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ABSTRACT

Stellar occultations can provide information about the radius and oblateness of
planets, provided there are enough chords observed across the planet. Numerical
inversion of the light curves will give number density, pressure, and temperature
profiles as a function of height in the atmosphere. Neptune occulted Hyd —22°58794
on June 15, 1983. Five chords were observed from four locations. The previous
best observed occultation was on April 4, 1968, when BD—17"4388 was occulted by
the planet. This occultation was observed with four telescopes from three different
locations. Using half-light times from the light curves of the 1983 data to define the
limb of the planet, a total of 8 usable points were found. The radius and oblateness
were found using a non-linear least squares fit to the data. The 1983 results were
compared to the 1968 results. The best fit to the 1983 data gave R = 25263 £ 9
km and € = 0.0160 + 0.0015. This is within the error bars of the 1968 results. A fit
was also done to the 1983 data using a constant density or pressure level to define
the limb edge instead of a half-light time. The results agreed well with the result
using the half-light times. A fit for the right ascension and declination of the pole
was also performed.
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Chapter 1.

INTRODUCTION

The use of stellar occultations as a probe of planetary structure was first rec-
ognized by Pannekoek (1904). An occultation occurs when a planet passes in front
of a star. The light from the star is refracted as it passes through the planet’s
atmosphere along the line of sight to the observer. In the upper atmosphere, num-
ber density and pressure are so low that extinction effects are negligible. As the
ray from the star passes through deeper and deeper levels in the atmosphere, the
change in refractivity at each level is enough to cause a differential in the bending
angle of the ray. Since the ray is successively more delayed as it probes deeper
into the atmosphere, there is a decrease in ste]lar' flux measured from Earth. The
disappearance of the star behind the planet is called immersion, and the reverse

process is the emersion.

The plot of stellar lux as a function of time is the light curve of the occultation.
The stellar flux is normalized to full stellar flux, so that flux values range between
0 and 1. The drop in flux is proportional to the change in refractivity through the
atmosphere. If the atmosphere is perfectly isothermal, the number density varies
exponentially. The refractivity is directly proportional to the number density, so
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the flux will drop in a smooth, continuous way (see I'ig. 1-1). In fact, there are non-
isothermal features in the atmosphere which cause regions of varying refractivity.
These regions may cause higher photon fluxes than otherwise expected over a given
time interval, forming short duration intensity peaks, or spikes, in the light curve
(Elliot, 1979). Spikes can be used to probe the spatial scale of the non-isothermal

features along the limb of the planet.

The radius and oblateness of the planet can also be found. Each immersion and
emersion time defines a point on the limb of the planet. Dilferent locations on Earth
observe the planet occult the star at different chords across the planet. Assuming
that the pole position is perfectly known, there will be four free parameters: the
north and east offsets of the center of the planet from the predicted position; R,
the equatorial radius; and ¢, the oblateness. .The oblateness, or flattening of the

planet, is defined as

e=1-—". (1.1)

R, represents the polar radius. Ideally, as many chords as possible should be
included in the fit. If two occultations are observed, information about the tilt of
the pole toward or away from Earth can be obtained; this may make it possible to

also fit for the pole position.

The importance of the oblateness of a planet is its direct relationship with the
moment of inertia of the planet, the rotation rate, and J,, the coefficient of the
second order gravitational harmonic. The rotation rate was determined by Terrile
and Smith (1983) to be approximately 18 hours based on imaging data. The value
for Jo was calculated by Harris from the regression rate of the orbit of Triton. The
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momnent of inertia is a direct probe of the internal structure of the planet.

In addition to the analysis described above, a numerical inversion can be per-
formed on the light curve to obtain the number density, the pressure, and the
temperature as a function of height in the atmosphere. Comparison of different
temperature profiles at different locations along the planet’s limb can provide in-
formation about the planet’s large scale atmospheric structure. Occultations may

also be observed in order to search for rings.

Neptune is a good planet for occultation studies because it is so distant (about
30 AU) and so faint that there are very few other ways of gaining information about
it. It has only been possible to observe occultations since the development high-
speed photometry; and, unfortunately, observable occultations of bright stars with
large coverage across the planet are rare. The first occultation of Neptune with
enough coverage to find the oblateness was on April 7, 1968. The star occulted
was BD—17°4388, a 7.8 magnitude star. The occultation was observed with four
telescopes at three different geographical locations, giving four independent chords.
The analysis was done by Kovalevsky and Link (1969). The values they found for

the equatorial radius and the oblateness were

R. = 25225 £ 30 km,

e = 0.021 £ 0.004.

The pole position used was computed by Gill and Gault (1968). Observations after

this were primarily motivated by a search for rings, which gave negative results

(Elliot et al., 1981; Elliot et. al., 1984). The next Neptune occultations observed
7



were in 1981 on May 10 and May 24. Unfortunately, each provided only one or
two chords, not enough data to do a fit. Only atmospheric information could be

obtained from the light curves.

The most recent occultation of Neptune was observed on June 15, 1983. Nep-
tune occulted Tlyd-22 58794, a 10.2 magnitude star. It was observed with six
different telescopes from four locations. Chapter 2 discusses the observations. The
accuracies of the ephemeris, pole position, and time determination are significantly
improved from the 1968 data. This should lead to a better determination of the
radius and oblateness. The time defining the limb of the planet was determined in
two ways for the 1983 data. The first method, which was used for the 1968 data,
was to find the time of half stellar flux; this time has been used in the past because
it is a value that may be found in a repeatable way. The method used to find the
" time of half-light is described in Chapter 3. The results of the fit for the radius and
oblateness of Neptune are also discussed. Since two occultations were used, it was

also possible to fit for the pole position.

The time of half light does not correspond to a physically meaningful parameter
in the atmosphere of the planet. Chapter 4 reviews how a method of numerical
inversion of a light curve can give physical parameters such as number density and
pressure as a function of height in the atmosphere. Constant number density and
pressure levels were selected and the times associated with those levels were found
for the 1983 data sets. These times were used to define the limb of the planet

instead of the half-light times, and a new fit for the radius and oblateness from the

1983 data was performed.



Chapter 2.

OBSERVATIONS

The data from two different occultations were used to find the radius and oblate-
ness of Neptune. In order to find these parameters, there must be a sufficient num-
ber of chords with wide coverage observed across the planet. The timing of the
data is of great importance. Table 2-1 gives a summary of the observations. This

chapter describes the data used from the two occultations in more detail.

The occultation of BD—17°4388 by Neptune on April 7, 1968 was successfully
observed from three different geographical locations in Japan and Australia using
four telescopes. A total of eight points were obtained, with excellent separation

across Neptune (see Fig. 2-1).

The occultation of Hyd—22°58794 by Neptune on June 15, 1983 was observed
from four separate geographical locations, using six telescopes, with varying degrees
of success. The locations on Earth spanned from Hawaii to southern Australia (see
Fig. 2-2). The separation of the four locations was excellent, but poor seeing

conditions and noise resulted in the use of only three of the locations; a total of

cight points were used.

Three of the 1983 data sets had photometric problems. At Hawaii, the condi-
9



tions were fine for immersion, but emersion took place during the dawn. This caused
a non-linear increase in the background level throughout the emersion, making stel-
lar flux measurements unreliable. At Siding Spring, in Australia, there were tran-
sient clouds during immersion and emersion. The data from the Anglo-Austrlaian
Telescope (AAT), also at Siding Spring, were taken in the IR so the clouds did not
afTect those data. At the Mt. Stromlo location the immersion was very cloudy; the

emersion was entirely clouded out.

Several of the data sets were taken using two channels. One channel is centered
at a wavelength where the signal is depressed from Neptune, but is strong from the
star. An additional channel may be used as the so-called “sky channel”. There is
signal from the planet but not the star in the wavelength of the sky channel; any
changes other than noise in the signal are due to changes in the sky alone, such as

clouds or other seeing variations.

When using occultation data for the purpose of oblateness determination, each
data set must be referenced to the other data sets in order to put them in one
coordinate system. Therefore, the absolute time of cach data set must be as precise
as possible in order to translate them correctly into one plane of reference. The 1983
Kuiper Airborne Observatory (KAO), Mt. Stromlo, and AAT observations initially
had problems with the absolute timing; these were eventually tracked down to

errors in the reduction programs.

The analysis of the data requires an accurate measure of the stellar flux as a
function of time. Even transient clouds in the data will cause a problem. For the
two 1983 data sets with cloud problems, Mt. Stromlo and the Siding Spring 1
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meter, a color correction technique was used. This provides a way of removing the
effect of the clouds in the occultation channel using the information about the depth

of the clouds from the sky channel. The intensity for cach channel is modelled as
Iy = [y, +n.,¢(t)]e " +C (2.1)

Ivz = [n,,,l + ’n,z¢(t)]€ T + Cz (22)

where n;, and n,, are the background counts for each channel, n., and n,, are the
full star counts, and $(t) is the normalized flux level. That is, it is the level of star
counts normalized to full star counts, ranging between 0 and 1.0. C; and C; are

the background intensities in each channel; defining
I,=I,-Cyand I, = I, - C»,

one channel can be divided by the other. It is assumed that the cloud is a grey

absorber, so that , = 7.

L _ oy +n.,6(1) (2.3)

I; - Ny, + n,zqﬁ(t)
This relation provides no information unless the data sets are at different wave-
lengths. Solving this equation for ¢(t),

/

T, (i}') — Ny,

H(t) = —2— 2.4
() L _n*a(%) ( )

The flux as a function of time is retrieved, with the effects of the cloud essentially
divided out.
The lower baselines n,, and n;, and the upper baselines n,, +n;, and n,, +n,

must be known to use this technique. The baselines were found by averaging the
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values at full stellar flux and zero stellar flux for unclouded sections in the light
curve near the event. In the case of Siding Spring, there were sufficient amounts
of upper and lower baseline because the clouds were very transient. They were
also not very deep. The color correction worked very well on the Siding Spring
data (see Fig. 2-3). There was a problem for the Mt. Stromlo data (see Fig. 2-4)
because there was very little baseline that was not clouded out. If the baseline is
underestimated, then the resulting light curve from the color correction will not
have the cloud fully divided out. If the baseline is overestimmated, then the resulting
light curve must compensate by reflecting the clond upward, creating an artificial

intensity peak.

The color correction method has another drawback in that it introduces the

noise of both data sets into the resulting light curve:

oty =(01 +07), (2.5)

where o is the rms deviation for a given data set, and o, is the noise of the
resulting curve. The Mt. Stromlo data was very noisy initially, making the resulting
curves extremely unreliable. The clouds were so deep, and covered so much of the
immersion and emersion, that there was little true information to be obtained. The
emersion curve was especially bad; it was impossible to discern when the emersion

even began. The Siding Spring data were good enough that this was not a problem.
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Chapter 3.

OBLATENESS — HALF-LIGHT
DETERMINATION

The biggest problem in the determination of a planet’s oblateness is where on
the light curve to define the limb of the planet. If the light curve were a perfect step
function this would be easy. For bodies with a solid surface and no atmosphere,
such as the moon, the light curve is very nearly a step function when the diffraction
effects from the star are removed. For a planet with an atmosphére, however, the
limb is not distinct. This is particularly true for the giant planets, which are
presumed to be gaseous to at least a very deep level. How can the beginning of
the atmosphere be defined? Ideally, a surface in the atmosphere corresponding to a
physical parameter, such as a constant number density or pressure level, should be
used. The reliability of different inversion methods used to obtain those parameters
has been debated (Jokipii and Hubbard, 1977; French, Elliot, and Gierasch, 1978).
The parameter that has been used is the half-light time, or the time at which the
stellar flux has dropped to half its full value. The half-light level does not correspond
to any physically meaningful parameter in the atmosphere. The usefulness of the
half-light time is that it can be found in a consistently repeatable way for a given
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light curve. Baum and Code (1953) developed a model for predicting the light curve
resulting from the occultation of a perfect isothermal atmosphere. The equation
they developed contains the half-light time as a reference point. The equation

defining the curve for an isothermal atmosphere is

R X

where v_ is velocity of the star perpendicular to the limb of the planet, t is time, t%
is the time of half light, and ¢ is the observed stellar flux normalized to full stellar

flux. H is the scale height, defined as

kT

B wmyg

H (3.2)

where k is the Boltzmann constant, T is temperature, & is mean molecular weight,
my, is the mass of the hydrogen atom, and g is the acceleration due to gravity.
For an isothermal atmosphere, this will be the vertical distance over which the
number density drops by e !. The scale height in Neptune’s atmosphere is about
50 km (Rages et al.,1974; Veverka et al.,1974; Wallace, 1975). The isothermal
light curve is a continuous, decreasing'function (see Fig. 3-1). It is possible to fit
any given light curve to a model isothermal curve, and solve for v,, H, and ¢ 1.
It is immediately obvious that the atmosphere is not isothermal because spikes
are observed in the data (see Fig. 3-2, a-j). Wasserman and Veverka (1973) have
shown that the scale height found from an isothermal fit to a real light curve has
a large uncertainty if the true atmosphere has a temperature gradient. That is, an
isothermal light curve can actually be fit to a non-isothermal atmosphere with a
constant temperature gradient, and the fit will give a value for the scale height which

14



is unreliable. However, the half-light time depends primarily on the determination
of the full and zero stellar flux levels, and is only weakly correlated to the scale
height (French and Taylor, 1981); the half-light time should correspond to the same
level in the atmosphere for any occultation.

The hall-light times for the 1983 data were found by fitting the data to the
model equation for an isothermal atmosphere using a non-linear least squares fit.
The half-light times are listed in Table 3-1.

It was shown by French, Elliot, and Gierasch (1978) that the error expected in

the half-light time found from an isothermal curve with random white noise is

1

H =
o(ts) = 3.55[0—] 0) (3.3)
where
1
ny + N.Q)2
() = Eml, (3.4
My
a(t%) is typically less than 0.1 second (see Table 3-2) for the 1983 data. The true

error from random noise can be measured by the discrepancy in the half-light times
found for the data sets taken with different telescopes at the same location. The
spikes and half-light time should be identical, since the same location in Neptune’s
atmosphere is being probed; however, the random noise will be different. The data
taken from the two telescopes at Siding Spring showed a discrepancy of 0.3 second
for both immersion and emersion. At Hawaii there were two telescopes taking data
independently. In addition, at the IRTF, two data systems were used to take data
from the same telescope. Data System 1 had a small time constant, of order 0.025
second. The data from System 2 passed through an amplifier with a high, unknown
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time constant, of order 1 second. The response to signal variations was then much
slower in System 2. The noise and spikes in the curve are therefore somewhat
suppressed compared to the data from System 1. The discrepancies between the
half-light times for the immersion data for these two data sets and the UIl 2.2 meter
data set was less than 0.4 second. The 2.2 meter emersion data were so noisy that
they could not even be fit, and hence were discarded. The IRTF data were less
noisy because the data were taken in the IR. However, the discrepancy between the
two IRTF emersion data sets was 2 seconds. Several sources of error were checked;
the most probable were the effect of the uncertainty in the baseline, and the shifting
effect from the time constant. The baseline uncertainty should cause an error of
under 0.6 seconds (see discussion below). The spikes were very precisely matched to
find an absolute shift due to the time constant of under 0.25 second. These sources
of error are not sufficient to account for the observed discrepancy. Since the data
from System 2 passed through an amplifier of unknown properties, it is probable
that some effect in the electronics other than the time constant changed that data.
For this reason, the data from System 1 were used. The overall uncertainty from
random noise is about 0.4 second.

Another error expected in the half-light time is due to the uncertainty in the
baselines. This was found to be the most important source of error in the half-light
determination for these data. Since the isothermal fit program also solves for the
star and background counting rates, the uncertainty in the baselines can be found
in an empirical way for each data set. Two isothermal fits were performed on each
data set, with different amounts of baseline used in each fit. The discrepancy in
the counting rates found from the two fits is considered to be the approximate
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uncertainty. The first fit used 100 seconds of data at 0.01 second resolution. The
other used 200 seconds at 0.02 second resolution, effectively including more base-
line. Table 3-3 shows the variation in the upper and lower baselines when different
amounts of baseline are used in the fit. The background flux was normalized to the
full stellar flux, so the uncertainties for the two baselines are normalized and can
be compared. It was found that both the upper and lower baselines are known to
better than 3% for most of the data sets, corresponding to an uncertainty i}x the
half-light time of about 0.4 sccond. The IRTF emersion data had an uncertainty
of 6% in the upper baseline and 4% in the lower baseline, giving a discrepancy
in the half-light time of 0.5 to 0.6 second. The Mt. Stromlo data and one of the
KAO channels had uncertainties of 5 to 6% in both baselines. This produced an
uncertainty in the half-light time of the order of 0.8 second. The IRTF emersion
and Mt. Stromlo data were eliminated from the fit as a consequence. The KAO
set was retrieved by summing it with the other channel used, bringing the overall
baseline uncertainty down to about 3% for both upper and lower baselines. The
half-light times used in the fit for the oblateness were those found using 200 seconds
of data because they included more baseline; the overall error is estimated at 0.4
second. This is only true if the baselines are stable over the whole section used; for
the data used here, the baselines were sufficiently stable.

The half-light times from the 1968 data set were taken from the analysis done
by Kovalevsky and Link (1969). The half-light times for the Japan data sets were
those given by Hirose (1968); these differ by up to 3 seconds for the values given
by Osawa et al. (1968) and Takenouchi et al. (1968). The half light times for
the Australia data set were given by Miller (1969). Freeman and Lyngd (1970)
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quote a standard deviation of 2 seconds for the that data. The Japan light curves
were published in Kovalevsky and Link; in an attempt to find a definitive half-light
time, they were digitized and the half-light times found from a least squares fit to
an isothermal light curve. The values found (see Table 3-4) differ from the values
quoted by Ilirose by up to 1.5 second. The digitization was done from a copy of
the light curve; distortions due to the copying, and smoothing from the digitization
can account for a formal error in the time of up to 2 seconds. The uncertainty in
radius and oblateness for the 1983 data is predicted then to be a factor of 3 to 4

lower than the uncertainty for the 1968 data.

Once a half-light time for each location is found, the times must be changed
into coordinates on some reference plane. The routine RINGPREP, written by
D. Mink, was used. The coordinates used are based on Smart (1965). Smart
defines the fundamental plane as the plane through Earth perpendicular to the
line of sight from the occulting planet to the star (see Fig. 3-3). The origin of the
fundamental plane is at the center of Earth, with the n axis pointing north and the
¢ axis pointing east. The coordinates (£,,7,) of the observer as projected on the

fundamental plane will be

£ =pcosd'sinh, (3.5)

and

n, = p|cos b, sin ¢’ — sin 6, cos @' cos h]. (3.6)

In this case p is distance of the observatory from the center of Earth, ¢' is geocentric
latitude, and h is hour angle. The geocentric latitude is the latitude determined
from the center of Earth, rather than from the astronomical zenith. The hour angle

18



is the difference between the local apparent sidereal time and the right ascension
of the occulted star; é. is the declination of the occulted star.
The location of the center of Neptune on the fundamental plane is defined by

the coordinates (,,7,) as follows:
¢, = Dcosé.(Aa), (3.7)

and
n, = DAé6. (3.8)
Here D is Earth-Neptune distance, and Aa and Aé are the differences in right
ascension and declination between the star and the center of Neptune.
It should be noted that the above coordinates are time dependent. The coor-
dinates of the observer relative to the center of Neptune on the fundamental plane

will then be cvaluated at the half-light time:
AE=¢ - &, (39)

and

Anp=mn,—mn,. (3.10)

The assumption is that the half-light times correspond to points on the surface
of an oblate spheroid in the atmosphere, coaxial to the planet. A rotation of the
coordinates with respect to the projected pole of the planet must be done. The
position angle, P, is defined as the angle of the pole projected on the fundamental
plane as measured east from north (see Fig. 3-5). The coordinates corresponding to

the location of the star on the plane at the half-light times will be (u,v) as follows:

u=—Afcos P+ Ansin P, (3.11)
19



and

v=A¢sinP+ AncosP. (3.12)

The final step is to change the coordinates from the fundamental plane to the
sky plane. The sky plane is defined as the plane passing through the occulting
planet, parallel to the fundamental plane. The sky plane is expanded relative to
the fundamental plane; that is, the size of the occulting planet appears smaller at
the fundamental plane than it actually is, due to the effects of general relativity
and refraction. The gravitational field of the planet bends the starlight, as does the
refraction through the atmosphere of the planet, making the planet appear smaller.
The transformation to the sky plane corrects for the effects of general relativity and

refraction. The bending angle 8, of the rays from the star due to general relativity

is
4GMy
O.r = =, (3.13)
so the change in u will be
D
Au = 7“06,“ (3.14)
and in v will be
Dv
Av = T—HGR, (3.15)

where G is the gravitational constant, M, is the mass of Neptune, ¢ is the speed
of light, and r? = u? + v2. D is the Earth-Neptune distance. The change in v
is exactly analogous. The bending angle 0,.; of the ray at half-light time due to

refraction from the atmosphere will be

H
bref = 35 (3.16)
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and the change in u will be

D

Au =220, (3.17)
r
D

Av=—0,;. (3.18)
T

Once the sky plane coordinates are calculated, the radius and oblateness of the
spheroid can be found. A non-linear least squares method is used to find the best
fit for the parameters. The obvious method is to fit the data to an ellipse on the

sky plane, of the form

u? vl

mta=h (3.19)

where R, is the semimajor axis and s is the semiminor axis of the ellipse. The
semi-major axis is the equatorial radius. The semiminor axis will depend on the

equatorial radius, the polar radius, and B, the declination of Earth:
s? = R?sin® B + R cos’ B. (3.20)

However, flux is measured as a function of time, not radius. It would be prefer-
able to find the residuals of the parameters in termns of time, the true independent
variable. Equation 3.19 must then be solved as a function of time. The minimum
residuals in the fit will be found from the change in the predicted half-light time
as a function of the change in parameters. Table 3-3 shows the differences in fit
values, errors, and residuals for a fit in time and a fit in radius. The change in
the solutions to the fit is much less than the error bars. For this event, it does not

make a significant difference if the residuals are calculated in radius or in time.
The planct will have some offset from the predicted ephemeris position, f, to

the east and gy to the north. The parameters being fit are then fy, go, Re, and €.
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The fitting routine was tested by putting in data sets which have known solutions to
the parameters. The data sets were fit, and the convergence values compared to the
known solutions. The first set was ideal data; the parameters converged perfectly to
the correct values with zero residuals. Data from the ¢ Geminorum occultation by
Mars were tested to show the same convergence values found by French and Taylor
(1981). Data from the Uranus occultation of SAO 158687 analyzed by Elliot et al.

(1980) were also tested with the same satisfactory results.

The 1968 half-light times as given by Kovalevsky and Link (1969) were fit. Their
results were reproduced using the pole position found by Gill and Gault (1968), the
ephenieris given, and their corrections for refractivity and general relativity. The
next fit was done using their half-light times, but using the ephemeris calculated by
Standish et al. (1976), and the pole position found by Harris (1984). The corrections
for refractivity and relativity were also slightly different because a different value
for the mass of Neptune was used. The results of this fit (see Table 3-5) gave
values of R, = 25243 + 30km ande = 0.0198+0.003 . This is within the error bars
quoted by Kovalevsky and Link. The known uncertainty in the half-light time was
2 seconds; the data were changed at random by that uncertainty to find the formal
error. Their error for the oblateness is larger than that found in this fit because
they did not actually do a fit for the oblateness; they stepped the oblateness by
0.001 and found the minimum of the sum of the squared residuals when fitting for
the radius. The minimum value was at 0.021; however, since the radius is correlated
with the oblateness, the error in the oblateness was not 0.001, but much higher. In
this analysis, the oblateness was actually fit for, which eliminates that problem.
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The 1968 data were also fit using the half-light times found from digitizing
the Japan light curves and using the least squares fit to an isothermal curve. The
results give R, = 25202 - 30km and ¢ = 0.0188 £ 0.0030. The error bars were found
in the same way as discussed above. These results are compatible with those found

by Kovalevsky and Link.

The 1983 data were then fit; the results give

R. = 25263 + 9 km and

e = 0.0160+0.0015.

This value is lower than but still within the error of the value obtained with the
1968 half-light times. The errors in the parameters from the fit using the 1983 data
were found by changing each data set by the uncertainty in the half-light time, 0.4

second.

When a joint fit of the 1983 and 1968 data was done, the formal result of the
fit gave R, = 25248 + 9 km and ¢ = 0.0195 £ 0.0012. It can be seen from Figure
3-6 that the value given by the joint fit is closer to the 1968 data because the sum
of the squared residuals from the 1983 data is an order of magnitude lower than
from the 1968 data. This suggests that improvements in observing methods have
had a significant effect on the quality of data. However, it also means that the 1983
data have little leverage on the sum of squared residuals from the combined data
sets. The fit cannot be considered useful because the quality of the two data sets
is so different; for a joint fit to be truly effective, the minimum of the sum of the
squared residuals for both sets would have to be comparable. If using a non-linear
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least squares method, the proper step to take is to weight the 1983 data by the
comparative uncertainty in time; however, the residuals from the 1983 data are a
factor of four lower than the residuals from the 1968 data. Weighting the 1983 data
by ”1« would cause the reverse problem; the 1968 data would have no leverage in
the fit. Since the data sets are so small, systematic errors may have a significant

effect, so neither data set can be entirely dismissed.

The results from the 1983 and 1968 data are compatible, but there is still a
significant discrepancy. There are too few data points in either data set to make
a definitive determination of the oblateness; another occultation of Neptune with
good coverage across the planet should be observed to confirm the 1983 results.
Because of the large uncertainty in the half-light times for the 1968 data, the values

from the 1983 data are the most reliable.

It was suggested by Dermott (1984) that the uncertainties in Harris’ pole po-
sition might significantly change the values from the fit. Harris used the orbit of
Triton in his analysis. Dermott shows that the most significant uncertainty in Har-
ris’ calculation was in the moment of inertia. A new pole position was calculated for
twice the maximum uncertainty in the moment of inertia, and the new position was
used in the fit for the 1983 data. The results gave R, = 25259 km, and ¢ = 0.0159,
still within the error bars of the formal fit. Table 3-5 gives a summary of all the

fits done using the half-light times.

The position angle of the pole, P, can be found using data from one occultation.
However, the fit did not converge in a stable way for either the 1968 or the 1983 data
sets alone. Using both data sets, it becomes possible to fit for the true variables
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of the pole position, the right ascension and declination of the pole. Since B, the
declination of Earth (sce Fig. 3-5), and P are the variables used in the calculation
of the model equation, the transformation of right ascension and declination to B

and P must be known. The transformation as described by Harris (1984) was used.

The fitting routine for a non-linear least squares fit requires the function of
the change in predicted half-light time with the change in a given parameter. The
derivatives of time with respect to right ascension and declination proved to be
extremely complex in the analytical form, so the derivatives were calculated nu-

merically. The fit successfully converged, giving .
a,(1950.0) = 291.5° + 7.6,

5,(1950.0) = 34.6° + 5.1.

Figure 3-7 shows the error ellipse. The results were within the error bars of the
right ascension and declination of the pole as calculated by Harris (1984). The error
bars are much larger than Harris’, but the fact that the fit was successful indicates
that fitting more data sets might bring down the error bars to a comparable level.

This provides an independent means of locating the pole position.
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Chapter 4.

OBLATENESS — N, P LEVEL
DETERMINATION

In the first part of this analysis, the time in the light curves used to define
the limb of the planet for the purpose of finding the radius and oblateness was the
time of half stellar flux, the half-light time. Since the atmosphere is not isothermal,
this does not correspond to a physical parameter in the atmosphere of Neptune. A
better way to define the limb of a planet with an atmosphere is to use a sux"face
corresponding to some physical level in the atmosphere, such as a constant number
density or pressure level. Numerical inversion of light curves allows us to obtain
reliable n, p, and T profiles as a function of height in the atmosphere. French and
Lovelace (1983) determined that inversion profiles reflect the large scale structure
of an atmosphere. However, each data set must be tested for the accuracy of the
profiles found in the inversion method; noise and uncertainties in the data may
affect the alignment of the number density, pressure, or temperature with a given
height. For the purpose of finding a radius and oblateness, it must be known how
well a number density, pressure, or temperature found in the inversion corresponds
to the time assigned to it. The error in the half-light time determination from an
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isothermal fit for the data sets of interest is about 0.4 second. If the time associated
with a given number density or pressure level in the atmosphere can be found more
accurately than this in each light curve, then a better fit for radius and oblateness
can be obtained.

The method used to do the inversion of the light curve is the method described
by Wasserman and Veverka (1973) and French, Elliot, and Gierasch (1978). The
inversion routine was QINV2, written by R. French. The first step is to determine
the bending of the light ray as it passes through material of varying refractivity.

This can be derived from Huygen’s principle. The bending angle, 0, is defined as

6= /m dlin(n)] ,, (4.1)

- 00 dr
where dr is depth in the atmosphere and dz is along the line of sight (see Fig. 4-1).
The assumptions are that

1. light rays do not cross,

1dn . dn
2.n=x1,s0 T~ T, and

3. the depth in the atmosphere probed by an occultation is much less than the

radius of the planet.

The approximate inversion solution to Equation (4.1) is

v(r) = . / o' )dr (4.2)

(2”Rp)% e (7" - ‘r)% ’

where R, here is the planetary radius; 4, ', and dr' must be calculated from the

change in flux. If ¢ is normalized stellar flux at a given time, and D is distance to

the planet,
1 dr+Ddf dé
— = = —. 4.3
¢ dr + dr (4:3)
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It is also true, from occultation geometry, that
Ar + DAO = —vAt. (4.4)
These equations can be solved for Ar and A#:

Ar = —vAtg (4.5)

AO = —(1- ¢)”-'—?t (4.6)

Then 6 and r can be calculated from the light curve by
N N
0, = Z AO, and r, = Z AT,' . (47)
i=1 i=1

Once v(r) is obtained, number density can be solved for:

n(r) = = u(r) (4.8)

Vsrp
The refractivity at STP is evaluated for solar fractions by number of H and He, 0.9

and 0.1 respectively. The hydrostatic equation

d
—r = —Amun(r)g (49)

is integrated to find pressure, p; & is the mean molecular weight, m, is the mass
of the hydrogen atom, and ¢ is the gravitational acceleration. The gravitational
acceleration is assumed to be constant for a given inversion because the depth of
the region probed by the inversion is much less than the radius of the planet. Once
pressure and number density are obtained, the temperature profile is found using
the perfect gas law,

p(r) = n(r)kT(r) (4.10)
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where k is Boltzmann’s constant.

There are some inherent limitations in this method. One limitation is that no
information on scales shorter than the Fresnel zone can be obtained. The Fresnel
zone is defined as the scale perpendicular to the line of sight across which there will
be constructive interference. Across an area proportional to A, interference occurs
and the image is “smeared out” over this scale. This is the resolution limit of an

occultation. The Fresnel scale is defined as
R, =VAD. (4.11)

Empirically, Elliot et al. (1981) have found that the scale over which information

can obtained is more nearly

Ry = 1.71VAD. (4.12)

For Neptune, this value is about 3.4 km for A = 0.78u and about 5.1 km for

A = 2.2u. This is one-tenth of a scale height or less.

In addition, an assumption made in the inversion analysis is that severe ray-
crossing does not occur. The light from the star can be considered as a wavefront
passing through the planet’s atmosphere. The wavefront will be successively more
delayed deeper in the atmosphere. However, large fractional temperature variations
over a short scale can produce variations in number density and hence refractivity.
Ripples will form in the wavefront (see Fig. 4-2). If the length of the ripple is defined
as ;, then it is easy to see that the shorter L is, the more likely it is that rays from
the rippled wavefront will converge on each other and form crossed rays. French and
Lovelace (1983) showed that the limit on fractional temperature variations AT/T
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necessary to assunie no ray crossing is

AT orH\ 3
T () (1.13)

They show that the inversion process essentially ignores the information when se-
vere ray crossing occurs and the temperature variations do not show up in the
retireved temperature profile. This means that the corresponding number density
and pressure variations are also suppressed. Therefore it must be assumed that

severe ray crossing does not occur for the inversion to be believed.

There are other limitations to the method which will depend to some extent on
the data. One source of error is the assumption that g, the gravitational acceleration
of the planet, is a constant. In fact, g will depend on latitude, and the rotation of

the planet adds an additional acceleration:

GMy
Geyy = R(ed) Q%R(e, $) cos ¢ (4.14)

where 0 is the rotation rate, M, is the mass of Neptune and ¢ is latitude on
the planet. Approximating g as a constant will not affect the number density
determination, because g is used in the hydrostatic equation. The hydrostatic
equation is only used when finding p and T. Table 4-2 shows g.;; for each data set.
The value varies about 2% across the whole latitude range. This corresponds to an
error of 2% in the scale height in the atmosphere. Since the scale height of Neptune
is about 50 km, and the perpendicular velocity of the event is about 22 km s™!, the

error from g.;; would cause a misalignment in the time of only 0.01 second.

A more important source of error comes from the fact that the inversion must
be started at an arbitrary point in the light curve. The initial conditions, where
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0 = 0 and r = 0, are decided by the value at this arbitrary point. This point
will be subject to the noise in the light curve. In the upper atmosphere, the num-
ber density is very low; fluctuations due to noise in the upper part of the light
curve are interpreted by the inversion process as huge variations in the tempera-
ture. Wasserman and Veverka (1973) showed that, although this error propagates
through the entire inversion, the contribution is fractionally most important high
in the light curve. The first three to four scale heights in the inversion should be
ignored altogether. The resulting error that is propagated through the profile can
be checked by changing the initial conditions (starting at some other equally arbi-
trary point) and checking how the well the resulting profiles converge to the same
profile (French, Elliot and Gierasch, 1978). This may produce a significant error
in the time associated with a specific n, p, or T level before the level where the
profiles will converge. This was tested by inverting light curves at four different
points, ranging from 5 to 8 back scale heights in the light curve from the half-light
time (see Table 4-3). The profiles from the light curve were compared. Figure 4-3
shows how well the profiles for a sample light curve converged. It was found that
the profiles obtained from inversions starting from between 6.8 and 8.0 scale heights

back converged most completely. The first few scale heights of the profiles did not

3 and

converge at all, which was predicted. At levels deeper than n ~ 3 x 10%cm™
P ~ 8 x 10 *mbars the profiles converged with a discrepancy in time of less than
0.2 seconds for a given number density or pressure level. This is better than the
uncertainty in the half-light time found by the isothermal fit. The Hawaii emer-

sion sets and the Mt. Stromlo data set were not used because the baselines were

so poorly known. All profiles used in the following tests and results were inverted
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starting from 7.5 scale heights back in the light curve.

Another source of error in the inversion, as for the half-light time, is the uncer-
tainty in the baselines. To carry out the inversion, the upper and lower baselines
are assumed to be perfectly known. An error in the baseline means that the calcu-
lated change in stellar flux as a function of time will be incorrect. The fractional
error due to an uncertainty in the upper basseline will be largest at the top of the
light curve; for an uncertainty in the lower baseline, it will be largest at the bottom
of the light curve (French, Elliot and Gierasch, 1978). Table 4-1 shows how well
the baselines are known, from the isothermal fit. It is clearly critical to select the
correct number density and pressure levels for the fit. They must be far enough
down in the fit to avoid errors due to the initial conditions and the uncertainty in
the upper baseline, and high enough to avoid the error due to uncertainty in the

lower baseline.

The error due to uncertainties in the baseline is an important one in the in-
version. Tests were run to predict the uncertainty in time from the inversion. An
isothermal light curve with a scale height of 50 kin and a perpendicular velocity of
22.5 km s~ ! was tested first. The upper and lower baselines were varied by 1, 2, and
3%; the lower baseline was normalized to the full stellar counts so that changes in
one bascline are comparable to changes in the other. Figure 4-4 shows the result-
ing profiles. An error in the upper baseline causes a divergence from the expected
curve high in the profile; below the n = 9 x 10® cm™® and p = 9 x 107* mbar
levels, the profiles converge to better than 0.01 second for a given number density
or pressure. An error in the lower baseline causes the profile to diverge at levels
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lower than n = 2 x 10" cm ® and p = 10 ® mbar; there is a minimum, then, when
the error from the upper baseline is becoming less important and the error from the
lower bascline is just starting to become important. Based on an isothermal light
curve, this minimum occurs at n = 10" cm ® and p = 10 3 mbar. The half-light
time for an isothermal atmosphere, at a planet of the size and distance of Neptune

3

and a scale height of 50 km, occurs at approximately n = 4.3 x 10!* cm 3, so this

corresponds to about 0.85 scale heights in the atmosphere after half-light time.

Other tests were run on the true data, varying the baselines by 1, 2, and 3%.
The resulting profiles agreed qualitatively with the results from the isothermal tests.
However, the true convergence for the profiles was not as good as those predicted
from the isothermal tests. This was expected, partly because the true data have
noise, and partly because the atmosphere is not really isothermal. The number
density has an uncertainty in time of about 0.25 second, for the n = 10cm™3
level; the p = 10"° mbar level has an uncertainty of 0.4 second, comparable to the
isothermal fit. The results of the isothermal tests had indicated that the pressure
may not be as good a parameter as the number density, and this result was also
confirmed by the profiles. The error from the upper baseline overlaps with the error
from the lower baseline so that the minimum of the two effects still produces an
error of 1 second or more. This agrees with the theoretical result of French, Elliot
and Gierasch (1978); the pressure is integrated from the number density, so the
effects from the initial conditions are weighted more farther down in the light curve
for pressure. This weighting brings the error due to the initial condition farther
down into the profile than for number density. The error from the upper baseline

does not begin to drop off until the error due to the lower baseline begins to be
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important.

The number density levels selected for the fit were 5x10'%,8x 10!, 10! and 2x
10"cm 3. The times associated with these levels for each data set and the results
from fitting each level for radius and oblatencss are summarized in Table 4-3. The

best result was found using the n = 10"*cm 3 level:
R, = 25171 + 7 km and

e = 0.0150 £ 0.0011.

This agrees well with the results from the half-light time fits, and the best fit is
just at the level predicted from the tests of the isothermal curve and the true data.
The fit at this level was significantly better than the fit using the half-light times.
Actually, the change in the radius and oblateness found at each level shows that
the true crror bars are much higher than the formal ones quoted. This method is
still useful and could give good results with more data sets.

The pressure levels selected were 8 x 1074, 1073, 2 x 1073, and 7 x 10~ 3mbar.
The times for these levels are listed in Table 4-4. All of the results were worse than
using the half-light times. The best fit was for the at 1073, as predicted from the
tests:

R. = 25288 + 9 km and

e = 0.0172 £ 0.0015,

agreeing well with the half-light time fit and the best number density fit. The fit
was a factor of three worse than using the best number density level. For this data
set, number density is a better physical parameter than pressure to define the limb
of the planet.
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Chapter 5.

IMPLICATIONS AND CONCLUSIONS

The light curves from the 1983 occultation of Neptune were used to find the
radius and oblateness of Neptune, using the time of half-light to define the limb
of the planet. These data have much lower uncertainties in time than the 1968
occultation used by Kovalevsky and Link (1969), leading to a more accurate deter-
mination of the radius and oblateness. The 1968 data were re-analyzed using the
half-light times used by Kovalevsky and Link, but with an improved ephemeris and
pole position (Harris, 1984). The oblateness found using the 1983 data is marginally
consistent with the values found by Kovalevsky and Link. It is somewhat more con-
sistent with the re-analyzed 1968 data. The 1968 data had such large uncertainties

in timing that the 1983 results are more trustworthy.

The importance of the oblateness is that it is, to first order, directly related

to the rotation rate of the planet, {1, and the coeflicient of the second order zonal

harmonic, Js:
30?2

e (5.1)

3
= =J
€ 22+

where G is the gravitational constant and 5 is the mean density of the planet. The
unknowns in the above equation are {1, Jy, and ¢; each may be independently
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determined. The uncertainty in the mean density can be ignored in this approxi-
mation because it depends only on the mass, which is well known, and the radius
to the third power. The latest value for the rotation rate is 17.8 -+ 0.1 hours (Ter-
rile et al., 1984). This value was obtained from observations of markings on the
planet with time (Smith et al., 1979). Neptune’s J» was found by Harris (1984) to
be 0.0043 £ 0.0003, assuming the mass ratio of Triton to Neptune is 0.00128. If
Triton is actually much less massive, then the Js is 0.0037 £ 0.0002. The previous
best value for the oblateness was 0.021. These three values are not very consistent
(see Figure 5-1), but it was uncertain why. It has been shown in this analysis that
the uncertainty in time in the 1968 data is so great that the oblateness from that
data is not very reliable. Dermott (1984) has shown that a rotation rate of 17.8
hours, a J; of 0.0041, and an oblateness of 0.017 lead to a self-consistent model of
Neptune. This is in very good agreement with the result found using the 1983 data
(see Figure 5-1).

The oblateness, combined with J, and the rotation rate, can provide information
about the internal structure of the planet. The Darwin-Radau relation gives the
moment of inertia around the polar axis, C, for a given oblateness and J,, provided

those values are small and C is large:

3 C 12 4 5m
[1 B §MR2] B (%) (‘2? B 1) (5:2)
where
%R3
m =S (5.3)

For a solid, homogeneous sphere, the moment of inertia is 0.4. Zharkov and Trubit-
syn’s (1978) two-layer model, with a homogeneous core and homogeneous mantle,
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predicts a moment of inertia of 0.25. Figure 5-1 shows that this model agrees with
Kovalevsky and Link’s oblateness, but not with the observed J, and rotation rate.
The value for the oblateness found from the 1983 data is quite consistent with the
rotation rate and J., but the two layer model no longer explains the data. Hub-
bard and MacFarlane (1980) have calculated a more condensed, three-layer model
which is marginally consistent (Hubbard, 1984) with the preliminary value for the
oblateness found by Hubbard et al.(in preparation); however, it requires that the

rotation rate be 13.7 hours, which is not supported by data.

The oblateness found from this analysis of the 1983 data are the most consistent
with other data. The results indicate that Neptune is less centrally condensed than
the previous best model, the Zharkov and Trubitsyn model, predicts. A new interior
model is needed. It is interesting that the moment of inertia for Neptune, about
0.28, is significantly different from that deduced by Dermott (1984) for Uranus,

0.20. This suggests that the interiors of Neptune and Uranus are very dissimilar.

A numerical inversion of the 1983 light curves was performed to obtain the num-
ber density, pressure, and temperature as a function of height in the atmosphere.
Tests were run using isothermal light curves to determine how well a given time in
the light curve corresponds to the number density or pressure level assigned to it
by the inversion process. The uncertainties in the baselines were found to be the
largest source of error in the inversion process for this data set. An error in the
upper baseline will cause a large initial uncertainty in the number density, pressure
and temperature profiles; an error in the lower baseline causes a large uncertainty
deep in the profile. The location in the profiles which correspond to a minimum
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in the uncertainty from combined errors in the upper and lower baselines is about
0.85 scale heights in the atmosphere deeper than the level at the half-light time.
This result, found in the isothermal test curves, was confirmed in the true data.
Several fits for radius and oblateness were done, using a variety of number density
and pressure levels to define the limb rather than the half-light time. The levels
were selected to scan across the region of the predicted minimum uncertainty in
time; the lowest residuals for the fit were found at the levels predicted by the tests.
These levels are the n = 10cm™2 and p = 10 *mbar levels. The values for the
oblateness found using these fits agree well with the value found using the half-light
times from the 1983 data. The residuals from these fits indicate that using the ap-
propriately chosen number density level to define the limb is a more accurate way
of finding the oblateness than using the half-light time; the constant pressure level

method is comparable to the half-light method.

The pole position was also found using the data from both the 1968 and 1983
occultations. The error ellipse is not consistent with the value for the pole found by
Harris (1984) from the regression rate of Triton’s orbit; however, the uncertainties
in the parameters found from the fit using the occultation data are probably greater
than the formal errors found from the fit, because of the large uncertainty in time

of the 1968 data. At this time Harris’ value is certainly the most accurate.

Another step that may be taken with the 1983 data is to check the correlation of
spikes found from light curves probing different locations along the limb of Neptune.
A correlation would indicate that the spikes are being formed from some large scale
horizontal feature in the atmosphere, such as a layer. Preliminary analysis indicates
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no correlation of spikes, in contrast to the results of French et al. (1983), which
indicate possible global atmospheric layering. The lack of correlation suggests that
the spikes may be formed by turbulence or some other non-isothermal process. A

thorough analysis would be useful.

The values found for the radius and oblateness of Neptune from the 1983 data
are a significant improvement from the 1968 data. It is unfortunate that the un-
certainty in time for the 1968 data is so high so that a joint fit of both data sets
was not useful. Another occultation observation with good timing accuracy and
wide coverage (at least three chords) across Neptune would further improve the
oblateness, and constrain the interior models to a greater extent.

In addition, new data could be combined with the 1983 data to obtain a good
pole position. Data from several occultations, with widely different aspects of the
planet, would give a good enough determination to provide an independent check

of the dynamical determination of the pole position.

39



REFERENCES

Baum, W. A. and Code, A. D. 1953 A. J., 58, 108-112

Born, M. and Wolf, E. 1970 Principles of Optics, Pergamon Press, New York
Dermott, S. IF. 1984 Phil. Trans. Roy. Soc. Lond. A., in press

Elliot, J. L. 1979 Ann. Rev. Astron. Astrophys., 17, 445-475

Elliot, J. L., Dunham, E., Mink, D. J., and Churms, J. 1980 Ap. J., 236, 1026--1030
Elliot et al., 1981 Nature, 294, No. 5841, 526

Elliot et al. 1984 in preparation

French, R.G.. Elliot, J. L., and Gierasch, P. J. 1978 Icarus, 33, 186-202

French, R. G., Elias, J. H., Mink, D. J., and Elliot, J. L. 1983 Icarus, 55, 332-336
French, R. G., and Lovelace, R. V. E. 1983 Icarus, 56, 122-146

French, R. G., and Taylor, G. 1981 Icarus, 45, 577-585

Gill, J. R. and Gault, B. L. 1968 A. J., 73, 595

Harris, A. 1984 proceedings from conference

Hirose, H. 1968 [AU circ. No. 2068, 22 April 1968

Hubbard, W. B. 1984 proceedings from conference

Hubbard et al., (in preparation)

Jokipii, J. R. and Hubbard, W. B. 1977 Icarus, 30, 537-550

Kovalevsky, J. and Link, F. 1969 Astron. Astrophys., 2, 398-412

Miller, M. J. 1968 IAU circ. No.2067, 18 April 1968

Mink, D. J., Klemola, A. R., and Elliot, J. L. 1981 A. J., 86, 135-137

Osawa, K., Ichimura, K., and Shimuzu, M. 1968 Tokyo Astron. Bull., Second Series,
No. 184

Pannekoek, A. 1904 Astron. Nachr., 164, 5-10
Rages, K., Veverka, J., and Wasserman, L. 1974 Icarus, 23, 59-65
Smith, B. A.,Reitsema, H. J., and Larson, S. M. 1979 Bull. AAS, 11, 570

Standish, E. M., Keesey, M. S. W., and Newhall, X. X. 1976 JPL Technical Report
32-1603

Takenouchi, T., Tomita, K., and ‘Hirayama, T. 1968 Tokyo Astron. Bull., Second
Series, No. 183

40



Taylor, G. 1970 Mon. Not. R. Astr. Soc., 147, 27-33

Terrile, R. J. and Smith, B. A. (in preparation)

Veverka, J. Wasserman, L., and Sagan, C. 1974 Ap.J., 189, 569-575
Wallace, L. 1975 Ap. J., 197, 257-261

Wasserman, L. . and Veverka, J. 1973 Icarus, 20, 322-345

Zharkov, V. N., and Trubitsyn, V. P. 1978 Physics of Planetary Interiors, Pachart
Publ. House

41



Appendix A.

DERIVATION OF ISOTHERMAL LIGHT

CURVE

First define the scale height, H, such that

kT
pmyg

H= (A.1)

where k is Boltzmann’s constant, T is temperature, & is mean molecular weight,

m,, is the mass of the H atom, a g is the gravitational acceleration. The
refractivity v for an isothermal atmosphere is
—(r - ro)]
V=uvy, exp|—— A2
o oxp| = (42)

where v, is the refractivity at the top of the atmosphere, 7, is the height in
the atmosphere, and r is the distance from the center of the planet to a given
point along the ray (see Figure A-1). See Appendix C for the derivation of the

bending angle due to refraction in the atmosphere; it will be assumed that it is

known that
+00 du
e_/_°° = ds. (A.3)
Now,
v —v —(r —1,)
- F exp[ i } dz; (A.4)



see Figure 4-1 for the inversion geometry.

22 =7 - r’ and (A.5)
(r—r)=(r—r)+(r,—r). (A.6)
Sincerxr, = r,
22 =(r—r)(r+r)=(—r)2r (A.T)
and so
22
-r)= —. A
r-r)~ = (48)
It follows that
2
z
(T’ - To) = 27 + (Tl - 'ro) 3 (Ag)

and the bending angle equation becomes

2

20 (r, — ro)] /’+°° [ —z ]

6 = q exp{ T | exp ol dz. (A.10)

Integrating this gives

2 [mr H)? —(r, — 7o)
o= 75| [T (4.11)
Now, we will define
- ¢* 1

= —= - A.12

where ¢* is full stellar flux, normalized to be 1, and ¢ is the flux at time t.

From geometry it can be seen that

p=1- D(%Q and (A.13)
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& =D s0 (A.14)
s-1+22 (A.15)
H
Also from the geometry,
b _ [1 - i] o (A.16)
dt ¢ D

D is the Earth-Neptune distance, and v_ is the perpendicular velocity of the

event.
do . D do
—(R = EZi—t and (/117)
d(} v, 55— 1
Frial T] (4.18)

This can be separated into two integrals over g?> and t, and integrated from the

time of half stellar flux, where ¢ will be 2, to any b

~

¢ QS ~ v t
/2 =g A dt. (4.19)
Integrating gives
d-1)-(2-1)+h(p—-1)-In(2-1) = ;I—'L(t—t%) (4.20)

and so, substituting ¢ back in,

1 1 v,
(-2 ;-1 =F~-t). (4.21)
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Appendix B.

OBLATENLESS FITTING PROGRAM

1@ ' REFITD 3-6.332 JLE. KJM MOD
IiIED BY PAM 31512 198:2-8,2
21

28 ' [0 IM DEG. INTERNAL CALC

InN RAC

)

49 CLERR

S8 COM F1.G1.F2,G2.01.#

69 OPTION BRSE 1

79 RAD

89 OIM B(6).PB(E)>,B1¢6),B2(6?

99 R=297.313 @ D1=41.18S

199 %RLL “FITPOL" ¢ R,D1,B¢(>,PacC
Y )

118 GOSUB 2929

120 R=2522%5 ® E= 821 # (9
1459833E-5 @ H=58 !

m3/CA2

[

=7.6475
9=GM(ne

148 OIM F1(20).G1(28)>,F2¢203,62¢
28)>,T0(20),21(28>,22¢208>,23¢<
20),24¢(29),25(28)>,26(28>

150 DIM 1<(18),J(18)>,P(18),Y(18),
D1¢20,108>,A(10,18),X(13),¥1¢
18>,E(18),R1(28)>,RA(208)>,F(18
>

168 DIM T<(28>,T1¢(28,,72¢(298>

179 DIM D<C2),F08(2),G0(2)

189 FB(1)=-580@ @ GA(1)=-4900 @
Fa(2)=-17009 @ (3(2)>=300

199 D(1)=4376337080 @ D(2>=44178
37609

208@ DIM C3C19],0$C4], M$CS1.C13C1
7],P8sL601, PO$C49],PsC188].2
18C771,223C633,2%0140]

218 C$="COMPLETE"” @ D$="DATA" @
M$="MODEL" @ C1$="----COMPUT
ING———="

229 P23C1,.681="Fv-a ERRORFi-a ER
RORGA-5 ERRORG1-5 ERRORP-POS

ANG P2-P0OS ANG"

230 P3sC1.4081="aPOL ERRORAPOL ER
RORER RADIUS OBLATENES3"

249 Ps$C1,188]1=P83$%PIS

258 Z13C1,771="MKOBSIMIRTF1IMIRT
F1EMSS5840IMSSA4BEMRATIMIMART
3MEMKAO34 IMKAOI4EMKAO#4 IMKAOD
#4EM"

268 Z2¢C1,K31="MT574IMOD053IMDOD
68EMOKAEBIMOKRG3EMMES74IMMER
74EMME3IAIMME33BEM"

270 ZsC1,1401=21%%22%

289 !

299 DATA -27552.2475,-27542.601.,
17752.947,-29172.316,13274. 9 ,
v9,-29179.3175,19279.8585 55

389 DATA -27264.938,17293.925,-2
7227 .487.,17286.762.,-29233.02

84
319 DATA -41323.3948,5300.2855
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429
438

449
451

DATH -41385.75693 ;3693. -
48416 .7411,175% . 954, -4 ?
411,1759.954 —~
MAT RERD Z1

DRTH 24 .67.24 ©B7.24.912.24 2

941 24 21925.24 .2241.24.219

DHTH 24 272,24 .267.24 272,24
267,24 .285

DATA 17.422,17 .45.1
45,17 . 442,17 .457.17

i3 ; 4|
MAT RERD 22

DARTH 646?.?662:646?.594,564£w

.479,2185.5085.1572 . 483,2185.
123.1571.834

DATH 7139 .871.66432 692,714
151,6543 .69, 1745 . 737

DATA 1124 .4497.-11273.35652
DATR 889.8675.,-11589.1387.-5
8@l .2434,-16936.2153,-5801 .2
434,-16386.2153

MAT RERD 23 -

DRTA - .4296,-.4296.~-_.44865, -
.2959.-.31742,~-.2953,~- 31742

DATR -.385.-.317,-.385,-.317
I B 295

DRATA -4 .528.-4 . 622.-4 .587.-4
.611,-4 617,-4 . 639,-4 . 617,-4
.839

MHT RERD 24

DRATH SB.71163,51.1124,1934 . 9

626.186.92945,2127 .08478, 1836
.B247.,2187.21891

DRATA 255.753314.,2193.983344,2

54 82,2183 .586,184 88277

DATA 385.5.2783.,115.5.2811.5.

83.2585.89.25486 —
MAT RERD Z5

ON KEY# 1."DRATA" GOSUB 6oa
ON KEY# 2,"ST FIT" GOSUB 238
ON KEY# 3,"EMD FIT" GOSUB 28
8

3 OM KEY# 4."RST PRM" GOSUB 29

aa

ON KEY# 3."PUNT" GOTO 23354
CLEAR ® KEY LABEL

GOTO 578

i

]

CLEAR ® DISP "WHICH DATA SET
S TO USE?"

FOR J=1 TO 28 STEP 2

DISP USING 636 ; J.Z2%CJ%7-5.
JX7X. J+1, 280 CI+10%7-65, (J+1 0%
7]

IMAGE 2D.2X.,2AR,3X.20,2X,8A
NEXT J

DISP "NUMBER SETS INCLUDE":@
INPUT IS
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~ S
TR
SO

=4 =
Tvin

=)~

QX
&

8ge
2% 1%

2918
&z9
a3z
949

258
S60
978
S8
958

1404
1918
1228
1838
1848

1958
185
1978
183a

-
[\
Lo
(]

b b b b e
s e b gt pea
T pWMN —~-®
S D3 98

REDIM Ze{IS>

01=8

ODISP “INPUT DATA SETS TO INC
LUDE"

FOR K=1 TO 13

INPUT Z6cK»@ IF Z2BC(K»<12 THE
N 01=01+1

NEXT kK
REDIM F

1 (IS».G
20135, 7Ta
!

(KX

CISa CISx,F2
CISS

K1l=8

FOR J=1 TO 29

FOR K=1 T0O IS

IF J=Z6¢K)> THEN SFLRAG 16
NEAXT K

IF NOT FLAG{(1@) THEN GOTUO 3%
)

Ki=K1+1

F1<K1=21(J>» @ F2(K1>=
B GI{K1>»=23(J) @ G2(K1
>R OTBCKL12»=25C4)

CFLAG 1@

NEXT J

CLEAR ® DISP D3$&“ "“&%C$ @ KEY
LABEL @ RETURN

]

]

CLEAR @ DISP "“PARM TO FIT"
DISP “FB1,FB82,GB1.G862,P01,P8
2,2,8,R.E"

MAT INPUT I

DISP “# OF ITNS" @ INPUT NS
M=1

FOR J=1 TO 1@

IF I¢J)#0 THEN REDIM J(Mi@ J
(MY=J @ M=M+1

NEXT J

!

Né M~-1 B S523=33R(I5-N3>
PEDIM DLCIS. N3, RACNILNIY. YL
(N33, JONS,RICIS) . RACISH. T
I53, T1CISHY, T201S)

GOSUB 267@

MAT Y=P

]

!

PRINT ..TAB(123; "NEPTUNE" ®©
PRINT TAB{4); "RADIUS—-0BLAT
ENESS JOINT FIT®

PRINT TAB(12); "REFITS"
PRINT .,DATE$%" “4TIMES @

PRINT VAL$(IS)&" PTS"

PRINT "INPUT DRTA F,G"

FOR J=1 TO IS

PRINT USING 1158 ; F1<¢J3.,G1
€J)

IMAGE 7D.3D,4X%,7D.3D

NEXT J
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123
1248
1258
1268
1278
1288
1290
1388
1318

1328

1338
1348
1350
1368
1378

——
(NN
Y0
DE

1404
1418

1421
1438

1448
1458
1468

14708
1488

1439

PRINT ® PRINT “WALUES OF CO
MSTANTS" ® PRINT

XG RTOCBC1)y @ X¥=RTDIPBC12
AB RTDCBC22: ® KI=RTOwPB(2)
PRIHT "B= "iVALPLREIR" DE
G" @ PRINT "P= "IVALECKT
&II DE':“

PRINT "Ba= "SVAL$C KRB D
EG" @ PRINT ”PH‘ "SVAL$ K
Soe" DEG"

PRINT @ PRIMT "ORIG PARAM®
@ K=13 @ REDIM F(K)@ MAT F=
Y@ GOSUB 2818 @ PRINT

I

!

DISP TIMES$:;C1$ @ RA=INF
FOR N2=1 TO N5

]

FOR J=1 TO IS

a=1

IF J>01 THEHW @=2

B1=B1{(Q>» @ B2=B2(Q) @ B3=B1
(QA+22 B B4=B2(R+2) @ BS5=Bl¢
@+4) B B&=B2(Q+4>

P=PB(G) @ P2=PBC(RA+2) B P3=P
BiQ+4)

D=D(Q)> @ F=FB(R)> @ G=GB(E>
U=G1<J2-G @ V=F1(J>-F
RE=UXU+UXY @ X,R7=5QR(R6E>

]

FOR K=1 TD 3 ® 2=1+4%D%GI/R
6+H/R7 @ R7=2%X @ R6=R7¥R7
@ NEXT K
|
A1=SINCP) @ A2=COS(P) B %1
SIN(P2» @ X2=COS(P2) B Wi=
INEP3) B W2=COSC(P2s
U=Z%U @ Y=Z%Y @ ULl=Z¥G21J)
@ Y1=Z¥F2¢J)
U2=UXA1-V¥A2Z @ Y2=UXA2+V¥AL
R UZ=UL1¥A1-V1XAZ @ Y3I=U1XA
2+Y1%A1
L=B1+(1-E>%(1-E>%B2
C1=U3~2%L+Y3~2 R C2=U3*U2%L
+Y3XY2 B C3I=(U2+RI¥CU2-RI¥L
+2+2 @ A3=C2~2 @ R4=C3~2
T(I)=TRCII~C3/C2¥022-C1%A4/
CBXAIXC2)
IF 1¢7)=0 THEN GOTO 1508
U4=U%R1-VXXZ B Y4=UXK2+LEX1
® US=UL1XX1-Y1%¥X2 ® YS=U1%¥
2+ 1%X1
L1=B3+{1-E %(1-E %B4
Y1=US~2%L1+V5~2 @ Y2=USkU4x
L1+VSkY4 B Y3=<U4+RI¥CU4-R)
KL1+U442 @ R3I=Y242 B K4=Y3~
2
T1¢J)=TACII-Y3/C2%12)-Y1%X4
/(8XAIEY2)
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-
-~ =~
[N]
[y

-
=~ g -
=R W N e

0 ®

—
=4
o QDo X

-
[ v (RN ]

IF 1(3%=89 THEN GQTO 1S5S4
US=UXW1-VkWZ ® VYS=URN2+ViEW1
B U7=U1XW1-V1XW2 @ YU7=U1%W
2+Y1%W1
L2=BS+(1-E+k(1-E B
Z1=U7~2%L2+U7~2 B Z2=UTxUsX
LZ+V7XWE B Z3=(LE+RIXCUS-R)
¥L2+Ye~2 @ W3=Z22+2 @ W4=Z23~
2
TE(J)=TB(J)-23/(2222)—211N%1
ZCBRW3IXER
AS=C2XA3+C1KC3D 7 {2%C24A3) @
HE=C(4XC3IXA3+3XA4%C1 ) - {B%R3
~2) B AP=A4/(4%XC2%A3)

!

IF FLAGC2> THEN GOTO 13S@

N .

M=1 | Fa1 \
IF IC1>=@ THEN GOTD 1549
IF @=2 THEN D1¢J,M»=3 @ GOT

0 1638

D1(J, M)=2%(-(ASX{LXUZXAZ-U2

¥R1OI+AGK(LXUIXAZ-YIXALY)

M=M+1 | FB2

IF 1<(2>=8 THEN GOTO 1686

IF @=1 THEN Di1<(J.M>=0 @ GOT

0 1678

D1CJ, M)=2%(-(ASK(LXU2XA2-V2

¥A1DHD+A6K(LXU3XAZ2-V3I%XAL D

M=M+1 | GA1

IF I(3»=8 THEN GOTO 1729

IF @=2 THEN D1<¢J.M>=8 @ GOT

0 1718

D1¢J.M=ZXCASK(LXUZXRAL+V2XA

2)-A6KCLAUSXAL+Y3IXAR2Y)

M=M+1 | GB2

IF I<{4>=0 THEN GOTC 1754
IF @=1 THEN O1c¢J.Mr=a B GOT

0 1759

D1¢J.Mr=2Z%CASKCLXUZXAL+UZ %A

SI-REXCLAUIXAL+YIEAZ D

M=mM+1 1 PA1

IF I¢53»=8 THEN GOTO 1389

IF =2 THEN D1<(J.M>=8 @ GOT

0 1798

DlCJ,Mrx=CL-10%C-{ASXLZXU2)+

REXCUIRVZ+UZHXVII-A7XUIEYI

M=M+1 | P@A2

IF I{s =8 THEN GOTO 1348

IF @=1 THEN D1<{J.Mi=8 @ GOT

0 1331

D1 Mr=CL-1)%(-{ASKUZKY2 2+

HeX(UZXVZ+UZXVI)I-ATXUSERYI)

M=M+1 | «

IF I<(7>=0 THEN GOTO 1379

gl(J;Mb=(T(J)-T1(J))fDTR(—.
)

M=M+1 | §

IF 1(8»=8 THEN GOTO 19599

Dl JdsMo=(T(I>=-T2¢(Iy>/DTRC~
53
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el ol el
D mAan o0

Tl BN S
DI IO

.
\OWnLo
.\‘
[ay]

M=M+1 ' R

IF I<{2%=8 THEHW GOTO 1239
DI1<J.MO>=ASkEXL

M=M+1 ! E

IF I{18»=@ THEN GOTO 1354
D1CA.MI=1-E)¥B2XCASE UZ+RD
¥CUZ2-RI1-2¥AEXUIXU2+ATEUZ~2
NEXT J

1

IF FLAG?2> THEN CFLAG 2 @ G

0TO 2298
]

MAT A=TREN<D1>%D1
MAT R1=T3-T

MAT X=TRN(D1)>%*R1
MRAT Y1=S¥Y5{(A,¥>
MAT A=INV(A>
R1=FNORMC(R1>

!

R2=R1%¥R1 @ IF R1<R® THEN RO
=R1 @ N9=N2-1 @ MAT E=P& MA
T RB=R1

1

FOR J=1 TO N3 @ PCJCJ)I=P(J
CJII+Y1(J) @ NEXT J
i

GOSUB 27@4d

IF N2=1 THEM R3=R2 @ R4=R3~
CIS-N32

PRINT USING 2138 ; TIMES$,N2

-1,R2.,(R2-R3>/R4 @ MAT DISP
i

IMAGE 8R.2D.,X.0.3DE.X.D.20E
I

IF FLAGC1» THEN GOTO 2264
IF I<(7)=@ AND I¢(8>=6 THEN G
070 2239

A=RTD<A} & D1=RTDCD1>

CALL "FITPOL" ¢ A.DL1.B<),PB
Cr 2

LOSUB 23z@

!

NEXT N2
1

N2=N2-1

CFLAG 1 @ DISP M$ ® SFLAG 2
@ GOTO 1289

]

MAT R1=TA-T@ R1=FHORM(R1)>

IF R1<R®@ THEN MAT E=P& N9=N

2 B FBA=R1 @ MAT RA=R1

R2=R1XR1 B8 PRINT USING 2138
i TIME$,N2,R2.(R2-R3)/R4

!

S1=R8B-S3 B MAT P=ER® REDIM E

(N3)>® GOSUB 27@a

FOR J=1 TO M3 ® E(J>=1/SBR(

R(J,Jdd3 @ NEXT J

FOR J=1 TO M3

FOR K=J TO N3
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2369
2378
238n
2339
24064
2418
2421
2438
2448
2454
2464

2470
2439

2494
2509

2518

2529
25308
2548

2558
2564
2578
2584

2594
2668

2618
2628
26308
2649
2654
411"
2678
2588
2690
2799
2719
27208
273a
2749
27359
2768
277e

R=ECJIIXKECKD

RCI KO=RCD. KI %Y CoRRELATION

;F J=K THEN 2429 :
(K, J)=ACK. JD%X

NEXT K MATRIX
ECJI=51,E(JD

NEXT J

]

]

MAT A=(198)%A

FOR J=1 TO N3 @ RCJ. 1>=39
NEXT J

(=

PRINT ,,.TAB{(S);"FIT RESULTS
“&DATES$&" “&TIME#

PRINT "ITNS=";N2

PR;NT »:"BEST PARM ON ITN="

iN

K=18 @ REDIM F{(K>)® MAT F=P@

GOsSuUB 2818

PRINT ,."o~2";RO%RA

PRINT ,.,"ERRORS"

K=N3 ® REDIM FI{K>® MAT F=E®

GOsSUB 273e@

PRINT ,."CORRL MATRIX",.

MAT PRINT USING "M2Z" ; A

1

PRINT 2 PRINT "OBS K
ESID" @ PRINT

FOR J=1 ToO IS5

PRINT USING 2618 ; Z$LZ6(
¥7-6.26CJ)%71,RB(ID

IMRGE 8R.2X.,5D.5D

NEXT J

1

PRINT ® PRINT "SUM RESIDS="
iSUMCRA) @ PRINT ® PRINT "R
MS DEVIATION=";S1

CLEAR @ DISP “"FIT DONE" @ K
EY LABEL ® RETURM

!

PC1)=FBC1y @ PC2i=F@C2» B P
(3»=GAC1> B P{(4r=GA(2 & P
SO=PB(1) B P(5)=PA(2>

PC7>=R B P(8)>=D1 @ P{3:=R @
Pil1@a>=E ® RETURN

]

FBC13=PC12 @ FAC2)=P{2} B G

RAC15=PC32 B GBC2)=P(4) ® PHQ
(10=P{3) @ PAC2)=P(5

A=P{7> & D1=P(8) @ R=P{32) @
E=P¢1@a> ® RETURN

i

FOR J=1 TO K
N=18XCJdCdi-1)+1

IF J¢J2>4 AND J(J><{9 THEHN X
=RTDC(FCJ>2> ELSE X=F{J>
PRINT USING 2778 ; J+1.P$CN
SN+35 %

IMAGE 30.,¥.18R,802.82D
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NE®T .J
RETURN
1

FOR J=1 TO K
N=18%iJ-11+1

IF J>4 AND J<3 THEHN
(Ja) ELSE X=F{l
PRINT USING 2778
N.N+33: ¥

NEXT J

RETURHM

2878 |

SFLAG 1| @ DISP
T“ @ RETURN

MAT P=Y@ GOSUB 2798 ®
RE @ CLEAR @ DISP
SET" @ RETURN

I

FOR K=1 TO 6
B1(K)=SINI(B(K>» @
K)*¥B1<(K> @
@ B2C(KI=B2(KY¥ER2/ 0
29408 HENT v ® RETHFH

235n CLEAR ® DISF

i o=

“"END FLAG

WHICH DATA SETS TO USE? |
1 MKOBSIM 2 IRTF1IM
3 IRTFIEM 4 55846 IM
5  SS@4DEM 6 AATIMIM
7 AATIMEM & KAODZ41IM
5 KAO34EM 19  KAO#4IM

11 KADK4EM 12 MTS74IM

13 DODS3IM 14  DODSSEM

15 OKASZIM 16 OKASZEM

17 ME374IM 13 ME2T4EM

13 M&33aIM 26 ME33IEEM

NUMBER SETS INCLUDE?

&

INPUT DATA SETS TO INCLUDE

2

!

2

4‘ -
ERFR D Fad
Fal,Fa2.Ga1.G82,Pa1.Pa2,a. .
1¢137
1,2.1.8.9.8.9,8.1.1
# OF ITNS

52

X=RTOCF
IcJy.P2C

SE

RESTO
"PARAM RE

B1(K)=B1¢
B2(K>=COS(BCK>)>

@ END

SAHPLE

“INPUT DATR"
KEY LRSEL

"SRt piTY
KESY LABEL




i
Iy

-

RALIUE=0BLRTEeEs: dint g7 DT FEZLT: D3 3 8d s an 59038
REFITY ITNS= S
AR AR RS 4 BEST PRRM OM ITN= 4
529 /Pa  BRIST 4T I Fo-x ERRIR  -4364 57432735
INPUT - @ Fl-a ERRIR  -17999. 3a3R369%3
| .G l-a 2
IR e sr nes 1 Go-5 ERROR  -4622.61055769
35233557 es o33 @ Gl1-5 ERROR 309 . 9ABORDNG
Z5i73s gul Sier-234 @ P-POS ANG 25.25226473
_aila-9v2 1352782 @ aPOL ERROR 257 81300096
osos il LR @ 5POL ERROR 41 13508000
33279851 1971 8 1 EQ RADIUS 25262.50214488
27294333 A AR 1 OBLATENESS 8. 91682724
VALUES OF CONSTANTS 0~2 .146837734122
T oz aucos i ERRORS
Bo  22-33575A345¢ DEG 2 F@-x ERROR 6.50214745
he= 253822647356 DEC. 3 GB-5 ERROR 1315329646
BSs 355536887123 DEL 4 EQ RADIUS 6.87141651
: S 0BLATENESS 9.99111528
ORIG PARAM )
{ FA-x ERROR  -5809.@caeaaee CIRRL_MATRIX
@ Fl-a ERROR  -17009.095@0030 -2 46 33 2%
1 G@-§ ERROR  -4902. 008093880 30 I3 99 45
@ G1-5 ERROR 309.09909008 32 23 a2 o9
8 P-POS ANG_ 25.26226473 2
@ Pg- N 45.17241318
i Cl 6 D
4118500006 - -
1 E@ RADIUS 2522500000888 <oos N 18472
1 OBLATENESS 9 .92108006 s3a4sin 21333
. - ;SP40EM -.11545
PR:58:20 8 4.217E+902 9. OBE+DRE O 3
©0:58:35 1 3.159E-991 -.4pE+pa1 ARTININ —-itEss
B9:53:49 2 1.469E-801 - 4@E+pg1 LoTSHEN REEE
10:53:94 3 1.469E-2@1 -.4mE+aea1 KAO3 ‘82513
@H:53.15 4 1 469E-8B1 - 4aE+ppy CHOI4EN =.90843
Bern g ried 191635209992
SAMPLE OLTFUTT
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Appendix C.

DERIVATION OF INVERSION METHOD

Huygen'’s principle can be described mathematically (Born and Wolf, 1970) by stat-

ing that the distance traveled by a light ray is always in a direction perpendicular

to the plane wave front (see Figure C-1):

dr

n'&;:

v-B.

(C.1)

[ defines the plane wave front and the derivative of 7 with respect to s is the

direction of propagation, 5. n is the index of refraction, which is defined as the

ratio of the speed of light in a vacuum, c, to the velocity which the ray has in the

medium, v. Differentiating Equation C.1,

KA [
ds| ds| v
or
-d—[né‘] = n
ds =v.n.

Now, the curvature vector of a ray can be defined

. d5 1
K:—:—-q
ds ICV
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where « is the radius of curvature (to be further defined later), 7 is the unit normal

vector (see Figure C-2), and § is the local tangent to the ray. From Equation C.2,

dn_, d§
from Equation C.3,
~ dn
K=y -n—-—s5g. .6
n Vo= o3 (C.6)

Dividing through by n and multiplying through by R,

R E=Ygnk-1T:k. (1)
n

nds

But K is perpendicular to §, so the second term on the right hand side goes to

zero. Substituting in for K,

- 1 1
IKF—-;V'TL';'U. (08)
Since
= (C9)
== .
then
lzlv-n-ﬁ. (C.10)
K n

The one-dimensional analogy for this equation is

_1dn
T nds’

(C.11)

1
K

Now, let us change the variable called s to r for occultation geometry, and return

to the radius of curvature. Rektorys (1969) defines the radius of curvature to be
1 n ’
ST . (C.12)
£ L+ ()P
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For an occultation, 7' is defined as the change in r with respect to z. The ray curve

may be approximated as a right triangle, as 8, the bending angle, is small, and so

d
d:: =tanf, (C.13)
df
"= sec’0— = (1 29) —. .14
r" = sec odz (1 + tan e)dz (C.14)
Using the dcfinition for the radius of curvature,
0 de
1 = (sec? ) __ — cosf—. (C.15)
£ (1 +tan®6)2 dz
Equating this result for the radius of curvature to the previous one,
1dn de
~ = = cos 0‘—1—3—: (C.16)

The bending angle is very small, so that cosf = 1

dd 1dn _ d[ln(n)
dz  ndr  dr (C.17)

Solving for @ gives

6= / o d[ln : (C.18)

Now, for convenience, let us define In(n) = Q. A change of variables from dz to dr

must be done. By the geometry of the occultation,
d
_ra . (C.19)

(C.20)



Then

—dw
dr = St (C.21)
Returning to the bending angle equation,
°dQ rdr
0(s) = —_—— .
(s)=2] o a-or (C.22)
and
) o dw  (sw)?
6(s) = 2 / = (2wt == At (C.23)
1
= -2 djir dw (sw)? , (C.24)
0 dw (s —_ fw)i
:-2/ dQ(S“’) dw__ (C.25)
dw (s —_ w)i

If the scale height H is much smaller than r,, the radius of the planet, then r = r,

and so the square root of the ratio of s to w is approximately unity. Thus,

=2 [ w2t (c0

dw 3— 5

We can define ¥(w) as the kernel function such that

¥(w) = wits
This gives
o(s) =2’ Y(w)dw (c.27)
0 (s —w)?

This is an Abel integral. The solution for this is derived at the end of this appendix.

The solution is found to be

2 d (v fds '
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Equating the two equations for W,

-

d[In(n)) _ 11/“’ _ 0ds

(w) dr T dw (w — s)%

Solving for the change in In(n) with dr,

din(n)] 1 d / fds
0 (w

dr  r27m2wirdr

Changing the variables back to to original variables,

dlln(n)] _ Li/‘w O(rr,)ds
dr  2xdr o (r2 —72)% ’
and finally
din(n)] rd o —réfdr
SN

(7 =)}

dr ~ wdr

Approximating r = r,, then

dln(n)] -1d /°° 0dr,
r (r

dr ~ « dr 12_1-2)%'
Here three assumptions are made:
e severe ray crossing does not occur,
e n=1,and

e (r+r,) = 2R, where R, is the planetary radius.

With these assumptions, the preceding equation becomes

_s)%'

in_-1d (= o
dr 7 drls (r—i—rl)%('r,-—r)%

and so
flf_—:_l_ 1 ii_/‘” Odr,
dr « (2Rp)%dr r
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Now, the refractivity ¥ = n — 1 so the change in refractivity with height is the same

as the change in n with height:

v _ -1 1 i/“’____ed“ (C.36)
dr — 7® (2R))zidrte (r,—r)1’ '
Integrating this equation,
-1 1 ©  fdr,
y=_ ldU —T,] (C.37)
T (2R): Ur (ri—r)2
and
r  0d
o) = oy [ (c.3%)
™ (2R,)7 Joo (r, — 1)
This is the formal inversion solution.
SOLUTION TO ABEL INTEGRAL
From Bocher, we know that
z d
T / A (C.39)
sin um ¢ (z-z)a(;—g)s

where (0 < u < 1). Let there be some function ®(¢) that is continuous, and
has a continuous derivative. Multiply the above equation through by ®'(£)d¢ and

integrate over a to z:

/: " g(e)de = / /5 - _@')(f)dzdé . (C.40)

sin pm z)l-#(z — &

Dirichlet’s Generalized Formula states that

/‘;b /;z - y;((:,il):)yﬂciz — _ /ab /yb[(same integrand)|dzdy . (C.41)
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It follows that

s

3(z) - 8(a) :/:( — P(g)dedz (C.42)

z—z)t

sin um

Now, the equation of interest has the following form:

flz) = /a ’ (‘;(E)Zf T (C.43)

again for (0 < A < 1). The unknown in this equation is the function u(z); if f(z) is

continuous, and f(a) = 0, then divide through by (z — z)!"*dz, and integrate from

/az_(;f%:/: z— 1) A/ & dfd:z: (C.44)

The right hand side of the equation above corresponds to the right hand side of the

a to z:

previously shown relation, so that

/’ f(z)dz _
a (z—2z)72 sm/\7r

now, taking the derivative of each side,

o A - ke - ua)] (C.46)

dzJa (z—2z)17* sinAw

/a u(é } (C.45)

Solving for A = 1,

pe) =4 [ (i(f)—‘f”—. (C.47)

ndz Ja z—z)%
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DATE LOCATION APERTURE (m) M) A) CONDTTIONS DATA INTERVAL (s) OBSERVERS
7 Apr Mt. *
1968 Stromlo, 1.27 v good K.C. Freeman
Austr. 0.76 v* G. Lynga
Mt. Dodaira 0.91 B* good
Japan
Mt, Okayama 0.91 B* good
Japan
15 June IRTF, immersion
1983 Hawaii 3.0 2.2 0.4 good, 0.01 K. Meech
emersion
Uan:. during
Hawaii 2.2 0.855 0.08 dawn 0.01 J. Goguen, H. Hammel
KAO 0.9 2.27 0.4 good 0.01 J. Elliot, E. Dunham,
(near 0.83 0.06 D. Mirk
Guam) 0.78 0.2
0.73 0.09
0.50 0.07
AAT
(sid. spr.) 0 2.2 0.4 good 0.01 D. Allen
Siding
Spring, 1.0 0.85 0. transient 0.02 K.C. Freeman, M. Ashley
(Austr.) 0.55 0 clouds
Mt., loud
Stromlo 1.9 0.85 0.1 c-oudy
actr.) immersion, 0.01 R. Baron
. 0.55 0.1 no emersion
Table 2-1. Observations * - standard UBV system



IM LATITUDE

EM LATITUDE

DATA ON NEPTUNE D*(km) ON NEPTUNE D* (km)

1968

Mt.

Dodaira -40.1 - +13.8 -

Mt.

Okayama -40.5 300 +13.2 260

1983

KAO +42.4 - -3.2 -

IRTF/UH +40.5 760 -

AAT/Sid.

Spring +32.6 5365 ~7.4 5515

Table 2-2. Immersion and emersion latitudes of chords; D is distance

along limb from northernmost observation for given date.
t(1/2)

DATA UT 15 June 83 (V) A Altitude (m)
h M S o I 1] a [ 1

IRTF (IM) 14 24 51.1 19749 34.0 -155728'13 4100

UH 2.2m(IM)| 14%24"50%7 19°49'34%0 | -155°28'20" 4215
Ao ™ S ) | " ° ( "

KAO (IM) 14728 15.8 1660 50.0 -151 69 60 9879
WM 5 P R ! "

KAO (EM) 14 59 03.9 17733 67.0 -148 37 84 9978

sip. ser. | 14*27"06%9 -31°16 '22%0 | -149°03'39.4 1150

(IM)
SID. SPR. 15*00™27%0
(EM)
1 ( -

AAT (IM) 14h 27068 6 -31°16'37.3 -149°03'57%9 1165
hom__S

AAT (EM) 15 00 27.2
A L 1ol il ° 00’ 27"

MT. STROMLO| 14 27 04.9 -35719 14.3 =149 00 27.6 767

(IM)
Table 3-1. 1983 data observatory locations and half-light times.

Cp - Earth latitude, N\ - longitude




DATA Any/nw Any,/n4 At(1/2) (s)  o(e(1/2)*

IRTF (IM) 0.026 0.018 0.23 0.03
IRTF (EM) 0.057 0.035 0.51 .08
UH 2.2m (IM) 0.015 0.011 0.12 0.03
SID. SPR. (IM)| 0.024 0.021 0.33 0.32
SID. SPR. (EM)| 90.025 0.012 0.06 0.32
AAT (IM) 0.016 0.029 0.12 0.01
AAT (EM) 0.021 0.010 0.03 0.01
KAO (IM) 0.031 J.027 0.42 0.08
KAO (EM) 0.007 0.003 0.01 0.21
MT. STROMLO

(IM) 0.063 0.052 0.82 0.34

Table 3-2. Uncertainty in baselines and half-light times; % - predicted
from Equation 3-3.



DATA P A Alt. (m) t(1/2) UT 7 April 1968

MT. DODAIRA (IM)| 36°00'10%2 | -139°11'4e"s 879 15" 5625 (Takenouchi et al.’1968)
15"56™25%.5 (Hirose,1968)

15"56™26%8 (Melroy, 1984)

MT .DODAIRA . (EM) 16"41™31%  (Takenouchi et al.)
16"41™28°  (Hirose)

16M1%27%  (Melroy)

™M .
MT. OKAYAMA (IM)| 34°34'22"s [-133°35'46'6 365 15M56™545  (Pakenouchi et al.)
15“56m55§5 (Hirose)
15M56™56%7 (Melroy)
. Ny .S .
MT. OKAYAMA (EM) 16741 51 (Takenouchi et al.)
nw.._m__§

16 41 51.5 (Hirose)

16415015 (Malroy)

h. M S
MT. STROMLO (IM)| -35%19'14"3| -149%00'27" 767 15 56 29

"o (Freeman and Lynga, 1970)
MT. STROMLO (EM) 16 36 46

Table 3-3. 1968 data observatory locations and half-light times.
@ - Earth latitude, N - longitude




#

DESCRIPTION OF FIT R (km) E points used rms dev.- (sec) ji(res)2—(sec)2
1968 (Kovalevsky 25225 * 30 0.021% 0.004 8 - -
and Link)
1968; t(1/2) from
KL, improved pole 25239 130 0.0192% 0.00030 8 0.476 0.9006
and ephemeris
1968; fit in radius | ,5,344 39 0.0192 £0.0030 8 - -
instead of time
; t
1968; t(1/2) for 25199 = 30 0.0188* 0.0030 8 0.643 0.826
Japan found by
Melroy
1983; changing pole
position used by 2 25259 * 10 0.0159 £ 0.0017 8 0.1917 0.1471
uncertainty in pole
1 + 68; joint
fii:" 1968; join 25246 £ 10 0.0191 £ 0.0150 16 0.462 2.138
1983 (Adopted . .
value) 25263 *9 0.0160 £0.0015 8 0.1916 0.1469
Table 3-4. t(1/2) fits.
R (km
(em) € U\P(HSO) %p (1950)
Best pole fit .
(1983 and 1968 25252 51 [0.0197 £ 0.0033 291.5 7.6 34%6¢ 5.1
data)

Table 3-5.

Results of fit for right ascension and declination of pole.




Mean molecular weight 2.2 g mole-l

Acceleration of gravity 1090 cm sec™?
Atmospheric refractivity at STP 1.26 x 104
Temperature/Scale height 2.88 K/km

Composition .9 H2 , -1 He by number

Table 4-1. Atmospheric parameters assumed for inversion.

DATA LATITUDE ON NEPTUNE @49/9,) 1 (49/9 ),
KAO (IM) 42.4 0.0150 0.0005
KAO (EM) 3.2 0.0001 0.0005
IRTF/UH (IM) 40.5 0.0130 0.0005
SID. SPR./ BAT 35 6 0.0090 0.0005

(IM)
SID. SPR./AAT

(EM) 7.4 0.0005 0.0005

2

Table 4-2. gg¢g, for €Z0.0160, and g, T 1090 cm sec”
calculated from the two terms in Equation 4-14



time at

DATA n=5x 1013 n=28x 103 n= 10 n=2x 104
W
kao (IM) | 14™28™1553 14"28™18%5 | 14"28™205s 14h28™27%1
KAO (EM) | 14™59 0359 14"59™01%4 14"59™00%0 14585239
S

IRTF (IM)| 14"24"50.4 14"24753%g | 14*24™55%3 14250151

UH 2}53) 14%24™5058 14245450 | 1472475554 14"25™01°5

SID'(§§$' 14270632 14°27709%3 | 14"27™10%s 147271659
S

SID‘(gﬁﬁ‘ 15"00™27%7 15™00™25%0 | 15"00™23%s 15"00™17%3
AN

AAT (TM) | 1472770656 14"27"09% | 14"26™10%9 14*27™7%5

aar (EM) | 150002757 15002459 | 15"00™23%4 15000"17%1

Table 4-3. Number density levels (n in un}Zs of

in UT on 15 June 1983). n=

cm-3) at times (times

cm™3 is best fit.

time at -3 3
DATA p=28x10% p =10 p=2x103 p=7x10"
ka0 (IM) | 14"28™14%3 14M8™1430 | 14M28"20%0 14"28"36%1
KAO (EM) | 147590454 14"59"03%6 | 14"s58"59%9 14"58™42%1
S
IRTF (TM)| 14"24"48%7 14"24"49%9 | 14"24"545) 14"25"07%5
S ™ w LN s
UH 22?3) 14"24"19% o 14%24"50%5 | 14™24™55 % 14%25"00%8
e S N ™
SID'(iﬁf 148270530 14%27™05%s | 14™27™1004 1427 24%
SID'(:§$° 15"00™7%9 15h00™27%3 15002355 15" 00™11%8
AAT (TM) | 14°2770501 14"27705% | 14™27M0ls 14"27 733
[N
AAT (EM) | 15 00™28.0 15" 00™27% 3 15" 00"23 %4 15"00™10% 9

Table 4-4. Pressure levels (p in units of mbar)
on 15 June 1983).

p = 10~3 mbar

at times (times in UT
is best fit.




LEVEL OF FIT R (km) € z..(res)2 (sec)?

n=5x 1013 cm™3 25286 0.0180 0.154
n=8x 1013 cn3 25209 0.0167 0.140
n = 1014 cm=3 25171 %7 0.0150 ¥0.0011 0.034 *
n=2x 104 cm3 25024 0.0194 1.190
p =8 x 10~ mbar 25305 0.0168 0.732
p = 1073 mbar 25288 * 9 0.0172 * 0.0015 0.186  *
p=2x 1073 mbar 25174 0.0169 1.057
p=7% 1073 mbar 24940 0.0390 11.238

-3

Table 4-5, n, p level fit results; best n = 1014 cm ; best p = 10 3mbar
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Figure l-l. Occultation of a star by a planet.
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Figure 2-1.
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MT. OKAYAMA

T.STROMLO



EM

IM

kAo

4
\ IRTF /umn
_SIDING SPR.,

\A AT
MT.STROMLO

Figure 2-2. 1983 data chords; B = -23.9 P 25
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Figure 2-3,a. Pre-color corrected Siding Figure 2-3,b. Color corrected Siding
Spring immersion 1ight curve. Spring 1mmer81on llght curve.
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Start time = 14“26"40°UT 15 June 1983
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Figure 3-2, a. IRTF immersion curve, start time 14“23MOOSUT 15 June 1983




1

Il

)
Figure 3-2, b,

{00
IRTF emersion curve, start time 1

453595 996 UT

t (se) —™

200



L] N L - T L 1 T

gl 4
|

- l ‘ 4
i n
i d

) 1 1 L 1 1 A
o ¢0 . 120

Figure 3-2, c.

UH 2.2m immersion curve, start time 14 24

m1g3832 ur



L} 1 1 L] ] ] 1 1 |

r -
i
- ’ -
¢

r
o -

L L L (1 ] 1 [l 1 [}

0] flile] -+ (&Qc_b -—) 200
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Figure 3-3. The fundamental plane ( % = east,71 = north).



Figure 3-4. Neptune projected on to the fundamental plane.
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Figure 3-6, a. Oblateness vs. sum of squared residuals; residuals from 1983 so low that they have
no leverage in joint fit.
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Figure 4-1.
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Geometry of inversion equation.

\'4



hot TF
l‘&sion

Ct.old

reqon L_

Se_vcre,craw\

Yoesi

hot “1 J
N‘%im\

Cold

quoA

— —_—
Wavefront Wavefront emerging
initially from atmosphere
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Figure 4-3,a. Temperature
profile; T = 0 to 30(PK;
height spans 500 km. A profile
started at 6.5 scale heights
back in light curve; B profile
started at 7.5 scale heights;

C profile at 9 scale heights.

Figure 4-3,b. Number density
profile; T = 0 to 300° K;
number density spans 1012 to
1016 em=3,

{ Figure 4-3,c. Pressure
| profile; T = 0 to ZOO°K;
pregsure spans 107" to

1 10" *mbar.




Figure 4~4,a, Temperature
profile; T = 0 to 300°K;
height spans 500 km. Iso-
thermal profile, A; B pro-
file has uncertainty in
upper baseline of 1%; C
has uncertainty of 2%; D
has uncertainty of 37%.

Figure 4-4,b. Number density
profile; T = 0 to 300°K;
num%er density scans 1012 to
1016cn-3,

Figure 4-4,c, Pressure

profile; T =0 t04300°K;
pressure spans 107 to

10-! mbar.
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Figure 4-5,a. Temperature

profile; T = 0 to 300°K.
Isothermal profile, A; B
profile has uncertainty in
lower baseline of 17%; C
profile has uncertainty of
273 C profile has uncert-
ainty of 37%.

Figure 4-5,b. Number density

profile; T = 0 to 300°K;
nuTEer density spans 1012 to
10*° em™3

Figure 4-5,c. Pressure
profile; T = 0 to 300°K;
pressure spans 107" to
10! mbar.



Figure 4-6,a Temperature
profile; T = 0 to 300°K;
Height spans 500 km; IRTF
immersion

.

1 Figure 4-6,b. Number den-

] sity profile; T = 0 to 300°K;
number density spans 1012 to

11016 cm-3,

J

|

T

Figure 4-6,c. Pressure
{ profile; T = 0 to 300°K;
pressure spans 10~% to
11071 mbar.




1 Figure 4-6,d. Temperature
|} profile; T = 0 to 300°K;
height spans 500 km; AAT
1 immersion curve.

Figure 4-6,e. Number density
1 profiles; T = 0 to 300°K;

{ number density spans 1012 to
| 1016 cm=3,

| Figure 4-6,f. Pressure

1 profile; T = 0 to 300°K;
| prefsure spans 1077 to
10" “mbar.



Figure 4-6,g. Temperature
profile; T = 0 to 300°K;
height spans 500 km. AAT
emersion profile.

| Figure 4-6,h. Number density
profile; T = 0 to 3000Ki
i number density spans 10 2

to
1016 cm™3.

{1 Figure 4-6,i. Pressure

| profile; T = 0 to OOOK;
pregsure spans 107~ to
{1071 mbar.




Figure 4-6,j. Temperature
] profile; T = 0 to 300°K;
height spans 500 km; Sid.
1 Spr. immersion.

{ Figure 4-6,k. Number density
profile; T = 0 to 300°K;

|1 number density spans 1012 to
{ 1016 cp=3,

Figure 4~6,1. Pressure

1 profile; T = 0 to 300°K;

: prefsure spans 1077 to
107" mbar.



Figure 4-6,m. Temperature
profile; T = 0 to 300 K;
height spans 500 km; Sid.
Spr. emersion.

Figure 4-6,n. Number
density profile; T = 0
to 300 K; number dens}ty
spans 1012 to 1016cn™>,

Figure 4-6,0. Pressure
profile; T = 0 to 300 K;
prefsure spans 107 to
107" mbar.



| Figure 4-6,p. Temperature
| profile; T = 0 to 300°K;

height spans 500 km. UH
12.2m immersion.

| Figure 4-6,q. Number density
profile; T = 0 to 3009K;

1 numger density spans 1012 to
| 1010 -3,

i{Figure 4-6,r. Pressure
| profile; T = 0 to 3009K;
pressure spans 104 to

{ 110~! mbar.
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Figure 4-6,s. Temperature
profile; T = 0 to 300°K;

| height span 500 km. KAO

immersion.

Figure 4-6,t. Number density

1 profile; T = 0 to 300°K;
{ number density sgans from
cm™".

1012 o 1016

Figure 4-6,u. Pressure
profile; T = 0 to 300°K£
pressure spans from 10~
to 10~1 mbar.
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Figure 4-6,v.Temperature

} profile; T = 0 to 300°K;

height spans 500 km; KAO

1 emersion.

1 Figure 4-6,w. Number
4 density profile; T =0

to 300°K; num?ir density

1 spans from 10°“ to

10 cm‘3.

Figure 4-6,x. Pressure

1 profile; T = 0 to 300°K;
{ pressure spans 104 to
| 1071

mbar.
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Figure A-1. Geometry of occultation for deriving
an isothermal light curve.
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Figure C-1. Propagation of a plane wave front
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Figure C-2. Geometry of ray curvature.
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Figure C-3. Geometry of occultation.



