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Different theoretical models adapted to low-energy reactions are briefly described. We empha-

size on the microscopic approach, where all information is obtained from a nucleon-nucleon

interaction. A first application deals with the14C(n,γ)15C reaction, where we use the Asymp-

totic Normalization Constant (ANC) method. By using recentdata on14O+p elastic scattering

combined with a microscopic analysis, we show evidence thatexisting direct and some indirect
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18F(p,α)15O reaction, obtained in a microscopic cluster model. We point out that 1/2+ reso-

nances, generally disregarded, may play a role. This property reduces the uncertainties associated

with the 3/2+ contribution. The relevant 1/2+ states have been observed in19F, but have not been

searched for in19Ne. An elastic-scattering experiment nearEcm≈ 1.5 MeV is suggested.
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1. Introduction

Nuclear astrophysics plays a crucial role in the understanding of nucleosynthesis in the uni-
verse [1]. Nuclear reactions determine the stellar evolution and are the majorenergy source in
stars. Current modelisations of star evolution require a very large amountof data, which remains
a challenge for nuclear physicists. Experimental investigations meet two main limitations. (i)
For charged-particle reactions, relevant energies are much lower thanthe Coulomb barrier, which
makes the cross sections too small to be measured. Recent technological developments allow mea-
surements at stellar energies for some reactions with low charges, such as3He(3He,2p)α [2], but
for most important reactions the experimental lower limit is far above the Gamow energy. (ii)
Investigations of explosive burning are fairly sensitive to reactions involving unstable nuclei. De-
velopment of radioactive ion beams [3] in many laboratories provides useful information on such
reactions, but much work remains to be carried out.

In view of these limitations, theoretical models [4, 5] of nuclear reactions appear to be a
necessary complement to experimental studies. This is obvious for light systems, where there is
no systematics; each reaction presents its own peculiarities. Theoretical calculations can be done
at any energy, and are not restricted by the instability of the nuclei. On the other hand, indirect
methods [6] are known to provide useful and complementary information. Various methods, such
as the Coulomb dissociation [7], the Trojan Horse [8], or the Asymptotic Normalization Method
(ANC) [9] have been developed and successfully applied to differentreactions. It is of course
impossible for any model to cover the thousands of reactions involved in modern codes of stellar
evolution. However, a limited number of reactions, especially in the low-mass range, play a major
role, and deserve special attention.

We focus here on light systems, where the level density is low (at most a fewlevels per
MeV). This is of course crucial in theories where each level must be considered individually. We
present a short overview of different models, and two recent applications. The former deals with
the14C(n,γ)15C reaction where the ANC method has been used to discriminate between different
conflicting data sets [10]. The latter concerns the18F(p,α)15O reaction, which attracted attention
of many groups in recent years [11].

2. Theoretical models

2.1 General discussion

Theoretical models can be roughly classified in three categories:
(i) Models involving adjustable parameters, such as theR-matrix [12] method; parameters are fitted
to the available experimental data and the cross sections are extrapolated down to astrophysical
energies. These fitting procedures of course require the knowledge of data, which are sometimes
too scarce for a reliable extrapolation.
(ii) Models where the cross section is determined from the wave functions of thesystem. The po-
tential model [13], the Distorted Wave Born Approximation (DWBA) [14], and microscopic cluster
models [15] are, in principle, independent of experimental data. More realistically, these models
depend on some physical parameters, such as a nucleus-nucleus or a nucleon-nucleon interaction
which can be reasonably determined from experiment only. The microscopic Generator Coordinate
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Method (GCM) provides a “basic" description of aA-nucleon system, since the whole information
is obtained from a nucleon-nucleon interaction. Since this interaction is nearly the same for all
light nuclei, the predictive power of the GCM is important. For few-body systems, “ab initio"
calculations are available [16], but forA > 4 the treatment of the scattering wave functions is still
done within the potential model.

(iii ) Models mentioned in(i) and(ii) can be used for low level-density nuclei only. This condition
is fulfilled in most of the reactions involving light nuclei (A≤ 20). However when the level density
near threshold is large (i.e. more than a few levels per MeV), statistical models are better adapted.
Statistical models, such as the Hauser-Feshbach theory [17] can be used in a systematic way.

2.2 The R-matrix method

Owing to the very low cross sections, one of the main problems in nuclear astrophysics is to
extrapolate the available data down to stellar energies[1, 4]. Several models, such as the potential
model or microscopic approaches, are widely used for that purpose. However, they are in general
not flexible enough to account for the data with a high accuracy. A simple way to extrapolate the
data is to use a polynomial approximation. This is usually used to investigate electron screening
effects, where the cross section between bare nuclei is derived froma polynomial extrapolation of
high-energy data. This polynomial approximation, although very simple, is not based on a rigorous
treatment of the energy dependence of the cross section. In theR-matrix method, the energy depen-
dence of the cross sections is obtained from Coulomb functions, as expected from the Schrödinger
equation. The goal of theR-matrix method [12] is to parameterize some experimentally known
quantities, such as cross sections or phase shifts, with a small number of parameters, which are
then used to extrapolate the cross section down to astrophysical energies.

TheR-matrix framework assumes that the space is divided into two regions: the internal region
(with radiusa), where the nuclear force is dominant, and the external region, where theinteraction
between the nuclei is governed by the Coulomb force only. Although theR-matrix parameters do
depend on the channel radiusa, the sensitivity of the cross section with respect to its choice is quite
weak. Many applications have been treated by theR-matrix method, in particular the12C(α ,γ)16O
reaction [18].

2.3 The potential model

The potential model is fairly simple to use, and has been applied to many reactions in low-
energy nuclear physics (see Ref. [13] and references therein). The basic assumptions of the poten-
tial model are:(i) the nucleon-nucleon interaction leads to a nucleus-nucleus force, whichdepends
on the relative coordinate only;(ii) the wave functions of the unified nucleus can be described by
a cluster structure withA1 +A2 nucleons; (iii ) the internal structure of the nuclei does not play any
role.

The Schrödinger equation is solved numerically for most potentials. Usually this equation is
integrated by using the Numerov method [19]. For bound states, the energyis obtained by requiring
the wave function to be squared integrable. For scattering states, the numerical solution is fitted, at
large distances, to a linear combination of Coulomb functions, which providesthe phase shift.
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2.4 Microscopic cluster models

The information is derived from aA-body Hamiltonian

H =
A

∑
i=1

Ti +
A

∑
i< j

Vi j (2.1)

whereTi is the kinetic energy of nucleoni, andVi j a nucleon-nucleon interaction. In the cluster
approximation [15], the wave functions are defined from the cluster wavefunctionsφ1 andφ2 of
the colliding nuclei. The total wave function reads, in a schematic notation

Ψ = A φ1 φ2g(ρ) (2.2)

whereg(ρ) is the relative function depending on the relative coordinateρ; it is determined from
the Schrödinger equation. In (2.2),A is the antisymmetrization operator which ensures the Pauli
principle to be satisfied. Projection over good quantum numbers is performed exactly. The relia-
bility on the model mostly depends on the accuracy of the internal wave functionsφ1 andφ2. Many
efforts have been done to go beyond the simple shell model approximation: multicluster descrip-
tion [20], monopole distortion [21] and extended shell model developments [22] aim at improving
the definition (2.2). In practice the radial wave function is expanded on a set of displaced gaussian
functions, centered at different locations. This is the starting point of theGenerator Coordinate
Method (GCM - see Ref. [15] for detail). Many applications have been considered so far, not only
in nuclear astrophysics, but also in nuclear physics, where a microscopic approach is well adapted
to the spectroscopy of exotic nuclei.

2.5 Indirect methods

The smallness of the cross sections at stellar energies makes indirect methods quite useful in
nuclear astrophysics. There are four often used indirect techniques: the asymptotic normalization
coefficient (ANC) method [9], Coulomb breakup processes [7], the Trojan Horse [8] and Surrogate
[23] methods.

In Sect. 3, we present an application of the ANC method, which is suitable forperipheral
reactions, i.e. to capture reactions toward weakly bound states. Due to the low binding energy,
this capture occurs well outside the nuclear range. In that case, the capture cross sectionσγ can be
written as

σγ(E) = |C|2 f (E), (2.3)

whereC is the ANC of the bound state, andf (E) a function which only depends on well known
properties, such as the binding energy, masses and charges, angularmomentum, etc. At very low
energies, the knowledge of the cross section relies on the ANC only. A typical example is the
7Be(p,γ)8B where the ground state is bound by 137 keV.

3. Application to 14C(n,γ)15C

The main contribution to the14C(n,γ)15C reaction rate comes from the direct E1 capture from
the initial p-wave to the relatively weakly bound12

+
ground state of15C. This reaction is a good
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case for the ANC method. The neutron capture on a long-lived radioactive target14C provides one
of the few possible test cases where a comparison between direct and indirect methods is possible.
On the other hand, the14C(n,γ)15C reaction is interesting on its own because of its important
astrophysical applications.

Currently, a puzzling disagreement exists between the cross sectionsσn,γ of 14C(n,γ)15C mea-
sured directly, determined indirectly and calculated theoretically. The first direct measurement in
Ref. [24] providedσn,γ = 1.1± 0.28µb which is about five times smaller than the theoretical value
of 5.1 µb predicted earlier in Ref. [25] within a potential model. The subsequent folding model
calculations [26] and microscopic cluster model calculations [27] have confirmed the large value
of Ref. [25]. Recently, the14C(n,γ)15C cross sections have been determined indirectly in three
dissociation experiments of15C [28, 29, 30].

In a recent work [10], we propose to use charge symmetry between15C(1
2
+
) and its isobar

analog15F(1
2
+
) as a strong and model-independent tool to discriminate between different determi-

nations and predictions for the14C(n,γ)15C cross sections. It has been shown recently that a simple
relationship exists between the ANC of two analog levels [31]. This relationship has been extended
to the case where one of the analog levels is unbound. In that case it is possible to link the ANC of
the bound level with the width of the resonance in the mirror nucleus [32].Theratio

RΓ = Γp/C2
n, (3.1)

whereΓp is the width of the proton unbound resonance, can be approximated by a model-independent
analytical expression that essentially contains the neutron separation energy, and the energyER of
the proton resonance. This property is very helpful when one of the mirror nuclei is short-lived:
a measurement of the ANC of the stable nucleus can indirectly provide the desired ANC. This
simple relationship, suggested in [31] has been tested on different systemsby a microscopic ap-
proach [33, 32] where both quantities are computed individually, and theirratio is compared with
the simple analytical formula. The accuracy is in general better than 10% fornarrow resonances.

This simple approach is used for the14C(n,γ)15C reaction. The mirror system14O+p is un-
bound, and has been recently investigated by elastic scattering with a radioactive14O beam [34]. A
microscopic cluster model is able to reproduce fairly well the data [35]. As the 15F ground state is
fairly broad, we have used the same idea, but with a more precise calculation. The ratio (3.1) has
been determined within the microscopic approach [35]. Under different conditions of calculation,
we have checked that this ratio remains nearly constant. In Fig.1, we present σn,γE−1/2 derived
from mirror symmetry with the resonance properties derived in Ref. [35] by the dark area. The
light area corresponds to calculations with other15F properties. Our predictions agree with indirect
determinations from Refs. [29, 30] but they do not leave any room for small σn,γ . The charge sym-
metry of the15C →14C + n and15F →14O + p decays significantly reduces the uncertainty in the
current knowledge of the14C(n,γ)15C cross sections and favors the earlier theoretical predictions
for this reaction from Ref. [25]. It also shows that directly and some indirectly measured cross
sections in [24, 28, 36] contradict charge symmetry in the15C-15F mirror pair1. This contradiction
deserves thorough attention because it brings into question the determination of the astrophysically
important (n,γ) cross sections for short-lived radioactive targets.

1The data of Ref. [36] are however under reanalysis and are probably underestimated [37].
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Figure 1: Experimental (data points) and theoretical values ofσn,γE−1/2. The dark area corresponds toσn,γ
derived from mirror symmetry assumingER andΓp from Ref. [35] while the light one corresponds to all
otherER andΓp.

4. A microscopic approach to the 18F(p,α)15O reaction

4.1 Introduction

The18F(p,α)15O reaction plays an important role in novae nucleosynthesis [11]. The typical
temperature range in novae is of the order of 1−4×108 K. Consequently,19Ne resonances of im-
portance in the burning process are located in an interval of about 1 MeVabove the18F+p threshold
(Q = 6.41 MeV). Many uncertainties remain on the determination of the18F(p,α)15O reaction rate
at these energies. Until now, the astrophysicalS-factor has been calculated as a sum of contribu-
tions of individual states. Among those resonances, only two of them seemto be reasonably well
understood. A 3/2+ state atEx = 7.07 MeV (Ecm = 0.66 MeV) is ans wave and is known to be a
single particle state, with a fairly large spectroscopic factor [38]. It has been widely investigated in
the literature, through transfer (see Ref. [39] and references therein) or elastic [40, 41] reactions, or
with indirect methods (see Refs. [42, 43] and references therein). Onthe other hand, the existence
of a 3/2− state atEcm = 0.33 MeV [44] seems now well established, and should play a role for
temperaturesT9 ≈ 0.3−0.4. Here we briefly present a recent work on a microscopic study of the
18F(p,α)15O reaction at stellar energies [45].

4.2 Brief description of the model

The wave functions are defined in the Generator Coordinate Method (GCM) which assumes
a cluster structure for theA-nucleon system [15]. In a given partial waveJMπ, the wave function
of the system is given by a superposition of18F+p, 15O+α and 18Ne+n cluster wave functions,
each channel involving various excited states (see Ref. [45] for details). More precisely the wave
function is given by

ΨJMπ = ∑
i

ΨJMπ
18F(i)+p +∑

j

ΨJMπ
15O( j)+α +∑

k

ΨJMπ
18Ne(k)+n, (4.1)
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where the sums run over all internal states. We use a recently developed nucleon-nucleon inter-
action [45] which allows to constrain a threshold, and to keep one parameterto reproduce some
important energy of the system, such a the energy of a resonance, for example. The interaction
reproduces the energy of the 3/2+ resonance in19Ne (Ex = 7.07 MeV, Ecm = 0.66 MeV) which
is well known to be a single-particle state [38], accurately described by a18F+p model. It also
reproduces theQ value.

4.3 Spectroscopic properties of 19F and 19Ne

Our goal is essentially to provide a general discussion of the18F(p,α)15O cross section, in
the framework of a microscopic approach. Such a model is of course notexpected to provide
an accurate description of all resonances. Consequently, we focus on two specific partial waves,
J = 1/2+ andJ = 3/2+, which correspond tos waves, expected to dominate the cross section at
low energies. As an example the level schemes forJ = 1/2+ is given in Fig. 2. Energies are given
from the18F+n and18F+p threshold for19F and19Ne, respectively.
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Figure 2: 19F and19Ne spectra forJ = 1/2+. Energies are in MeV. The thresholds are displayed as dotted
lines.

The GCM energies of the ground states are in nice agreement with experiment (within 0.2
MeV). The second GCM 1/2+ state presents a dominant component in theα+15N/α+15O chan-
nel. Experimentally, the 5.94 MeV state in19F is known to be anα+15N state, and has been
described by previous single-channelα+15N cluster models [46]. The GCM gives rise to a third
1/2+ resonance, atEx = 8.3 MeV. Its width (ΓGCM = 180 keV) suggests that the experimental
counterpart is the 8.65 MeV state (Γexp≈ 300 keV). The predicted energy is quite close to the
experimental value.

The study of 1/2+ levels provides two conclusions:
(i) In 19Ne, the third GCM level, analog of the 8.65 MeV state in19F, is located at lower energy,
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near 1 MeV above the18F+p threshold. Therefore it might play a role in the18F(p,α)15O reaction.
The large Coulomb shift supports an important spectroscopic factor. From theoretical arguments,
this state can be considered as a single-particle state, similar to the 3/2+ (7.07 MeV) level in19Ne.
Although it should play a role in the cross section, ass-wave resonance, it has not been clearly
observed in19Ne.
(ii) Comparing the theoretical and experimental19F spectra indicates that some levels are missing
in the GCM. Although they are not observed in19Ne they might also contribute to the18F(p,α)15O
S-factor. As they are not described by the present two-cluster model, which includes many configu-
rations, it is likely that these states should have a more complicated structure, such as a three-body
structure. It is consequently reasonable to assume that their spectroscopic factors inp andα chan-
nels should be small, and that their role in the cross section should be of minor importance.

From an experimental point of view, many 3/2+ states are known in19F up to 8 MeV. Al-
though the cluster theory does reproduce three of them (the ground state, theα-cluster molecular
resonance, and the single-particle state at 7.07 MeV), some other states are missing. An obvious
drawback of the model is that the 3/2+ doublets near 6.5 MeV cannot be described, although their
states are very close to the18F+p threshold in19Ne. This problem is well known in cluster models:
it arises from the limited number of configurations. When a resonance is missing in the GCM, it
should correspond to other cluster configurations, such as three-body structures or other two-body
arrangements. This means that the18F+p andα+15O configurations, included in the model, should
play a less important role, and that the spectroscopic factors in these channels should be quite small.

4.4 The 18F(p,α)15O reaction

The GCMS-factor is shown in Fig. 3. Near the 3/2+ resonance, the agreement with the data
is excellent, as only the energy has been fitted by theNN interaction. Below 0.3 MeV, the 3/2+

contribution presents an interference pattern, due to other 3/2+ resonances. The 1/2+ contribution
is essentially determined by the properties of a broad resonance near 1 MeV, and of a subthreshold
state (see Fig. 2).

0 0.5 1 1.5
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M
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-b
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1/2+

total
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18F(p,α)15O

101

100
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105

Figure 3: 18F(p,α)15O S-factor forJ = 1/2+ andJ = 3/2+. The experimental data are taken from Ref. [39,
44].

The GCMS-factor shown in Fig. 3 is of course a good estimate of the data, but some reso-
nances are missing, and others are not located at the experimental energy. To improve the accuracy
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on the theoreticalS-factor, we have combined GCM information with experimental data. This pro-
cedure has been successfully used in other reactions, such as12C(α ,γ)16O for example [47]. Let us
start with the 1/2+ contribution. As shown in Fig. 3, two states determine theS-factor. These states
are known experimentally in19F, but are not observed in19Ne. It is reasonable to assume that the
difference between the GCM and the data is identical for the mirror nuclei. The19Ne energies have
been therefore corrected by this difference (providing−0.4 MeV and 1.5 MeV), and the partial
widths unknown in19F are modified accordingly.

For the 3/2+ partial wave, a similar procedure has been used. We have complemented the
microscopicR-matrix calculation with both states of the doublet (Ecm = 8 keV and 38 keV). Par-
tial widths have been taken from the literature. As the interference signs are not known, we have
considered the four possibilities. This procedure provides the different curves in Fig. 4. Within
the resonance, the theory slightly underestimates the data. This could be compensated by a slight
readjustment of the partial widths, but our goal here is a qualitative discussion, rather than an ac-
curate fit of the data. The main conclusion from Fig. 4 is that, in the temperaturerange typical of
novae (corresponding toEcm≈ 0.2−0.3 MeV) the uncertainties of theS-factor due to the interfer-
ence patterns is much smaller than expected [48]. The reason is that the main contribution at nova
energies comes from the 1/2+ partial wave.

0 0.5 1 1.5

Ecm (MeV)

S
 (

M
eV

-b
)

18F(p,α)15O

101

104

103

102

105

+/+

+/- 1/2+

total

Figure 4: Corrected18F(p,α)15O S-factor forJ = 1/2+ andJ = 3/2+ (see text). The signs correspond to
different interference signs in the 3/2+ contribution.

The main novelty of this work deals with new 1/2+ states near the proton threshold in19Ne.
Experimentally, this state could be observed by elastic scattering. It is interesting to point out that,
in a 18F+p elastic-scattering experiment, Bardayanet al. [41] mention the need for a broads state
to fit their cross section. The experiment was however limited to energiesEcm < 1.01 MeV, and
a clear identification could not be performed. We present in Fig. 5 the theoretical scattering cross
section atθcm= 180◦ (corresponding toθlab = 0◦ in reverse kinematics). This cross section should
be considered as qualitative only, as only the 1/2+ and 3/2+ partial waves have been included
(for other partial waves, up toℓ = 2 we take the hard-sphere approximation of the phase shift).
The main emphasis should be put on the difference between the cross sections with and without
the broad 1/2+ state. It presence provides a clear signature in the cross section, and should be
observable in current experiments.
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Figure 5: 18F+p elastic cross section atθcm = 180◦, with the 3/2+ partial wave only, and with the addition
of J = 1/2+.

5. Conclusion

In this work, we have given an short overview of some models relevant for in nuclear astro-
physics. We were only concerned with reactions, without discussing other aspects, such as masses,
beta decays, etc. In general, charged-particle induced reactions occur at energies much lower than
the Coulomb barrier, and the corresponding cross sections are therefore extremely small. Another
characteristic is that there is almost no systematics. In the low-mass region, each reaction presents
its own peculiarities and difficulties, in the theoretical as well as in the experimental viewpoints.

A very impressive amount of work has been devoted to nuclear astrophysics in the last decades.
Although most reactions involving light nuclei are sufficiently known, some reactions, such as
18F(p,α)15O still require much effort to reach the accuracy needed for stellar models.
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