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Nuclear models for light systems Pierre Descouvemont

1. Introduction

Nuclear astrophysics plays a crucial role in the understanding of ryeidtesis in the uni-
verse [1]. Nuclear reactions determine the stellar evolution and are the evggogy source in
stars. Current modelisations of star evolution require a very large armnbdata, which remains
a challenge for nuclear physicists. Experimental investigations meet two maintiméa (i)
For charged-patrticle reactions, relevant energies are much lowettth&@oulomb barrier, which
makes the cross sections too small to be measured. Recent technologgtapdents allow mea-
surements at stellar energies for some reactions with low charges, stide@de,2py [2], but
for most important reactions the experimental lower limit is far above the Gamewgye (ii)
Investigations of explosive burning are fairly sensitive to reactiongdvwivg unstable nuclei. De-
velopment of radioactive ion beams [3] in many laboratories providesiLisgéérmation on such
reactions, but much work remains to be carried out.

In view of these limitations, theoretical models [4, 5] of nuclear reactionga@pid be a
necessary complement to experimental studies. This is obvious for ligltsyswhere there is
no systematics; each reaction presents its own peculiarities. Theoretmdhtans can be done
at any energy, and are not restricted by the instability of the nuclei. Onthiee band, indirect
methods [6] are known to provide useful and complementary informationotémethods, such
as the Coulomb dissociation [7], the Trojan Horse [8], or the Asymptotic Niizateon Method
(ANC) [9] have been developed and successfully applied to differsantions. It is of course
impossible for any model to cover the thousands of reactions involved innmadees of stellar
evolution. However, a limited number of reactions, especially in the low-mag®r@lay a major
role, and deserve special attention.

We focus here on light systems, where the level density is low (at most defeds per
MeV). This is of course crucial in theories where each level must beidered individually. We
present a short overview of different models, and two recent apiplica The former deals with
the 14C(n,y)'°C reaction where the ANC method has been used to discriminate betweeerdiffer
conflicting data sets [10]. The latter concerns tPig(p,a)1°0 reaction, which attracted attention
of many groups in recent years [11].

2. Theoretical models

2.1 General discussion

Theoretical models can be roughly classified in three categories:

(i) Models involving adjustable parameters, such asneatrix [12] method; parameters are fitted
to the available experimental data and the cross sections are extrapolatedodastrophysical
energies. These fitting procedures of course require the knowlddigay which are sometimes
too scarce for a reliable extrapolation.

(i) Models where the cross section is determined from the wave functions sys$kem. The po-
tential model [13], the Distorted Wave Born Approximation (DWBA) [14]danicroscopic cluster
models [15] are, in principle, independent of experimental data. Maiestieally, these models
depend on some physical parameters, such as a nucleus-nucleugabe@mucleon interaction
which can be reasonably determined from experiment only. The micrizcsGeperator Coordinate
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Method (GCM) provides a “basic" description oRanucleon system, since the whole information
is obtained from a nucleon-nucleon interaction. Since this interaction i$yrtearsame for all
light nuclei, the predictive power of the GCM is important. For few-bodytays, “ab initio"
calculations are available [16], but fér> 4 the treatment of the scattering wave functions is still
done within the potential model.

(iii ) Models mentioned irfi) and(ii) can be used for low level-density nuclei only. This condition
is fulfilled in most of the reactions involving light nucleA& 20). However when the level density
near threshold is large (i.e. more than a few levels per MeV), statistical moddbetier adapted.
Statistical models, such as the Hauser-Feshbach theory [17] candbm @sgystematic way.

2.2 The R-matrix method

Owing to the very low cross sections, one of the main problems in nucleaphgsios is to
extrapolate the available data down to stellar energies[1, 4]. Severalsnedeh as the potential
model or microscopic approaches, are widely used for that purpaseevér, they are in general
not flexible enough to account for the data with a high accuracy. A simpyetovaxtrapolate the
data is to use a polynomial approximation. This is usually used to investigateoelasctreening
effects, where the cross section between bare nuclei is derivedafpmstynomial extrapolation of
high-energy data. This polynomial approximation, although very simpletisas®ed on a rigorous
treatment of the energy dependence of the cross section. Rarttetrix method, the energy depen-
dence of the cross sections is obtained from Coulomb functions, astedpgemm the Schrodinger
equation. The goal of thB-matrix method [12] is to parameterize some experimentally known
guantities, such as cross sections or phase shifts, with a small numbeaaofgiars, which are
then used to extrapolate the cross section down to astrophysical energies

TheR-matrix framework assumes that the space is divided into two regions: thieahtegion
(with radiusa), where the nuclear force is dominant, and the external region, wheigéhnaction
between the nuclei is governed by the Coulomb force only. AlthougiRthmatrix parameters do
depend on the channel radiaighe sensitivity of the cross section with respect to its choice is quite
weak. Many applications have been treated byRieatrix method, in particular th#C(a, y)*°0
reaction [18].

2.3 The potential model

The potential model is fairly simple to use, and has been applied to many resaictitow-
energy nuclear physics (see Ref. [13] and references therdia)bdsic assumptions of the poten-
tial model are(i) the nucleon-nucleon interaction leads to a nucleus-nucleus force, déyends
on the relative coordinate onlyii) the wave functions of the unified nucleus can be described by
a cluster structure with; + Az nucleons; ifi ) the internal structure of the nuclei does not play any
role.

The Schrddinger equation is solved numerically for most potentials. Usuilgdguation is
integrated by using the Numerov method [19]. For bound states, the @aetgiained by requiring
the wave function to be squared integrable. For scattering states, theicaireelution is fitted, at
large distances, to a linear combination of Coulomb functions, which prothegshase shift.
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2.4 Microscopic cluster models

The information is derived from A-body Hamiltonian
A A
H= Zl-ﬁ+z\/ij (2.1)
i= i<)

whereT; is the kinetic energy of nucleon andV;; a nucleon-nucleon interaction. In the cluster
approximation [15], the wave functions are defined from the cluster Wawdions¢g, and ¢ of
the colliding nuclei. The total wave function reads, in a schematic notation

Y=o aeg(p) (2:2)

whereg(p) is the relative function depending on the relative coordiqgté is determined from
the Schrodinger equation. In (2.2Y is the antisymmetrization operator which ensures the Pauli
principle to be satisfied. Projection over good quantum numbers is pedareetly. The relia-
bility on the model mostly depends on the accuracy of the internal wave fasgtiandg. Many
efforts have been done to go beyond the simple shell model approximatidticluster descrip-
tion [20], monopole distortion [21] and extended shell model developm28isajm at improving
the definition (2.2). In practice the radial wave function is expanded et af slisplaced gaussian
functions, centered at different locations. This is the starting point ofSdeerator Coordinate
Method (GCM - see Ref. [15] for detail). Many applications have beasidered so far, not only
in nuclear astrophysics, but also in nuclear physics, where a micricsmoproach is well adapted
to the spectroscopy of exotic nuclei.

2.5 Indirect methods

The smallness of the cross sections at stellar energies makes indirect sngtiiteduseful in
nuclear astrophysics. There are four often used indirect technitheasymptotic normalization
coefficient (ANC) method [9], Coulomb breakup processes [7], tlogafirHorse [8] and Surrogate
[23] methods.

In Sect. 3, we present an application of the ANC method, which is suitablpefdpheral
reactions, i.e. to capture reactions toward weakly bound states. Due toanthEniding energy,
this capture occurs well outside the nuclear range. In that case, theeaposs sectioay, can be
written as

0y(E) = [C[*f(E), (2.3)

whereC is the ANC of the bound state, arfdE) a function which only depends on well known
properties, such as the binding energy, masses and charges, angmantum, etc. At very low
energies, the knowledge of the cross section relies on the ANC only. Aalygxample is the
’Be(py)®B where the ground state is bound by 137 keV.

3. Application to 14C(n,y)*>C

The main contribution to th&C(n,y)1°C reaction rate comes from the direct E1 capture from
the initial p-wave to the relatively weakly boun%:fr ground state of°C. This reaction is a good
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case for the ANC method. The neutron capture on a long-lived radieaetiget:“C provides one

of the few possible test cases where a comparison between direct aedtintethods is possible.
On the other hand, th&C(ny)°C reaction is interesting on its own because of its important
astrophysical applications.

Currently, a puzzling disagreement exists between the cross segfipi$ 14C(n,y)1°C mea-
sured directly, determined indirectly and calculated theoretically. The fiettdneasurement in
Ref. [24] providedo,, , = 1.1+ 0.28 ub which is about five times smaller than the theoretical value
of 5.1 ub predicted earlier in Ref. [25] within a potential model. The subsequédinfpmodel
calculations [26] and microscopic cluster model calculations [27] havérowed the large value
of Ref. [25]. Recently, thé*C(n,y)'°C cross sections have been determined indirectly in three
dissociation experiments &7C [28, 29, 30].

In a recent work [10], we propose to use charge symmetry betMr{r) and its isobar
analongF(g) as a strong and model-independent tool to discriminate between differtemird-
nations and predictions for tH&C(n,y)1°C cross sections. It has been shown recently that a simple
relationship exists between the ANC of two analog levels [31]. This relatiptsts been extended
to the case where one of the analog levels is unbound. In that case isiblpds link the ANC of
the bound level with the width of the resonance in the mirror nucleus [32}dtie

r =Tp/CE, (3.1)

whererl j is the width of the proton unbound resonance, can be approximated byed-mmdependent
analytical expression that essentially contains the neutron separatigy,cned the energgr of
the proton resonance. This property is very helpful when one of themmitrclei is short-lived:
a measurement of the ANC of the stable nucleus can indirectly provide tivedlddNC. This
simple relationship, suggested in [31] has been tested on different sylsyeanmicroscopic ap-
proach [33, 32] where both quantities are computed individually, and riduiris compared with
the simple analytical formula. The accuracy is in general better than 10f&foyw resonances.
This simple approach is used for thC(n,y)1°C reaction. The mirror systedfO+p is un-
bound, and has been recently investigated by elastic scattering with actaaid40 beam [34]. A
microscopic cluster model is able to reproduce fairly well the data [35]. A$>fground state is
fairly broad, we have used the same idea, but with a more precise calcul@iematio (3.1) has
been determined within the microscopic approach [35]. Under diffemmditons of calculation,
we have checked that this ratio remains nearly constant. In Fig.1, mem§£*1/2 derived
from mirror symmetry with the resonance properties derived in Ref. [$5hb dark area. The
light area corresponds to calculations with othiét properties. Our predictions agree with indirect
determinations from Refs. [29, 30] but they do not leave any roomnfialiso, . The charge sym-
metry of thel®>C —14C + n and!®F —140 + p decays significantly reduces the uncertainty in the
current knowledge of th&*C(n,y)1°C cross sections and favors the earlier theoretical predictions
for this reaction from Ref. [25]. It also shows that directly and some @udly measured cross
sections in [24, 28, 36] contradict charge symmetry in*i@1°F mirror pait. This contradiction
deserves thorough attention because it brings into question the determirfdtierastrophysically
important (ny) cross sections for short-lived radioactive targets.

1The data of Ref. [36] are however under reanalysis and are pobabterestimated [37].
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Figure 1. Experimental (data points) and theoretical valuesrng‘l/ 2. The dark area correspondsdgy
derived from mirror symmetry assumirigg andl, from Ref. [35] while the light one corresponds to all
otherEr andl .

4. A microscopic approach to the 18F(p,a)1°0 reaction

4.1 Introduction

The *¥F(p,a)*®0 reaction plays an important role in novae nucleosynthesis [11]. Theatypic
temperature range in novae is of the order efdx 10° K. Consequently:°Ne resonances of im-
portance in the burning process are located in an interval of about 1a¥leve the-8F+p threshold
(Q = 6.41 MeV). Many uncertainties remain on the determination of-ff¢p,a)'°0 reaction rate
at these energies. Until now, the astrophysigédctor has been calculated as a sum of contribu-
tions of individual states. Among those resonances, only two of them sebereasonably well
understood. A 32" state aEx = 7.07 MeV (E.m = 0.66 MeV) is answave and is known to be a
single particle state, with a fairly large spectroscopic factor [38]. It leenlwidely investigated in
the literature, through transfer (see Ref. [39] and referencesnhereelastic [40, 41] reactions, or
with indirect methods (see Refs. [42, 43] and references thereinfh&wother hand, the existence
of a 3/2~ state attcm = 0.33 MeV [44] seems now well established, and should play a role for
temperature3g ~ 0.3 — 0.4. Here we briefly present a recent work on a microscopic study of the
18 (p,a)1°0 reaction at stellar energies [45].

4.2 Brief description of the model

The wave functions are defined in the Generator Coordinate Method J@G@ih assumes
a cluster structure for th&-nucleon system [15]. In a given partial wa¥®lr, the wave function
of the system is given by a superposition'8F+p, 1°0+a and®Ne+n cluster wave functions,
each channel involving various excited states (see Ref. [45] for detMisre precisely the wave
function is given by

M _ wag“é" +wa§g" e +Z‘Pfg“ﬁ,’;(k 0 (4.1)
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where the sums run over all internal states. We use a recently develaplegdm-nucleon inter-
action [45] which allows to constrain a threshold, and to keep one paratoetgproduce some
important energy of the system, such a the energy of a resonanceafopke. The interaction
reproduces the energy of th¢23 resonance if°Ne (Ex = 7.07 MeV, E;my = 0.66 MeV) which
is well known to be a single-particle state [38], accurately described ¥+ model. It also
reproduces th@ value.

4.3 Spectroscopic properties of 1°F and 1°Ne

Our goal is essentially to provide a general discussion of¥Rép,a)°0O cross section, in
the framework of a microscopic approach. Such a model is of coursexpeicted to provide
an accurate description of all resonances. Consequently, we facgospecific partial waves,
J=1/2" andJ = 3/2", which correspond ts waves, expected to dominate the cross section at
low energies. As an example the level schemegferl/2" is given in Fig. 2. Energies are given
from the'®F+n and'8F+p threshold fot°F and!°Ne, respectively.

J=1/2"

19 19
Eem (TNe) Eem (TF)
Theory Experiment
5F 11
n+F n+F
af 0
p+180
3t 41
8.65
2 _ 2
B4 g
1 —_— 7.36 3
18
0 p+F 6.26 pr F 4
594
1 5.34 5.35 5
20 a+5N a+5N -6
o o
-4+ 8
5 19
o6F 1-10
6 — 0 0
2t 1 1 J1
7 Ne °F = *Ne

Figure 2: 19F and'®Ne spectra fod = 1/2*. Energies are in MeV. The thresholds are displayed as dotted
lines.

The GCM energies of the ground states are in nice agreement with expe(im#mnn 0.2
MeV). The second GCM /2" state presents a dominant component inahe>N/a+°0 chan-
nel. Experimentally, the 5.94 MeV state 1F is known to be ara+°N state, and has been
described by previous single-chanmel-'°N cluster models [46]. The GCM gives rise to a third
1/2* resonance, ax = 8.3 MeV. Its width (ccm = 180 keV) suggests that the experimental
counterpart is the 8.65 MeV statEe(, ~ 300 keV). The predicted energy is quite close to the
experimental value.

The study of ¥2* levels provides two conclusions:

(i) In 1%Ne, the third GCM level, analog of the 8.65 MeV state"iR, is located at lower energy,
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near 1 MeV above th&F+p threshold. Therefore it might play a role in & (p,a)*°0 reaction.
The large Coulomb shift supports an important spectroscopic factom Ereoretical arguments,
this state can be considered as a single-particle state, similar tg2hd 307 MeV) level in*°Ne.
Although it should play a role in the cross section,sagave resonance, it has not been clearly
observed in°Ne.

(i) Comparing the theoretical and experimenf spectra indicates that some levels are missing
in the GCM. Although they are not observedfiNe they might also contribute to tA&F(p,a)°0
Sfactor. As they are not described by the present two-cluster modehwitludes many configu-
rations, it is likely that these states should have a more complicated struciciheasa three-body
structure. It is consequently reasonable to assume that their spepimofsators inp anda chan-
nels should be small, and that their role in the cross section should be of minantamge.

From an experimental point of view, many " states are known it°F up to 8 MeV. Al-
though the cluster theory does reproduce three of them (the groundtktatecluster molecular
resonance, and the single-particle state at 7.07 MeV), some other statasaing. An obvious
drawback of the model is that th¢ 3" doublets near 6.5 MeV cannot be described, although their
states are very close to th&+p threshold if°Ne. This problem is well known in cluster models:
it arises from the limited number of configurations. When a resonance is quissihe GCM, it
should correspond to other cluster configurations, such as thrgeshodtures or other two-body
arrangements. This means that tfie+p anda +1°0 configurations, included in the model, should
play a less important role, and that the spectroscopic factors in thessathiahould be quite small.

4.4 The ¥F(p,a)®0 reaction

The GCMSfactor is shown in Fig. 3. Near the/3" resonance, the agreement with the data
is excellent, as only the energy has been fitted byNhkinteraction. Below 0.3 MeV, the /2"
contribution presents an interference pattern, due to otfizr Bsonances. The/2t contribution
is essentially determined by the properties of a broad resonance nedf, adieof a subthreshold
state (see Fig. 2).

10°

104 L

S (MeV-b)

Ecm (MeV)

Figure 3: 18F(p,a)*°0 Sfactor ford = 1/2+ andJ = 3/2*. The experimental data are taken from Ref. [39,
44).

The GCM Sfactor shown in Fig. 3 is of course a good estimate of the data, but some res
nances are missing, and others are not located at the experimental diwargprove the accuracy
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on the theoreticab-factor, we have combined GCM information with experimental data. This pro-
cedure has been successfully used in other reactions, st#&B(asy)°0 for example [47]. Let us
start with the 22" contribution. As shown in Fig. 3, two states determineSHactor. These states
are known experimentally it’F, but are not observed #INe. It is reasonable to assume that the
difference between the GCM and the data is identical for the mirror nucleil®Ne energies have
been therefore corrected by this difference (providin@4 MeV and 1.5 MeV), and the partial
widths unknown in'°F are modified accordingly.

For the 32 partial wave, a similar procedure has been used. We have complemented the
microscopicR-matrix calculation with both states of the doublEt{ = 8 keV and 38 keV). Par-
tial widths have been taken from the literature. As the interference signsoitknown, we have
considered the four possibilities. This procedure provides the diffexawes in Fig. 4. Within
the resonance, the theory slightly underestimates the data. This could berataal by a slight
readjustment of the partial widths, but our goal here is a qualitative discysather than an ac-
curate fit of the data. The main conclusion from Fig. 4 is that, in the tempenatoge typical of
novae (corresponding &:m~ 0.2 — 0.3 MeV) the uncertainties of th&-factor due to the interfer-
ence patterns is much smaller than expected [48]. The reason is that theomi@ibution at nova
energies comes from the 2™ partial wave.

10°

18F(p,0()150

10*

10°

S (MeV-b)

Ecm (MeV)

Figure 4. Corrected®F(p,a)'°0 Sfactor ford = 1/2* andJ = 3/2* (see text). The signs correspond to
different interference signs in the/3" contribution.

The main novelty of this work deals with new 2" states near the proton threshold‘#iNe.
Experimentally, this state could be observed by elastic scattering. It is ititgrés point out that,
in a'8F+p elastic-scattering experiment, Bardaydml. [41] mention the need for a broadstate
to fit their cross section. The experiment was however limited to enefgigs: 1.01 MeV, and
a clear identification could not be performed. We present in Fig. 5 thedtiearscattering cross
section a;m = 180 (corresponding td 4, = 0° in reverse kinematics). This cross section should
be considered as qualitative only, as only th@1 and 32" partial waves have been included
(for other partial waves, up tb= 2 we take the hard-sphere approximation of the phase shift).
The main emphasis should be put on the difference between the crossisedtio and without
the broad 12" state. It presence provides a clear signature in the cross sectionhauld be
observable in current experiments.
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Figure5: 18F+p elastic cross section 8, = 180, with the 3/2* partial wave only, and with the addition
of J=1/2".

5. Conclusion

In this work, we have given an short overview of some models releanhfnuclear astro-
physics. We were only concerned with reactions, without discussing aspects, such as masses,
beta decays, etc. In general, charged-particle induced reactiomsai@nergies much lower than
the Coulomb barrier, and the corresponding cross sections are tigeesgfcemely small. Another
characteristic is that there is almost no systematics. In the low-mass regibmeaation presents
its own peculiarities and difficulties, in the theoretical as well as in the expetaihgerwpoints.

A very impressive amount of work has been devoted to nuclear assimgtig the last decades.
Although most reactions involving light nuclei are sufficiently known, soections, such as
18F(p,a) %0 still require much effort to reach the accuracy needed for stellar models
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