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COHERENT STRUCTURES IN A BAROCLINIC ATMOSPHERE

by

Piero Malguzzi

Submitted to the Department of Earth, Atmospheric and Planetary
Sciences in October 18, 1984 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Meteorology.

ABSTRACT

In the present study we develop an analytical theory with solutions in

the form of nonlinear, coherent structures superimposed on a mean, westerly

wind. The model is the quasigeostrophic potential vorticity conservation

equation in its baroclinic formulation; the mean wind profile we used is

a model of the midlatitude jet stream in which we hypothesize the existence

of two turning points (poleward and equatorward of the jet center) in order

to confine the waves.

The coherent solution is an antisymmetric dipole with the anti-cyclone

north of the cyclone, has an equivalent barotropic vertical structure, is

meridionally as well as zonally trapped and obeys a nonlinear dynamics in

the zonal wave guide. This pattern, even though idealized, exhibits a

strong similarity and is consistent with observations of some Atlantic

blocking patterns.

We present two derivations of the same solution. In the first

derivation we specify the functional relationship between potential

vorticity and streamfunction; the coherent structure is then found in the

asymptotic limit of weak amplitude and weak dispersion (Long, 1964). In

the second formulation we project the streamfunction onto the basis defined

by the linear problem and, by suitably truncating the dynamical system

obtained, an identical solution is recovered.

The validity of the truncation and the robustness of the coherent
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structure to superimposed perturbations is assessed by numerical

experiments. We find that the typical persistence time of our solution is,

in realistic conditions, 10-to-12 days.

In order to determine the effects of transient eddies on the blocked

pattern, the nonlinear interaction between a transient eddy and the vortex

pair is analyzed, the underlying idea being that there exists an eddy

vorticity forcing which tends to maintain the block against dissipation

(Green, 1976). We find that short-scale eddies steepen the vortex-pair and

push it westward. The effect of the forcing is parameterized in terms of

the mean state. Numerical experiments and real data (Illari, 1982) are

found to be consistent with our theoretical analysis.

We study the way coherent structures form in our model. Provided that

the zonal wind field satisfies the above mentioned requirements, the pre-

existence of a wave component with wavenumber one antisymmetric in the

north-south direction with a large enough amplitude is a necessary and

sufficient condition which leads to blocked configurations.

Finally, we give the physical interpretation of the important

nonlinearity and we discuss the applicability of this theory to the real

atmosphere.

Thesis Supervisor: Dr. Paola Malanotte Rizzoli
Assistant Professor
Center for Meteorology and Physical Oceanography
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Introduction

In the last decade many theoretical and numerical studies have

focused on finding solitary wave and coherent solutions to

mathematical models describing geophysical flows. For the purposes

of the present study "solitary wave" and "coherent structure" have

the same meaning although, strictly speaking, the word "soliton" also

implies survival in collision experiments between two such waves (see

Scott et al., 1973). With the word "coherent structure" we refer to

any nonsinusoidal solution to the governing equations that maintains

its shape during translation. In a dispersionless medium coherent

structures can be constructed simply by superimposing linear waves.

However, when the linear waves are dispersive, the coherency of the

solution can be maintained only when nonlinear interactions, which

lead to phase locking of waves of different wavelength, balance

linear dispersion.

Previously described solitary solutions to the quasigeostrophic

equations have been of two types, which can be exemplified by the

works of McWilliams (1980) and Long (1964).

The first kind of solution (which are referred to as "modons"),

in their simplest form, consists of a vortex pair translating with

constant phase speed. They are inviscid solutions of the barotropic

(or equivalent barotropic) potential vorticity conservation equation

which have a discontinuity in the functional relationship potential

vorticity (q)-streamfunction (*) at a particular radius from the

modon center--say, r = a, namely:
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q = K12* r > a

q = K22r <a (1)

* = 0 r = a

Modons require no upstream meridional shear, as is clear from the

first equation of (1). McWilliams (1980) suggested that certain

atmospheric features typically associated with Atlantic blocking can

be modelled by the "equivalent modon," a particular nonlinear

solution of the equivalent barotropic model which can be found in the

presence of westerly zonal winds uniform in the north-south direction

but with vertical structure. Equivalent modons, however, can exist

only when a parametric relationship is satisfied (eq. 22 of

McWilliams). McWilliams himself pointed out that this requirement is

not satisfied with observed zonal wind vertical profiles. In other

words, modons are structurally unstable.

The second type of solution requires a north-south shear field

far upstream and is characterized by a single valued potential

vorticity-streamfunction relationship. Long (1964) studied the

problem of waves superimposed on a westerly current in a 8-plane

channel. He considered a current slightly varying with latitude

(small constant shear) and found a mathematical solution bearing a

resemblance to the solitary wave of Scott-Russell. Because of the

weak upstream shear, the function q = F($) is quadratic in *, thus

leading to a Korteweg-DeVries equation. In Long's original paper,

the solitary wave was elongated in the x direction and the

nonlinearity was weak. The assumption of weak nonlinearity was
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dictated by reasons of mathematical convenience rather than physical

realism; the long wave assumption was consequently needed if

nonlinearity were to balance east-west dispersion. Up to now, to the

author's knowledge, all solitary waves. in geophysical flows have been

derived within such limit.

The relevance of these ideas for geophysical flows relies, in

part, on the supposition that in the atmosphere and in the oceans

there exist localized features whose persistence and coherence calls

for special explanations. Although it is easy to find examples of

persistent features in oceans or in other planetary atmospheres

(e.g., Jupiter's red spot), it is still a matter of debate whether

atmospheric blocking, in general, shows unusual persistence.

However, sometimes blocking episodes are associated with typical

patterns which show a marked local character. In particular, at

least some blocking events consist of a vortex pair embedded in

westerly winds. Examples are shown in Figure 1; the synoptic

structure of these cases generally satisfies Rex's (1950,a)

definition of blocking. According to Rex "a blocking case must

exhibit the following characteristics:

a) the basic westerly current must split into two branches;

b) each branch current must transport an appreciable mass;

c) the double jet system must extend over at least 45' of

longitude;

d) a sharp transition from zonal type flow upstream to

meridional type downstream must be observed across the

current split;
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Fig. 1



e) the pattern must persist with recognisable continuity for

at least ten days."

Figure 1,a (after Sumner, 1954) is the 500 mb height contour

observed during an Atlantic blocking case; Figure 1,b (after Hansen

and Chen, 1982) is the 500 mb contour at 12Z of the 25 Dec. 1978 and

Figure 1,c (after O'Conner, 1963) depicts the January 1963 average of

the 700 mb geopotential height. In the cases shown the westerly

current splits into two branches, each carrying a comparable amount

of mass. The extension of the region interested by the split is very

large, of the order of 600 of longitude or more. This particular

kind of pattern is often observed over the eastern part of the

Atlantic Ocean while it is less frequently observed over the Pacific

Ocean.

In the present study the possibility that persistent patterns of

the type shown in Figure 1 can be modelled by localized, coherent

structures is explored again.

In Chapter I we look for localized solutions of the

quasigeostrophic potential vorticity conservation equation in its

inviscid and stationary formulation. It is shown that, in the

long-wave and weakly nonlinear limit, solutions exist consisting of

an isolated vortex pair, with the high center north of the low

center, embedded in westerly zonal winds having vertical as well as

horizontal shear.

In Chapter II the full time-dependent problem is analyzed by

using a technique of truncated, orthonormal projection. The coherent

structure found in Chapter I is now recovered by solving a severely

truncated dynamical system. Because of the mathematical
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approximations involved, this technique turns out to be more powerful

than asymptotic expansion in the particular case at hand, since it

permits us to treat the fully time-dependent and fully nonlinear

case.

In Chapter III we show that the results obtained in Chapter II

are not affected by the severe truncation employed. Also, by means

of numerical experiments, we investigate the robustness of the

coherent structure (in a baroclinically unstable environment) to

superimposed perturbations. We find that the typical predictability

time for our solution is 10 to 12 days.

In Chapter IV we introduce dissipation in the model. Since the

coherent structure under consideration is an inviscid solution, any

kind of friction will dissipate it. However, it is well know that

short-scale transient eddies have a positive feedback on a split-flow

(Hoskins et.al., 1983) in the sense that eddy flux of potential

vorticity tends to maintain it against dissipation. The study of the

interaction between a vortex pair and a monochromatic transient eddy

shows that the latter tends to steepen the former,pushing it westward

at the same time. The mechanism of eddy forcing is explained in

terms of quasigeostrophic turbulence. In fact, the split flow, by

stretching the eddy field, induces a cascade of enstrophy towards

smaller scales which, in the quasigeostrophic dynamics, must be

associated with an energy flux towards longer scales (Shutts, 1983).

These characteristics are confirmed by numerical experiments.
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Finally, in Chapter V, we show how, in our truncated model, the

coherent structure form. We find that the pre-existence of a large

amplitude wave component with wavenumber one antisymmetric in the

north-south direction and trapped in the zonal wave guide defined by

the turning points of the mean, zonal wind is a necessary and

sufficient condition for the establishment of this blocking pattern.

Also, the effect of nonlinearity upon different zonal scales is

assessed.



- 13 -

Chapter I

Weakly Nonlinear Limit

Section (I,a). The model

Let us consider stationary flows governed by the

quasi-geostrophic potential vorticity conservation equation in z = H0

log (po/p) coordinates with H0 the density height scale (Holton,

1972)

J(p ,q) = 0 (I,1)

where J( , ) is the Jacobian operator. The streamfunction $ is

decomposed into a zonal mean and a deviation from it:

* = $(y,z) + $'(x,y,z) (I,2,a)

where

(I,2,b)lim 4' = 0
xI +W

From now on, an overbar will denote zonal average and the prime the
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deviation from it. In a finite domain of length Lx, the zonal mean

would be defined as:

Lx
I= /Lx f i(x,y,z)dx (I,2,c)

0

Similarly, in dimensionless units (x and y scaled by the Rossby

deformation radius Lr; z scaled by HO), the potential vorticity is:

q =q + q'

q' = 2*' + V'zz ~ $'z

where q corresponds to the upstream zonal wind u = u(y,z) =

(u > 0) and is given by:

q = $yy + $zz - $z + ay

Subscripts denote partial derivatives and the Brunt-VUisslU frequency

is assumed constant.

The general solution of equation (I,1) can be written in the

form q = F(M) where F is assumed to be an analytic function. A

weakly nonlinear theory leading to permanent form
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solutions is based upon the assumption that nonlinearity is a higher

order effect and is balanced by some other physical process, in the

present case dispersion (P. Malanotte-Rizzoli, 1982). There are two

cases in which nonlinearity can be considered a higher order effect

(see, for instance, Flierl, 1979):

a) the deviation 4' from the mean flow is weak: $ <' < 1;

b) The mean flow has a weak meridional shear.

Cases (a) and (b) correspond to different expansions of the

functional F in power series of its argument and we shall treat them

separately.

Case a: 4' << 1

Expanding F in power series around $:

dF($) 1 d 2F(T)

q = q + q' = F($ + 4') = F(T) + 4,' + - _ (4') +
d$2 d4$

(I,3)

The upstream boundary condition (I,2,b) implies:

q = F(T) (1,4)

and (1,3) becomes:

I dnF(7) ($,t)n (I 5)
q d=- - ----

n=1 d*-n n!
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The Taylor coefficients of F can be deduced by taking the y-

derivative of both sides of (1,4):

dF dF

q= - = -u -

y y

so that

dF 9- uyy Uzz + uz
- = - (1,6)d$ u u

= *Lr2 /u0 is the dimensionless beta-parameter if 0* is the

dimensional beta and u0 the velocity scale, which will be set equal

to the maximum wind speed of the u profile. Further differentiation

of (1,6) with respect to y gives:

d2F I a 1

d$ u ay u

dnF ia dn-1F I - I a
dan u 3y kd n- 1 u3)n [ y- * ' 'L -u l

Notice that --- is zero for all n > 1 when the mean wind is a
dlpn

function of z alone.

Case b: Weak meridional shear.

Consider the following wind profile:

= -u(z)y + E $i(y,z); e << 1

From

q= +$ - + Sy = F(T) = Z a T n
yy zz z n n

with the previous wind profile one gets:
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( u - + u )y + e y + $1  - a (-u(z)y + 5T1)nzz z yy z

Once $i has been specified, the coefficients an's can be evaluated

by equating equal powers of y on both sides of the previous relation.

If 1 = y3 (weak parabolic shear) it is easy to show that a2n+1

en and a2n = 0. Thus, if $1 = y3 and e << 1:

q = F($ + $') = ai($ + $') + ea3(i + )3 + 0( 2) ( )

The expansion leading to equation (1,7) is valid in the region where

y2sy2 < 1.

Equations (1,5) and (1,7) clearly show that nonlinearity is an

0(c) effect, e being the weak amplitude of the perturbation 4' (case

(a)] or the weak shear of the mean flow [case (b)]. Cases (a) and

(b) are the only cases for which a weak nonlinear theory can be

formulated leading to coherent, localized analytic solutions. These

are found solving the 0(c) nonlinear problem and balancing

nonlinearity with dispersion. The procedure to find the nonlinear

solutions is completely analogous for cases (a) and (b). In the next

section however we shall focus on case (a) as the one allowing use of

realistic wind profiles.

It must be pointed out that the above approach is not valid in

regions (if any) where the circulation is closed. In these regions,

the functional relationship q = F($) need not be the same as

determined from the upstream boundary condition. If F($) is
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multi-valued, along each closed streamline F($) can be found from a

balance between dissipation and vorticity sources (Pierrehumbert and

Malguzzi, 1983). However, in a purely inviscid theory no information

is available about the potential vorticity of such a closed

streamline. Equations (1,5) [or (1,8)] are therefore assumed to be

valid all over the domain, excluding the possibility for F($) to be

multi-valued.



- 19 -

Section (I,b). The nonlinear problem

In this section we solve the nonlinear problem and find coherent,

localized solutions for case (a) or Section 2. Case (a) in fact allows for

the choice of mean wind profiles with a realistic horizontal shear. The

mean wind profile chosen to model the mid-latitude jet stream is given by:

u(y,z) = U(y)Z(z) (I,8,a)

with

2 4
U(y) = 1 - 2(1 - U0) y-- + (1 - U0 )L- - (I,8,b)

y0 y0

where 2 yo is the overall width of the jet and U0 the minimum of the wind

speed. The meridional profile U(y) is shown in Fig.(I,l,a). Expression

(I,8,b) is the Taylor series representation of a symmetric jet truncated

after the fifth power of y. The requirements that the mean wind profile

must satisfy will be discussed later. The vertical profile Z(z) is shown

in Fig.(I,l,b). It was constructed point by point and is meant to model a

characteristic mean profile observed at mid-latitudes. The numerical

values chosen for the parameters will be discussed in the next section.

We seek solutions which are meridionally trapped in the zonal

wave-guide defined by the two turning points of the U(y) profile. The

solutions will be therefore insensitive to the details of the mean wind

outside the interior jet region of width 2y0. The solutions are also

vertically trapped as analogous considerations can be made for the vertical

mean profile of Fig.(I,l,b). The problem is the two-dimensional, and

weakly nonlinear, extension of the linear problem treated by Tung and

Lindzen (1979b). Equation (1,5) of section (I,a) is the nonlinear model
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for the case of finite horizontal shear in the zonal wind profile. From

the results of Section (I,a), equation (1,5) can be written as:

4' + 4' + 4'z - ~y/u-

+0('3)

As ' << 1, it is convenient to perform

$' + C**ez/2 with e << 1 and 4 = 0(1).

* * * * z 1 _ _z+ + -VIP -e
xx yy zz -

2 u ay

y (- /u)'2/2]/u

the substitution

Then (1,9) becomes:

1
(- )** 2 + 0(62)
- yu

where

1 9q_ uV(y' Z) = - - ly g-
u yy uzz + uz

(1,11)

*
The boundary conditions for equation (I,10) are: 4' + 0. The

lower boundary condition w = 0 at z = 0, where w is the vertical velocity,

is derived in terms of * in appendix A. This is:

uz(y,0) a

z u(y,0) 2 at z = 0 (1,12)

In equation (1,10) nonlinearity is an 0(e) effect. We can expand * in

the small parameter c:

** = *(0) + C() + . . (1,13)

(I,9)

(I,10)
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and we require that east-west dispersion balances nonlinearity. The

requirement for the dispersion to be 0(c) is equivalent to introducing a

long scale in x:

x = X/VE, with X = 0(1)

At the lowest order in e, we would get

(0) (0) (0)
yy +*zz - V =0

This is a homogeneous equation (with homogeneous boundary conditions) which

is solvable only for particular choices of V or, in other words, particular

choices of the basic state u. Calling V(0 ) one of such functions, we can

find a solution of (I,10) with weak dispersion if and only if V is

"detuned" from VO) by a small quantity (of order ). Formally, the

picture is identical to that encountered in a nonlinear pendulum (see

Landau-Lifchitz) in which nonlinearity allows oscillation detuned from the

linear frequency.

Hence, let V = V(0) + eV(1). The correct formulation of the

zero-order problem is:

*(0) = A(X)$(yz)

$yy + $zz - v #) = 0

There is a simple way to find V(O) and VM. Let us consider the

eigenvalue problem:
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*yy + -zz V* = -KO

z= - z = 0 (1,14)

0 as y , z + CO

Thus, if the Schr6dinger problem (1,14) has an eigenvalue of order e

[K = sKCl), KMl) = 0(1)] then we may define

V(0) = V - eK(l)

VM = K(M)

By using (1,15), the 0(E) nonlinear problem is:

$AXX - KMl)$A + () + $ - V(o),(1) =

(I,16)
ezj2 1 (1 4Y4 ~y 2A2

2 u 9y u

The necessary (and sufficient) condition for the solvability of (I,16)

requires multiplying (I,16) by $ and integrating over y and z. The

contribution

f'dy f4dz $1') + q)(1)z -y()]

vanishes because of the zero-order eigenvalue problem (I,14) (as can be

shown by integrating by parts). Thus (1,16) becomes:

Axx - K(A + A2 = 0 (,17)2

with
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f0dy fJdz ez 2 [- -(- y)]
O0 3 u
o =y-(I,17,a)
+CO +W

f dyf dz2
. 0

Equation (1,17) is the well-known Korteweg-de Vries (KdV) equation. When

K(M) is positive, the solution to (1,17), localized in x, is:

- 3K(1) seh K(.L.I ) (,8A(X) = 6 sech 2 X)

The localized solutions given by (I,1&) are long waves with

north-south to east-west aspect ratio of 0(/s). It is natural to ask

whether weakly nonlinear solutions can exist with x and y scales of the

same magnitude. They can be found for case (b) of Section (I,a) (weak

meridional shear in the mean wind profile) when the (x,y) scales are larger

than the Rossby radius of deformation. In this scale range, in fact,

dispersion becomes an 0() effect. This problem was studied by Flierl

(1979) assuming a small linear shear in a mean ocean current and by

Malanotte-Rizzoli (1984) assuming a weak topography (equivalent to the weak

shear). In this case, the zero-order problem giving the vertical structure

is:

* z ) + 8- uzz + uiz (0)(z) = 0
u

where the y-dependence in the mean wind is 0(c). It can be shown that the

solutions to the above equation, weighted by e-z/2, have zero vertical

average. Thus, they are not suitable to represent the vertical structure

of blocking (Dole,1982).
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Section (I,c). Solutions on a mid-latitude jet

In Section (I,b) the weakly nonlinear problem was formally solved,

leading to a coherent, localized solution given by:

= 3K z/2 2/ K x)19
' = (y,z)ez sech (-19)

with * the eigensolution of the Schr'odinger problem (1,14), K the

corresponding eigenvalue and 6 given by (I,17,a). For (1,19) to be a

solution, K > 0 and K = 0(e).

In this section we evaluate the structure of the solution for the mean

wind profile (1,8), shown in Fig. (I,1). The numerical values chosen for

the parameters are typical of the atmosphere at mid-latitudes:

= 1.5 x 10-11 sec-1 m-l 2y0 = 5,500 km

Lr = 1,000 km U 0 = 0.1

u0 = 45 m/sec

H0 = 8 km

The meridional and vertical structure is given by the Schrddinger

zero-order problem (1,14). (1,14) is the equation for the wave function of

a quantum mechanical particle in the potential well V given by (I,11).

The structure of the V function [see Fig. (1,2)] is that of a

potential well of finite depth. In general, there will be a finite number

of bound states associated to eigenvalues K smaller than the limiting value

given by the rim of the potential well, K w 4 in the present case. For
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these bound states, the expression for K in terms of $ can be obtained by

multiplying the SchrUdinger equation (1,14) by -u e-z/2, integrating over

the meridional plane and using the boundary conditions on $. The result

is:

fdy f0 dz[ez /2]
K = 0 +-/2] (1,20)

f0dy f0 dz[u~e ]

In general, the eigenfunction $1 corresponding to the lowest eigenvalue Ki

has no nodal lines in both y and z. From (1,20), it follows that such

eigenmode has K = Ki < 0, as u > 0 always and * never changes sign ($ > 0).

Having K1 < 0, the lowest bound state is not acceptable, as the solution

given by (1,19) requires K > 0.(1) There is a further reason why the

lowest bound state does not correspond to any localized structure. A

general property in fact holds for localized solutions in incompressible,

inviscid, stationary flows. This property states that the streamfunction

weighted by the density must have zero average (Flierl et al., 1983). Only

eigenmodes $n with one (or more) nodal lines in the meridional (y-z)

plane can be associated with the zonal structure of the solution (1,19).

System (1,14) was solved numerically by means of an overrelaxation

scheme. The eigenvalue was updated each iteration using expression (1,20).

The structure of the potential well V is almost y-independent in great part

of the domain. This suggests the choice of first guesses separable in y

and z coordinates. Accordingly, the unidimensional eigenvalue problem

(1) Eigenfunctions of (1,14) with K < 0 give the meridional structure of

linear Rossby waves with wavenumber V(-K). Thus, they are acceptable

solutions but do not correspond to a localized structure.
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*zz + [K - V(0,z)]$ = 0 (I,21)

provides the first guess for the vertical structure, while the meridional

structure is assumed sinusoidal. The unidimensional eigenvalue problem

(1,21) is identical to the one analyzed by Tung and Lindzen (1979b) and can

be solved with a finite difference scheme introduced by Lindzen (1971).

The first guess so obtained was found to be very close to the final,

relaxed solution.

The upper boundary condition in the numerical procedure, consistent

with Lindzen's scheme, is the mixed Dirichlet-Von Neumann boundary

condition

Oz = -[V - K]1/20 as z + c

(Tung and Lindzen, 1979b, their equation 29). This ensures that the

solution is in the exponentially decaying branch. This condition is

accurate when Vz is small compared to V and tyy small compared to VO.

The first requirement can be satisfied choosing the upper boundary

condition at the level where V is maximum. The second approximation will

introduce minor errors if the eigenmode is not too wiggled. Similar

conditions and similar considerations apply laterally.

The second eigenmode $2 is the one with the desired vertical structure

and corresponds to the eigenvalue K2 = .22. Thus, it satisfies the

requirements for the validity of (1,19). In (1,19) the coefficient 6 was
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evaluated numerically, using the zero-order pattern $2(y,z). Figure (1,3)

shows the meridional structure associated to $2(y,z) multiplied by ez/2.

The correspondent anomaly pattern *', at the height of z = 5.6 km (500 mb),

is shown in Figure (1,4) in dimensionless units. It is an antisymmetric

dipole, with the anticyclone north of the cyclone. In dimensional units,

the maximum geopotential height anomaly is - 100 m, of the same order of

magnitude as those actually observed (Dole, 1982). The pattern of Figure

(1,4), even though idealized, exhibits some similarity to the blocking

events of Fig. 1. Also, the vertical structure of $2ez/2 shown in Figure

(1,3) compares well with observations of atmospheric blocking (Dole, 1982).

In this chapter an attempt has been made to identify some blocking

situation with stationary, nonlinear Rossby waves of localized character

superimposed on a mean zonal wind with meridional and vertical shear. We

have implicitly assumed that the energy is trapped in a region of

horizontal and vertical finite extent and that no energy radiation occurs

out of that region. These solutions are weakly nonlinear and weakly

dispersive; they provide an alternative to the equivalent modon proposed by

McWilliams (1980).
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Chapter II

Finite Amplitude Solution

Section (II,a). Modal Model

In this chapter we study the solution described previously by using a

different approach. The technique used in the previous chapter cannot be

generalized to transient situations and is very difficult to extend to

finite amplitude solutions. However, it turns out that, projecting the

streamfunction over an appropriate set of modes and truncating after few

terms, we can recover the same solution examined in the long wave limit and

study its dynamics by analyzing a truncated dynamical system. It turns out

that this technique is very powerful for the particular case under

consideration.

We will-project the streamfunction over the basis defined by the

eigenfunctions of the linear problem (1,14) with u given by (1,8) and

Figure (I,1).

The results of Chapter I suggest that the solutions of (1,14) form a

"natural" set of eigenfunctions upon which to project the quasigeostrophic

equations. Furthermore, we expect that the basis defined by (1,14) gives

the best description of the particular solution we are interested in,

because in the long wave, weakly nonlinear limit the meridional structure

of this solution is given exactly by one of the eigenfunctions of (1,14).

Similar techniques are often used in studies about stratified oceans.

In particular, Flierl (1978) has shown that in different physical

situations two-mode models perform optimally if compared to two-layer

models.
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The eigenfunctions of the Schrddinger equation (1,14) form a complete,

bidimensional set. Many of the arguments of the Sturm-Liouville theory can

be carried over to the multi-dimensional case. In those cases where there

is a lowest eigenvalue, where there is no upper bound for the eigenvalues,

and where there is a variational equation for the eigenfunctions, the

arguments set forth in the Sturm-Liouville theory can be utilized to prove

that these more general eigenfunctions form a complete set which can

represent any piecewise continuous function inside the boundaries in terms

of a series.

The eigenfunctions of (1,14) that correspond to different eigenvalues

are orthogonal. Let $ms ln denote two eigenfunctions with Kn 0 Km.

Then:

enyy + *nzz + (Kn V)n (111)

4myy + emzz + (Km ~ V)m = 0 (11,2)

We multiply (II,1) by $m, (11,2) by $n and integrate over y and z after

having subtracted member by member:(l)

<$m(4nyy ~ 4nzz) - On~ myy - Omzz)> + (Kn - Km)<1nm> =0

Integrating by parts:

Wo +eo
<Omen > = [emin ydz] - <qm epn >

yy o y y y

= (f $ $ dz] - [$ $dz] + <$z $0>
0 y 0 Y yy

Similarly

<0 = [f'dy~m 4 f'dy 0 r+ <m 4>
m nzz dmWnz 0 -o0 mz n 0 zz n

(1)From now on, the integral over y and z will be denoted by the symbol
it< >".,
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With the assumption that On, #m + 0 as yj , z + w all the boundary

terms computed at infinity vanish. The boundary terms at z = 0 also vanish

because of (1,12) and we are left with:

<Omsn> = 0 if Kn 0 Km (11,3)

In general, the Schrodinger equation (1,14) has at most a finite

number of bound states (Kn, n = 1, 2, . . ., N) and a continuum spectrum

for K > KN. Since we shall truncate the representation of *' after the

first few terms, we will neglect the continuous part of the spectrum. In

other words, our model is going to describe a flow motion internally

trapped in the waveguide defined by the two turning points of the mean

zonal wind u.

Let:

$'e-z/2 = An(x,t)#n(y,z) (11,4)

where the factor e-z/2 has been shown explicitly for reasons of math-

ematical convenience. We use the convention that repeated indices are

contracted when they appear in only one side of the equations. In order to

close the system, the zonal wind has to be projected onto the same basis.

The instantaneous zonal wind is denoted by u(y,z,t). It is convenient to

introduce the time deviation from the mean zonal wind u(y,z) which was used

to compute the basis eigenfunctions. Let

u(y,z,t) = u(y,z) + u"(y,z,t) (II,5)
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where two primes denote transient quantities. The components of u, u,

and u" in the basis (*nl will be denoted respectively by un, un, and

Ulfn- Thus:

ue-z/2 = un n

ue-z/2 = -

ue-z/2 = u"n~n

un(t) = + u"n(t) n = 1, ., N

Note that un can be easily computed by multiplying (1,14) by u and

subsequently integrating twice by parts. The result is

u = - z/2> (I6n Kn n

The time-dependent version of the quasigeostrophic potential vorticity

equation (I,1), separated off into zonal mean and deviation from it

becomes:

a q' + J(p',q') + 3 (uq' + q $') - a ($'' = 0 (11,7)
t x y y x

at q -y -a Ixq') (11,8)

Taking the y-derivative of (11,8) we get:

yy zz z yy x

where the dot stands for time derivative. In deriving (11,9) the

definition of qy(= - uyy - uzz + uz + ) has been used.(I)

(1) To avoid confusion, we stress that the zonal average is denoted by

an overbar. However, we keep the symbol u to indicate the zonal wind used

to compute the basis eigenfunctions.
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The lower boundary condition is vertical velocity equal to zero ($z = 0)

at z =0. A vertical velocity different from zero at the bottom would be

inconsistent with the lower boundary condition on $n- However,

topography, Ekman friction and surface heating could be incorporated as

well in the present model even if each normal mode satisfies w = 0 at

z = 0; series (11,4) would still be convergent at any interior point except

that at the lower boundary (Gibbs phenonemon). More details on this point

can be found in Flierl (1978); throughout the present study we will stick

with w = 0 at the ground.

The projection of all the terms appearing in (11,7) and (11,9) upon

the basis {$n) is presented in appendix B; here we report in detail

only the spectral decomposition of 3 (uq' - qy4'). From the definition

of qy and (11,5) it follows that

S -u + u
ua q'- aq = u a (*' + *' + 4' -1P' + yy zz z p,)
x xy n x xx yy zz z -

+ u"a ($'x ++' yy+ t' - $') + t' (-u"~ - u"~ + u+ 13x Wxx + 1yy + 1zz z )+*Ix (Ufyy -Ufzz +Ufz

Making use of (11,4) and analogous expressions for u and u", the right-hand

side of the previous relation becomes:

ez un~n3x[Amxx m - KmAmm + ezu"nn[Amxxx m + ( + mzz

- ezAmx~m[u"n(#nyy + #nzz
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where (1,14) has been used. Using again the definition of the

eigenfunctions $n and $m given by (II,1) and (11,2) we can rearrange

the previous expression in the form:

ezunenem[A - KmA I + e zA uInKn~n~m

The ith component in the base {$nj is then obtained by taking the

scalar product with $i:

ez/2[Einmun(Am - Km$mX) + Einmu"nKnAm] (1110)

where the tensor einm is defined as

Einm n <ez/20i nm>

Simn is a completely symmetric tensor, namely

Einm = Eimn = Emni (11212)

Equations (11,7) and (11,9), written in the basis ($nj read:

Ai x + (ain - Cin)An + einmun(Ammxc - KmAg) + einm(un - un)KnAx

+ Ynmi(AnAmmx - AmxAnxx) + YmniAnxAm(Km - Kn) + dinmAnxAm

+ YinmKmAnxAm = 0 (11,13)

(Cin - ain)un + E'inmKnAn Am = 0 (11,14)

(For the definitions of tensors y, 6, C, a, and e' see appendix B.)

Equations (11,13) and (11,14) will be referred to as "modal

equations." They describe the time evolution of the Fourier coefficients

An, un representing respectively the projection of the streamfunction
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and of the zonal wind upon the normal mode $n. Equation (11,13) is a

system of nonlinear, partial differential equations; it can be reduced to a

dynamical system by further decomposing An onto an orthonormal,

unidimensional basis and by suitably truncating it. The term, radically

new, which is not present in other classical, normal mode decomposition is

6inmAnxAm

where the completely symmetric tensor dinm is defined as

Sinm = <ez/ 2Vyin~m> (11,15)

Basically, the tensor Sinm contains all the information about the

presence of the mean shear u(y,z). In particular, when u has no meridional

shear, all the elements of such tensors vanish.

Before analyzing some particular stationary solutions (fixed point) of

equations (11,13) and (11,14), we compute the eigenfunctions and the

eigenvalues of (1,14) by specifying a particular zonal wind u . We choose

the zonal wind shown in Figure (I,1) to which corresponds the potential V

depicted in Figure (1,2). The first three eigenfunctions are shown in

Figure (11,1); #i has no nodal lines in the y,z domain while #2 and #3 have

one nodal line respectively at y = 0 and at z - 7 km. All the normal modes

other than #1, #2, and 03 have at least two nodal lines in the y,z domain.

Mode 02, multiplied by ez/2, gives the meridional structure of the

coherent solution examined in Chapter I. We will refer to $3 as the first

baroclinic eigenmode.
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Release of available potential energy of the mean wind can be obtained

by suitably combining modes *i and #3- The energy equation, obtained by

multiplying (11,13) by Ai and by averaging over the zonal domain, is:

dt}, {<KE> + <E}= <CE>

where

<KE> =-(Ai Ai + Cin

is the eddy kinetic energy,

<AE>= - ainAiAn

is the eddy available potential energy, and

<CE> = EinmunKmAi m m ( 16)

is the total, zonal-to-eddy energy conversion.

Summing over indices 1 and 3 only, (11,16) becomes

<CE> 1 , 3 = (E 1 3 3 u 3 + E1 1 3u1)(K3 - Kj)AlXA3 e13 3u3(K3  1 10A1A3

(11,17)

where E1 1 3 ui is negligible compared to e 13 3u3 (see appendix C). We will

refer to u3 as the "shear" component of the zonal wind. If the shear is

positive, then zonal energy will be released whenever Ai and A3 are

positively correlated. Assuming a sinusoidal profile for A1 and A 3,

maximum correlation is attained when A3 lags Al by 1r/2. In more synoptic
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terms, maximum conversion of zonal energy occurs when the thickness is out

of phase of 7r/2 with the mean geopotential height. It is easy to show

graphically that, in this circumstance, the phase lines in the x-z plane

tilt westward with increasing height.

The suitable way of ordering a bidimensional set is by nodal lines.

The diagram (11,2) illustrates schematically the position of $1, $2, and $

in such ordering.

With this scheme in mind, we will refer to the system truncated after the

first three modes as the "first triangular truncation." In appendix C the

values of the tensor 6ijm' yijm2 ijm, c'ijm$ Cij and aij

truncated at i = j = m = 3 are reported. These values were computed

numerically from the normal modes shown in Figure (II,1).

Section (II,b). Coherent structure

In this section we examine a particular solution of the first

triangular truncation of equations (11,13) and (11,14).

It is very easy to show that, if Ai and A3 are zero initially, they

will remain zero at any time. Furthermore, since AnAm vanishes in
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this case, from (11,14) follows that un(t) = un(O). Thus, the modal

equations reduce to

A2 xx + (a22 - C2 2)A 2 + E2n2un(A2 - K 2A 2x) + E2n2(un - un)KnA2 +

+6222A2xA2 = 0 (1118)

un = constant

We look for solutions having the form of propagating waves:

A2 = A2 (x - ct)

Hence, (11,18) becomes:

A2 xx - 2A2 + 6A2
2 /2 =c

where ci = constant

6 = 6222 / (E2n2un c)

e2n2(un - un)Kn - E2n2unK2 - c(a22 - C22)

E2n2un - c

(11,19)

(II,19,a)

Equation (11,19) is a KdV equation in the amplitude of mode #2- In an

infinite longitudinal domain, the upstream boundary condition

A2  _ 0 implies ci = 0; in a finite, periodic domain of length LX,

ci is computed using definitions (I,2,a) and (I,2,c). In the former case,

the solution of (11,19) is
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A2 = Psech2Qx

Q. =Q (11,20)

3

In the latter case, an excellent approximation of the solution of (11,19)

can be written in the form:

A 2 = P sech2 Qx + c2 (11,21)

Lx/2
The condition f

-Lx/2

Lx/2

-LX/2

A2 dx = 0 implies:

P sech2 Qx dx + Lxc2 v P f sech 2Qx + c2Lx = 0

Thus, c2 = - 2P/LxQ. Substituting the expression of c2 and (11,21) into

(11,19) we get:

Q = + ( + )1/2
x x

(11,22)

P = 12Q2 /6
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Let us suppose now that c = 0 (stationary solution) and that un = un.

Thus, S reduces to K2 , the eigenvalue corresponding to the eigenmode $2.

Hence, in an infinite domain, (11,19) becomes identical to equation (1,17)

found in Chapter I. In particular, the coefficient of the nonlinear term

in equation (11,19)

<e z/2V y$2 3>
6 = /V~ 2 >(II,23)

E2 n2un

corresponds to <ez/2Vy2 3/u> in equation (1,17) (note that the sum

S2n2un in (11,23) is the mean value of u weighted by $22). Thus,

(11,19) and (11,20) are the finite amplitude correspondents (in the

truncated system) of the solution examined in the first chapter.

In the following we will refer to solutions (11,20) and (11,21) as the

"coherent structure" or "vortex pair."

Figure (11,3) shows the total streamfunction pattern and the anomaly

pattern at 500 mb given by (11,21) computed with c = 0 and Lx = 30

(30,000 km). The similarity with the blocking cases shown in Figure 1 is

self evident. In diagram (11,4) the phase speed as function of the

amplitude P is plotted for the infinite and periodic domain. In the case

of periodic domain the amplitude of the stationary coherent structure is

higher. In both cases the phase speed decreases as the amplitude

increases; this is because more intense vortices advect each other against

the mean wind with greater strength. Another important characteristic is

that the phase speed is very small for a wide range of amplitudes,

supporting the claim that certain kinds of blocking may be modelled by

these solutions.

In concluding this chapter we make a last important remark. The
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sech 2 solution of (11,19) exists only under certain conditions. Necessary

and sufficient condition for the existence of (11,20) is that Q be positive

(q/Lx2 + Q/4 > 0 if Lx < +w). Provided the phase speed is small and

the time fluctuations of u(y,z,t) are negligible, 1 is positive when K 2 is

positive [see (II,19,a)]. If the zonal wind were to change in time in such

a way that :Q became negative, then (11,20) would no longer be a solution of

the truncated system. There is a subtle difference between the derivation

presented in this chapter and the derivation of Chapter I. In Chapter I,

the requirement K2 > 0 was necessary in order to satisfy the upstream

boundary condition (I,2,b). Here, (I,2,b) is replaced by the weaker

condition

Lx

f $' dx /Lx = 0
0

which follows from definitions (I,2,a) and (I,2,c). One of the

consequences is that solutions of equation (11,19) can be written in terms

of elliptic integrals even if 0 < 0 (or K2 < 0). These solutions are not

formed by a single pulse as in the case K2 > 0: they consist of an

infinite train of nonlinear waves (cnoidal waves). In Fig. (11,5) an

example of a cnoidal wave solution of (11,19) is presented for the case 0 =

-.2; it can be noticed that the wave becomes very steep near the crest so

that the split flow is associated with intense meridional motion.

In this chapter we have recovered the coherent structure found in

Chapter I by solving a severely truncated dynamical system. Solution

(11,20) [or (11,21)1 is the generalization to finite amplitude and finite

dispersion of the well-known solitary wave (Long, 1964; Patoine and Warn,

1983; etc.). It consists of a vortex pair translating with small phase

speed resembling certain atmospheric patterns typically associated with

Atlantic blocking.
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Chapter III

Stability

Section (III,a). Convergence

To see the effect that severe truncation has on the coherent structure

we examined in Chapter II, the following procedure has been devised.

A new eigenmode with two nodal lines has been added to the three modes

already considered. The new eigenmode, shown in Figure (III,1), has the

same symmetry as $2 and is denoted by the index 4. The reason why this

eigenmode is selected among all the remaining ones is because $4 is the

only eigenmode with two nodal lines having the same symmetry as the

coherent structure. In fact, the coherent structure does not project over

symmetric (around y = 0) modes and the Fourier coefficients of higher,

antisymmetric eigenmodes are likely to be smaller.

In the system truncated after 4 modes, Ai, A3, u2 , and u4 are zero at

all times provided they were zero initially. However, in the remaining

equations, A2 and A4 are coupled in a complicated fashion so that a simple

analytic solution is no longer possible. The simplest way to determine how

the sech 2 solution is modified by the introduction of the fourth mode is to

initialize the 4-mode system with (11,21) and integrate forward for a

sufficient period of time. If (11,21) is close to a fixed point of the new

system, and if the fixed point is stable, then only small transients will

be observed in the time evolution.
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The problem of stability deserves further consideration. The zonal

wind over which the coherent structure is superimposed can be

baroclinically unstable. Let us truncate (11,13) after the four modes $1,

$2, $3, and 4 shown in diagram (11,2) and let us linearize around the

zonal wind

(ul,O,u3,O) (111,1)

The first component of the zonal wind, ul, can be set equal to ui for the

purposes of the following discussion. Small perturbations around the basic

state (III,1) can take the form (0,A2 ,0,A4 ) or (AiO,A3,0)(
1 )- In the

former case (11,13) reduces to:

A 2  + (a22 - C2 2 )A2 + (a24 - C2 4 )A4 + E2n2un(A2XXX - K2A 2X) +

+ E2n4un(A+ - K4A 4 ) + K 3 (u3 ~ 3 )(E2 32A 2x + C2 34A4x) 0

(111,2)

A~ + (a4 4 - c )A4 + (a24 - C24 )A2 + e4n2un(A2xxx - K 2A 2 ) +

+ C4n4un(A4 XX - K4Ax ) + K 3 (u3 - u 3 )(Eg32A2X + 3igA 4x) =0

(The feedback over the mean wind is neglected.) The solution of (111,2)

can be written as:

(1) Larger growth rates would be obtained by introducing a second

baroclinic eigenmode with two horizontal nodal lines. Its effect will be

discussed later.
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A2 ,14 = a 2 ,1 4 eiK(x - ct) (111,3)

where a2 , 4 and c are complex quantities. After substituting (111,3)

into (111,2) a linear and homogeneous system determining a 2 and a4 is

obtained. The necessary and sufficient condition for the solvability of

the system gives the following condition on c:

c2[K22K42 - (a24 - C24)2] + c{K 2
2[U14*K 3 ~ U4 (K + K) + K 4

2 [U*2K 3 ~

- U2 (K2 + K2)] + (a24 - C24 )[2U 2 4*K3 - U2 4 (2K 2 + K2 + K)1 +

+ [U4*K3 - U4(K
2 + K4)] . [K3U 2* - U2 (K

2 + K2)] - [U2 4 *K 3  (111,4)

-U24(K2 + K 4)][U 2 4*K3 - U2 4 (K 2 + K2)] =0

where

K22 = K2 + C22 - a 22

K42 = K2 + g4 - a44

U2 = c2n2un

U4 = E4n4un

U2 4 = C2n4un

U2  = E232(u 3 - u3 )

U 4  = E4 34 (u3 - u3 )

U24 = E2 34 (u3 - u3 )
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The dispersion relation (111,4) admits, under certain conditions,

complex conjugate roots. The imaginary part of c as a function of u3 and

K2 is plotted in diagram (111,2). Similarly to the two-layer model case,

there is a critical value of the vertical shear above which instability

occurs (note that the long wave cutoff and the critical shear are the

consequence of the 2-mode truncation). The position of the wavenumber

corresponding to 5, 6, and 7 wavelengths in the latitude circle is

indicated by an arrow on the x-axis. Figure (111,3) shows the real part of

c, that is the phase speed of baroclinic waves.

Similar considerations apply to perturbations having the form (Ai, 0,

A3 , 0). In this case (diagrams (111,4) and (111,5) show respectively the

growth rate and the phase speed) the growth rates are bigger than in the

previous case. In fact, it is a feature common to all baroclinic

instability theories that the growth rate decreases as the meridional

wavelength of the disturbance gets smaller.

Another source of instability can come from the coherent structure

itself. Rossby wave motion in the atmosphere may suffer from barotropic

instability (Lorenz, 1971) especially when the waves are sufficiently

strong or the wavenumber is sufficiently high. It is not clear how

Lorenz's results concerning Rossby wave motion can apply to this particular

case; the solution examined here has a sinusoidal y-dependence and decays

exponentially as x goes to To. We have shown that, in the long-wave and

weakly nonlinear limit, (11,21) becomes an asymptotic solution of the

quasigeostrophic equations. In such a limit, the wave motion reduces to a

zonal flow which is not unstable by resonant interaction (Gill, 1974).

More generally, there are indications that, as long as the coherent
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structure follows a KdV dynamics, an enhanced stability has to be expected

in the region occupied by it. A sufficient condition for the stability of

quasigeostrophic flow can be obtained generalizing a method presented by

Arnold (1965), which is based on a variational principle. For flows such

that q = F($) it can be shown (Blumen, 1968) that a sufficient condition

for stability is that [dF/d$] ~s >0 everywhere in the domain

(here *s is the fixed point whose stability is to be determined). From

the previous sections:

F F6j +dF 1 1 d2F1 _2+F(W) =F(4$) +d _'F 2 F -'+ ,.

Since

dF d$ d$' dF

we get

dF =dF dF + d2 F *p' +

d* d*' d* - d42

*~*s s 9" IP

+y- - uyy uzz + uz

u

where (1,6) and (I,6,a) have been used. For the stationary solution under

consideration, the term Vy ip's is positive in most of the domain. Its

effect is to increase locally the S term, thus giving a stabilizing

contribution. This argument, although not precise, indicates that the

region of space occupied by the stationary solution which satisfies the KdV

dynamics (quadratic nonlinearity) is going to have enhanced stability
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properties if compared to the remainder of the domain. The argument breaks

down when higher order terms in the Taylor expansion of F($) have to be

considered; this happens when the amplitude of the stationary solution is

high.

Returning to the effect that the truncation of the series (11,4) has

on the coherent solution (11,21), two numerical computations are

performed. In the first experiment the 4-mode model is initialized with

(11,21) superimposed to a zonal wind having u 3 = .1, that is, in the stable

region of the phase space. The integration is carried on for 30 days. A

brief description of the numerical model is given in appendix D. Figure

(111,6) shows the time evolution of the total streamfunction at 500 mb.

The smallness of the transients observed indicates that the initial

condition is very close to a fixed point of the new system, and that such

equilibrium is stable. Since we are dealing with a conservative system,

the situation is identical, at least conceptually, to a frictionless

pendulum slightly displaced from its stable equilibrium. The second

numerical calculation is initialized with u3 = .2, that is, in the unstable

region of the phase space [see diagram (111,2)], and is carried out for 30

days. Figure (111,7) shows the new time evolution at 500 mb. After the

initial period of apparent stationarity, departures from the initial

condition are observed. However, the coherent structure is found to

persist in its original position despite the instability of the mean wind.

Thus, a clear statement about the robustness of (11,21) can still be

stated.
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Fig. (111,6)
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Fig. (111,7)
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Section (III,b). Stability experiments

Still, it remains a possibility that (11,21) is "unstable" when small

perturbations in other directions of the phase space are superimposed to it

or for finite amplitude perturbations. The word "unstable" must be

intended in the following sense: how long is the coherent structure going

to maintain its identity when finite amplitude disturbances coexist with it

in a baroclinically unstable atmosphere? In other words, how robust is

solution (11,21)? If it happens that, within an environment as turbulent

as the real atmosphere, the coherent solution is destroyed after a few

days, then (11,21) is not an acceptable model of blocking.

The following numerical computations are thus meant to determine the

robustness of (11,21). An initial perturbation, to be added to the

coherent structure, satisfying the constraints of the quasigeostrophic

turbulence (Charney, 1971) is defined using a computer random number

generator. The nth Fourier component of Ai, randomly generated, is

divided by

4w 2n2  1/2
47 2 + Cii - aii )1/

Lx

for n < 6 and by

4w2n2 5/4
( x 2 + C1- ti
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for n > 6; this implies a constant energy spectrum for n < 6 and a K-3

low for n > 6 (see Figure 1 of Julian et al., 1970). Also, the

equipartition of energy between the two components of the kinetic energy

and the available potential energy turns out to be satisfied quite well.

Figure (111,8) shows the energy spectrum of the perturbation and, for

comparison, the mean spectrum for all blocking days during the 1978-1979

winter season (after Hansen and Sutera, 1983).

In order to determine the effect of the zonal wind instability on the

predictability of (11,21), several initial conditions are chosen deeper and

deeper inside the unstable lobe of diagrams (111,2) and (111,4). All the

numerical integrations are carried on for 15 days using the four-mode

truncation previously described.

The last two columns of Table (III,I) indicate respectively the

initial vertical shear and e-folding time (in days) of the most unstable

zonal wavenumber (indicated in parentheses) which are obtained from diagram

(111,2). In the last two rows of Table (III,I) we report respectively the

dimensionless (E0 ) kinetic energy of the initial perturbation and the

kinetic energy of the initial perturbation plus coherent structure,

measured in Joule/m2 . These values are relative to the area-average,

vertical integral of the eddy kinetic energy; typical December values of

this quantity for the atmosphere are between 1.0 and 1.4 x 10 6J/m2 (Hansen

and Chen, 1982). In the remaining part of Table (IIII) the circled

numbers are the corresponding "persistence time", defined as the instant

at which the coherent structure breaks down under the effect of the

perturbation. To give an idea of the amount of turbulence present in each
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experiment, the eddy kinetic energy averaged over the coherent structure

lifetime is also reported. It can be noticed that in none of the cases

examined is the persistence time less than 10 days. Indeed, 10 to 12 days

seems to be the typical lifetime that is to be expected in realistic

conditions. No evident correlation between the persistence time and the

initial mean vertical shear can be observed; the initial perturbation is of

finite amplitude and consequently the linear baroclinic instability of the

mean flow has no effect. More surprising is the increased persistence

within more turbulent environments. A possible explanation may lie in a

systematic interaction between coherent structure and turbulent flows; such

interaction will be the subject of the next chapter.

The time evolution shown in figures (111,9) and (III,10) is typical of

the instability process that the coherent structure undergoes in its

evolution. The sequences go from day 5 to day 8 of the experiment with E0

= .5, u3 = .2; Figure (111,9) shows the time evolution of the

streamfunction field at 500 mb projected upon the normal mode $2 (which is

the subspace where the soliton projects upon) while the total field during

the same time sequence is shown in Figure (III,10).

Initially, the interaction with the perturbation goes in such a way

that vorticity is accumulated into the vortex pair; at this point (day 5)

the dynamics of the vortex pair is not of a KdV type any more; an

instability sets in and in two days most of the vorticity is radiated away

by means of a barotropic Rossby wave [see Figure (III,10)]. In the case

shown here this barotropic instability is a particularly nasty one that

ultimately leads to the complete destruction of the coherent structure
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Fig. (III,9)
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Fig. (III,1o)
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after day 10. Very often, in the experiments performed, we noticed that

the vortex pair survived the instability process in a less intense form.

Also, in the experiments with a lot of turbulence present, the vortex pair

underwent the same process twice; that is, after the instability set in

once, vorticity was again accumulated in a structure that soon became as

intense as it was originally: at this point the instability set in a

second time. Basically, in qualitative terms, the instability process

removes the excess of vorticity that was accumulated throughout the

nonlinear interaction between coherent structure and perturbation.

Instability experiments along the same lines were also performed using a

different truncation, namely, inserting the second baroclinic eigenmode #5

instead of $4 [see diagram (11,2)]. In fact, the growth rates (not shown)

of baroclinic instability with modes $1,$3, and #5 are significantly higher

than those computed with #i and #3 alone. However, the persistence of the

coherent structure was not affected by its introduction.

The 10-to-12 days estimate as the predictability of the coherent

structure, although consistent with Rex's definition, is not a very long

time. To determine whether this persistence time is significant for our

model, we have to show that other features exist which are, under the same

circumstances, less predictable. Thus, we performed the stability
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analysis of the Rossby wave #iez/2sin(Kx) with zonal wavenumber 4 which

is almost stationary (period m 60 days). Figure (III,11) shows the time

evolution of the modulus when the Rossby wave is unperturbed (solid line)

and when randomly generated perturbations of the kind previously described

with kinetic energy E0 = .25, .5, and .75 are superimposed. Note that the

amplitude of the unperturbed wave is not constant in time; this is because

the Jacobian J(G1 , V2 0 +01zz z) is not identically zero as it would

be if 0i were a pure sinusoidal, Fourier component. The initial kinetic

energy of the Rossby wave, in dimensionless units, is .21 and corresponds

to unitary amplitude. The persistence of this "quasi-stationary" Rossby

motion is less than 4 days for those cases in which the initial

perturbation has realistic energy levels.

To conclude this section we describe the method that was used to

determine the final instant of the coherent structure life. We found that

looking at the time evolution of the streamfunction pattern in the real

space gave, in many cases, a rather subjective estimate of the "last day of

blocking." A more objective criterion can be obtained by constructing a

phase diagram of the most energetic components of the coherent structure

(see Rizzoli, 1980). One complication is introduced by the fact that the

coherent structure, weakened by the nonlinear interaction with the

components of the perturbation, may show some eastward motion before

disappearing.

Let's consider a propagating wave f(x - ct) translating without

changing its shape. If we Fourier decompose it we get

f = Z fn eikn(x-ct) = Z fn e-icknt eiknx , fn complex
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Thus, the phase of the nth Fourier coefficient of a shape-preserving

envelope moving with phase speed c will evolve according to the linear law.

2'rnctOn21knnct (11195)en = 00 - knct = 60 -L (II5

where 60 is the initial phase.

In diagrams (111,12) and (111,13) the phase of the first three Fourier

coefficients of A2 are plotted versus time respectively for cases

u3(0) = .25, E0 = .5 and u3(0) = .25, E0 =.75. The thin, sloping lines

are given by equation (111,5) with c = .1, that, is the maximum phase speed

that the coherent structure can attain [see fig.(II,4)]. It can be noticed

that, in case E0 = .5, after 10 days of integration the second and third

components run away much faster than the limiting phase speed allowed by

the dispersion relation (11,22), while in case E0 = .75 all the components

are locked according to (111,5) with c = .1.

The criterion here presented, used together with streamfunction

observations in the real space, allowed us to pinpoint more precisely the

persistence time for each experiment.
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Chapter IV

Vortex-Wave Interaction

Section (IV,a). The effect of viscosity

In this chapter we will examine the effects of transient eddies and

friction upon the coherent solution (11,20-21). We introduce two kinds of

dissipation into the modal model previously described: linear drag and

Newtonian cooling.

In the basis (+nl, the two kinds of friction take the form:

Newtonian cooling =tA + . . . -yainAn

Linear drag tAi + . . = -v(Ai - CinAn)

The Newtonian cooling penalizes long scales more than shorter scales and

baroclinic eigenmodes more than barotropic ones; linear drag is not scale

selective.

The effect of the two kinds of dissipations upon the coherent solution

(11,20) is illustrated in diagram (IV,1). Curve I represents the time

evolution of the kinetic energy of (11,21) when acted upon by Newtonian

cooling; curve II gives the kinetic energy decay when the same solution is

acted upon by linear drag. The coefficients y and v are set equal to

(14 days)-'. The linear drag is more efficient than Newtonian cooling in

dissipating the coherent structure.



SAVO
91 171 21 31 11 01 6 9 L 9 9 V 2 3 I 0

o ~j *SADP §tp I 4

-O'

-0'

I-7

02 £

3N



- 75 -

Green (1976) suggested that the persistence of the 1976 block over the

British Isles could be accounted for by eddy flux of westerly momentum out

of the blocked region, flux accomplished by transient eddies moving along

the branches of the split flow. Later, Illari (1980) computed the eddy

forcing of potential vorticity during the above-mentioned episode. She

found that the intensity of the eddy forcing was quite strong and out of

phase by w/2 with respect to the time-mean circulation.

The effect of transient eddies of different scales on the time-mean

flow was also investigated by Hoskins et al. (1983). The mean flow forcing

by high-pass eddies and by low-pass eddies is well approximated by the

meridional derivative of the horizontal divergence of the vector

E(V"2  u"_2 '12 o 1

where, from now on, the "hat" stands for time average. In particular, data

from one blocking episode (26 November - 7 December 1981) gave an

indication of a positive feedback of the synoptic eddies onto the mean

blocking flow.
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Section (IV,b). Vortex-wave interaction; eddy forcing

These and other works on the feedback of transient eddies on the

time-mean circulation motivated the following theoretical analysis. Using

the modal model introduced in Chapter II, we will study the nonlinear

interaction between a transient wave and a stationary vortex pair.

Let us consider the barotropic version of (11,13) (A3 E A4 = 0):

at(Al xx - 1
2AI) + Ui(Ai xx - KiAi ) + Y121(AiA2xxx - A 2 A ) +

+ Y121A2xAI(Ki - K2 ) -
2Yl21(A2Aixxx - Al xA2xx) - 2y1 21 A1 A 2 (K2 - K1 )

+ 6121(AiA 2 ) /2 = (K2 -K)Yl21AlA2x

a t(A2 xX - 2A2) + U2(A2xa - K 2A 2 ) + Y1 2 1(A1  A1 - A1 A1  ) +

+ 62 22 (A22) /2 + 12)
1x /2 +621 (A1 x /12 0

where U1 =Eiliui,

U2 =E122u

i2

and where the feedback over the mean wind has been neglected. Furthermore,

let 6211/2 ~ 0 (see appendix C), and let's define 6222/2 E 6, Y121 Y-

The previous system reduces to

[u = (ui,0)],
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at(A - X12Aj) + U1 (A1  - K 1Ai ) = y(A 2 A - A1A 2

+2A2 A1  - 2A1 A 2 , + (K2 - Kl)(2Ai A 2 + A 2 Al - Al xA 2)1

at(A2x - Z2
2A2 ) + U2 (A2 - K2A2 ) + 6(A2

2) = y(Ai A

+

(IV 2 1)

- A1A1 )
(IVxxx

(IV, 2)

y (=.2) is the vortex-wave interaction coefficent. In fact, if y were zero

(IV,l) and (IV,2) would reduce to:

(0)

a (A 0)
t 2xx

A2 () +u ( ) (0)- 2 A (0) - KiAi ) = 0
1 1xxx ix

£2(0)) (0) (0) 2- 222Aj ) + U2(A~xxx - K 2 A 2 ) + 6(A22

(IV, 3)

(IV, 4)

that is, a linear Rossby wave and a solitary wave (obeying the KdV

dynamics) without mutual interaction. Next, suppose that y is small but

different from zero. Then equations (IV,3) and (IV,4) give the zero-order

approximation of the streamfunction in power series of the interaction

coefficient:

(0)Ai = Al
(1) 2 (2)

+yA 1 +yAi +.

(0) (1) 2 (2)
A2 = A2 + yA2 + y A2 +

The solution of (IV,3), (IV,4) is:
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(0) 2A20) = P sech Qx

A = a sin(Qix - WOt),

P = 3K2 U2 /(26)

Q = /K2/2

o = UQ21~12 + K,

212 + P 1 2
or c = U1 - (k12 - K1 )U1

nj2 + £2

At the first order:

(at(A1i) - £i2A l) + Ui(A1 ~- K1A(11)) {A 2 A 1 - A 1 A2 (0
t)(0) (0) (0) (0)

+ 2A A
2 xxx

(0) (0)}
- Aix A2

(0) (0) +( 2 -(0) (0) (0) (0)- 2A + (K2 - K1 )(2A1 A2 A2 A 1

(IV,5)

a (AM - X22A )) + U2 (1) - K (1) + 26(A A ) =
t xx A 2 2 xxx 6x A2 x

(0) (0) (0) (0)SA Al - Al A1  = 0
x xx xxx (IV,6)

The forcing in equation (IV,6) turns out to be zero. Thus, at the

first-order in y, the vortex is not yet affected by the wave. We are left

with the linear equation (IV,5) forced by a complicated function of the

zero-order solution. The quantity we are interested in is the eddy

vorticity forcing J($",q") averaged in time. If we start off with a

stationary vortex, the transients up to order y have projection on the
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first normal mode 01 alone. The Jacobian of such streamfunction has

projection on the second mode, that is:

J(Ai$1ez/2 2(Ai$1ez/2) + Ai($z z/2)
zz 4 (IV,7)

Y1 2 1 (A1 Ai - Al Al)$ 2 ez/2

From the expansion of A1 in power series of y we get

y(A(0) (0)= ~ 'J (0) (0) 2 (0) (1)
y(AiA - A Ai) y(A( A0 A A1  + Y2(A( A0) +

+ A A - A A - A (1)A (0) + 3(y3
A1  xxx x xx x 1 x

(0)Again, from the expression of A1  we see that the order y forcing is zero,

2consistently with the fact that the correction to A2 is order Y2. Thus, in

the limit of weak vortex-wave interaction, the divergence of the eddy flux

of potential vorticity is given by:

y2(A(0)A (1) + A A (0) - AMA' - AMAO)) ez/2 (IV,8)Y 1 xxx I xxx ix 1xx ix ixx)

where the time average is taken over a period of the transient Rossby wave.

We seek solutions of (IV,5) in the form:

(1)
Al = S(x) sin (nlx - wt) + C(x) cos (Qix - wt) (IV,39)
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The right-hand side of (IV,5) can be further simplified assuming Lx very

large or infinite. In this case

1 Lx (0) (0)
= f A, A2Lx 0

dx + 0

Hence, the right-hand side of (IV,5) becomes:

r.h.s. = a sin(Oix - wt)((K 2 - K ()A2 - A(0) - 1 2A(O)K1)A2 A2  K(IV,11)

+ a cos(aix - wt)(2(K2 - Kl)QA( - 2013A

Substituting (IV,9) and (IV,11) into (IV,5) and defining the new constants

a = w - 3U101

p = 2nim - 312U, - K1U1  (IV,12)

fl = K2 - K, - 212

we obtain the following system determining S and C:

( ~(0) (0))
UiS + aC + PS = a(nA20 - A2xxx xx x x xxx (IV,13)

UlC - aS + pC = 2aninA20 )
xxx xx x

(0) (0)
A, A2

(IV,10)
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Equation (IV,13) can be solved expanding A2 (0) in Fourier series.

Strictly speaking, in a domain of finite length L , the term A MAW)
x x

should be considered in the r.h.s. of (IV,5). This time-dependent forcing

introduces a new term in (IV,9) which is a function of t alone. The eddy

forcing associated with it is, however, independent of x. Let

sech2Qx = Z an cos knx , kn =

n Lx

and S = E Sn cos knx, C = E Cn sin knx, where the

properties of symmetry around x = 0 of sech 2 have been used. Then:

S (Uk 3 - pk n) + C (-k 2a) = aPk a (k 2 _

nn n (IV,14)

S (ak 2) + C (pk - Uik 3) = 2aniTPan n n n n n

Note that a resonance occurs when

-k 2 (Uik 2 - P) + (k 2a)2 = 0n n n

If one of the allowed wavelengths satisfies the dispersion relation of the

homogeneous problem, then it is reasonable to expect that the vortex

interacts strongly with the incident wave or, in other words, that the

vortex is "unstable" for such scales (at resonance, however, the expansion

breaks down).
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By using (IV,9) and the expression of A (0), the eddy forcing (IV,8)

becomes:

Y2 2e z/2a(S - 30 1C - 2R 1
2 S ) sin 2(Q2x-Wt) -

- Qi(2S xi + C ) cos 2 (Qix-wt)}

= Y2a$2ez/2(S -40 - 401
2S }/2 (IV,15)

The previous relation, expressed in terms of the Cns and Sns, takes the

form

Y2 a '2ez/2 (S k 3 + 40 1C k 
2 + 401 2k S ) sin k x (IV,16)

2 n n n n n n n
n

that is, antisymmetric around the axes x = 0 and y = 0. The forcing is

also independent of the phase of the incident Rossby wave.

Figure (IV,2) shows the eddy forcing obtained with incident Rossby

waves having wavenumbers 2Trn/Lx, n = 1, . . ., 5. Only the first half

of the zonal domain is shown; the complete pattern is antisymmetric around

x = 0. Apart from a small near-field response, the eddy forcing is

basically monochromatic. This is because of the resonant nature of the

left-hand side of equation (IV,14). This is especially the case with

incident Rossby waves having wavenumbers 2 and 5; they excite a resonant

response at wavenumber 7. We stress that these results apply to a single

incident wave; because of the nonlinear nature of the problem, the effect

due to eddies that are not monochromatic is not the sum of the effects

caused by each single incident transient wave.



Fig. (IV, 2)

5

0 5 10 15-15 -10 X

- 83 -

- 5



- 84 -

The picture for shorter incident waves is completely different.

Figure (IV,3,a) shows the eddy forcing due to eddies with wavenumbers

between 6 and 16. The forcing is now localized against the vortex pair and

especially strong at higher wavenumbers. The effect of very short eddies

is thus systematic and consistent with a westward motion of the blocking

pattern [see Figure (IV,3,b)]. Intuitively, the reason for this completely

different behavior is not difficult to grasp if one thinks of the analogy

of an electromagnetic wave entering a medium with a different diffraction

index. Shorter scale incident waves make several oscillations within the

region of the larger scale, straining flow (the blocking pattern) so that

they can feel its effect systematically (Shutts,1983). For incident waves

with scales longer than, or comparable to, the scale of the block this is

not possible. The analogy is thus the geometrical and physical optics; the

phenomenology of these two limiting cases is completely different.

The fact that eddy forcing is so neat at short scales is encouraging

for the parameterization of its effect over the mean state A2(0). The

effect of short scales is, in fact, the one that needs to be parameterized

in any model in which the resolution is a limiting factor.

In the limit of 01 + oo (1), the constants in (IV,12) tend to

o + U10i

a + -201U1  (IV,17)

p + -01U 1

(1) Consistency requires yTi << 1.
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Consequently, the behavior of the leading terms of C and S for large 9i is

[after (IV,13)]:

(0) a
S = -3A2  (w~l8)

C - 2a Q1 ( x A 0) dx )/Ui

Hence, in the limit of large 0i, the eddy forcing (IV,15) becomes

J($",q") = 2y2 a2 *1
2  (IV,19)

Expression (IV,19) is the parameterization of the forcing due to short

eddies in terms of the mean state A2 (0)#c2 ez/2 (note that this forcing

is energetically neutral since this analytic analysis is inviscid). Its

magnitude is proportional to the energy density of the incoming eddy and to

the meridional velocity of the mean state divided by the phase speed of the

incident wave, which gives a measure of the distortion exerted on the eddy

field by the larger-scale mean flow.
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Section (IV,c). Feedback on the mean state

At the second order in y we get the equation governing the "modified

flow" A2 (2). The equation is:

-c (2) [A - 2A (0) + U2 (A2) - K2A (2)) + 26(A() A (2) =
2xx - 22 x 2xxx 2x 2 2 x ( IV,20 )

= - eddy forcing

where the eddy forcing is given by the term between parentheses in (IV,8).

In writing this equation we assumed that the vortex pair varies on the long

time scale T = y2 t like A2 = A2(x - c(2) T). The introduction of

the long time scale is necessary because, as we shall see shortly, a

secularity arises in equation (IV,20). In more physical terms, the pattern

of eddy forcing shown in Figure (IV,3,b) is pushing the vortex pair

upstream; since such forcing is an order y2 quantity, its effect is such

that the vortex pair will move with an O(y 2) phase speed.

Taking the time average of (IV,20) over a period of the Rossby wave we

get:

(2) (0) 2(0) (2) (2) (0) (2)
-c [A2 ~ -Z2A2 ] + U2(A2) - K2A2 ) + 26(A2 A 2 =

(IV, 21)

= - a{sx - 4, 1C - 4 2 }--2 xxx xxx
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where expression (IV,15) has been used. Eq. (IV,21) can be integrated once

in x:

(2) 26 (0) (2) a 2S+A2xx - (K2- A2 )A2  2U2 S - 401C x- 4 (IV22)

(2) (0) 2 (0)+ c ( Axx - X2 A2 ]/U2

For very short incident waves, the right-hand side of (IV,22) becomes:

r.h.s. = -
2a2Q1

2  (0) c(2) (0) (0)
____ A2 + c _ (A2 - E2 2A2

0 )
UUu2

where expression (IV,19) has been used.

We shall solve (IV,22) and (IV,23) in an infinite domain. When x goes

to ±o there is a secularity to be removed. In such limit, (IV,23) reduces

to

r.h.s. = - 4P e 2 x + c(2) 4P (K2 - £22) eT"VTK x

UiU 2 U2

(IV,23)

(IV,24)
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Since e /K2 x identically satisfies the left-hand side of (IV,22),

expression (IV,24) must be identically zero. This implies:

(2) 2a201
2

c -< 0 (IV25)

Ui[2 2 - K
2 1

that is, the vortex pair moves upstream with phase speed proportional to

the energy density of the eddy. Thus, substituting back (IV,25) into

(IV,23), and using the expression for the zero-order solution A2(0 )

equation (IV,22) finally reduces to:

.0^% 26P /K 2  2) 3a 2 S1 2PK2 /K2(2) (2) 2 _ (2) 121K
A2  - K2A2  + - sech (- x)A 2  = sech (- x)

U2  2 U1 U2 ( 2  - K2 ) 2

(IV,26)

This equation can be solved analytically. For A2(2), we seek a

solution in the form:

(2) 3a2S11
2P 2n /(v7A2 =I_ c sech (__ x) (IV,27)

U1U2(2- 2) n=1 2

By using the relation

d2  2nn 2  2n n 2+
sech (-- x) = n2K2 sech ( x) - - K2 (2n + 1) sech 2n (- x),

dx2 2 2 2 2

The following recurrence relations are obtained:
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ci = 0

1
C 2 =

(n 2 _ ~ 2 3 5_(n -1cn = [n2 _f n - ]cn-1, n > 3

Since (Gauss test)

n- 1  1.5 0( 1

2c n n
n

series (IV,27) is convergent for all x. The modified flow A2 (2) is shown

in Figure (IV,4) where it is normalized to 1 in order to compare it with

the zero-order solution. The effect of short wave eddies is to push the

vortex pair westward and to steepen it.
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Fig. (IV,4)
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Section (IV,d). Feedback over the transient

A better physical insight into the interaction between the vortex pair

and the eddy can be obtained looking at the first-order correction to

Aj0 ).

Up to order y 2, the incident Rossby wave is:

A, = a sin(oix - wt) + YS(x) sin(Qix - wt) + yC(x) cos(Qix - wt) (IV,28)

In the limit of short incident Rossby waves we have already shown that [see

(IV,18)]

) + UiQi

S + -3 A

x
C + 2a i f A0)dx

U1 -. 0

Thus, equation (IV,28) can be written as:
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A, = M(x) sin[A 1 (x - Ult) + (x)I

where

M cos e = a + YS

M sin 0 = yC

and

tanO _yC 0yC
aC+ yS a

Hence, at the leading order in y:

yC Al (0)a - = 2y- f A2  dx
a U

Mm a

(IV,29) becomes:

A, z a sin[Qi (x - Uit
x

+ 2Yf A2 0 dx)]

A local wavenumber can be defined in a W.K.B. sense:

111 + y (0) ] > Qi

(IV,29)

(IV,30)
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What expression (IV,30) tells us is basically that the incident Rossby wave

gets shorter and shorter as it interacts with the vortex pair, and resumes

its original wavelength after the interaction is over. In more physical

terms, eddies propagating into a split jetstream suffer an east-west

compression and north-south extension of their vorticity fields. If this

process is viewed in the sense of an initial value problem, local enstrophy

cascade is associated with energy transmission to the straining flow (i.e.,

the blocking pattern). In fact, eddies embedded within the deformation

fields of larger scale flows are, on average, strained into filaments so

that the constraint of energy and enstrophy conservation demands that

energy should appear at progressively larger scales. We stress that these

considerations apply to the time-dependent process that corresponds to the

straining of eddies by the larger scale motion; the analytical model

presented before is relative to an equilibrium configuration in which

energy fluxes are zero. It is during the transients which ultimately lead

to such equilibrium configuration that energy is exchanged between the

strained eddies and the straining flow. Such interesting problems, as well

as the effect of friction within the theoretical picture presented here is,

however, a much harder problem to solve. Nevertheless, as we shall see,

the simple equilibrium theory presented here captures many of the effects

that short scale eddies induce on blocking patterns (see, for instance, the

numerical computations carried out by Shutts, 1983) and we leave more

elaborate theories to future research.

In summary, in Sections (IV,b), (IV,c) and (IV,d) we have analyzed the

nonlinear interaction between a barotropic, monochromatic Rossby wave and
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the stationary coherent structure. The result of the interaction strongly

depends on the wavelength of the incident eddy. Short eddies produce an

eddy potential vorticity forcing that pushes the blocking pattern westward

and steepens it. We showed that its effect can be parameterized in terms

of the meridional velocity of the straining, larger-scale mean flow.

The interaction with longer eddies (zonal wavenumber < 5) produces a

strong eddy forcing basically monochromatic whose sign near the vortex

center is generally opposite to that of the forcing due to short eddies.

We also looked at how high wavenumber eddies are modified during the

interaction; the wavelength of the incident wave becomes shorter owing to

the straining effect of the larger-scale flow.
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Section (IV,e): Numerical verification

In this section we will see whether the arguments put forward in the

previous sections will hold in a less idealized case in which all

wavelengths are simultaneously present and when long scale eddies interact

with the vortex pair. We will also obtain indications whether the

steepening caused by interaction with short waves and the westward

correction to the phase speed of the coherent structure can balance the

effect of friction.

In order to find answers to these questions we conceived the following

experiment.

We initialize the 4-mode model already used in the previous chapter

using the stationary solution (11,21). At t = 0 we superimpose on it a

randomly generated perturbation having the same form as the one used

previously with E0 = .75. Dissipation and forcing are added as well.

Following several authors (Charney et al, 1981; Shutts, 1983) we chose the

relaxation time of the linear drag to be 14 days (the Newtonian cooling

relaxation time is also set equal to 14 days). The value of u 3h (see

appendix D), the vertical shear forcing due to differential heating, is set

equal to 0.8. Basically, we want to obtain an energy cycle in which the

eddy kinetic energy destroyed by friction is substituted by eddy energy

converted via the baroclinic instability of the mean wind. If the forcing

u3h is too small, the system will fall into the Hadley regime (lorenz,

1965). Hence, before initiating the actual experiment, we performed several

tests by integrating the model for a long time. In this way we were able

to determine the value of u3h capable of mantaining a realistic
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amount of eddy kinetic energy in the model.

Since one of the purposes of this experiment is to compare the phase

speed of the coherent structure embedded in a viscous and turbulent

environment with the phase speed that the same structure would have if

acted upon only by friction, we neglected the feedback over the mean wind

component ul. In other words, we chose the momentum driving uid in such

a way to give exactly zero tendency, that is ui = 0. In this way we make

sure that variations in the phase speed of the vortex pair are not caused

by variations in the advecting mean wind ui (note that the phase speed of

(11,21) depends only on ui).

Figure (IV,5,a) shows the streamfunction at 500 mb after 10 days of

integration. For comparison, the state that the coherent structure would

reach at the same instant if eddies were not present is plotted in figure

(IV,5,b). It can be noticed that, apart from a certain degree of

deformation, the coherent structure appears steeper and displaced westward

(= 1,000 km) when compared to the control, purely dissipative experiment.

Figure (IV,6,a) shows the time-mean of the 500 mb streamfunction

computed from day 3 to day 10 (1). We note that a stationary Rossby wave

trails the vortex pair. This feature, that is not predicted by the theory

of the previous section, incidentally makes the time-mean look much more

realistic than the stationary solution (11,21) (compare with Figure

(IV,6,b). In particular, the phase of the Rossby wave is such that it

enhances the high center while weakening the low center, conferring at the

same time a realistic east-west tilt to the blocking structure.

(1) A longer averaging period could not be taken because the coherent

structure disappeared at t = 12 days.
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Fig. (IV,5)
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Figure (IV,7,a) shows the eddy forcing J($",q") superimposed on the

time-mean potential vorticity at 250 mb,a level at which the forcing is

particularly strong. Positive maxima are observed upstream the low center

and downstream the high center while negative minima are located upstream

the high center and downstream from the low center. Basically, the

structure is consistent with the one predicted (see Figure (IV,3)) but a

strong north-south asymmetry is again observed. The pattern of eddy

forcing shown in Figure (IV,7,a) is typical of all the numerical

experiments performed. In particular, it does not depend on the truncation

chosen and on the parameterization of the friction.

For comparison, the eddy forcing of potential vorticity computed

during the July 1976 drought over the British Isles is reported in Figure

(IV,7,b) (after Illari, 1982). We stress the following points:

a) the magnitude of the observed eddy forcing is similar to the one

computed in the experiment;

b) positive eddy forcing is observed upstream time-mean potential

vorticity minima while negative forcing is observed downstream.

In general, the observed forcing pattern is consistent with a

westward tendency of the time-mean potential vorticity.

c) in the real case analyzed, the eddy forcing is almost exactly

balanced by the mean advection J($,q), the frictional term being

a negligible residue. The same balance holds in our numerical

experiments;

d) the observed eddy vorticity forcing has an equivalent barotropic

structure with a strong maximum at w 300 mb.
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The numerical experiment described above suggests that the feedback of

short scale transient eddies over the time-mean geopotential field is such

that it maintains the time-mean field against mean advection, consistently

with Illari's (1982) results. Such positive feedback is also responsible

for the steepening and deepening of larger-scale, stationary features of

the atmospheric circulation (Shutts, 1983). In particular, there are

indications [see Figure (IV,5)] that the eddy forcing can counteract, up to

a certain point, the effect of dissipation.

The simple analytical theory presented in this chapter (even though

relative to an equilibrium configuration) qualitatively accounts for the

above-mentioned effects.
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Chapter V

The Formation of the Coherent Structure

In all the numerical experiments analyzed so far, we integrated

the modal equations forward in time, starting from an initial

condition containing the stationary coherent structure. The subject

of this final chapter will be the growth and formation of the

coherent structure starting from more general initial conditions.

The basic question we want to address is: which kind of

situations will evolve, within the dynamics of our truncated model,

into the vortex pair (II, 20)? In other words, we want to define, at

least in qualitative terms, the basin of attraction in our phase

space of solution (II, 20).

We have seen that the coherent structure projects only upon the

normal mode $2 and that its dynamics is basically of a KdV type. In

fact, the coupling between mode $2 and the modes next to it (mode $4

in particular) does not make significant modifications in the

dynamics, as is clear from the numerical integration represented in

Fig. (111,6).

A distinctive feature of the KdV dynamics is the evolution of a

sinusoidal initial condition into solitons (Zabusky and Kruskal,

1965). Inspired by this result, we initialized our model (truncated

after $1, $2, $3, and 4) with the initial condition

= - 2ez/2cos 2rx 
(V1)

t=o Lx
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that is, with a sinusoidal wave of wavenumber one in the east-west

direction and antisymmetric around y = 0. Figure (V,1) shows the

time evolution observed; the 500 mb streamfunction pattern is plotted

at t = 0, 3, 6, 9, 12, and 15 days, respectively. The initial

condition was normalized to one.

The evolution observed can be described in terms of three time

intervals. Initially, the tendency of A2 and the nonlinearity

A2 A2 dominate and the classical overtaking phenomenon occurs: A2

steepens where it has positive derivatives (see, for instance,

Courant and Friedrichs, p. 96). After A2 has steepened enough, the

dispersion (A2xxx ) becomes important and prevents the formation of a

discontinuity. Oscillations of shorter wavelength develop on the

right to the shock front and their amplitude increases until each

oscillation assumes a shape almost identical to that of an individual

coherent structure. Finally, each pulse begins to move uniformly

according to the dispersion relation (II,21,a). In Fig.(V,1) at t=15

days three pulses of decreasing amplitudes can be recognized. After

a very long time all the pulses merge to the same point (they "pass

through" on another without losing their identity); at this point the

initial state is almost reconstructed through the nonlinear

interaction.

The same behavior is also observed when the initial condition is

not a pure $2 mode. In the experiment shown in Figure (V,2) the

initial condition is the sum of (V,1) and of a wave having the

meridional structure of mode $1 and east-west wavenumber 6. It can

be noticed that the KdV dynamics of the mode $2 is not affected by
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Fig. (V,1)

I I I I I I I I I I t-+ O

............... ....
I ...............................

4C

L- 6

...........

.......... ......... I I I I I I I I I I I I I I I I I ..I I I I I I

...........................................I
I I I I I I I I I I I I I I I I 

...... ...... ...... ...... IIIl



- 106 -

Fig. (V,1)
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Fig. (V, 2)
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the nonlinear interaction with the other normal modes.

One interesting characteristic of these time evolutions is that a

strong zonal flow is observed upstream to the splitting region,

together with strong meridional motion on the western side of the

block. This feature is consistent with point d) of Rex's definition.

More generally, numerical experiments along the same line show

that:

a) The evolution of (V,1) into the block configuration is also
observed when randomly generated perturbations (of the
kind described in Chapter III) are superimposed to (V,1);

b) the block formation described above is not affected by
friction or by the presence of a baroclinically unstable
zonal wind, since growing perturbations have little effect
on the KdV dynamics of mode

c) the steepening of the wave proceeds faster and the amplitude
attained by the pulse is larger when the initial amplitude
is larger;

d) if the initial amplitude of the wave is not large enough the
steepening process does not occur. In fact, in order for
the wave to steepen, the nonlinearity must be initially
larger than dispersion. From (11,18) we see that the con-
dition is satisfied when

6222 A2
2 > 62n2unA2xx

2

In general, for a sinusoidal initial condition with east-west

wavenumber K and amplitude B, the condition for the steepening to

occur is

- 2

JB > 2E2n2un 2 2042 > 2 2 (V92)
6222 Vy*02 3ez/2>
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This condition is satisfied by long waves, especially wavenumber

one. Shorter waves basically follow a linear dynamics with phase

speed given by the linear dispersion relationship (balance between

tendency and dispersion).

Since the initial steepening is dominated by tendency and

nonlinearity, the same evolution, at least during the first stages,

should be observed also when the eigenvalue K2 , which determines the

sign of Q in (11,19), is negative. In the integration depicted in

Figure (V,3) we changed the sign of K2 (K2 = -. 2) leaving the other

parameters unchanged.(1) The interesting point is that only one

high amplitude pulse forms as the result of the initial steepening,

despite the fact that the equilibrium solution is now a cnoidal wave

[see section (II,b)] (to make sure that we are not in the parameter

regime of a single soliton, we checked the sign of 0 using (II,19,a)

and the phase speed measured from the experiment). Basically, almost

all of the energy initially present "fills" only one pulse of the

infinite wave, being consequently kept in that coherent shape by

nonlinearity. Note that (at least) a second pulse of weaker

amplitude is clearly recognizable at t = 9 and t = 12 days. The

(1)Strictly speaking, we should have defined a new zonal wind u

such that K2 is negative and compute again all the coefficients of

appendix C. However, the other important coefficient in the dynamics

of $2, 6222, is not sensitive on the definition of the mean wind.
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Fig. (V,3)
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second pulse is not part of the same cnoidal wave as the primary

pulse but it behaves independently, as can be seen from the fact that

the primary pulse is slowly regressing while the second pulse is

progressing. These partial realizations of a cnoidal wave behave

like isolated solitons, since they survive after collisions.

From these considerations(i) the fact emerges that a necessary

and sufficient condition for the coherent structure to form in our

truncated model is the pre-existence of a (zonal) wavenumber one

component of mode #2 having a large enough amplitude and meridionally

confined by the turning points of the zonal wind. The question now

is how energy can be injected into this component. At this stage we

can only make some speculations.

So far we have considered a model with a flat bottom. After

Charney and Eliassen (1949) no doubt was raised about the essential

role played by topography in forcing the long wave components of the

time-averaged northerm hemisphere circulation. Immediate evidence

comes from inspection of the southern hemisphere: the minor

interaction of the southern circumpolar vortex with topography

results in enhanced symmetry.

One possibility is that the wavenumber one component grows via

baroclinic conversion of zonal available potential energy to eddy

energy. In the truncated model zonal wavenumber one is stable by

ordinary baroclinic instability [see diagram (111,2)] so-

(1 )And from a long series of frustrating attempts to get the

soliton in another way.
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that conversion cannot occur spontaneously (in a continuous model

this is not necessarily true). However, topography can "catalyze"

baroclinic instability at long scales through the form-drag

relationship (Charney-Straus, 1980). Moreover, an input of kinetic

energy into long scales comes from direct topographic forcing, that

is, conversion of zonal kinetic energy to eddy kinetic energy through

the term u3xh.

In order for these mechanisms to be relevant, the bidimensional

Fourier decomposition of the northern hemisphere topography must have

a strong wavenumber one component in the east-west as well as

north-south direction. The geographical distribution land-ocean-

land-ocean is asymmetric, since the Asian continent is larger than

the American one. This gives rise to a wavenumber one component in

the Fourier representation of the topography around a latitude

circle. Furthermore, the largest Asian mountain chain, the

Himalayas, is located to the south of the mid-latitude jet stream, so

that its contribution to the meridional Fourier spectrum of the

topography will have a strong wavenumber one component also in the

north-south direction.

An important aspect of this interpretation is that the

geographical position for the formation of the coherent structure can

be fixed by the phase of the long wave which is forced by the

topography.

The incorporation of topography into the present model will be

the subject of future research.
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Discussion and Conclusions

In this study we have proposed a nonlinear theory of atmospheric

Rossby waves superimposed on westerly winds with meridional shear.

The underlying physical idea is that the self-interaction of the

wave is responsible for the steepening that ultimately leads to a

localized, coherent structure whose persistence is typically > 10

days. We speculated that some cases of Atlantic blocking may be

modeled by these structures.

We now explain, by using a very simple example, what we mean by

"self-interaction." Let us suppose we construct a (very) low-order

model of a barotropic atmosphere by truncating the Fourier

representation of the streamfunction in terms of some complete,

orthonormal basis ($n}* Hence, we write:

= E An(xt)$n(y) = Al$1
n=1

We then project the advection of relative vorticity upon 4i:

29) <J(Ai$ 1,AI $t 1 + Atiyy ) - $1> $1

where the brackets stand for the scalar product. By neglecting the

boundary contributions of $1 we obtain, after some straightforward

algebra, the self-interaction:
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J(% 2*) - (A1
2) X 2> 1

The scalar product at the right-hand side is basically the 6

parameter that we have encountered over and over in this study. It

can be noted that the self-interaction is identically zero when sine

and cosine are taken as Fourier components. Also, only asymmetric

(in y) waves can self-interact, since <i yyy1 2> vanishes for

symmetric functions. Speaking in qualitative terms, we may say that

the north-south mean shear modifies the meridional structure of the

waves embedded in it (with respect to the ordinary sinusoidal

function), so that the waves self-interact.

The point that deserves further discussion is the degree of

applicability of the theory here proposed to the real atmosphere. We

have seen in Chapter I that an isolated coherent structure exists

only if the mean wind, upon which the structure is superimposed,

satisfies certain constraints. In fact, (1,19) is an asymptotic

solution of the governing equation if its y-z structure is a bound

state of the Schrodinger equation (1,14) and if the associated

eigenvalue is small and positive. While the positiveness of the

eigenvalue is necessary to satisfy the upstream boundary condition

(I,2,b), that is, the requirement of the solution being an isolated

pulse, the smallness is required only because we assumed small

nonlinearity and small dispersion. From the analysis of Chapter I we

cannot say anything about the eigenvectors whose corresponding

eigenvalues are > 0(1) and positive. In those cases the nonlinearity

cannot be assumed small and the linear problem itself becomes
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meaningless. We conclude that the requirement of small eigenvalue is

only a sufficient condition.

In Chapter II we removed the constraint that the solution be

isolated and we presented an approximation that also allows for large

eigenvalues. The only hypothesis we made was that there exists a

finite number of bound states of (1,14) and, in particular, that the

y-z structure of the coherent solution (#2) be among them. However,

we already pointed out that the normal modes associated with positive

eigenvalues > 0(1) do not represent the meridional structure of any

of the solutions of the potential vorticity equations. Again, K 2

small enough is a sufficient condition that tells us when the basis

defined by the normal modes of (1,14) is the natural one upon which

to project our coherent solution.

We have seen in Chapter V that wavenumber one component evolves

into a single high amplitude pulse also if K2 < 0, so that the

requirement of positive eigenvalue can be abandoned in practice

without losing physical realism. This assumes special importance

because it renders the solutions of (11,19) applicable to blocking

independently of the sign of the coefficients.()

In conclusion, we have found only sufficient conditions that

tell us when the dynamics predicted by our model is going to be

(1)In fact, the sign of the parameter 6 appearing in (11,19) is not

cause of concern since, for an antisymmetric normal mode, it is

always positive.
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meaningful: for a given T(y,z) the recipe tells us that if there is

a bound state of the linear problem (1,14) asymmetric in y, and if

the corresponding eigenvalue is small enough, then the KdV dynamics

here described should be observed.

It is interesting to determine the parameter range in which the

above conditions are satisfied. Let us specify the north-south

profile of a mid-latitude jet as in (I,8,b) [see also figure (I,1,a)]

and let us fix its vertical profile as in Fig. (I,1,b). We still

have the possibility of varying three parameters: the minimum wind

speed U0 , the half-width of the jet yo, and its maximum wind speed

which enters the definition of $.

In diagram 2,a the eigenvalue K2 as function of U0 and yo is

plotted for 6 = 1/3. In the region of the U0-y0 plane towards larger

values of U0 and yo the numerical algorithm described in section

(I,c) failed to converge, meaning that #2 is not bounded for those

parameter values. There are, however, plenty of possibilities for

realistic values of the jet width. The behavior when the jet

velocity decreases is interesting: Figure 2,b shows that when S

increases (weaker jet) the allowed region of the parameter space

shrinks. A weaker mid-latitude jet can be identified with a summer

situation during which blocking is less frequently observed.

Although the parameter range, in which we know that a solution

exists, looks realistic, it must be noted that the mean zonal wind

may be barotropically unstable, since a-uyy changes sign in the

domain. This characteristic is necessary in order to achieve the

meridional confinement of the waves.
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Is it reasonable to expect a barotropically unstable zonal wind

to persist for a long enough time in the atmosphere? In the

numerical experiments described in Chapter III we allowed for some

readjustment of the zonal wind; however, the meridional resolution

was too coarse to resolve such instability. The "fine structure" of

the mean shear, which is responsible for the meridional confinement,

was left untouched; hence, the experiments cannot provide the answer

to the present question. According to the analysis of Chapter I, the

mean shear must be computed in the region upstream from the block

development. In the real atmosphere, such a region can be identified

with the Atlantic storm track, which is dominated by baroclinic

instability. One of the characteristics of the baroclinic

instability of a jet is that the momentum flux, created by the

growing perturbations, is upgradient of the mean momentum

distribution (Stone, 1969; Simmons and Hoskins, 1980). Thus,

westerly momentum is injected into the jet stream so that some degree

of barotropic instability seems possible. However, we point out that

in our model this problem has to do more with the mechanism of

meridional confinement than with the effect of nonlinearity.

The other problem of the theory presented here is the severe

truncation employed. Although it looks good for the stationary

coherent structure, the neglected continuous part of the spectrum

may be important especially during the transient that leads to the

establishment of the block. Again, this question is basically

related to the applicability of this theory to the real atmosphere.

The spectral model described in Chapter II cannot be extended to the
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continuum of the spectrum: these results should be verified by using

a grid point model in which particular care is given to the

resolution of the meridional profile of the mean shear. However, our

feeling is that this problem is not a crucial one, since the same

solution can also be obtained by solving the potential vorticity

equation in the asymptotic limit of weak nonlinearity and weak

dispersion.

In conclusion, we think that this theory removes the most

fundamental objections (in particular structural instability and the

modelling of the vertical structure) raised about the applicability

of coherent structure models to the baroclinic atmosphere.
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Appendix A

The lower boundary condition is w = 0 at z = 0. From the

thermodynamic equation:

J(4,z)= 0

it follows:

*z = G(

z = 0

Thus:

z + ' = G($)z z
dG
+-

1 d 2 G

2

From the equality *z = G($) we get:

dG

u

d2G 1 1 ---- = - - 3 (-u )
d$ -ua UZIdp u u

With u given by (I,8,a), dnG/d 'n = 0 for n > 1. Performing the

substitution $' = *ez/2, the lower boundary condition becomes:

u z (y,-) at z = 0
u(y,0) 2:

exactly.

z 0

z 0
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Appendix B

a) Spectral decomposition of y($x'q

Using (11,4) and the definition of q' we get:

ay (X'q') = Dy[ezAnxen(Amg m + Am my
+ Amemz ~ Aym)] =

= ez[An Amay(4 #nm) + AnxAmxy($nm) - AnxAm Km3y($n )

+ AnxAm a y(Vnem)]

where (11,2) has been used. The only term that survives after x-average is

- ez/2[AnxAm Km ez/ 2 Y(On )]

Projecting this term upon the ith component of (*n{ we get:

ez/2yinmKm AnxAm

where the tensor y is defined as

Yinm = <ez/2 i(#nm)y>
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b) Spectral decomposition of the nonlinear term J($',q')

J($',q') = ezJ(An~n,Am x m + Amnyy
+ Am m z 1

z 4

= ezn ym(AgAn - AnAx ) + ezAn Amen(#myyy + *m zzy

My 4nyy + #nzz

By using the definition of {$n}, the last term at the r.h.s. of the

previous relation becomes:

ezAn Am[Vyn~m + (Kn - Km)#mY n]

The ith component of the nonlinear term is

ez/2[ymni(AnAmxxx - AmxAnxx) + Ynmi(Km - Kn)An Am + dinmAn Am]

where

6 inm = <ez/2Vyyign m>

and where Yinm is defined in a).

c) The spectral decomposition of 3yy ('q') is similar to that of

a3(x'q') derived in a). The result is

ez/2EinmKmAnx Am

where

Stnm =<Ictiyy nm
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d) It is easy to prove that ith component of the tendency of the eddy

potential vorticity is:

ez/2[i + (ain - Cin)An

where

Cin = <#iyOny> , ain = <i(Onzz ~ n)

Cii and aii play the role respectively of the square of the meridional

and vertical wavenumber of Oi.

Similarly, the ith component of Uyy + uzz - uz is

ez/2(ain - Cin)un

as is clear from the definition of u in terms of the elements of the basis

Tnl-
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Appendix C
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0

Yiji = -. 4

0

. 2

Yij2 = 0

0 0

0

yij3 = 10

0

.2 0

0 0
0 0

0

0

0

0

0

.15

01

0.15
0

-. 3

0 j

i 
.17

i 0

0

e'ij2 = 53

.01

ij3 = 0

, .15

0

.53

0

.12

.01
0

.150
0

0

.15

0

. 06J



- 126 -

Appendix D

We briefly describe the characteristics of the numerical model used in

the experiments described in the text.

The model integrates forward in time the model equations (11,13) and

(11,14) to which frictional terms have been added. We include both

Newtonian cooling and linear drag. The linear drag ( + . . . = -vu,

v + . . . = -vv), which gives a contribution to the vorticity equation

equal to -vV2 *, has, in our formulation, the same effect as Ekman pumping

acting at the lower boundary.

In the equation governing the time evolution of the zonal wind

u(y,z,t) we allow for thermal forcing and momentum driving in the form:

(Cin - ain)un + ECinmKnAnxAm = -vin(un - und) + actin(un - unh)

where und is the momentum driving and unh the thermal forcing

associated with different heating. No external forcing is considered in

the eddy equation.

The variables An(x,t) appearing in (11,13) and (11,14) are

decomposed in Fourier components around the latitude circle:

An(xt) = anj(t) sinL + bnj(t) cos L
t = x x

In all the numerical integrations performed we used Lx = 30 (30,000 km)

and JM = 16.

As a time integration scheme we used a centered one (leapfrog) in

which computational instability was eliminated by performing a three time

step average every 20 time steps, reinitializing the integration with a

forward time derivative.
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Figure Captions

Fig. 1

Fig. (I,1)

Fig. (1,2)

Fig. (I,3)

Fig. (I,4)

Fig. (11,1)

Fig.

Fig.

(11,2)

(11,3)

Fig. (11,4)

Fig. (11,5)

Three cases of Atlantic blocking showing dipolar structure:

a) after Sumner, 1954; b) after Hansen and Chen, 1982;

c) after O'Conner, 1963.

a) Meridional profile of the mean wind U(y).

b) Vertical profile of the mean wind Z(z).

"Potential" of the Schrodinger eq. (1,14) computed from

the zonal wind shown in Fig. (I,1).

y-z structure ($2ez/2) associated with the coherent

solution (I,19).

Geopotential *' at 500 mb corresponding to (1,19). C.I.=.1

(40 m). The length of the zonal domain is 10,000 km.

First three eigenfunctions $1, #2, and #3 (normalized) of

the Schrddinger eq. (1,14).

Eigenfunctions of (1,14) ordered by modal lines.

a) Total streamfunction pattern at 500 mb given by (11,21).

C.I. = .25 (100 m). The zonal and meridional dimensions of

the domain are 30,000 km x 6,000 km. b) Anomaly pattern 4'

at 500 mb. C.I. = .25.

Dispersion relation (phase speed versus amplitude) of the

coherent solution (11,21) in a periodic domain of length

Lx = 30 (30,000 km) and in an infinite domain.

Example of cnoidal wave solution of equation (11,19) com-

puted for Q = -.2, 6 = .34.
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Fig. (III,1)

Fig. (111,2)

Fig. (111,3)

Fig. (111,4)

Fig. (111,5)

Fig. (111,6)

Fig. (111,7)

Fig. (111,8)

Eigenmode 4 (normalized) of equation (1,19) having one

horizontal and one vertical modal line. The corresponding

eigenvalue is K4 = 3.8.

Imaginary part of the phase speed c of baroclinically un-

stable waves with antisymmetric meridional structures (#2

and $) as function of the zonal wavenumber and of the mean

wind vertical shear. The arrows on the x-axes indicate the

position of zonal wavenumbers 5, 6, and 7.

Same as Fig. (111,2) but for the real part of c.

Same as Fig. (111,2) but for perturbations having symmetric

meridional structure ($1 and $ 3)-

Same as Fig. (111,4) but for the real part of c.

Time evolution of the 500 mb streamfunction field of the

coherent structure (111,21) "perturbed" by the introduction

of the fourth mode $4. The baroclinic component of the

zonal wind is u3 = .1, in the stable region of diagram

(111,2). The pattern at t = 10 days, t = 20 days, and

t = 30 days is reported. C.I. = .25.

Same as Fig. (111,6) but with u3 = .2.

Vertical integral of area averaged kinetic energy. The

solid line represents the mean spectrum for all blocking

days during the 1978-1979 winter (after Hansen and Sutera,

1983). The thin line is the kinetic energy spectrum

generated by a computer random number generator on which a

K-3 law is imposed for K > 6. The total kinetic energy

is normalized to one (1.35 x 106 J/m2 ) and the total

potential energy is .40 (.54 x 106 J/m2 ).
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Fig. (111,9)

Fig. (III,10)

Fig. (IIi,11)

Fig. (111,12)

Fig. (111,13)

Fig. (IV,1)

Fig. (IV,2)

#2 -component of the streamfunction field at 500 mb, re-

spectively at t = 5, 6, 7, and 8 days of the instability

experiment with E0 = .5, u3 (0) = .2. C.I. = .25.

Same as Fig. (111,9) but for the total streamfunction

pattern at 500 mb. C.I. = .25.

Time evolution of the modulus of the Rossby wave #2ez/2

sin(2n4x/Lx), respectively unperturbed (solid line),

perturbed with an initial perturbation having E0 = .25

(dotted line), E0 = .5 (dashed line), and E0 = .75 (thin

line).

Phase of the first three Fourier components of A2 plotted

versus time for the instability experiment E0 = .5,

u3(0) = .25. The thin, sloping lines give the time evol-

ution of the same components of a coherent structure with

phase speed c = .1.

Same as Fig. (111,12) but for the stability experiment with

E0 = .75, u 3 (0) = .25.

Kinetic energy (dimensionless) of solution (11,21) versus

time when dissipation is present. Curve I: Newtonian

cooling with y = (14 days)~'. Curve II: linear drag

with v = (14 days)~1 .

Eddy forcing of potential vorticity due to monochromatic

transient eddies with zonal wavenumbers 2wn/Lx, n = 1,

. .0., 5. The forcing is antisymmetric around x = 0. The

units are arbitrary.
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Fig. (IV3)

Fig. (IV,4)

Fig. (IV,5)

Fig. (IV,6)

Fig. (IV,7)

a) Same as Fig. (IV,2) but for short, transient eddies

(n = 6, 8, 10, 12, 14, and 16). The dashed line is the

sech 2 profile of the coherent structure. b) Eddy forcing

due to short eddies superimposed to the coherent structure

in the x-y plane.

"Modified flow" A2 (2) normalized to one. For reference,

the profile of the zero-order solution is also reported.

Effect of eddy forcing on the coherent structure.

a) 500 mb streamfunction pattern at t = 10 days. The

initial condition was (11,21) plus a random perturbation

with E0 = .75. The dissipation parameters ar y = v =

(14 days)~1 . C.I. = .25. b) Same as a) but without

initial perturbation.

a) Time-mean streamfunction pattern computed from t = 3 to

t = 10 days for the experiment described in section (IV,e).

C.I. = .25. b) After O'Conner, 1963.

a) Eddy forcing J($",q") superimposed on the mean potential

vorticity at 250 mb. C.I. = 2x10~ 1 0 sec- 2 . The time-

mean was computed from t = 3 to t = 10 days of the experi-

ment described in (IV,e). b) Same as a) but for the July

1976 drought over the British Isles (after Illari, 1982).

C.I. = 2x10-1 0 sec- 2 . The solid lines are the "trough"

and "ridge" lines of the mean potential vorticity. The

pattern is computed at 300 mb.
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Fig. (V,1)

Fig. (V,2)

Fig. (V,3)

Fig. 2

500 mb total streamfunction pattern at t = 0, 3, 6, 9, 12,

and 15 days. The initial condition is given by equation

(V,1). C.I. = .25.

500 mb total streamfunction pattern at t = 0, 3, 6, and 9

days. The initial condition is given by (V,1) plus a

type wave with zonal wavenumber 6. C.I. = .25.

Same as (V,1) but with K2 = -.2.

a) Eigenvalue K2 as function of U0 and yo plotted for

0 = 1/3. b) K2 versus yo for U0 = .2 and 6 = 1/3, 1/2,

respectively.
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Table Caption

Table (IIII). Persistence times (circled numbers). The row marked "E0"

contains the dimensionless kinetic energy of the initial

perturbation. The row marked "TKE(O)" contains the dimen-

sional kinetic energy of the initial perturbation plus

coherent structure. The columns marked "u3(0)" and

"e.f.t." contain respectively the initial vertical shear

component of the mean zonal wind and the corresponding e-

folding time (in days) of the most unstable wavenumber

(which is reported between parentheses) given by diagram

(111,4). The time-mean kinetic energy computed during each

experiment is written below the persistence time.


