrete set of AW polynomials (p[y] = p[y−1]) due to

pL[y] = 0 (102)

we have to find a way to set bn = 0 in the matrix representing the operator A without imposing
a restrictive conditions on the model parameters. We note that by directly setting (in the
numerator of bn in (92)) e.g. 1−abcdqn−1 = 0, we obtain the second factor in the BA condition
(76) for the XXZ spin chain (with the proper identification of the AW parameters a, b, c, d
with the parameters of the boundary terms in (75)). For the ASEP we recall the presence of
a parameter ζ ≡ x0 in the stationary state which is associated with an abelian symmetry of
the bulk operators D0, D1. Making use of this parameter we can obtain a discrete set of AW
polynomials in the following steps:
1. We first expand pL as a product of its zeros obtaining the Bethe Ansatz equation (99) for
the L zeros y0, y1, ...yL−1.
2. Then we rescale

a→ ζa, b→ ζb, c→ ζc, d→ ζd (103)
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With |ζ| ≤ 1 we have a representation in terms of a′, b′, c′, d′, which has no effect on the Bethe
equations and will not change the identification of the parameters a, b, c, d with the boundary
probability rates. In the numerator of the matrix elements bn, e.g. in the factor ((1 − abqn)
we can redefine ζ2ab as a new parameter t treating it independent on a, b. The condition to
terminate the AW algebra ladder representation due to bn = 0 becomes

tqn = 1 (104)

We thus obtain a discrete set of AW polynomials

pn(xk, a, b, c, d|t, q), n = 0, 1, ..., L− 1 (105)

such that
L−1
∑

k=0

wkpn(xk)pm(xk) = 0 (106)

for distinct n,m. Then we will have

xpL−1(x) = aL−1pL−1(x) + cL−1pL−2(x), if x = xk (107)

For general x the relation

xpL−1(x) − (aL−1pL−1(x) + cL−1pL−2(x)) (108)

will define a polynomial

pL(x) = const
L−1
∏

k=0

(x− xk) (109)

Thus the condition (104) with n = L − 1 determines an irreducible finite-dimensional rep-
resentation W of the tridiagonal algebra for x = xk. The matrices, representing A,A∗, in
the tridiagonal, diagonal representation are finite L2 × L2 square matrices. They are block-
tridiagonal and block-diagonal respectively, where each block is an L × L square matrix. It
is important to emphasize that the representation W of the tridiagonal algebra on the space
with basis, the discrete set of AW polynomials, is such, that the spectrum of the diagonal
operator A∗ is degenerate. Each eigenvalue λ∗ has an eigenspace pn(xk), with k = 0, ..., L − 1
of dimension L.

For each fixed xk, however, there is a finite dimensional subrepresentation V , with basis
pn(xk), n = 0, ..., L− 1, which is not an invariant subspace of W . The vectors |νn〉 = |pn〉 form
an orthogonal basis for this representation 〈νm|νn〉 = δmn. The tridiagonal matrix representing
A is irreducible tridiagonal, while the diagonal is such that each eigenvalue λn has dimension
one. We have

[A, [A, [A,A∗]q]q−1 ] = ρ[A,A∗], (110)

[A∗, [A∗, [A∗, A]q]q−1 ] = ρ∗[A∗, A]

with ρ, ρ∗ given by (79).
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We want to relate this representation to a highest weight irreducible finite-dimensional rep-
resentation of the Uqŝu(2) with deformation parameter q. (Note the change of the deformation
parameter from q1/2 to q. We have defined the Askey-Wilson algebra as a coideal subalgebra
of Uq1/2 ŝu(2) [8], however we relate the corresponding tridiagonal algebra finite-dimensional
representation with a discrete set of AW polynomials (96) to Uqŝu(2).)

To proceed further we first need some definitions from [19]. Let Vn(a) ≡ Vn(a; ν0, ..., νn)
(a ⊂ Cx) denote the finite-dimensional representation (dimension (n+1)) of Uqŝu(2) with basis
νi, i = 0, ...n, and highest weight vector ν0 (and Vn(qa; ν0, ..., νn) denotes its dual). Vn(a) may be
regarded as representations of Uq(L(su(2)), where Uq(L(su(2)) denotes the quotient of Uqŝu(2)
by the two-sided ideal generated by the central element C. Uq(L(su(2)) is a Hopf algebra which
is a deformation of the universal enveloping algebra of the loop algebra L(su(2)) = su(2)[s, s−1]
( with a = s for Vn(a)). There is a unique polynomial with constant coefficient 1 associated to
any finite dimensional highest weight representation Vn(a, νi) of Uqŝu(2), given by

P (u) = (1 − qn−1au)(1 − qn−2au)...(1 − q−n+1au) (111)

The tensor product of an r-tuple of V1(ar) irreducible highest weight finite-dimensional repre-
sentations

V = V1(a1) ⊗ V1(a2) ⊗ ...V1(ar) (112)

has a highest weight vector which is the tensor product of the highest vectors in each factor.
The associated polynomial is

r
∏

i=1

(1 − aiu) =
r
∏

i=1

(1 − ξ−1
i u) = P (u) (113)

where ξ1, ξ2, ..., ξr are the roots of the polynomial P (u). A non-empty finite set of (complex)
numbers is said to be a q-string if it is of the form ξ, q−2ξ, q−4ξ, ...q−2rξ, r ∈ Z>0. The roots of the
polynomial associated to an evaluation representation Vn(a) are of the form ξ, q−1ξ, ..., q−(n−1)ξ
with ξ = qn−1a and form a q-string Sn(a) with r = n − 1. Two q-strings Sn(a) and Sn(b) are
said not to be in general position iff

b

a
= q±(m+n−2p−2) (114)

for some 0 < p ≤ min{m,n}. A theorem by Chari and Pressley [19] states that a tensor
product Vn1

⊗ ...⊗ Vnr is irreducible iff the q-strings Sn1
(a1)...Snr(anr) are in general position.

Given the finite-dimensional representation of the TD algebra we relate it with the irre-
ducible highest weight representation of Uqŝu(2). For each fixed zero yi, i = 1, 2, 3..., L, from
the zeros of the solution to the Bethe-Ansatz equation we identify the set p0(xi), p1(xi) (where
xi = yi + y−1

i ) with the irreducible highest weight evaluation module V1(ν0(xi), ν1(xi)) defined
by [19]

qHν0 = qν0, qHν1 = q−1ν1 E+ν0 = 0, E+ν1 = ν0 E−ν0 = pν1, E−ν1 = 0 (115)
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We have V1(ai) = V1(xi) and V1(qai) = V1(qxi). The polynomial associated with the represen-
tation V1(p0(xi), p1(xi)) is

P (u) = (1 − xiu) (116)

We now consider the tensor product of any two evaluation representation V1(xi) ⊗ V1(xj). By
construction this representation is of dimension 22. If we assume that the two q-strings S1(xi)
and S1(xj) are not in general position, then we will have

xi

xj

= q2 (117)

Hence it follows
yi + y−1

i = q2(yj + y−1
j ) (118)

which contradicts the Bethe-Ansatz equation for the zeros yj of the AW polynomials. Therefore
the tensor product of any two irreducible highest weight evaluation modules V1(xi) is irreducible.
We further consider the tensor product of L irreducible modules V1

V1(x1) ⊗ V1(x2) ⊗ ...⊗ V1(xL) (119)

A theorem by Chari and Pressley [19] states that the tensor product (107) is irreducible iff the
q-strings S1(x1), ..., S1(xL) are in general position. Since any two q-strings S1(xi) and S1(xj)
for i 6= j are in general position, the proof can be generalized to the set of the q-strings
S1(x1), ..., S1(xL), which means that the tensor product (119) of L irreducible highest weight
evaluation modules, each of dimension 2, is a finite dimensional irreducible highest weight
Uqŝu(2) module of dimension 2L. The tensor product contains up to a scalar factor, a unique
highest weight vector Ω of weight L,

K ≡ qHΩ = qLΩ (120)

The subrepresentation generated by Ω is the L + 1-dimensional irreducible representation of
the Uq(su(2)) subalgebra of Uq(L(su(2))). The polynomial P (u), associated with the subrep-
resentation generated by Ω, , with xk → x−1

k and u ≡ x, coincides with the polynomial (98),

for the choice const = (−1)L
∏L−1

k=0 x
−1
k . (To simplify notations in what follows we keep xk to

denote xk = (yk + y−1
k )−1.)

We thus obtain a finite-dimensional irreducible polynomial representation of Uq(ŝu(2)) on
the tensor product of dimension 2L. We will prove further that the module (119) forms an
irreducible finite-dimensional module of the tridiagonal algebra.

We recall, that for suitable choice of the structure constants in the AW algebra with two
generators A,A∗, the Askey-Wilson polynomial pn(x) is kernel of the intertwining operator
between a representation by a difference operators on the space of polynomials in x and a
representation by tridiagonal operators on the space of infinite sequences (cn)n=1,2,... [24, 26]. In
the first representation A is multiplication by x and A∗ is the second order q-difference operator
for which the Askey-Wilson polynomials are eigenfunctions with explicit eigenvalues λ∗n. In the
second representation A∗ is the diagonal operator with diagonal elements λ∗n and A is the
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tridiagonal operator corresponding to the three-term recurrence relation for the Askey-Wilson
polynomials.

Let us consider the action of A,A∗ on the module V1(xk). In the c-number representation
where the operator A∗ is diagonal (and A is tridiagonal) we have

A∗p0(xk) = (1 + q−1abcd)p0(xk) (121)

A∗p1(xk) = (q−1 + abcd)p1(xk)

In the (dual) representation where A∗ is the AW second order difference operator yielding the
Bethe-Ansatz equation for the zeros, the operator A is multiplication by x. We have

Apn(xk) = xkpn(xk) (122)

which means that each of the highest weight irreducible modules V1(xk) is an eigenstate of the
operator A (but not of A∗)

AV1(xk) = xkV1(xk) (123)

On the tensor product of two irreducible modules V1(xi) ⊗ V1(xk) the operator A will act by
means of the coproduct

∆(A) = Ai1 ⊗ I + I ⊗ Ak2
+ Ai1 ⊗ Ak2

(124)

Iterating the coproduct we obtain the action of the operator A on the tensor product. (We
denote the n-fold iteration by ∆(1) = ∆,∆(n) = (∆⊗I(n−2))∆(n−1) with I(n−2) = I⊗ ...⊗I(n−2
times)). To make the formulae more transparent we denote the first two terms in (124) by
∆P (A). We have

∆
(n)
P (A) =

n
∑

k=1

I(k−1) ⊗ Aik ⊗ I(n−k) (125)

The complete set of eigenvalues of A on the tensor product will be given the action of the

∆(n)A = ∆
(n)
P A+A⊗∆

(n−1)
P A+∆

(n−1)
P A⊗A+ ...+A(k)⊗∆

(n−k)
P A(k) +∆

(n−k)
P A(k)⊗A(k) +A(n)

(126)
where k = 1, ..., n− 1 and A(l) ≡ A⊗ A⊗ ...⊗ A (l times), for l = k or l = n.

Proposition IV: The operators

A∗(L) = A∗ ⊗ I(L−1) (127)

and the operator A(L) = ∆(L)A as given in (126) for n = L satisfy

[A∗(L), [A∗(L), [A∗(L), A(L)]q]q−1 ] = ρ∗[A∗(L), A(L)] (128)

The proposition can be verified by direct computation. We observe the peculiarity of the Dolan-
Grady algebra for the Ising model, namely in the deformed case only one of the relations is
satisfied in a given representation. The other one is constructed by using duality properties.
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Proposition V: The operators
A(L) = I(L−1) ⊗ A (129)

and the operator

A(L) = ∆
(L)
P A+A⊗∆

(n−1)
P A+∆

(l−1)
P A⊗A, ..., A(k)⊗∆

(L−k)
P A(k)+∆

(L−k)
P A(k)⊗A(k)+A(L) (130)

where k = 1, ..., L− 1 and A(l) ≡ A⊗ A⊗ ...⊗ A (l times), for l = k or l = L satisfy

[A(L), [A(L), [A(L), A∗(L)]q]q−1 ] = ρ[A(L), A∗(L)] (131)

To obtain a compete set of 2n eigenvectors with 2n eigenvalues for any finite n, 0 ≤ n ≤ L,
we associate with each lattice site i a basis vector p0(xi) if a site is empty (occupation number
si = 0) or p1(xi) if there is a particle on the site (occupation number si = 1). Let ψ(x1, x2, ..., xL)
denote the state of the ASEP on the lattice of L sites, depending on the set si1 , si2 , ..., siL and
belonging to the Uq(ŝu(2)) irreducible tensor product representation

ψ(x1, x2, ..., xL) = V1(x1) ⊗ ...⊗ V1(xL) (132)

with a highest weight vector generating the 2j = L subrepresentation.

By definition the highest weight vector of the tensor product obeys E+Ω = 0, with Ω =
p0(x1)p0(x2)...p0(xL). The discrete set of AW polynomials satisfy the three-term recurrence
relation (89) with p0(x) = 1 for x = xk. Hence the highest weight vector Ω is a constant vector
Ω = 1 and is an eigenvector of the operator A∗ with the eigenvalue determined by the condition
D(1) = 1 + abcdq−1

A∗Ω = (1 + abcdq−1)Ω (133)

This property will be related in a proper way to the ground state of the system. Namely, a
corresponding shift of A∗ will produce a unique ground state with eigenvalue zero.

Let now ψ0 denote the lowest weight vector of the Uq(ŝu(2)) tensor product representation,
ψ0 = p1(x1)p1(x2)...p1(xL). A state ψ(x1, x2, ..., xL) corresponding to any configuration on the
lattice will be generated from ψ0 by the action of the operators

E+
n1
E+

n2
...E+

nr
(134)

and we have

ψ(x1, x2, ..., xL) ≡ 〈Er| =
∑

1≤n1<...<nr≤L

a(n1, n2, ...nr)〈ψ0|E+
n1
E+

n2
...E+

nr
(135)

where coefficients a(n1, n2, ...nr) depend on xi. In order to determine the coefficients a(n1, n2, ...nr)
in the conventional Bethe Ansatz one defines a wavenumber counting function and takes into
account all r! permutations of the numbers (1, 2, ..., r).

By construction the state ψ(xi) becomes an eigenvector of the operator A to be interpreted
as the Hamiltonian in the auxiliary space of the physical system. It acts on it by means of the
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coproduct which takes into account all the admissible permutations of the partition n1, n2, ...nr

in (135). Namely, the action of the iterated coproduct according to (125) gives the eigenvalues
∑L

k=1 xk, in the one occupation number zero si = 0 (one spin down) sector, the second operator
term in (126) gives the values

∑

i<j xixj in the two occupation numbers zero (two spin down)
sector and so on, which yields all the eigenvalues whose number is

L
∑

n=1

L!

n!(L− n)!
= 2L − 1 (136)

We thus obtain the 2L − 1 distinct eigenvalues of the operator A according to the action

Aψ(x1, x2, ..., xL) = (∆
(n)
P A+ A⊗ ∆

(n−1)
P A+ ∆

(n−1)
P A⊗ A+ ...+ A(n))ψ(x1, x2, ..., xL) (137)

from which the eigenvalue equation with the corresponding eigenvalues for the state ψ(x1, x2, ..., xL)
follows

Aψ(x1, x2, ..., xL) = (
L
∑

i=1

xi +
∑

i<j

xixj + ...+ x1x2...xL)ψ(x1, x2, ..., xL) (138)

With the interpretation of the operator A as the Hamiltonian eq.(138) yields the energy eigen-
values.

As we already pointed out in this algebraic scheme there is no need of counting function since
the right number of states and distinct eigenvalues is encoded in the polynomial representation
of the AW algebra. The scheme works for any L, even for L = 0. In the latter case there are
no zeros since p0 is the constant term and hence p−1 = 0 which is the initial condition for the
AW polynomials.

The considered algebraic Bethe Ansatz based on the unique solution of the Bethe equations
(99) yields for any n = L an exactly solvable two-boundary value spectral problem with the
identification of L with the spin value 2j of the finite dimensional highest weight evaluation
representation of Uq(ŝu(2)). There are two limit cases. The first one is

n→ ∞, L finite (139)

This limit is obtained by treating the product ab dependent on a, b and 1−abqn 6= 1 is recovered,
so that bn 6= 0 when the infinite-dimensional representation of the AW algebra is restored
corresponding to a finite-dimensional representation of Uq1/2(ŝu(2)). The thermodynamic limit
for finite lattice systems with added boundary terms is conventionally obtained by letting

L→ ∞ (140)

In our scheme we start from the very beginning with models in the infinite volume/infinite
chain with quantum affine Uq1/2(ŝl(2))(Uq1/2(ŝu(2))) symmetry which is manifest. Boundary
conditions break the infinite volume symmetry. However with suitably imposed boundary con-
ditions a remnant of this symmetry survives and is encoded in the nonlocal conserved charges,
elements of the coideal AW subalgebra of Uq1/2(ŝl(2)), defined through the homomorphism to
the quantized affine Uq1/2(ŝu(N)) at the critical level c = −h.
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We can now use this prescription to obtain the complete set of eigenvectors with distinct
eigenvalues for the transition matrix of the open ASEP. We recall that the left boundary
operator and right boundary operators, being shifted AW (as well as TD) algebra generators
DL = A∗ + α− γ and DR = A+ β − δ, have a diagonal and a tridiagonal infinite-dimensional
representation, respectively, with basis the AW polynomials pn, n = 0, 1, .... The parameters
a, b, c, d of the AW polynomials are uniquely related to the four boundary rates, namely a =
k+(α, γ), b = k+(β, δ), c = k−(α, γ), d = k−(β, δ), where

k±(u, v) = u− v − (1 − q) ±
√

(u− v − (1 − q))2 + 4uv (141)

To obtain a finite-dimensional representation of the TD algebra we use the solution of the Bethe-
Ansatz for a set of zeros of an AW polynomial of degree L for the particular choice of parameters
in terms of the boundary probability rates. We denote these zeros by x̂i, i = 1, ..., L. Result:
We identify the transition matrix ΓM of the open ASEP in the auxiliary space of symmetric
Laurent polynomials pn, 0 ≤ n ≤ L− 1 with the representation of the right boundary operator
A + β − δ and the left boundary operator A∗ + α − γ in the dual representation. For a chain
of L sites there is a representation of dimension 2L for any finite L. In this representation
the transfer matrix ΓM (the Hamiltonian H respectively) has a unique eigenstate (Ω, 0, 0, ...0)
of eigenvalue zero which is the eigenstate of the left boundary operator, to be identified with
the ASEP stationary state and 2L − 1 eigenstates of the right boundary operator with real
eigenvalues given by

E = β − δ +

(

(1 − q)
L
∑

i=1

x̂i + (1 − q)2
∑

i<j

x̂ix̂j + ...+ (1 − q)Lx̂1x̂2...x̂L

)

(142)

where x̂−1
i = ŷi + ŷ−1

i and ŷi satisfy the Bethe-Ansatz equation

(ŷi − k+(α, γ))(ŷi − k+(β, δ))(ŷi − k−(α, γ))(ŷi − k−(β, δ))

(k+(α, γ)ŷk − 1)(k+(β, δ)ŷk − 1)(k−(α, γ)ŷk − 1)(k−(β, δ)ŷk − 1)
=

L−1
∏

l=1,l 6=k

(qyk − yl)(qykyl − 1)

(yk − qyl)(ykyl − q)

(143)
with k±(u, v) given by (141).

There is a dual representation in an auxiliary space of symmetric Laurent polynomials pn,
0 ≤ n ≤ L − 1 of dimension 2L for any finite L. In this basis the transfer matrix ΓM (the
Hamiltonian H respectively) has a unique eigenstate (p0, 0, 0, ...0)t of eigenvalue zero which is
the eigenstate of the right boundary operator and 2L − 1 real eigenvalues, the eigenvalues of
the left boundary operator given by

E = α− γ +

(

(1 − q)
L
∑

i=1

(x̂i + (1 − q)2
∑

i<j

x̂ix̂j + ...+ (1 − q)Lx̂1x̂2...x̂L

)

(144)

where the x̂i satisfy the Bethe-Ansatz equation (143). This set of eigenvalues (144) is obtained
from (142) by a shift and should not be considered as a different one.

We note that we can shift respectively by α+γ+2δ the right boundary operator A+β−δ, or
respectively the left boundary operator A∗+α−γ. Then we have the term α+β+γ+δ in (142)
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which will correspond to the result in [37], obtained for even L and for the energy eigenvalues
in the one spin sector, in a different basis, with (ŷi + ŷ−1

i ) → 1
1−Q2 (−Q(zi + z−1

i ) + Q2 + 1),

Q2 = q and zi satisfying a corresponding Bethe equation.

We stress once again the difference in the way one obtains the finite-dimensional represen-
tation of the TD algebra needed for the Bethe Ansatz. We have used the general scheme where
no relation among the model parameters appear so that we can apply it to models of nonequi-
librium physics. For the XXZ chain the condition for the finite-dimensional representation of
the TD algebra follows directly form the three-term recurrence relation and coincides with the
previously found Bethe-Ansatz condition [39, 40].

7 Conclusion

We have developed an algebraic Bethe ansatz based on Bethe equations for the Askey-Wilson
polynomials with a unique solution for any n = L which yields a complete set of 2L eigenvectors
with distinct eigenvalues and a unique ground state of the ASEP transition matrix.

Even though we have illustrated the algebraization of the difference eigenvalue equation for
the Askey-Wilson polynomials on lattice systems, the procedure is rather general and should
work for any system with boundary Askey-Wilson symmetry and/or tridiagonal symmetry. In
our opinion, the developed Bethe Ansatz scheme will produce a diagonalization of the proper
Hamiltonian in the auxiliary space for the sine-Gordon model and quantum affine Toda field
theory as well. It might be also interesting to explore models with the second order Askey-
Wilson operator in the continuum limit with an emphasis on the symmetry properties and
Hamiltonian closure.

It is worth mentioning that the relation of the ASEP (or the equivalent quantum spin
chain) boundary algebra to Bethe Ansatz integrability is promising form the point of view of
Bethe Ansatz perspective in string theory. One is interested in closed strings with periodic
boundary conditions. However, it is simpler to find the scattering matrix on the infinite line
using asymptotic states and bootstrap. Then the spectrum is determined by asymptotic Bethe
equations [52, 53] and they are approximate for a system of a finite size. The study of the Askey-
Wilson algebra of a system on a ring with periodic boundary conditions which is interesting on
its own, might be also useful for application to strings of finite length.
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