
Occultation Studies of Neptune

by

Pamela A. Melroy

B. A., Physics and Astronomy
Wellesley College

(1983)

Submitted to the Department of
Earth, Atmospheric, and Planetary Sciences

in Partial Fulfillment of the
Requirements of the Degree of

Master of Science

at the

Massachusetts Institute of Technology

May, 1984

@ Pamela A. Melroy 1984
The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author- . -_-____I

Department of Earth, At heric and Planetary Science
11 May 1984

Certified By
1Afeor James L. Ellic, 'Pysis Supervisor

Certified By
2 Dr. Richard G.Jreicl, Thesis Supervisor

Accepted By
Chairman, Department Graduate Committee

ltidgrv
MCT B LOGY

MITLI



OCCULTATION STUDIIES OF N EPTUNE

by

Panela A. Melroy

Submitted to the Department of
Earth, Atmospheric, and Planetary Sciences
on 11 May 1984 in Partial Fulfillnent of the

Requirements of the Degree of Master of Science

ABSTRACT

Stellar occultations can provide information about the radius and oblateness of
planets, provided there are enough chords observed across the planet. Numerical
inversion of the light curves will give number density, pressure, and temperature
profiles as a function of height in the atmosphere. Neptune occulted Hyd-22c58794
on June 15, 1983. Five chords were observed from four locations. The previous
best observed occultation was on April 4, 1968, when BD-17'4388 was occulted by
the planet. This occultation was observed with four telescopes from three different
locations. Using half-light times from the light curves of the 1983 data to define the
limb of the planet, a total of 8 usable points were found. The radius and oblateness
were found using a non-linear least squares fit to the data. The 1983 results were
compared to the 1968 results. The best fit to the 1983 data gave R = 25263 ± 9
km and e = 0.0160 ± 0.0015. This is within the error bars of the 1968 results. A fit
was also done to the 1983 data using a constant density or pressure level to define
the limb edge instead of a half-light time. The results agreed well with the result
using the half-light times. A fit for the right ascension and declination of the pole
was also performed.
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Chapter 1.

INTRODUCTION

The use of stellar occultations as a probe of planetary structure was first rec-

ognized by Pannekock (1904). An occultation occurs when a planet passes in front

of a star. The light from the star is refracted as it passes through the planet's

atmosphere along the line of sight to the observer. In the upper atmosphere, num-

ber density and pressure are so low that extinction effects are negligible. As the

ray from the star passes through deeper and deeper levels in the atmosphere, the

change in refractivity at each level is enough to cause a differential in the bending

angle of the ray. Since the ray is successively more delayed as it probes deeper

into the atmosphere, there is a decrease in stellar flux measured from Earth. The

disappearance of the star behind the planet is called immersion, and the reverse

process is the emersion.

The plot of stellar flux as a function of time is the light curve of the occultation.

The stellar flux is normalized to full stellar flux, so that flux values range between

0 and 1. The drop in flux is proportional to the change in refractivity through the

atmosphere. If the atmosphere is perfectly isothermal, the number density varies

exponentially. The refractivity is directly proportional to the number density, so



the flux will drop iii a smooth, continuous way (see Fig. 1-1). In fact, there are non-

isothermal features in the atmosphere which cause regions of varying refractivity.

These regions may cause higher photon fluxes than otherwise expected over a given

time interval, forming short duration intensity peaks, or spikes, in the light curve

(Elliot, 1979). Spikes can be used to probe the spatial scale of the non-isothermal

features along the limb of the planet.

The radius and oblateness of the planet can also be found. Each immersion and

emersion time defines a point on the limb of the planet. Different locations on Earth

observe the planet occult the star at different chords across the planet. Assuming

that the pole position is perfectly known, there will be four free parameters: the

north and east offsets of the center of the planet from the predicted position; Re,

the equatorial radius; and c, the oblateness. The oblateness, or flattening of the

planet, is defined as

R, e = 1 - --. (1.1)
Re

R, represents the polar radius. Ideally, as many chords as possible should be

included in the fit. If two occultations are observed, information about the tilt of

the pole toward or away from Earth can -be obtained; this may make it possible to

also fit for the pole position.

The importance of the oblateness of a planet is its direct relationship with the

moment of inertia of the planet, the rotation rate, and J2 , the coefficient of the

second order gravitational harmonic. The rotation rate was determined by Terrile

and Smith (1983) to be approximately 18 hours based on imaging data. The value

for J 2 was calculated by Harris from the regression rate of the orbit of Triton. The



ioient of inertia is a direct probe of the internal structure of the planet.

In addition to the analysis described above, a numerical inversion can be per-

formed on the light curve to obtain the number density, the pressure, and the

temperature as a function of height in the atmosphere. Comparison of different

temperature profiles at different locations along the planet's limb can provide in-

formation about the planet's large scale atmospheric structure. Occultations may

also be observed in order to search for rings.

Neptune is a good planet for occultation studies because it is so distant (about

30 AU) and so faint that there are very few other ways of gaining information about

it. It has only been possible to observe occultations since the development high-

speed photometry; and, unfortunately, observable occultations of bright stars with

large coverage across the planet are rare. The first occultation of Neptune with

enough coverage to find the oblateness was on April 7, 1968. The star occulted

was BD-17'4388, a 7.8 magnitude star. The occultation was observed with four

telescopes at three different geographical locations, giving four independent chords.

The analysis was done by Kovalevsky and Link (1969). The values they found for

the equatorial radius and the oblateness were

Re 25225 ± 30 km,

E = 0.021 ± 0.004.

The pole position used was computed by Gill and Gault (1968). Observations after

this were primarily motivated by a search for rings, which gave negative results

(Elliot et al., 1981; Elliot et. al., 1984). The next Neptune occultations observed
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were in 1981 on May 10 and May 24. Unfortunately, each provided only one or

two chords, not enough data to do a fit. Only atmospheric information could be

obtained from the light curves.

The most recent occultation of Neptune was observed on June 15, 1983. Nep-

tune occulted Ilyd-22 58794, a 10.2 magnitude star. It was observed with six

different telescopes from four locations. Chapter 2 discusses the observations. The

accuracies of the ephemeris, pole position, and time determination are significantly

improved from the 1968 data. This should lead to a better determination of the

radius and oblateness. The time defining the limb of the planet was determined in

two ways for the 1983 data. The first method, which was used for the 1968 data,

was to find the time of half stellar flux; this time has been used in the past because

it is a value that may be found in a repeatable way. The method used to find the

time of half-light is described in Chapter 3. The results of the fit for the radius and

oblateness of Neptune are also discussed. Since two occultations were used, it was

also possible to fit for the pole position.

The time of half light does not correspond to a'physically meaningful parameter

in the atmosphere of the planet. Chapter 4 reviews how a method of numerical

inversion of a light curve can give physical parameters such as number density and

pressure as a function of height in the atmosphere. Constant number density and

pressure levels were selected and the times associated with those levels were found

for the 1983 data sets. These times were used to define the limb of the planet

instead of the half-light times, and a new fit for the radius and oblateness from the

1983 data was performed.



Chapter 2.

OBSERVATIONS

The data from two different occultations were used to find the radius and oblate-

ness of Neptune. In order to find these parameters, there must be a sufficient num-

ber of chords with wide coverage observed across the planet. The timing of the

data is of great importance. Table 2-1 gives a summary of the observations. This

chapter describes the data used from the two occultations in more detail.

The occultation of BD-17'4388 by Neptune on April 7, 1968 was successfully

observed from three different geographical locations in Japan and Australia using

four telescopes. A total of eight points were obtained, with excellent separation

across Neptune (see Fig. 2-1).

The occultation of Hyd-2258794 by Neptune on June 15, 1983 was observed

from four separate geographical locations, using six telescopes, with varying degrees

of success. The locations on Earth spanned from Hawaii to southern Australia (see

Fig. 2-2). The separation of the four locations was excellent, but poor seeing

conditions and noise resulted in the use of only three of the locations; a total of

eight points were used.

Three of the 1983 data sets had photometric problems. At Hawaii, the condi-
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tions were fine for iiunersion, but emersion took place during the dawn. This caused

a non-linear increase in the background level throughout the eniersion, making stel-

lar flux measurements unreliable. At Siding Spring, in Australia, there were tran-

sient clouds during inmnersion and emersion. The data from the Anglo-Austriaian

Telescope (AAT), also at Siding Spring, were taken in the IR so the clouds did not

affect those data. At the Mt. Stromlo location the innersion was very cloudy; the

emersion was entirely clouded out.

Several of the data sets were taken using two channels. One channel is centered

at a wavelength where the signal is depressed from Neptune, but is strong from the

star. An additional channel may be used as the so-called "sky channel". There is

signal from the planet but not the star in the wavelength of the sky channel; any

changes other than noise in the signal are due to changes in the sky alone, such as

clouds or other seeing variations.

When using occultation data for the purpose of oblateness determination, each

data set must be referenced to the other data sets in order to put them in one

coordinate system. Therefore, the absolute time of each data set must be as precise

as possible in order to translate them correctly into one plane of reference. The 1983

Kuiper Airborne Observatory (KAO), Mt. Stromlo, and AAT observations initially

had problems with the absolute timing; these were eventually tracked down to

errors in the reduction programs.

The analysis of the data requires an accurate measure of the stellar flux as a

function of time. Even transient clouds in the data will cause a problem. For the

two 1983 data sets with cloud problems, Mt. Stromlo and the Siding Spring 1
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Meter, a color correction technique was used. This provides a way of removing the

effect of the clouds in the occultation channel using the information about the depth

of the clouds from the sky channel. The intensity for each channel is modelled as

Ii [nb, + n-.I,#(t)]e " + C1 (2.1)

I2 [n,2 + n.#(t)]e r2 + C2 (2.2)

where nb, and nb2 are the background counts for each channel, n., and n., are the

full star counts, and 0(t) is the normalized flux level. That is, it is the level of star

counts normalized to full star counts, ranging between 0 and 1.0. C1 and C2 are

the background intensities in each channel; defining

I' = I1 - C1 and I' = I2 - C2,

one channel can be divided by the other. It is assumed that the cloud is a grey

absorber, so that ri ~ r2.

I' _ n, + n 1 O(t)(
I' nb2 + n*2 4(t)

This relation provides no information unless the data sets are at different wave-

lengths. Solving this equation for 0(t),

4$(t) = n2(, (2.4)
n.*1 n*2 ( _ )2

The flux as a function of time is retrieved, with the effects of the cloud essentially

divided out.

The lower baselines nb, and nb2 and the upper baselines n., + nb, and n. 2 + nb2

must be known to use this technique. The baselines were found by averaging the



values at full stellar flux and zero stellar flux for unclouded sections in the light

curve near the event. In the case of Siding Spring, there were sufficient amounts

of upper and lower baseline because the clouds were very transient. They were

also not very deep. The color correction worked very well on the Siding Spring

data (see Fig. 2-3). There was a probleim for the Mt. Stromlo data (see Fig. 2-4)

because there was very little baseline that was not clouded out. If the baseline is

underestimated, then the resulting light curve from the color correction will not

have the cloud fully divided out. If the baseline is overestimated, then the resulting

light curve must compensate by reflecting the cloid upward, creating an artificial

intensity peak.

The color correction method has another drawback in that it introduces the

noise of both data sets into the resulting light curve:

.2 2+02) , (2.5)

where a is the rms deviation for a given data set, and eff is the noise of the

resulting curve. The Mt. Stromlo data was very noisy initially, making the resulting

curves extremely unreliable. The clouds were so deep, and covered so much of the

immersion and emersion, that there was little true information to be obtained. The

emersion curve was especially bad; it was impossible to discern when the emersion

even began. The Siding Spring data were good enough that this was not a problem.



Chapter 3.

OBLATENESS - HALF-LIGHT
DETERMINATION

The biggest problem in the determination of a planet's oblateness is where on

the light curve to define the limb of the planet. If the light curve were a perfect step

function this would be easy. For bodies with a solid surface and no atmosphere,

such as the moon, the light curve is very nearly a step function when the diffraction

effects from the star are removed. For a planet with an atmosphere, however, the

limb is not distinct. This is particularly true for the giant planets, which are

presumed to be gaseous to at least a very deep level. How can the beginning of

the atmosphere be defined? Ideally, a surface in the atmosphere corresponding to a

physical parameter, such as a constant number density or pressure level, should be

used. The reliability of different inversion methods used to obtain those parameters

has been debated (Jokipii and Hubbard, 1977; French, Elliot, and Gierasch, 1978).

The parameter that has been used is the half-light time, or the time at which the

stellar flux has dropped to half its full value. The half-light level does not correspond

to any physically meaningful parameter in the atmosphere. The usefulness of the

half-light time is that it can be found in a consistently repeatable way for a given



light curve. Bauni and Code (1953) developed a model for predicting the light curve

resulting from the occultation of a perfect isothermal atmosphere. The equation

they developed contains the half-light time as a reference point. The equation

defining the curve for an isothermal atmosphere is

o (t - tI) i 1S= - - 2 +lIn - 1 (3.1)
H 4 40 .1

where v. is velocity of the star perpendicular to the limb of the planet, t is time, ti

is the time of half light, and 4 is the observed stellar flux normalized to full stellar

flux. H- is the scale height, defined as

H kT (3.2)
,um,,g

where k is the Boltzmann constant, T is temperature, y is mean molecular weight,

m,, is the mass of the hydrogen atom, and g is the acceleration due to gravity.

For an isothermal atmosphere, this will be the vertical distance over which the

number density drops by e -. The scale height in Neptune's atmosphere is about

50 km (Rages et al.,1974; Veverka et al.,1974; Wallace, 1975). The isothermal

light curve is a continuous, decreasing function (see Fig. 3-1). It is possible to fit

any given light curve to a model isothermal curve, and solve for v, H, and ti.

It is immediately obvious that the atmosphere is not isothermal because spikes

are observed in the data (see Fig. 3-2, a-j). Wasserman and Veverka (1973) have

shown that the scale height found from an isothermal fit to a real light curve has

a large uncertainty if the true atmosphere has a temperature gradient. That is, an

isothermal light curve can actually be fit to a non-isothermal atmosphere with a

constant temperature gradient, and the fit will give a value for the scale height which



is unreliale. Ilowever, the half-light tine depends priiarily on the deterimination

of the full and zero stellar flux levels, and is only weakly correlated to the scale

height (French and Taylor, 1981); the half-light time should correspond to the same

level in the atmosphere for any occultation.

The half-light times for the 1983 data were found by fitting the data to the

model equation for an isothermal atmosphere using a non-linear least squares fit.

The half-light times are listed in Table 3-1.

It was shown by French, Elliot, and Gierasch (1978) that the error expected in

the half-light time found from an isothermal curve with random white noise is

0 (t )=3.55 - 2 (3.3)

where

(nb + n.4)3.4

n,

a(ti) is typically less than 0.1 second (see Table 3-2) for the 1983 data. The true

error from random noise can be measured by the discrepancy in the half-light times

found for the data sets taken with different telescopes at the same location. The

spikes and half-light time should be identical, since the same location in Neptune's

atmosphere is being probed; however, the random noise will be different. The data

taken from the two telescopes at Siding Spring showed a discrepancy of 0.3 second

for both immersion and emersion. At Hawaii there were two telescopes taking data

independently. In addition, at the IRTF, two data systems were used to take data

from the same telescope. Data System 1 had a small time constant, of order 0.025

second. The data from System 2 passed through an amplifier with a high, unknown



tiie constant,, of order I second. The response to signal variations was then much

slower in System 2. The noise and spikes in the curve are therefore somewhat

suppressed compared to the data from System 1. The discrepancies between the

half-light times for the iinuersion data for these two data sets and the UII 2.2 meter

data set was less than 0.4 second. The 2.2 meter emersion data were so noisy that

they could not even be fit, and hence were discarded. The IRTF data were less

noisy because the data were taken in the IR. However, the discrepancy between the

two IRTF emersion data sets was 2 seconds. Several sources of error were checked;

the most probable were the effect of the uncertainty in the baseline, and the shifting

effect from the time constant. The baseline uncertainty should cause an error of

under 0.6 seconds (see discussion below). The spikes were very precisely matched to

find an absolute shift due to the time constant of under 0.25 second. These sources

of error are not sufficient to account for the observed discrepancy. Since the data

from System 2 passed through an amplifier of unknown properties, it is probable

that some effect in the electronics other than the time constant changed that data.

For this reason, the data from System 1 were used. The overall uncertainty from

random noise is about 0.4 second.

Another error expected in the half-light time is due to the uncertainty in the

baselines. This was found to be the most important source of error in the half-light

determination for these data. Since the isothermal fit program also solves for the

star and background counting rates, the uncertainty in the baselines can be found

in an empirical way for each data set. Two isothermal fits were performed on each

data set, with different amounts of baseline used in each fit. The discrepancy in

the counting rates found from the two fits is considered to be the approximate

16



uncertainty. The first fit used 100 seconds of data at 0.01 second resolution. The

other used 200 seconds at 0.02 second resolution, effectively including more base-

line. Table 3-3 shows the variation in the upper and lower baselines when different

amounts of baseline are used in the fit. The background flux was normalized to the

full stellar flux, so the uncertainties for the two baselines are normalized and can

be compared. It was found that both the upper and lower baselines are known to

better than 3% for most of the data sets, corresponding to an uncertainty in the

half-light time of about 0.4 second. The IRTF emersion data had an uncertainty

of 6% in the upper baseline and 4% in the lower baseline, giving a discrepancy

in the half-light time of 0.5 to 0.6 second. The Mt. Stromlo data and one of the

KAO channels had uncertainties of 5 to 6% in both baselines. This produced an

uncertainty in the half-light time of the order of 0.8 second. The IRTF emersion

and Mt. Stromlo data were eliminated from the fit as a consequence. The KAO

set was retrieved by summing it with the other channel used, bringing the overall

baseline uncertainty down to about 3% for both upper and lower baselines. The

half-light times used in the fit for the oblateness were those found using 200 seconds

of data because they included more baseline; the overall error is estimated at 0.4

second. This is only true if the baselines are stable over the whole section used; for

the data used here, the baselines were sufficiently stable.

The half-light times from the 1968 data set were taken from the analysis done

by Kovalevsky and Link (1969). The half-light times for the Japan data sets were

those given by Hirose (1968); these differ by up to 3 seconds for the values given

by Osawa et al. (1968) and Takenouchi et al. (1968). The half light times for

the Australia data set were given by Miller (1969). Freeman and Lyngi* (1970)
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quote a standard deviation of 2 seconds for the that data. The Japan light. curves

were published in Kovalevsky and Link; in an attempt to find a definitive half-light

time, they were digitized and the half-light times found from a least squares fit to

an isothermal light curve. The values found (see Table 3-4) differ from the values

quoted by Ilirose by up to 1.5 second. The digitization was done from a copy of

the light curve; distortions due to the copying, and smoothing from the digitization

can account for a formal error in the time of up to 2 seconds. The uncertainty in

radius and oblateness for the 1983 data is predicted then to be a factor of 3 to 4

lower than the uncertainty for the 1968 data.

Once a half-light time for each location is found, the times must be changed

into coordinates on some reference plane. The routine RINGPREP, written by

D. Mink, was used. The coordinates used are based on Smart (1965). Smart

defines the fundamental plane as the plane through Earth perpendicular to the

line of sight from the occulting planet to the star (see Fig. 3-3). The origin of the

fundamental plane is at the center of Earth, with the ? axis pointing north and the

axis pointing east. The coordinates ( 1, 7,) of the observer as projected on the

fundamental plane will be

P =pcos d'sin h, (3.5)

and

p = p[cos 6, sin 4' - sin 6, cos 4' cos h]. (3.6)

In this case p is distance of the observatory from the center of Earth, 4' is geocentric

latitude, and h is hour angle. The geocentric latitude is the latitude determined

from the center of Earth, rather than from the astronomical zenith. The hour angle



is the difference between the local apparent sidereal time and the right ascension

of the occulted star; 6, is the declination of the occulted star.

The location of the center of Neptune on the fundamental plane is defined by

the coordinates (2, 2) as follows:

I = D cos 6. (Aa), (3.7)

and

72 = DA6. (3.8)

Here D is Earth-Neptune distance, and Aa and A6 are the differences in right

ascension and declination between the star and the center of Neptune.

It should be noted that the above coordinates are time dependent. The coor-

dinates of the observer relative to the center of Neptune on the fundamental plane

will then be evaluated at the half-light time:

A( = 6- 6 ,(3.9)

and

A 7 =771 -72. (3.10)

The assumption is that the half-light times correspond to points on the surface

of an oblate spheroid in the atmosphere, coaxial to the planet. A rotation of the

coordinates with respect to the projected pole of the planet must be done. The

position angle, P, is defined as the angle of the pole projected on the fundamental

plane as measured east from north (see Fig. 3-5). The coordinates corresponding to

the location of the star on the plane at the half-light times will be (u, v) as follows:

U= -A cos P + A sin P, (3.11)



and

v = A sin P+ArncosP. (3.12)

The final step is to change the coordinates from the fundamental plane to the

sky plane. The sky plane is defined as the plane passing through the occulting

planet, parallel to the fundamental plane. The sky plane is expanded relative to

the fundamental plane; that is, the size of the occulting planet appears smaller at

the fundamental plane than it actually is, due to the effects of general relativity

and refraction. The gravitational field of the planet bends the starlight, as does the

refraction through the atmosphere of the planet, making the planet appear smaller.

The transformation to the sky plane corrects for the effects of general relativity and

refraction. The bending angle 0, of the rays from the star due to general relativity

is

OGR 4GMN (3.13)
c2r

so the change in u will be

AU Du (3.14)
r

and in v will be

AV= Dv9 GR (3.15)
r

where G is the gravitational constant, MN is the mass of Neptune, c is the speed

of light, and r2 = u 2 + v2 . D is the Earth-Neptune distance. The change in v

is exactly analogous. The bending angle O6,g of the ray at half-light time due to

refraction from the atmosphere will be

Oref (3.16)D



an(d the change in u will be

AU =_ Du Oref , (3.17)
r

DvDv 6,g.(3.18)A~V -rOref.(-8
r

Once the sky plane coordinates are calculated, the radius and oblateness of the

spheroid can be found. A non-linear least squares method is used to find the best

fit for the parameters. The obvious method is to fit the data to an ellipse on the

sky plane, of the form
u2 2U V (3.19)

R2 52

where Re is the semimajor axis and s is the semimlinor axis of the ellipse. The

semi-major axis is the equatorial radius. The semiminor axis will depend on the

equatorial radius, the polar radius, and B, the declination of Earth:

82 = R2 sin2 B + R2 COS2 B. (3.20)

However, flux is measured as a function of time, not radius. It would be prefer-

able to find the residuals of the parameters in terms of time, the true independent

variable. Equation 3.19 must then be solved as a function of time. The minimum

residuals in the fit will be found from the change in the predicted half-light time

as a function of the change in parameters. Table 3-3 shows the differences in fit

values, errors, and residuals for a fit in time and a fit in radius. The change in

the solutions to the fit is much less than the error bars. For this event, it does not

make a significant difference if the residuals are calculated in radius or in time.

The planet will have some offset from the predicted ephemeris position, fo to

the east and go to the north. The parameters being fit are then fo, go, Re, and E.
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The fitting routine was tested by putting in data sets which have known solutions to

the parameters. The data sets were fit, and the convergence values compared to the

known solutions. The first set was ideal data; the parameters converged perfectly to

the correct values with zero residuals. Data from the G Ceminoruin occultation by

Mars were tested to show the same convergence values found by French and Taylor

(1981). Data from the Uranus occultation of SAO 158687 analyzed by Elliot et al.

(1980) were also tested with the same satisfactory results.

The 1968 half-light times as given by Kovalevsky and Link (1969) were fit. Their

results were reproduced using the pole position found by Gill and Gault (1968), the

ephemeris given, and their corrections for refractivity and general relativity. The

next fit was done using their half-light times, but using the ephemeris calculated by

Standish et al. (1976), and the pole position found by Harris (1984). The corrections

for refractivity and relativity were also slightly different because a different value

for the mass of Neptune was used. The results of this fit (see Table 3-5) gave

values of Re = 25243 ± 30km andE = 0.0198±0.003 . This is within the error bars

quoted by Kovalevsky and Link. The known uncertainty in the half-light time was

2 seconds; the data were changed at random by that uncertainty to find the formal

error. Their error for the oblateness is larger than that found in this fit because

they did not actually do a fit for the oblateness; they stepped the oblateness by

0.001 and found the minimum of the sum of the squared residuals when fitting for

the radius. The minimum value was at 0.021; however, since the radius is correlated

with the oblateness, the error in the oblateness was not 0.001, but much higher. In

this analysis, the oblateness was actually fit for, which eliminates that problem.
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The 1968 data were also fit using the half-light times found froi (ligitiziig

the Japan light curves and using the least squares fit to an isothermal curve. The

results give R, = 25202- 30kn and e = 0.0 188 ± 0.0030. The error bars were found

in the same way as discussed above. These results are compatible with those found

by Kovalevsky and Link.

The 1983 data were then fit; the results give

Re = 25263 ± 9 km and

e = 0.016010.0015.

This value is lower than but still within the error of the value obtained with the

1968 half-light times. The errors in the parameters from the fit using the 1983 data

were found by changing each data set by the uncertainty in the half-light time, 0.4

second.

When a joint fit of the 1983 and 1968 data was done, the formal result of the

fit gave Re = 25248 ± 9 km and E = 0.0195 ± 0.0012. It can be seen from Figure

3-6 that the value given by the joint fit is closer to the 1968 data because the sum

of the squared residuals from the 1983 data is an order of magnitude lower than

from the 1968 data. This suggests that improvements in observing methods have

had a significant effect on the quality of data. However, it also means that the 1983

data have little leverage on the sum of squared residuals from the combined data

sets. The fit cannot be considered useful because the quality of the two data sets

is so different; for a joint fit to be truly effective, the minimum of the sum of the

squared residuals for both sets would have to be comparable. If using a non-linear
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least squares method, the p)roper step to take is to weight the 1983 data by the

comparative uncertainty in time; however, the residuals from the 1983 data are a

factor of four lower than the residuals from the 1968 data. Weighting the 1983 data

by J- would cause the reverse problem; the 1968 data would have no leverage in

the fit. Since the data sets are so sniall, systematic errors may have a significant

effect, so neither data set can be entirely dismissed.

The results from the 1983 and 1968 data are compatible, but there is still a

significant discrepancy. There are too few data points in either data set to make

a definitive determination of the oblateness; another occultation of Neptune with

good coverage across the planet should be observed to confirm the 1983 results.

Because of the large uncertainty in the half-light times for the 1968 data, the values

from the 1983 data are the most reliable.

It was suggested by Dermott (1984) that the uncertainties in Harris' pole po-

sition might significantly change the values from the fit. Harris used the orbit of

Triton in his analysis. Dermott shows that the most significant uncertainty in Har-

ris' calculation was in the moment of inertia. A new pole position was calculated for

twice the maximum uncertainty in the moment of inertia, and the new position was

used in the fit for the 1983 data. The results gave Re = 25259 km, and e = 0.0159,

still within the error bars of the formal fit. Table 3-5 gives a summary of all the

fits done using the half-light times.

The position angle of the pole, P, can be found using data from one occultation.

However, the fit did not converge in a stable way for either the 1968 or the 1983 data

sets alone. Using both data sets, it becomes possible to fit for the true variables
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of the pole position, the right ascension and declination of the pole. Since B, the

declination of Earth (see Fig. 3-5), and P are the variables used in the calculation

of the model equation, the transformation of right ascension and declination to B

and P nust be known. The transformation as described by Harris (1984) was used.

The fitting routine for a non-linear least squares fit requires the function of

the change in predicted half-light time with the change in a given parameter. The

derivatives of time with respect to right ascension and declination proved to be

extremely complex in the analytical form, so the derivatives were calculated nu-

ierically. The fit successfully converged, giving

a,(1950.0) = 291.5c ± 7.6,

6,(1950.0) = 34.60 ± 5.1 .

Figure 3-7 shows the error ellipse. The results were within the error bars of the

right ascension and declination of the pole as calculated by Harris (1984). The error

bars are much larger than Harris', but the fact that the fit was successful indicates

that fitting more data sets might bring down the error bars to a comparable level.

This provides an independent means of locating the pole position.



Chapter 4.

OBLATENESS - N, P LEVEL
DETERMINATION

In the first part of this analysis, the time in the light curves used to define

the limb of the planet for the purpose of finding the radius and oblateness was the

time of half stellar flux, the half-light time. Since the atmosphere is not isothermal,

this does not correspond to a physical parameter in the atmosphere of Neptune. A

better way to define the limb of a planet with an atmosphere is to use a surface

corresponding to some physical level in the atmosphere, such as a constant number

density or pressure level. Numerical inversion of light curves allows us to obtain

reliable n, p, and T profiles as a function of height in the atmosphere. French and

Lovelace (1983) determined that inversion profiles reflect the large scale structure

of an atmosphere. However, each data set must be tested for the accuracy of the

profiles found in the inversion method; noise and uncertainties in the data may

affect the alignment of the number density, pressure, or temperature with a given

height. For the purpose of finding a radius and oblateness, it must be known how

well a number density, pressure, or temperature found in the inversion corresponds

to the time assigned to it. The error in the half-light time determination from an
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isothermal fit for the data sets of interest is about 0.4 second. If the tine associated

with a given number density or pressure level in the atmosphere can be found more

accurately than this in each light curve, then a better fit for radius and oblateness

can be obtained.

The method used to do the inversion of the light curve is the nethod described

by Wasserman and Veverka (1973) and French, Elliot, and Gierasch (1978). The

inversion routine was QINV2, written by R. French. The first step is to determine

the bending of the light ray as it passes through material of varying refractivity.

This can be derived from Huygen's principle. The bending angle, 0, is defined as

fo d[ln(n)]
S -oo dz (4.1)

oo dr

where dr is depth in the atmosphere and dx is along the line of sight (see Fig. 4-1).

The assumptions are that

1. light rays do not cross,

2. n 0 1, so ! d g, and

3. the depth in the atmosphere probed by an occultation is much less than the

radius of the planet.

The approximate inversion solution to Equation (4.1) is

1 1 1(r') dr'(42v(r) = (2iR,) f(4.2)
(2 7rR,) i oo (r' - r) i

where R, here is the planetary radius; 9, r', and dr' must be calculated from the

change in flux. If 4 is normalized stellar flux at a given time, and D is distance to

the planet,
1 dr + DdO dO
-1+ D-. (4.3)

# dr dr



It is also true, from occultation geometry, that

Ar + DA0= -vAt. (4.4)

These equations can be solved for Ar and AO:

Ar = -vAt4 (4.5)

v6 = -(1 - 4) (4.6)
D

Then 0 and r can be calculated from the light curve by

N N

0, -EA6; and rjijZAri. (4.7)
i=-1 i=1

Once v(r) is obtained, number density can be solved for:

n(r) = nsrp v(r) (4.8)
VSTP

The refractivity at STP is evaluated for solar fractions by number of H and He, 0.9

and 0.1 respectively. The hydrostatic equation

dp = -umHn(r)g (4.9)
dr

is integrated to find pressure, p; j! is the mean molecular weight, mH is the mass

of the hydrogen atom, and g is the gravitational acceleration. The gravitational

acceleration is assumed to be constant for a given inversion because the depth of

the region probed by the inversion is much less than the radius of the planet. Once

pressure and number density are obtained, the temperature profile is found using

the perfect gas law,

p(r) = n(r)kT(r) (4.10)
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where k is Boltzmann's constant.

There are some inherent limitations in this method. One limitation is that no

information on scales shorter than the Fresnel zone can be obtained. The Fresnel

zone is defined as the scale perpendicular to the line of sight across which there will

be constructive interference. Across an area proportional to A, interference occurs

and the image is "smeared out" over this scale. This is the resolution limit of an

occultation. The Fresnel scale is defined as

R, = vU . (4.11)

Empirically, Elliot et al. (1981) have found that the scale over which information

can obtained is more nearly

RF = 1.7v/ AD. (4.12)

For Neptune, this value is about 3.4 km for A = 0.78p and about 5.1 km for

A = 2.2p. This is one-tenth of a scale height or less.

In addition, an assumption made in the inversion analysis is that severe ray-

crossing does not occur. The light from the star can be considered as a wavefront

passing through the planet's atmosphere. The wavefront will be successively more

delayed deeper in the atmosphere. However, large fractional temperature variations

over a short scale can produce variations in number density and hence refractivity.

Ripples will form in the wavefront (see Fig. 4-2). If the length of the ripple is defined

as L, then it is easy to see that the shorter L is, the more likely it is that rays from

the rippled wavefront will converge on each other and form crossed rays. French and

Lovelace (1983) showed that the limit on fractional temperature variations A T/T
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iiecessary to assime no ray crossing is

-- (2 .)2 (4.13)T L

They show that the inversion process essentially ignores the information when se-

vere ray crossing occurs and the temperature variations do not show up in the

retireved temperature profile. This means that the corresponding number density

and pressure variations are also suppressed. Therefore it must be assumed that

severe ray crossing does not occur for the inversion to be believed.

There are other limitations to the method which will depend to some extent on

the data. One source of error is the assumption that g, the gravitational acceleration

of the planet, is a constant. In fact, g will depend on latitude, and the rotation of

the planet adds an additional acceleration:

_GMN

g.,,- R(4) f2 2R(E, q) cos 4 (4.14)
f R 2(E, 0)

where 0 is the rotation rate, MN is the mass of Neptune and 4 is latitude on

the planet. Approximating g as a constant will not affect the number density

determination, because g is used in the hydrostatic equation. The hydrostatic

equation is only used when finding p and T. Table 4-2 shows geff for each data set.

The value varies about 2% across the whole latitude range. This corresponds to an

error of 2% in the scale height in the atmosphere. Since the scale height of Neptune

is about 50 ki, and the perpendicular velocity of the event is about 22 km s-, the

error from gegg would cause a misalignment in the time of only 0.01 second.

A more important source of error comes from the fact that the inversion must

be started at an arbitrary point in the light curve. The initial conditions, where
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0 = 0 and r = 0, are decided by the value at this arbitrary point. This point

will be subject to the noise in the light curve. In the upper atmosphere, the num-

ber density is very low; fluctuations due to noise in the upper part of the light

curve are interpreted by the inversion process as huge variations in the tempera-

ture. Wasserman and Veverka (1973) showed that, although this error propagates

through the entire inversion, the contribution is fractionally most important high

in the light curve. The first three to four scale heights in the inversion should be

ignored altogether. The resulting error that is propagated through the profile can

be checked by changing the initial conditions (starting at some other equally arbi-

trary point) and checking how the well the resulting profiles converge to the same

profile (French, Elliot and Gierasch, 1978). This may produce a significant error

in the time associated with a specific n, p, or T level before the level where the

profiles will converge. This was tested by inverting light curves at four different

points, ranging from 5 to 8 back scale heights in the light curve from the half-light

time (see Table 4-3). The profiles from the light curve were compared. Figure 4-3

shows how well the profiles for a sample light curve converged. It was found that

the profiles obtained from inversions starting from between 6.8 and 8.0 scale heights

back converged most completely. The first few scale heights of the profiles did not

converge at all, which was predicted. At levels deeper than n ~ 3 x 1013cm-3, and

p - 8 x 10- mbars the profiles converged with a discrepancy in time of less than

0.2 seconds for a given number density or pressure level. This is better than the

uncertainty in the half-light time found by the isothermal fit. The Hawaii emer-

sion sets and the Mt. Stromlo data set were not used because the baselines were

so poorly known. All profiles used in the following tests and results were inverted
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starting from 7.5 scale heights back in the light curve.

Another source of error in the inversion, as for the half-light time, is the uncer-

tainty in the baselines. To carry out the inversion, the upper and lower baselines

are assumed to be perfectly known. An error in the baseline means that the calcu-

lated change in stellar flux as a function of time will be incorrect. The fractional

error due to an uncertainty in the upper basseline will be largest at the top of the

light curve; for an uncertainty in the lower baseline, it will be largest at the bottom

of the light curve (French, Elliot and Gierasch, 1978). Table 4-1 shows how well

the baselines are known, from the isothermal fit. It is clearly critical to select the

correct number density and pressure levels for the fit. They must be far enough

down in the fit to avoid errors due to the initial conditions and the uncertainty in

the upper baseline, and high enough to avoid the error due to uncertainty in the

lower baseline.

The error due to uncertainties in the baseline is an important one in the in-

version. Tests were run to predict the uncertainty in time from the inversion. An

isothermal light curve with a scale height of 50 km and a perpendicular velocity of

22.5 km s 1 was tested first. The upper and lower baselines were varied by 1, 2, and

3%; the lower baseline was normalized to the full stellar counts so that changes in

one baseline are comparable to changes in the other. Figure 4-4 shows the result-

ing profiles. An error in the upper baseline causes a divergence from the expected

curve high in the profile; below the n = 9 x 1013 cm 3 and p = 9 x 104 mbar

levels, the profiles converge to better than 0.01 second for a given number density

or pressure. An error in the lower baseline causes the profile to diverge at levels
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lower than n = 2 x 10" cm 3 and p = 10 ' nibar; there is a minimum, then, when

the error from the upper baseline is becoming less important and the error from the

lower baseline is just starting to become important. Based on an isothermal light

curve, this minimum occurs at n = 10" cm 3 and p = 10 3 mbar. The half-light

time for an isothermal atmosphere, at a planet of the size and distance of Neptune

and a scale height of 50 kni, occurs at approximately n = 4.3 x 1013 cm 3, So this

corresponds to about 0.85 scale heights in the atmosphere after half-light time.

Other tests were run on the true data, varying the baselines by 1, 2, and 3%.

The resulting profiles agreed qualitatively with the results from the isothermal tests.

However, the true convergence for the profiles was not as good as those predicted

from the isothermal tests. This was expected, partly because the true data have

noise, and partly because the atmosphere is not really isothermal. The number

density has an uncertainty in time of about 0.25 second, for the n = 10"cm-3

level; the p = 10" 3 mbar level has an uncertainty of 0.4 second, comparable to the

isothermal fit. The results of the isothermal tests had indicated that the pressure

may not be as good a parameter as the number density, and this result was also

confirmed by the profiles. The error from the upper baseline overlaps with the error

from the lower baseline so that the minimum of the two effects still produces an

error of 1 second or more. This agrees with the theoretical result of French, Elliot

and Gierasch (1978); the pressure is integrated from the number density, so the

effects from the initial conditions are weighted more farther down in the light curve

for pressure. This weighting brings the error due to the initial condition farther

down into the profile than for number density. The error from the upper baseline

does not begin to drop off until the error due to the lower baseline begins to be
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inportant.

The number density levels selected for the fit were 5x101  ,8x 10' , 10" , and 2x

10"4 cm 3. The times associated with these levels for each data set and the results

from fitting each level for radius and oblateness are sumnmnarized in Table 4-3. The

best result was found using the n = 101 cm 3 level:

Re = 25171 ± 7 km and

e = 0.0150 ± 0.0011.

This agrees well with the results from the half-light time fits, and the best fit is

just at the level predicted from the tests of the isothermal curve and the true data.

The fit at this level was significantly better than the fit using the half-light times.

Actually, the change in the radius and oblateness found at each level shows that

the true error bars are much higher than the formal ones quoted. This method is

still useful and could give good results with more data sets.

The pressure levels selected were 8 x 10-', 10~3, 2 x 10-3, and 7 x 10- 3mbar.

The times for these levels are listed in Table 4-4. All of the results were worse than

using the half-light times. The best fit was for the at 10-3, as predicted from the

tests:

Re = 25288 ±9 km and

E = 0.0172 0.0015 ,

agreeing well with the half-light time fit and the best number density fit. The fit

was a factor of three worse than using the best number density level. For this data

set, number density is a better physical parameter than pressure to define the limb

of the planet.



Chapter 5.

IMPLICATIONS AND CONCLUSIONS

The light curves from the 1983 occultation of Neptune were used to find the

radius and oblateness of Neptune, using the time of half-light to define the limb

of the planet. These data have much lower uncertainties in time than the 1968

occultation used by Kovalevsky and Link (1969), leading to a more accurate deter-

mination of the radius and oblateness. The 1968 data were re-analyzed using the

half-light times used by Kovalevsky and Link, but with an improved ephemeris and

pole position (Harris, 1984). The oblateness found using the 1983 data is marginally

consistent with the values found by Kovalevsky and Link. It is somewhat more con-

sistent with the re-analyzed 1968 data. The 1968 data had such large uncertainties

in timing that the 1983 results are more trustworthy.

The importance of the oblateness is that it is, to first order, directly related

to the rotation rate of the planet, Q, and the coefficient of the second order zonal

harmonic, J2:
3 3Q2
- J2 + (5.1)
2 87rGp

where G is the gravitational constant and p is the mean density of the planet. The

unknowns in the above equation are 0, J2 , and e; each may be independently
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deterinined. The uncertainty in the mean density can be ignored in this approxi-

mation because it depends only on the mass, which is well known, and the radius

to the third power. The latest value for the rotation rate is 17.8 i 0.1 hours (Ter-

rile et al., 1984). This value was obtained from observations of markings on the

planet with time (Smith et al., 1979). Neptune's Je was found by Harris (1984) to

be 0.0043 ± 0.0003, assuming the mass ratio of Triton to Neptune is 0.00128. If

Triton is actually much less massive, then the J2 is 0.0037 ± 0.0002. The previous

best value for the oblateness was 0.021. These three values are not very consistent

(see Figure 5-1), but it was uncertain why. It has been shown in this analysis that

the uncertainty in time in the 1968 data is so great that the oblateness from that

data is not very reliable. Dermott (1984) has shown that a rotation rate of 17.8

hours, a J2 of 0.0041, and an oblateness of 0.017 lead to a self-consistent model of

Neptune. This is in very good agreement with the result found using the 1983 data

(see Figure 5-1).

The oblateness, combined with J2 and the rotation rate, can provide information

about the internal structure of the planet. The Darwin-Radau relation gives the

moment of inertia around the polar axis, C, for a given oblateness and J2, provided

those values are small and C is large:

[ 3C M 2 ] 4 ( 5m)) (5.2)
2 MR2 25 2E

where

M = .2 (5.3)
GM

For a solid, homogeneous sphere, the moment of inertia is 0.4. Zharkov and Trubit-

syn's (1978) two-layer model, with a homogeneous core and homogeneous mantle,
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predicts a nioient of inertia of 0.25. Figure 5-1 shows that this model agrees with

Kovalevsky and Link's oblateness, but not with the observed J,) and rotation rate.

The value for the oblateness found from the 1983 data is quite consistent with the

rotation rate and J,, but the two layer model no longer explains the data. Hub-

bard and MacFarlane (1980) have calculated a more condensed, three-layer model

which is marginally consistent (Ihubbard, 1984) with the preliminary value for the

oblateness found by Hubbard et al.(in preparation); however, it requires that the

rotation rate be 13.7 hours, which is not supported by data.

The oblateness found from this analysis of the 1983 data are the most consistent

with other data. The results indicate that Neptune is less centrally condensed than

the previous best model, the Zharkov and Trubitsyn model, predicts. A new interior

model is needed. It is interesting that the moment of inertia for Neptune, about

0.28, is significantly different from that deduced by Dermott (1984) for Uranus,

0.20. This suggests that the interiors of Neptune and Uranus are very dissimilar.

A numerical inversion of the 1983 light curves was performed to obtain the num-

ber density, pressure, and temperature as a function of height in the atmosphere.

Tests were run using isothermal light curves to determine how well a given time in

the light curve corresponds to the number density or pressure level assigned to it

by the inversion process. The uncertainties in the baselines were found to be the

largest source of error in the inversion process for this data set. An error in the

upper baseline will cause a large initial uncertainty in the number density, pressure

and temperature profiles; an error in the lower baseline causes a large uncertainty

deep in the profile. The location in the profiles which correspond to a minimum
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in the uncertainty from combined errors in the upper and lower baselines is about

0.85 scale heights in the atmosphere deeper than the level at the half-light time.

This result, found in the isothermal test curves, was confirmed in the true data.

Several fits for radius and oblateness were done, using a variety of number density

and pressure levels to define the limb rather than the half-light time. The levels

were selected to scan across the region of the predicted minimum uncertainty in

time; the lowest residuals for the fit were found at the levels predicted by the tests.

These levels are the n = 10"cm 3 and p = 10 3mbar levels. The values for the

oblateness found using these fits agree well with the value found using the half-light

times from the 1983 data. The residuals from these fits indicate that using the ap-

propriately chosen number density level to define the limb is a more accurate way

of finding the oblateness than using the half-light time; the constant pressure level

method is comparable to the half-light method.

The pole position was also found using the data from both the 1968 and 1983

occultations. The error ellipse is not consistent with the value for the pole found by

Harris (1984) from the regression rate of Triton's orbit; however, the uncertainties

in the parameters found from the fit using the occultation data are probably greater

than the formal errors found from the fit, because of the large uncertainty in time

of the 1968 data. At this time Harris' value is certainly the most accurate.

Another step that may be taken with the 1983 data is to check the correlation of

spikes found from light curves probing different locations along the limb of Neptune.

A correlation would indicate that the spikes are being formed from some large scale

horizontal feature in the atmosphere, such as a layer. Preliminary analysis indicates
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no correlation of spikes, in contrast to the results of French et al. (1983), which

indicate possible global atmospheric layering. The lack of correlation suggests that

the spikes may be formed by turbulence or some other non-isothermal process. A

thorough analysis would be useful.

The values found for the radius and oblateness of Neptune from the 1983 data

are a significant improvement from the 1968 data. It is unfortunate that the un-

certainty in time for the 1968 data is so high so that a joint fit of both data sets

was not useful. Another occultation observation with good timing accuracy and

wide coverage (at least three chords) across Neptune would further improve the

oblateness, and constrain the interior models to a greater extent.

In addition, new data could be combined with the 1983 data to obtain a good

pole position. Data from several occultations, with widely different aspects of the

planet, would give a good enough determination to provide an independent check

of the dynamical determination of the pole position.
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Appendix A.

DERIVATION OF ISOTHERMAL LIGHT
CURVE

First define the scale height, H, such that

H =kT (A.1)
pmHg

where k is Boltzmann's constant, T is temperature, p is mean molecular weight,

M1 is the mass of the H atom, a g is the gravitational acceleration. The

refractivity v for an isothermal atmosphere is

v = V 0 exp (r H ro) (A.2)

where vo is the refractivity at the top of the atmosphere, r, is the height in

the atmosphere, and r is the distance from the center of the planet to a given

point along the ray (see Figure A-1). See Appendix C for the derivation of the

bending angle due to refraction in the atmosphere; it will be assumed that it is

known that

0 +00 du dx. (A.3)
oo dr

Now,
dv- - exp dx; (A.4)
dr H H

42



see Figire 4- 1 for the inversion geometry.

;2 =r - r and

(r - ro) - (r - r,) + (r,

Since r 0 ro 1 ri,

and so

It follows that
X2

(r - ro) = + (r,2To

and the bending angle equation becomes

O -2vo
H

(r, - ro)] J +00
exp [2H dx.

.2roH
(A.10)

Integrating this gives

0- 2v 7rroH]2

H = 2
exp -(r, - ro)

H '

Now, we will define
1

(A.12)

where #* is full stellar flux, normalized to be 1, and 4 is the flux at time t.

From geometry it can be seen that

do
=1 - D-- and

dr,
(A.13)

- ro) .

(A.5)

(A.6)

z 2 = (r - r,)(r + r,) ~ (r - r1)2r,

X 2

(r - r,) 0 2.2r0

(A.7)

(A.8)

- ro) , (A.9)

(A.11)



dO --o
d -- D so (A.14)
dr, D'

DO
4 = 1 H .(A.15)

H

Also from the geometry,
do J v-=O [i- =]- (A. 16)
dt p.D

D is the Earth-Neptune distance, and v is the perpendicular velocity of the

event.

d4b D dO
and (A.17)

dt H Jt
-o V, 1 . (A. 18)

dt H4

This can be separated into two integrals over 4 and t, and integrated from the

time of half stellar flux, where 4 will be 2, to any 4:

d = Vj dt. (A.19)
f2 41H ft

Integrating gives

()-1) - (2 - 1) + ln(0 - 1) - In(2 - 1) =- (t - t) (A.20)H

and so, substituting 4 back in,

-2) + ln(- - 1) = (t - t) . (A.21)
4 H i



Appendix B.

OBLATENESS FITTING PROGRAM

10 1 REFIT9 3/6-83 JLE. KJM MOD
IFIED BY PAM 9/1;12 10;2.8,;2
'21

20 I 1/O IN DEG, INTERNAL CALC
IN RAO

30
40 CLEAR
50 COM F1,G1.F2,G2,D1.A
60 OPTION BASE 1
70 RAD
80 DIM B(6),P9(6),B1(6),82(6)
90 A=297.813 @ 01=41.185

108 CALL "FITPOL" ( AD1,BC),Po(

118 cOSUB 2920
120 R=25225 R E= 021 ' G9=7.6475

1459833E-5 @ H-50 ! G9=GM(ne
P)/C^2

130 1
140 DIM F1(20)..G1(20),F2(20),G2(

28),T8(20),Z1(20),Z2(20),Z3(
20),Z4(29),Z5(20),Z6(20)

158 DIM I(18),J(10),PC10),Y(18),
D1(20,10),A(18,18),(18), Y1
18),E(18),R1(20),R0(20),F(10

160 DIM T(208,T1(20),T2(20)
170 DIM D(2),F9(2),G8(2)
180 F0(1)=-5000 I G8(1>=-4900 @

F0(2)=-17000 I G8(2)=300
190 D(1)=4376387088 R D(2)=44178

37600
280 DIM C$C103,D$C43,M*C53,C1$C1

73,P8SC683,P9$C483,PSC1803,Z
1SE773,Z2SC633,ZSC1483

210 CS="COMPLETE" @ DS="OATA" e
MS="MODEL" @ C1$="----COMPUT
ING----"

220 P85C1,60]="F@-a ERRORF1-a ER
RORGO-6 ERRORG1-6 ERRORP-POS
ANG PS-POS ANG"

238 P9$C1..403="aPOL ERROR6POL ER
ROREQ RADIUS OBLATENESS"

240 P$E1,100]=P8S&P9S
250 Z1$C1,77]="MKOBSIMIRTFIIMIRT

F1EMSS040IMSS840EMART3MIMAAT
3MEMKA034IMKA034EMKAO#4IMKAO
#4EM"

260 Z2$C1,63]="MTS74IMDo06aIMDOD
68EMOKA68IMOKA68EMM6874IMM68
74EMM6838IMM6838EM"

278 Z$C1,1403=Z1S&Z2S
280 !
290 DATA -27552.2475,-27542.601,

17752.947,-29172.316,19274.0
79,-29179.3175,19279.8505

300 DATA -27204.938,17293.925,-2
7227.407,17286.762,-29233.02
84

310 DATA -41323.3848,588.2855



320 DATA -41305.7693,5693.1532,-
40416.7411,1759.954,-40416. 7
411, 1759.954

330 MAT READ Z1
340 DATA 24.07,24.07,24.018,24.2

241,24 21925,24.2241.24.2192
5 *

350 DATA 24.272,24.267,24.272,24
267,24.206

360 DATA 17.422,17.45,17.415,17.
45.17.442,17.457,17.442,17.4
57

370 MAT READ 22
380 DATA 6467.7662,6467.594,5647

.479,2185.505,1572.403,2185.
123, 1571.834

390 DATA 7139.871,6643.092,7140.
151,6643.1.09,1745.7907

400 DATA 1184.4497,-11273.5652
410 DATA 889.0679,-11509.1887,-5

801.2434,-16986.2153,-5801.2
434,-16986.2153

420 MAT READ 23
430 DATA -.4296,-. 4296,-.44065,-

.2959,-.31742,-.2959,-.31742
440 DATA -.305,-.317,-.305,-.317

,- 295
450 DATA -4.598,-4.622,-4.587,-4

.611,-4.617,-4.639,-4.617,-4

.639
460 MAT READ 24
470 DATA 50.71163,51.1124,1934.9

626,186.92945,2187.00478,186
.6247,2187.21801

480 DATA 255.753314,2103.89344,2
54.82,-2103.586,184.86277

490 DATA 85.5.2788,115.5,2811.5,
89,2506,89.2506

500 MAT READ Z5
510 ON KEY# 1. "DATA" GOSUB 600
520 ON KEY# 2, "ST FIT" GOSUB 930
530 ON KEY# 3, "END FIT" GOSUB 28

80
540 ON KEY# 4. "RST PRM" GOSUB 29

00
550 ON KEY# 5. "PUNT" GOTO 2950
560 CLEAR @ KEY LABEL
570 GOTO 570
580!
590!
600 CLEAR @ DISP "WHICH DATA SET

S TO USE?"
610 FOR J=1 TO 20 STEP 2
620 DISP USING 630 ; J.2EJ*7-6,

J*73,J+1,Z$E(J+1)*7-6,(J+1)*
73

630 IMAGE 2D,2X,8A,3X,2D,2X,8A
640 NEXT J
710 DISP "NUMBER SETS INCLUDE";@

INPUT IS



720
730
740

REDIM
01=0
DISP

26 13(I )

"INPUT DATA
LUD0E"

750 FOR K=1 TO I5
760 INPUT Z6(K)' IF

N 01=01+1
770 NEXT K
780 REDIM F1(I5),G1

2(I5)..T (.I5)
790 !
800 K1=0
810 FOR J=1 TO 20
820 FOR K=1 TO I5
830 IF J=Z6(K) THEN
840 NEXT K
850 IF NOT FLAG(10)

SETS TO INC

Z6(K)'(12 THE

IS),F2(I5),G

SFLAG 10

THEN GOTO 89

860 K1=K1+1
870 F1(K1)=Z1(J) @ F2(K1)=Z2(J)

G1(K1)=23(J) @ G2(K1)=Z4(J
)@ TOCK1)=25(J)

880 CFLAG 10
890 NEXT J
900 CLEAR @ DISP D$&" "&C$ @ KEY

LABEL @ RETURN
910
920
930
9483

950
960
970
980
990

1000
1810
102E
1030
104

10 5;J
106
10 7
1080

CLEAR @ DISP "PARM TO FIT"
DISP "F01,F02,G01,G02,P01,P0
2,a,6,R..E"
MAT INPUT I
DISP "# OF ITNS" @ INPUT N5
M=1
FOR J=1 TO 10
IF I(J)#8 THEN
(.M)=J @ M=M+1
NEXT J

N3=M-1

REDIM J(M)@ J

@ 39=SQR(I5-N3)

REDIM Dl(I5..N3),ACN3,N3 ),Y1
(N3),J(N3),R1(I5).R (I5),TC
15),Ti(I5).T2(I5)
GOSUB 2670
MAT Y=P

1890 PRINT ..TAB(12);"NEPTUNE" C
PRINT TABC4);"RADIUS-OBLAT

ENESS JOINT FIT"
1100 PRINT TAB(12)';"REFIT9"
1110 PRINT ..,DATE$&" "&TIME$ e

PRINT VAL$(15)&" PTS"
1120 PRINT "INPUT DATA FG"
1130 FOR J=1 TO I5
1140 PRINT USING 1150 ; F1(J),G1

(J)
1150 IMAGE 7D
1160 NEXT J

.3D,4X,7D.3D



1170 PRINT @ PRINT "VALUES OF CO
NSTANTS" @ PRINT

1180 X6=RTD(B(1)) @ X7=RTDCPO(1)
)

1190 X8=RTDCBC2)) @ X9=RTD.:.P0(2)

1200 PRINT "B= ";VAL$'..X6)&" DE
G" @ PRINT "P= ";VAL$(X7)
&" DEG"

1210 PRINT "88= ";VAL$(X8)&" D
EG" @ PRINT "P8= ";VAL$(X
9)&" DEG"

1220 PRINT @ PRINT "ORIG PARAM"
@ K=10 @ REDIM F(K)@ MAT F=
Y@ GOSUB 2810 @ PRINT

1230
1240
1250 DISP TIME$;C1$ @ RO=INF
1260 FOR N2=1 TO N5
1270 !
1280 FOR J=1 TO I5
1290 Q=1
1300 IF J>01 THEN Q=2
1310 B1=81(Q) @ B2=82(0) @ 83=81

(Q+2) @ 84=B2(Q+2) @ B5=B1(
Q+4) @ 86=B2(Q+4)

1320 P=P0(Q) @ P2=PO(Q+2) @ P3=P
8(Q+4)

1330 D=D(Q) @ F=F8(Q) @ G=GO(Q)
1340 U=G1(J)-G @ V=F1(J)-F
1350 R6=U*U+V*V @ XR7=SQR(R6)
1360 !
1370 FOR K=1 TO 3 R Z=1+4*0G9/R

6+H/R7 @ R7=Z*X @ R6=R7*R7
@ NEXT K

1380
1390 A1=SIN(P) @ A2=COS(P) e X1=

SIN(P2) @ X2=COS(P2) @ W1=S
INCP3) @ W2=COS(P3)

1400 U=Z*U @ V=Z*V e U1=Z*G2(J)
e V1=Z*F2(J)

1410 U2=U*A1-V*A2 i@ V2=U*A2+V*A1
12 U3=U1%A1-V1A2 g V3=UI1*A

2+VI*Al
1420 L=B1+(1-E)*(1-E)*B2
1430 C1=U3^2*L+V3^2 '@ C2=U3*U2*L

+V3%V2 @ C3=(U2+R)*(U2-R)*L
+V2^2 @ A3=C2^2 @ A4=C3^2

1440 TCJ)=T0(J)-C3/(2*C2)-C1*A4/
(8*A3*C2)

1450 IF I(7)=8 THEN GOTO 1500
1460 U4=U*X1-V*X2 @ V4=U*X2+V*X1

U5=U1*X1-V1*X2 1 V5=U1*X
2+V1*X1

1470 L1=B3+(1-E)*(1-E)*84
1480 Y1=U5^2*L1+V5^2 @ Y2=U5*U4*

L1+V5*V4 @ Y3=(U4+R)*(U4-R)
*L1+V4^2 @ X3=Y2^2 @ X4=Y3^
2

1490 T1(J)=TO(J)-Y3/(2*Y2)-Y1*X4
/(8*X3*Y2)



1500
1510

1520
1530

1540

1550

1560
1570
1580
1590
1600
1610

1620

1630
1640
1650

1660

1670
1680
1690

1700

1710
1720
1730

1740

1750

IF IC8)=0 THEN GOTO 1550
U6=U*W1-V*W2 @ V6=U*W2+V*W1

@ U7=U1%W1-V1%W2 @ V7=U1*W
2+V1*W1

21=U7^2%L2+V7^2 @ Z2=U7*U6%
L2+V7*V6 @ Z3=CU6+R)*(U6-R)
*L2+V6^2 @ W3=Z22-2 R W4=Z3^
2
T2(J)=TO(J)-Z3/(2* 2;' -21 W
/(8%W3*22)
A5=(2*A3+C1*C3)/(2*C2A3) @
A6=(4C3*A3+3%A4C1)/(8*A3
^2) R A7=A4/(4*C2*A3)

IF FLAG(2) THEN GOTO 1950

M=1 ! F01
IF I(1)=0 THEN GOTO 1640
IF Q=2 THEN D1(J,M):=O @ GOT
o 1630
Dl(J,M)=Z*(-(A5*(L*U2A2-V2
*A1))+A6*(L*U3*A2-V3*A1))
M=M+1 I F02
IF IC2)=0 THEN GOTO 1680
IF Q=l THEN D1(JM)=0 @ GOT
0 1670
D1(J,M)=Z*(-(A5*(L*U2*A2-V2
*A1))+A6*(L*U3*2-V3A1A))
M=M+1 ! Gol
IF I(3)=0 THEN GOTO 1720
IF Q=2 THEN D1(JM)=0 @ GOT
0 1710
D1(J,M)=Z*(A5*(L*U2:A1+V2*A
2)-A6*(L*U3%A1+V3%A2))
M=M+1 ! G02
IF I(4)=0 THEN GOTO 1760
IF Q=1 THEN D1(JM=0 @ GOT
0 1750
Dl (JM)=Z*(A5*(L*U28A1+V2*A
2)-A6*(L*U3%A1+V3RA2))
M=M+1 I P01

1760 IF I(5*)=0 THEN GOTO 1800
1770 IF Q=2 THEN D1(J,M)=0 R GOT

0 1790
1780 D1(J,M)=(L-1)*(-(A5*U2*V2)+

A6*(U3*V2+U2*V3 -A7%U3*V3)
1790 M=M+1 ! P02
1800 IF I(6*=0 THEN GOTO 1840
1810 IF Q=1 THEN D1(JM)=O @ GOT

0 1830
1820 Dl(J,M)=CL-1)*(-(A5*U2%V2)+

A6*(U3*V2+U2*V3 )-A7*U3*V3)
1830 M=M+1 ! a
1840 IF I(7)=0 THEN GOTO 1870
1850 DI(J,M)=(TCJ)-T1(J))/DTR(-.

5)
1860 M=M+1 ! 6
1870 IF I(8)=0 THEN GOTO 1900
1880 D1(J,M)=(T(J)-T2(J))/DTR(-.

5)

p EPIv-rs



1890 M=M+1 ! R
1900 IF IC9)=8 THEN GOTO 1930
1910 01(J.M)=A5*P*L
1920 M=M+1 ! E
1930 IF I(10)=8 THEN GOTO 1950
1940 01(J..M)=(1-E)*B2*(A5*CU2+R)

*(U2-R)'-2*A6*U3*U2+A7*U3^2)
1950 NEXT J
1960 !
1970 IF FLAG2) THEN CFLAG 2 @ G

OTO 2290
1980 !
1990 MAT A=TRN(D1)*O1
2000 MAT R1=TO-T :Sr L5
2010 MAT X=TRN(D1)*R1
2020 MAT Y1=SYS(A,X)
2030 MAT A=INV(A)
2040 R1=FNORMR1).
2050 ! 

42060 R2=R1*R1 @ IF R1(R THEN Ro
=R1 @ H9=N2-1 @ MAT E=P@ MA
T R8=R1

2070!
2080 FOR J=1 TO N3 @ P(J J))=P(J

(J))+Y1(J) @ NEXT J
2090 !
2100 GOSUB 2700
2110 IF N2=1 THEN R3=R2 @ R4=R3/

(15-N3)
2120 PRINT USING 2130 ; TIME$,N2

-1,R2,(R2-R3)/R4 @ MAT DISP
Yi1

2130 IMAGE 8A,2D,X,D.3DE,X,D.2DE
2140 !
2150 IF FLAG(1) THEN GOTO 2260
2160 IF I(7)=8 AND I(8)=0 THEN G

OTO 2230
2170 A=RTO(A) @ 01=RTD(D1)
2180 CALL "FITPOL" ( A,1..B(),P0

(') )
2210 GOSUB 2920
222*- !
2230 NEXT N2
2240 !
2250 N2=N2-1
2260 CFLAG 1 @ DISP M$ @ SFLAG 2

@ GOTO 1280
2270 !
2280 MAT R1=TO-T@ R1=FNORM(R1)
2290 IF R1(RO THEN MAT E=P@ N9=N

2 @ RO=R1 @ MAT RO=R1
2300 R2=R1*R1 @ PRINT USING 2130

TIME$,N2,R2..(R2-R3)/R4
2310 !
2320 S1=R8S9 @ MAT P=E@ REDIM E

(N3)@ GOSUB 2700
2338 FOR J=1 TO N3 @ E(J)=1/SQRC

A(J,J)) @ NEXT J
2340 FOR J=1 TO N3
2350 FOR K=J TO N3



2360 X=ECJ)*ECK)
2370 A(JK)=A(J,K)*X .o( lOBCfj
2380 IF J=K THEN 2400
2390 A(K,j)=A(K,J)*X I2400 NEXT K
2410 E(J)=S1/E(J)
2420 NEXT J
2430 !
2440 !
2450 MAT A=(100)*A
2460 FOR J=1 TO N3 @ A(J,.J)=99 @

NEXT J
2470 !
2480 PRINT ,TRB(5);"FIT RESULTS

"&DATE$&" "&TIME$
2490 PRINT "ITNS=";N2
2500 PRINT .."BEST PARM ON ITN="

;N9
2510 K=10 R REDIM F(K)@ MAT F=P@

GOSUB 2810
2520 PRINT ,,"a^2";RO*RO
2530 PRINT ,,"ERRORS"
2540 K=N3 @ REDIM F(K)@ MAT F=E@

GOSUB 2730
2550 PRINT ,,"CORRL MATRIX",,
2568 MAT PRINT USING "M22" ; A
2570 !
2580 PRINT R PRINT "OS R

ESID" @ PRINT
2590 FOR J=1 TO 15
2600 PRINT USING 2610 ; Z$[Z6(J)

*7-6,Z6(J)*73,R8(J)
2618 IMAGE 8A,2X,5D.5D
2620 NEXT J
2630 !
2640 PRINT @ PRINT "SUM RESIDS="

;SUMCRO) @ PRINT @ PRINT "R
MS DEVIATION=";S1

2650 CLEAR @ DISP "FIT DONE" @ K
EY LABEL @ RETURN

2660 !
2670 P(1)=F8(1) R P(2-F ) ::2 P

(3)=G(I) @ P(4)=G(2) @
5)=PO(1) @ P(6)=PO(2)

2680 PC7)=A @ P(8)=D1 @ P'9)=R e
PC10)=E @ RETURN

2690
2700 F0(1)=PC1=2)FO(2)-P( ' G

0(1)=PC3) e G8(2)=PC4) ' PO
(1)=P(S) @ POC2)=PC6)

2710 A=P(7) @ 01=P(8) @ R=PC9) e
E=P(10) @ RETURN

2720 !
2730 FOR J=1 TO K
2740 N=10*(J(J)-1)+1
2750 IF J(J)>4 AND J(J)(9 THEN X

=RTD(FCJ)) ELSE X=F(J)
2760 PRINT USING 2770 ; J+1,P$EN

,N+93;X
2770 IMAGE 3D,X,10A,8DZ.8D



2780
2790

NEXT J
RETURN

2800 !
2810 FOR J=1 TO K
2820 N=108(J-1:)+l
2830 IF J>4 AND J<9 THEN

(J)) ELSE X=F(J)
2840 PRINT USING 2770

N,N+93JX
2850 NEXT J
2860 RETURN

X=RTD(F

ICJ)..P$E

2870 !
2880 SFLAG 1 R DISP "END FLAG SE

T" @ RETURN
2890 !
2900 MAT P=Y@ GOSUB 2700 @ RESTO

RE @ CLEAR @ DISP "PARAM RE
SET" @ RETURN

2910 !
2920 FOR K=1 TO 6
2930 B1(K)=SIN(B(K)) @ B1(K)=B1(

K)*B1(K) @ B2(K>=COS(BCK))
@ B2(K)=82(K %B2v'

2940 NE-T K fl RETU RN
950 CLP IC DI!3F "FIN:5!" e END

WHICH DATA SETS
1 MKOBSIM
3 IRTF1EM
5 SS040EM
7 AAT3MEM
9 KA034EM

11 KAO#4EM
13 00D68IM
15 OKA68IM
17 M68741M
19 M6830IM
NUMBER SETS INC

TO U
2 1
4 S
6 A
8 K

10 K
12 M
14 D
16 0
18 M
28 Mi
L U 0 E'

8
INPUT DATA SETS TO

3E?
RTF1IM
S040I1M,
RT3MIM
A0341M
A0#4IM
TS74IM
006SEM
KA68EM
6874EM
6830EM

NCLUDE

F01, F02..G01..GO2, P01,P02, a,6,
I C 1)?
1 ,..10F 0.0.0,0..11
# OF ITNS

'SAMPLE.

"I9puF PATh"

kFK.l LL6EAL8

R , E 3



REFIT9

00/00/00 00:57:47
8 PTS
INPUT DATA F,G
-27552.248 6467 766
-27542.601 6467.594
-29172.316 2185.505
19274.079 1572.403

-29179.318 2185.123
19279.851 1571.834

-27204.938 7139.871
17293.925 6643.092

VALUES OF CONSTANTS

8= 23.9467605496 DEG
P= 25.2622647306 DEG
88= 9.46826887123 DEG
PS= 45.1724131019 DEG

ITNS= 5

BEST PARM ON ITN=
1 FO-a ERROR
0 F1-a ERROR
1 GO-6 ERROR
0 G1-6 ERROR
0 P-POS ANG
0 PS-POS ANG
0 aPOL ERROR
0 6POL ERROR
1 EQ RADIUS
1 OBLATENESS

q^2 .146897734122

ERRORS
2 FO-a ERROR
3 GO-6 ERROR
4 EQ RADIUS
5 OBLATENESS

-4964.57432795
-17000.00000000

-4623.61055769
300.00000000
25.26226473
45.17241310
297 81300000
41.18500008

25262.50214480
0.01602724

6.50214745
18.15329646
6.87141651
0.00111528

ORIG PARAM
1 FO-a ERROR
0 F1-a ERROR
1 GO-6 ERROR
0 G1-6 ERROR
0 P-POS ANG
8 PS-POS ANG
0 aPOL ERROR
0 SPOL ERROR
1 EQ RADIUS
1 OBLATENESS

00:58:20 0
00:58:35 1
00:58:49 2
00:59:04 3
00:59-18 4
00:59:28 5

4. 217E
3.159E
1. 469E
1 .469E
1. 469E
1 . 469E

-5000.00000000 CORRL M
-17008.0000000099

-4900.0000000 4959-
300.80000000
25.26226473 96 43
45.17241318 085
297.81300000
41.1850000 MKOSIM

25225.0000000 IRTFIM
0.0210000 SS40IM

+002 O.00E+000 SS040EM
-001 -. 40E+001 AAT3MIM
-001 -. 40E+001 ART3MEM

-001 -. 4@E+OA1 KA034IM
KA034EM

-001 -. 40E+001

ATRIX
39 96
59 43
99 45
45 99

RESID

-. 18479
.21353
.13913

-. 11545
-. 14285

.11589
-. 02513
-800049

SUM RESIDS=- 0001596384

% OE :-7: I 191636200992

~kPLE ~T1.4

o j vy 59 : 30



Appendix C.

DERIVATION OF INVERSION METHOD

Huygen's principle can be described mathematically (Born and Wolf, 1970) by stat-

ing that the distance traveled by a light ray is always in a direction perpendicular

to the plane wave front (see Figure C-1):

di

# defines the plane wave front and the derivative of F with respect to s is the

direction of propagation, S. n is the index of refraction, which is defined as the

ratio of the speed of light in a vacuum, c, to the velocity which the ray has in the

medium, v. Differentiating Equation C.1,

vn = n (C.2)

or

vng .n. (C.3)

Now, the curvature vector of a ray can be defined

-- ds 1,
K - -u (C.4)

54



where r, is the radius of curvature (to be further defined later), V is the unit normal

vector (see Figure C-2), and S is the local tangent to the ray. From Equation C.2,

dn ds
s + n - = V -n ;(C.5)

ds ds

from Equation C.3,
dn

nK =.- n -- -s. (C.6)
de

Dividing through by n and multiplying through by K,

1 1 dn
K-K=-V-n-K- S.K. (C.7)

n nds

But K is perpendicular to 5, so the second term on the right hand side goes to

zero. Substituting in for K,

n = Vg -n - - 1. (C.8)

Since

N 2= (C.9)

then
1 _1

- = - -n -v. (C.10)

The one-dimensional analogy for this equation is

1 1 dn
- =n-- (0.11)r. n ds

Now, let us change the variable called s to r for occultation geometry, and return

to the radius of curvature. Rektorys (1969) defines the radius of curvature to be

1 r1- = 3 (C.12)
K [1 + (r)2(0
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For an occultation, r' is defined as the change in r with respect to x. The ray curve

may be approximated as a right triangle, as 9, the bending angle, is small, and so

dx tan 0 , so

dO
r" = sec 2 6--

dx
= (1 + tan2 0)

dO
dx

(C.13)

(C.14)

Using the definition for the radius of curvature,

1 (sec 2 6)' L
-= tn =Cos
(I (+tan 20)2

dO
0-.
dx

(C.15)

Equating this result for the radius of curvature to the previous one,

1 dn C dO
cos -.

n dr dx
(C.16)

The bending angle is very small, so that cos ~ 0 1.

dO

dx

1 dn

n dr

d[ln(n)]

dr
(C.17)

Solving for 0 gives

f +o d[ln(n)]dx. (C.18)
- 0 dr

Now, for convenience, let us define ln(n) = Q. A change of variables from dx to dr

must be done. By the geometry of the occultation,

x = (r2 r2) (0.19)and dx = r .
(r2 - r)i

Using another change of variables, let us define

r2 = 1 and r=2 =- 1.
W 8

(C.20)



Then

dr =dw
2rw2

Returning to the bending angle equation,

0(s)= o d Q r dr

fr d (,! ,)2

and

O(s) 2 0 (-2rw2)fS dw

dw (sw)
-2W 2 (2

(C.23)

(C.24)

(C.25)

If the scale height H is much smaller than r,, the radius of the planet, then r 0 r,

and so the square root of the ratio of s to w is approximately unity. Thus,

l 1dQ 
dwO(s) 2 m W .

odw (S - W!

We can define I(w) as the kernel function such that

S= id
%P~W) =W2 dw

(C.26)

This gives

0(s) = 2 f
I (w)dw

S *
(s - w)

(C.27)

This is an Abel integral. The solution for this is derived at the end of this appendix.

The solution is found to be

2 d
(w) = 2d27r dw I w Odso (w - s) 2

(C.28)

(C.21)

(C.22)

=-2 -r dw le d
o dw (s -w),

dw

(s-w)2

.3 dQ swI
=-2 fc (w2

ndw w



Equating the two equations for T,

( d[ln(n)] 1 d

dr ,r dw

Solving for the change in In(n) with dr,

d[ln(n)]

dr

1 d

r27r 2w 2rdr

I In(I

Ods

(w - s)2

fIV Ods0 (W - 6)2

Changing the variables back to to original variables,

d[ln(n)] r d w 0(rr,)ds

dr 27r dr o(r2 - r2)'

and finally
d[ln(n)]

dr

r d
7r dr

00 -rOdr,

Jr r2(r - r2)

Approximating r ~4 r1, then

d[ln(n)]

dr

-1 d
' r dr I 00 Odr,

r (r2-r2)1

Here three assumptions are made:

" severe ray crossing does not occur,

* n 1 1, and

* (r + r,) ~ 2R, where R, is the planetary radius.

With these assumptions, the preceding equation becomes

dn -1 d f00  Odr,
dr 7r dr (r + r, 2(r, - r)2

and so
-1 1 d

7r (2R,) dr I 00 Odr,
r (r, - r)i

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

dn

dr

(C.34)

(C.35)



Now, the refractivity v n - 1 so the change in refractivity with height is the same

as the change in n with height:

dv -1 1 d

dr 7r (2R,)- dr

Integrating this equation,

-1
du =

7r (2

and
1
7r

This is the formal inversion solution.

SOLUTION TO ABEL INTEGRAL

From Bocher, we know that

1oo

R)i d[f

1 I 7*
oo0

J 00r

Odr,

(r, - r)2
(C.36)

(C.37)

(C.38)

Odr,

(r, - r)2

Odr,

(r, - r)i

dz

(Z - X)i~ - )

where (0

(C.39)

< 1). Let there be some function 4(() that is continuous, and

has a continuous derivative. Multiply the above equation through by 4'( )d and

integrate over a to z:

z 
7

a sin pxr
(C.40)

Z z V( )dxd
a (Z - z)1 4(X-)1-(x

Dirichlet's Generalized Formula states that

bf- 
@(x, y)dydx

a a (x - y)A (b - x)A(y - a)"

b b

fbb(same integrand) .dxdy . (C.41)

sin px Je



It follows that

s(z) -p(a) = a

sin pxr[~' 'a
1 x

(z -
(C.42)

Now, the equation of interest has the following form:

(C.43)

again for (0 < A < 1). The unknown in this equation is the function p(x); if f(x) is

continuous, and f(a) = 0, then divide through by (z - x)'-'dx, and integrate from

a to z:

Lz f(x)dx
(z - x)1-.1

1

(z - x)1-A fa z

The right hand side of the equation above corresponds to the right hand side of the

previously shown relation, so that

zf (x)dx
a (z -x)-A

- .i Ai e[J
sinA~r fa J

now, taking the derivative of each side,

a z

Solving for A = ,21

f (x)dxc

(z -

1 d
p(z) = d7r dz

sin Ar [p(z) - p(a)j.

f(x)dx
I .

(Z - X)2

p()d~dx
(x - ()A '

(C.44)

(0.45)

(C.46)

(C.47)

Q'( gd 1dx
.X

_ f x M( )d
f (X) - - IS I

a (x - OA

_ az



DATE LOCATION APERTURE (m) A(/) AA(A)
Mt.
Stromlo,
Austr.

Mt. Dodaira
Japan

Mt. Okayama
Japan

1.27

0.76

0.91

0.91

good

good

good

K.C. Freeman

G. Lynga

immersion
2.2 0.4 good,

emersion
during

0.855 0.08 dawn

2.27 0.4
0.83
0.78
0.73
0.50

0.066
0.2
0.09
0.07

good

0.01

0.01

0.01

K. Meech

J. Goguen, H. Hammel

J. Elliot, E. Dunham,
D. Mink

AAT
(Sid. Spr.)

Siding
Spring,

(Austr.)

Mt.
Stromlo

(Austr.)

3.9

1.0

1.9

2.2 0.4

0.85 0.1

0.55 0.1

0.85

0.55

0.1

0.1

good

transient
clouds

cloudy
immersion,
no emersion

0.01

0.02

D. Allen

K.C. Freeman, M. Ashley

0.01 R. Baron

Table 2-1. Observations

7 Apr
1968

15 June
1983

IRTF,
Hawaii

Univ.
Hawaii

KAO
(near
Guam)

3.0

2.2

0.9

CONDITIONS DATA INTERVAL (s) OBSERVERS

* - standard UBV system



IM LATITUDE
ON NEPTUNE D *(km)

EM LATITUDE
ON NEPTUNE Dl (km)

1968

Mt.
Dodaira -40.1 - +13.8 -

Mt.
Okayama -40.5 300 +13.2 260

1983
KAO +42.4 - -3.2 -

IRTF/UH +40.5 760 - -

AAT/Sid.
Spring +32.6 5365 -7.4 5515

Table 2-2. Immersion and emersion latitudes of chords; D is distance
along limb from northernmost observation for given date.

t(1/2)
DATA UT 15 June 83 (_ _Altitude (m)

IRTF (IM)

UH 2.2m(IM)

KAO (IM)

KAO (EM)

SID. SPR.
(IM)

SID. SPR.
(EM)

AAT (IM)

AAT (EM)

MT. STROMLO
(IM)

14 24 51.1

1 4 24 50 .7

14 28 15.8

14 59 03.9

14 27 06. 9

15 00 '27!0

1 4 2 7 0 6g.6

15 00 27.2

14 27 04.9

19049 34.0

19049 34.0

16*60 50.0

17033 67.0

0 I2f
-31 16 22.0

-31'16 37.3

-35'19 14.3

-155*281 13"

-155*28'20"

-151*69' 60"

-14837' 84"

-149*03 39.4

-149'03'57'.'9

-1490 00 271.6

4100

4215

9879

9978

1150

1165

767

times.

DATA

Table 3-1. 1983 data observatory locations and half-light

(P- Earth latitude, 7 - longitude



DATA An*/n*

Table 3-2. Uncertainty in baselines and half-light times; * - predicted
from Equation 3-3.

0'(t (1/2) ) *A t (l/2) (s)



DATA lt. in) (1/2) UT 7Apri 196

MT. DODAIRA (IN)

MT.DODAIRA. (EM)

36 '00 10.2 -139'1 146!8 879 15 56 (A 25

1 5 5 6 25.65

15 56 26 8

16 41 31'

16 41 28

16 K 41 27

(Takenouchi et al.',1968)

(Hirose, 1968)

(Melroy, 1984)

(Takenouchi et al.)

(Hirose)

(Melroy)

0 I0 1 11

MT. OKAYAMA (IM) 34 34 22.8 -133 35 46.6 365 15 5654 (Takenouchi et al.)

15 56 55.5 (Hirose)

15 56 56 .7 (Melroy)

MT. OKAYAMA (EM) 16 41 51 (Takenouchi et al.)

16 41 51.5 (Hirose)

16 41 50 5 (Melroy)

MT. STROMLO (IM) -35'19 14.3 -149*00'27.6 767 15 56 29

MT. STROMLO (EM) 
16 36 46 (Freeman and Lynga, 1970)

Table 3-3. 1968 data observatory locations and half-light times.
Q) - Earth latitude, 7 - longitude

DATA Alt. (m) t (l/2) UT 7 April 1968



1968 (Kovalevsky 25225 ± 30 0.021t 0.004 8
and Link)

1968; t(1/2) from
KL, improved pole 25239 130 0.01921 0.00030 8 0.476 0.906

and ephemeris

1968; fit in radius 25239 130 0.0192 =0.0030 8 - -
instead of time

1968; t(1/2) for 25199t30 0.0188± 0.0030 8 0.643 0.826
Japan found by
Melroy

1983; changing pole
position used by 2 25259:10 0.015910.0017 8 0.1917 0.1471
uncertainty in pole

1983 + 1968; joint 25246110 0.019110.0150 16 0.462 2.138
fit

1983 (Adopted 252631 9 0.0160 20.0015 8 0.1916 0.1469
value)

Table 3-4. t(1/2) fits.

Table 3-5. Results of fit for right ascension and declination of pole.

points used 2:(re s) 2 -(sec) 2R (km) rms dev.-(sec)



Table 4-1. Atmospheric parameters assumed for inversion.

DATA LATITUDE ON NEPTUNE (dg/g0 ) 1 (Ag/g )2

KAO (IM) 42.4 0.0150 0.0005

KAO (EM) 3.2 0.0001 0.0005

IRTF/UH (IM) 40.5 0.0130 0.0005

SID. SPR./ AAT 32.6 0.0090 0.0005
(IM)

SID. SPR./AAT
(EM) 7.4 0.0005 0.0005

Table 4-2. geff, for 6r 0.0160, and g0 S 1090 cm sec-2

calculated from the two terms in Equation 4-14



time at
n = 5 x 10 13 n = 8 x 1013

14 28 15. 3

14 59 03.9

14 24 50.4

14 24 50.8

15 00'27.7

14 27 06.6

15 00 27.7

14 28"18 5

14 59'01'4

14 24 53.8

14 24 54 0

14 27 09.3

15 00 fk,25!0

14 27 09.6

15 00 24.9

14 28 -20' 5

14 59 00.0

14 245
14 24 55 3

14 24 55.4

14 27 10 8

in S,

15 00 23. 5

14 26 10 9

15k00 23 .4

14 28 27. 1

14 h58 52'9

14 25 01.1

14 25 01.5

14 27 16.9

15 00 17.3

14 27 17.5

15 00'"7'.1

Table 4-3. Number density levels (n in unj s of cm-3) at times (times
in UT on 15 June 1983). n= 10 cm~3 is best fit.

time at
DATA p= 8 X 10 4  p =103  p= 2 x 10- 3  p= 7 x 10-3

KAO (IM) 14 28 14.3 14 2S 14.9 14 28v'00 14 28A61l

K MS W\ S M ~ S hw
KAO (EM) 14 59 04.4 14 59 03.6 14 58 59.9 14 58 42.1

k S V n ', S W ,,. S
IRTF (IM) 14 24 48.7 14 24 49.9 14 24 54.1 14 25 07.5

UH 2.2m \ M, &K M S VV, a Sk S
(IM) 14 24 49.9 14 24 50.5 14 24 55.4 14 25 09.8

SID. SPR. k rA S V% S. M S rx 5I

TRM) 14 27 05.0 14 27 05.8 14 27 10.4 14 27 24.6

SID. SPR. % %
(EM) 15 00 27.9 15 00 27.3 15 00 23.5 15 00 11.8

V\ vvl T K AfW( S
AAT (IM) 14 27 05.1 14 27 05.9 14 27 10.8 14 27 27.3

k (EM) 15 0 2w 0 S 1 00 10T1T (EM) 15 00 28.0 15 00 27.3 15 00 23.4 15 00 10.9

Table 4-4. Pressure levels (p in units of mbar) at times (times in UT
on 15 June 1983). p = 10-3 mbar is best fit.

DATA n = 101 4 n = 2 x 1014

KAO (IM)

KAO (EM)

IRTF (IM)

UH 2. 2m
(ID )

SID. SPR.
(IM)

SID. SPR.
(EM)

AAT (IM)

AAT (EM)



LEVEL OF FIT R (km)
Z(res)2 (sec) 2

n = 5 x 1013 cm-3  25286 0.0180 0.154

n = 8 x 1013 cm- 3  25209 0.0167 0.140

n = 1014 cm-3  25171t7 0.0150 20.0011 0.034 *

n = 2 x 1014 cm-3  25024 0.0194 1.190

p = 8 x 10- 4 mbar 25305 0.0168 0.732

p = 10-3 mbar 25288± 9 0.0172 -0.0015 0.186 *

p = 2 x 10-3 mbar 25174 0.0169 1.057

p = 7 X 103 mbar 24940 0.0390 11.238

Table 4-5. n, p level fit results; best n = 10 4 cm- 3; best p = 10-3mbar



P-41 03 3t'br

Figure 1-1. Occultation of a star by a planet.



Figure 2-1. 1968 data chords; B = 9.5, P = 45.2



Figure 2-2.

AAT

MT. STkoHL-O

1983 data chords; B = -23.9, P = 25.3



0 t (sec)

Figure 2-3,a. Pre-color corrected Siding

Spring immersion light curve.
Start time = 14"24"30 UT 15 June 1983

Figure 2-3,b. Color corrected Siding
Spring immersion light curve.
Start time = 1424 3OUT 15 June 1983

400



W05

Figure 2-4,a. Pre-color corrected Mt.

Stromlo immersion curge.
Start time = 14 23 41 UT 15 June 1983

Figure 2-4,b. Color corrected Mt.Stromlo
immersion light curve.
Start time = 14 26 40UT 15 June 1983



Figure 3-1. Isothermal light curve



ZO' (U +
Figure 3-2, a. IRTF immersion curve, start time 14 23 00 UT 15 June 1983



FigureI3-2 S IRTF 200Figure 3-2, b. IRTF emersion curve, start time 14 53 59.996 UT



12-0
Figure 3-2, c. UH 2.2m immersion curve, start time 14 24 18.832 UT



100 -L (&4 C) -*
Figure 3-2, d. KAO immersion curve, start time 14 27 15 UT

COQ

?2 00lot)



Figure 3-2, e. KAO emersion curve, start time 14 57M409UT ± (uW.ce)-WP 200



0 /00 h
Figure 3-2, g. AAT emersion curve, start time 14 5 8 o9 ?9 98 UT

+: (4 U -s' 200



zooIDO (s)t-)
Figure 3-2, h. Siding Spring immersion curve, start time 14 26 20 OT



100
Figure 3-2, f. AAT immersion curve, start time 14 26 .9.998 UT

2o



2,00O 100 3 i. S Si emesio c , t 1 0Figure 3-2, i. Siding Spring emersion curve, start time 14 58 10 UJT



F u50 jT
Figure 3-2, j. Mt. Stromlo immersion curve, start time 14 26 40 UT (1983)



to
Neptune

Figure 3-3. The fundamental plane ( = east, = north).



camir

I- 2 * - - 1 -

Figure 3-4. Neptune projected on to the fundamental plane.



NEPTUNE

To ( , out of page
from origin

Figure 3-5. Position angle of the pole, P; Declination of Earth, B.
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2.Z1&rs)
(st)2

1469

.esiO .0 10 .00 .0150 .0;60 .6no .0010 .OIqO .0100 .On1o .0220

Figure 3-6, a. Oblateness vs. sum of squared residualsp residuals from 1983 so low that they have
no leverage in joint fit.



2.3

2.2

2.6

2.0

1.A

.11

9.1

I.S

'.-5

Z(m) '

'.2

I.1

1.0

0.1

0.0

0.1I

6.1.

0.5

0.9

0.3

0.2

0.I

25220 25230 15240 25250 25210 15S30

Figure 3-6, b. Sum of squared residuals vs. F (KM)
Radius



i=3Lj 0

1 2

Figure 3-7. Error ellipse for
pole position



Figure 4-1. Geometry of inversion equation.



I10I
r-etoj\,

vL o1

~e-ve~--e.

O~V~r~

bidl

Wavefront
initially

Wavefront emerging
from atmosphere

Figure 4-2. Ripples in wavefront caused by atmosphere leading to crossed rays.



Figure 4-3,a. Temperature
profile; T = 0 to 3009K;
height spans 500 km. A profile
started at 6.5 scale heights
back in light curve; B profile
started at 7.5 scale heights;
C profile at 9 scale heights.

Figure 4-3,b. Number density
profile; T = 0 to 300* K;
number density spans 1012 to
1016 cm-3.

Figure 4-3,c. Pressure
profile; T = 0 to 0*K;
pre sure spans 10~ to
10- mbar.



Figure 4 - 4 ,a. Temperature
profile; T = 0 to 300uK;
height spans 500 km. Iso-
thermal profile, A; B pro-
file has uncertainty in
upper baseline of 1%; C
has uncertainty of 2%; D
has uncertainty of 3%.

Figure 4-4,b. Number density
profile; T = 0 to 300"K-
number density scans 101 to
101 6cm-3.

Figure 4-4,c. Pressure
profile; T = 0 to 43006 K;
pressure spans 10- to
10-1 mbar.



Figure 4-5,a. Temperature
profile; T = 0 to 3000K.
Isothermal profile, A; B
profile has uncertainty in
lower baseline of 1%; C
profile has uncertainty of
2%; C profile has uncert-
ainty of 3%.

Figure 4-5,b. Number density
profile; T = 0 to 300 K
nu er density spans 10 2 to

Figure 4-5,c. Pressure
profile; T = 0 to 3000K;
pressure spans 10~4 to
10-1 mbar.



Figure 4-6,a Temperature
profile; T = 0 to 300'K;
Height spans 500 km; IRTF
immersion

Figure 4-6,b. Number den-
sity profile; T = 0 to 300*K;
number density spans 1012 to
101 6 cm-3.

Figure 4-6,c. Pressure
profile; T = 0 to 300 0K;
pressure spans 10-4 to
10-1 mbar.



Figure 4-6,d. Temperature
profile; T = 0 to 300*K;
height spans 500 km; AAT
immersion curve.

T

Figure 4-6,e. Number density
profiles; T = 0 to 300"K;
number density spans 1012 to
1016 cm-3.

Figure 4-6,f. Pressure
profile; T = 0 to 300 0K;
pre sure spans 10-4 to
10~ mbar.



Figure 4-6,g. Temperature
profile; T = 0 to 3004K;
height spans 500 km. AAT
emersion profile.

Figure 4-6,h. Number density
profile; T = 0 to 3000K
number density spans 10l2 to
1016 cm-3.

Figure 4-6,i. Pressure
profile; T = 0 to _00 K;
pressure spans 10~ to
101 mbar.



Figure 4-6,j. Temperature
profile; T = 0 to 300"K;
height spans 500 km; Sid.
Spr. immersion.

Figure 4-6,k. Number density
profile; T = 0 to 3000K
number density spans 10 to
1016 cm-3.

Figure 4-6,1.
profile; T = 0
pre sure spans
10~ mbar.

Pressure
to 300*K;
10~4 to



-

.

Figure 4 -6 ,m. Temperature
profile; T = 0 to 300 K;
height spans 500 km; Sid.
Spr. emersion.

T

Figure 4-6,n. Number
density profile; T = 0

- to 300 K number density
. spans IO2 to 101 6cm~ .

Figure 4-6,o. Pressure
profile; T = 0 to _00 K;
pre sure spans 10~ to
10~ mbar.



Figure 4 - 6 ,p. Temperature
prof ile; T = 0 to 3004 K;
height spans 500 km. UH
2.2m immersion.

Figure 4-6,q. Number density
profile; T = 0 to 300K
numer density spans 102 to
10 10 cm-3.

Figure 4-6,r. Pressure
profile; T = 0 to 3000 K;
pressure spans 10-4 to
10-1 mbar.



. ~ . I

T

Figure 4-6,s. Temperature
profile; T = 0 to 300'K;
height span 500 km. KAO
immersion.

Figure 4-6,t. Number density
profile; T = 0 to 3000K;
number density s ans from
1012 to 1016 cm~ .

Figure 4-6,u. Pressure
profile; T = 0 to 300"K-
pressure spans from 10~4
to 10-1 mbar.

T



Figure 4 -6,v.Temperature
profile; T = 0 to 300*K;
height spans 500 km; KAO

emersion.

nf

F I

Figure 4-6,w. Number

density profile; T = 0

to 300*K; num r density

spans from 10 to

10 6 cm-3 .

IFi I

Figure 4-6,x. Pressure

profile; T = 0 to 300*K;

pressure spans 10-4 to

10-1 mbar.
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E
cnstant

density,
C = 0.4

KL, period = 18h
0.01--1968-

Melroy, 1984

5 10 153.
., (id6

Figure 5-1. Relation between J2 , rotation rate,
and oblateness.



Figure A-1. Geometry of occultation for deriving
an isothermal light curve.



ca so A

J,)g ?la'- x

Figure C-1. Propagation of a plane wave front

Figure C-2. Geometry of ray curvature.

Geometry of occultation.Figure C-3.


