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ABSTRACT

This work is divided into three independent sections; the
common subject is the role of topography in the forcing of
stationary waves.

In the first section we study the multiple equilibria
problem in a barotropic atmosphere and we examine the
form-drag instability in a simple model, considering in
some detail the processes involved. We study how the
system approaches the equilibria (stable case) or departs
from them (unstable case). Then we consider the non-linear
problem discussing the properties of the solution using
the conservation of energy and potential enstrophy and
introducing a potential function for the zonal flow. The
limit for small dissipation and forcing is then discussed
and compared with numerical solutions.

In the second section we examine a two-layer highly
truncated channel model with topography to study multiple
equilibria and to discuss their stability. We find that
all the Charney-Straus multiple equilibria require meridional
temperature gradients which are highly baroclinically unstable.
After a detailed study we demonstrate that the flux of angular
momentum from tropical latitudes is able to produce one
equilibrium which is baroclinically stable (in the two layer
model). For low values of the external radiation heating
the stationary topographically forced wave alone satisfies all
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the balances, while for larger values of the external
radiation forcing the stationary topographically forced
wave collaborates with shorter, more baroclinically unstable,
moving, synoptic scale waves.

In the third and last section we have presented some
simple but general theorems on the upward transport of
zonal momentum and energy by stationary quasi-geostrophic
waves and by the mean meridional circulation induced by
these waves.

Thesis Supervisor Dr. Glenn R. Flierl

Title : -Associate Professor of Oceanography
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SECTION 1

FORM-DRAG INSTABILITY AND MULTIPLE EQUILIBRIA

IN THE BAROTROPIC CASE

1. Introduction

In 1979, Charney and his coauthor-s wrote a series of

papers which first developed the idea that the atmosphere

may have several possible equilibria states for the same

external forcing. In the simplest problem, barotropic flow

in a beta plane channel with topography, forced by a

momentum source, Charney and Devore (1979) demonstrated that

the non linear equations arising from a low order spectral

truncation did have multiple stable states. Given the

forcing, within certain parameter ranges, two possible

equilibria were found, one with a weak zonal flow and strong

waves and one with strong zonal flow and weak waves. A

higher resolution numerical code was used to assess the

degree to which their truncated model rapresented solutions

of the original problem.

In further work, Charney and Straus (1980), examined

the effects of baroclinicity, Charney, Shukla and Mo (1981),
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applied the model to earth's topography; finally the work

of Reinhold (1981), suggests possible directions in which

the principles of multiple equilibria might be modified when

synoptic scale instabilities occur in addition to weak

topographic forcing of the long waves.

Our purpose here, however, is to examine the

simplest model with form-drag instability and multiple

equilibria: a model similar to that of Hart (1979) or

Charney and Flierl (1980). We shall consider the processes

involved in form drag instability in some detail in order to

explicate the mechanism in the most straightforward

barotropic case.

As new physical contributions we point out how the

form drag is felt by the zonal flow through the ageostrophic

component of the flow and in paragraph 3 and 5 we describe

the mechanism and the properties of the form-drag

instability emphasizing the study of the quantities that can

be measured. In paragraph 6 we discuss the form-drag

instability as a simple consequence of the simultaneous

conservation of energy and potential enstrophy. In the

viscous case some numerical calculations have been done to

show how the system approaches the stable equilibria.

As technical contribution we have introduced a new

potential function; in this way we have three degree of

freedom and three conserved quantities and we are able to
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give a simple but complete qualitative discussion of the

properties of our system in the inviscid case.
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2. Equations of motion

The simplest set of equations which illustrate the

form drag instability and multiple equilibria are those of

Hart (1979) describing the coupled evolution of the

x-independent flow and the topographically forced waves. We

derive similar equations without using any asymptotic

expansion. This new derivation clearly points out the

importance of the ageostrophic components in the interaction

between the waves and the zonal flow. The potential

vorticity equation for wave flows over y-independent

topography is

+~ ~ u C~±- ,+ 2.1I)

where is the geostrophic streamfunction

U is the eastward component of the geostrophic

wind

V is the northward component of the geostrophic

wind

f, is the Coriolis parameter at mid-latitude

is derivative of the Coriolis parameter =

(df /dy)
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h is the height of the topography

H is the depht of the fluid

and t' is the dissipation time scale (due to friction in

upper and lower Ekman layers ). The evolution of the mean

zonal wind U cames from the x-averaged momentum equation

where periodicity has been assumed

T~--(V/ - (2.2)

When the topography is y-independent the Reynolds' stresses

disappear and the changes in the zonal flow are due to

dissipation, external forcing, U and to the ageostrophic

part of the y-component of the velocity V' . This

ageostrophic part of the velocity can be directly related to

the form drag as follows: we calculate the mean meridional

flux of mass here, denoted by M

M (H- H - V- (2.3)

The form drag is given by

LX L2

LaL rDx X rax -
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where P is the atmospheric ground pressure and G is the

angle from horizontal to the inward normal to the surface.

To lower order the meridional mass flux simplifies to

M + +(2.5)

where the first term represent the geostrophic contribution

to the form drag.

In a y-independent problem, the mean meridional mass

flux could still depend on time but th'e simplest case is

that of no net flux

M = o .=-_. 2h (2.6)

(which can be justified if the flow is assumed to be

confined in a very wide channel). With these assumptions,

our system of equations becames

X'D

-j (2.8)D



The solution of the system (2.7)

found with a Fourier decomposition

and (2.8) can

of topography

streamfunction

h = h sin( k x+ T)
.4 AA

t4)= - Uy + A Al sin( k
-4

x+ + B
14

cos( k x+ f)

Equations (2.7) and (2.8) became

~A4A4 A4
H

(QU)-
t

AAN U-
.M~%ILJ4J~A _ M

PAGE 13

be

and

U*)t)i (2. 9)

(2.10)

(2.11)-B
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3. Form-drag instability

The simplest system containing the form drag

interaction can be obtained with a single mode topography

na L )( (3.1)

Under this

into a set

assumption our system of

of sub-systems for k #h

equations can be divided

k we get

A
- -

(3.2)

(3.3)

Even if U is time dependent we can see from the

energy equation

-- (.

that these modes simply dissipate. The system (3.2) and

(3.3) can be solved exactly; introducing a complex notation

the solution is given by:

(3. 4)
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' A (3. 5)

This is just a decaying travelling Rossby wave. To

determine the time dependence of the zonal flow and to study

the role of the topography we must consider the case k = k

we then have the following system

-~ (jil~U*)

(U= (U- A)- --

a =A.cU-/3Id)A +AiU--LB
H '-'

(3. 6)

(3.7)

(3.8)

involved

follows:

To clarify

let us

the role

introduce

of the different parameters

non-dimensional variables as

(~I

(/3J
(3. 9)

r6

H "i')

A) L I

Z )-UV
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With these substitutions we get two non-dimensional

parameters

-^f- (3.10)

that describes the importance of the mountain and

- _ __(3. 11)

which describes the dissipative effects. Introducing the

zonal wave number n , k = n*( 27V/2 rr a cos Y ), where a is

the earth radius and f is a middle latitude, here chosen

to be 45*, and the following typical atmospheric numbers,

I.-4 --I 5
h A/ .2, f 10 sec t 4. 10 days 4S .6*10 sec,

we get the following values:

. - . ' 0

With these non-dimensional parameters our system of

equations, (3.6)-(3.7)-(3.8),dropping the primes, becomes

- ~ ~* (3. 12)

-- (3. 13)
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The mechanism of form-drag instability can be seen

quite clearly from these equations and figures 1 and 2. Let

us neglect forcing and dissipation and consider first the

situation when U is less than the resonant speed UJ4C , or

U ( in dimensional quantities.

The wave generated by the flow has vorticity which

is in phase with the topography since the flow is dominantly

constrained to follow the geostrophic contours, south on

upslopes and north on downslopes, corresponding to cyclonic

curvature over the peaks. In this inviscid steady-state

situation there is no form drag, an illustration of

wave-mean flow non interaction in the absence of time

dependence or friction (Pedlosky, private comunication).

If we perturb this flow by introducing vorticity

which is 9e out of phase with the topography, the flow will

evolve in time. There are two different tendencies for the

flow: an acceleration or deceleration of the mean flow and

a change in the vorticity distribution.

If the initial vorticity perturbation lags the

topography by 90 (figure 1.b), corresponding to B 0? O, the

This discussion of form-drag instability was contributed

by Prof. Glenn R. Flierl
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pressure disturbance will lead the topography so that the

form drag will decelerate the mean flow (figure 1.c).

Changes in vorticity are induced by westward Rossby wave

propagation and eastward advection by the mean flow. For

subresonant mean flow, the westward wave propagation

tendency is larger than the eastward mean flow so that the

vorticity begins to increase over the crest (figure 1.d).

From the first derivative patterns, we can explore

the second time derivative of the vorticity, to see

whether the initial perturbation is reinforced or

counteracted. There are three different mechanisms for

generating ,: wave propagation and mean advection of the

field, topographic generation by the (4 field and

additional advection of the basic state vorticity field by

the L4 flow. The wave propagation plus mean advection

continues to lie toward the west, leading to a ) of

opposite sign from the original perturbation (figure 1.e).

The decrease in the flow over topography leads to a decrease

in vorticity in the troughs, a which leads the

topography by 90*. Finally, the advection of the basic

vorticity (the term which would correspond to - LQ in the

differentiated form of Eq. (3.14)) also leads the topography

since U is negative, and the basic vorticity is

correlated with h. For U < I , then, all of the

contributions to W are of opposite sign to the initial
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perturbation so that the topographic wave is neutrally

stable.

When U > { however, the situation is quite

different (figure 2). The basic equilibrium distribution of

vorticity is anti-correlated with the topography since the

changes in relative vorticity rather than planetary

vorticity tend to balance the vortex stretching over the

topography. If we introduce the same

we still get a form drag retarding the

wave propagation tendency now has

perturbation advects downstream faster

westward. As we look at the cha

however, the doppler-shifted wave

generates a flow leading the topogra

tendency from the decrease in the

topography is also the same as before

form of perturbation,

mean flow but the

a reversed sign. The

than it propagates

nges in the term,

propagation still

phy (figure 2.c). The

mean flow over the

(figure 2.f). But the

third contribution now has the opposite sign since the

original equilibrium vorticity is now of opposite sign from

the topography (figure 2.g). Thus there is the possibility

when the equilibrium state vorticity is sufficiently large (

which occurs near resonance) that this term will dominate

the other two and I will reinforce the original

perturbation, leading to an instability of the flow. The

basic mechanism for form drag instability, therefore, can be

summarized as follows: when the zonal flow is
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supercritical, the vorticity is anticorrelated with the

topography. Decreases in the zonal flow result in this

anti-correlated vorticity shifting westward leading to

pressure patterns which have highs on the upslopes and lows

on the downslopes. This in turn leads to a form drag which

decelerates the zonal flow further.
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4. Non-linear behaviour for the inviscid case

As we have seen _I

can solve our system by

power series of :

(F-B) = , ) +

is a small parameter and we

developing all our unknowns in a

(iA + (

We

zero-order

shall study the

equations which

non-linear behaviour only of the

are:

0 .: -. .(0 - B

B

(4. 1)

(4. 2)

(4.3)- (U,0-- ) A , - U0

This inviscid problem has two independent conserved

quantities

.4-I - 1 At~ ~
40 0 2- +-BI- (4. 4)

(%U- + .4 xno (.5(4.5)( 0- -)
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As Charney and DeVore pointed out, the first

quantity represents the total energy and the second quantity

a combination of the total energy with the potential

enstrophy. The existence of these two integrals of motion

allows a complete analytical solution of the system

(4.1)-(4.2)-(4.3) in terms of elliptic functions.

As we shall see a full discussion of the properties

of the solutions of this system can be done without solving

explicitly. As first step we derive a simple second order

equation only in U; we substitute the definition of Q in

Eq. (4.3) getting

do--- 4 o~ ---- Q +o( 4.6 )

After a time derivative of (4.1) and the

substitution of B,,from (4.6) we get:

--- (L)--iMU-')-- q --- U (4.7)

It is useful at this point to introduce a more

explicit expression for Q as function of the stationary

solutions.

chosen value U1 the systemIf U has any
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(4.i)-(4.2)-(4.3) gives a stationary forced wave with

amplitude

0~o (4.8)

(4.9)

U-i

On figure 3, the light lines represent lines of

constant 3,, Eq. (4.5), while the heavy line represents the

stationary solutions, from here on called the equilibria

curve, Eq. (4.9). At least one intersection on the branch

number one always exists; therefore the conserved quantity

0 can always be written as a function of the coordinates of

this intersection, here denoted with ( U , A , B ),as

follows

Q -. (0--) -+. X (4.10)

Using this definition and defining

u = U, - U "distance" from the equilibrium

A = - U "distance of the equilibrium from the

resonance"
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Eq. (4.7) can be rewritten as

LL--~AU + QL L (4. 11)

or multiplying both sides by u.

e + (4. 12)

where LL) is a potential function defined by

+ LL L. - 4- LL (4.13)

We have a mathematical analogy between the time

evolution of the zonal wind and the motion of a particle

moving in a one-dimensional space with a potential energy

given by

With this potential we can discuss the general

behaviour of our solutions: in particular we can see that

the linear stability properties of the points of equilibrium

are governed by the sign of I+i , in agreement with

the linear analysis of Charney and DeVore; the non linear

behaviour is dominated by the positive sign of the fourth
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order term and we have a non linear stability for all the

points of equilibrium.

Depending on the number of points of equilibrium our

system behaves in different ways; for a given Q,,or

A ,the points of equilibrium are given by u = 0 or

=0 , i. e.

d tA
6A Lt - S .3=0 <4.14)

the root u = 0 represents the equilibrium point,

u A, B), previously discussed while the other two

roots

AZ,3 (4.15)

represent the other intersections of the constant G. line

with the equilibria curve. The point P =U ,A B) will be

the only equilibrium if

<(4.16)

In this case the potential function, Eq. (4. 13), has only one
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minimum and the system oscillates periodically around

( U, A_, B ).

For > three intersections are present; from

the expression for the potential functions (4.13), it is

evident that the second equilibrium point is an unstable

point while the other two are stable. Some straight-forward

analysis shows that the minimum on the branch I is always

lower than the one on the branch 2. In figure 4 we have

drawn the potential function for this case. The motion is

always periodic; if we start close to the equilibria it

consists of a simple oscillation while if we start far from

the equilibria the system oscillates from one attractor

basin to the other.
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5. Approach to the equilibria in the viscous case

Until now we have considered the non-dissipative

case; in presence of a small dissipation and forcing the

evolution of our system is essentially similar except that

now we no longer have an equilibrium curve but only one or

three equilibria and from any points of our phase-space the

system goes towards the stable points while approximately

conserving the potential enstrophy and the energy. To get a

better understanding of the way in which the system

approaches the stable equilibria we can study the behaviour

of small perturbations around these stable equilibria. From

Eqs. (3.12)-(3.13)-(3.14) we find that these equilibria are

defined by:

8) - -U -- U(5.1)

B (5.2)

. C (5.3)

U-A

It is convenient to get an expansion of the

coordinates of the equilibrium point in powers of 2?

for 'Xft *. - 0 we have:
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(5.4)

Pt; +(5.5)

U + )(5.6)

where A and U are related by:

(5.7)

This is a zero order relation and implies that the

equilibria point must be on the inviscid equilibria curve.

Secondly, we have

P ~ ~ - (5.8)

which comes from the first order equations and implies the

balance between the generation and the dissipation.

A graphical solution of this system is shown in

figure I for different values of the external forcing U*

The heavy line represents the equilibria curve (5.7), while

the light curve rapresents points where the generation is in

balance with the dissipation, Eq. (5.8), in the plane

(U,A). As we can see for small forcing we have only one
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stable equilibrium and for larger values of the forcing we

can get three equilibria with the one in the middle

unstable.

Denoting, as before, with (u,a, b) the perturbations

from (U , A ,B ) we get the following equations:

S- (5.9)

S= -- - i (5.10)

U) (5.11)

Having a system with constant coefficients, we can

look for a solution in the form (u, ab)*e and we get

the following eigenvalue problem:

(t+ + Ci'+2) - -o (5.12)

where

- )- -. )(5. 13)

expanding the eigenvalues in power of
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C3 - + > I (-

-3 =

Q . Z.

+. 0 (. )

-o (5. 14)

(5. 15)- -i +-_-_

We have three solutions:

g = - (I- )
one real

+ ( (5. 16)

and two complex coniugates

0+ o (5. 17)

The first eigenvalue has for its eigenvector

(5. 18)

corresponding to the direction tangent to the equilibria

curve in the plane B = 0 of figure 3. The other two

eigenvalues have an oscillatory part with a much shorter

time scale and therefore, on the average, the solution

we get



PAGE 31

approaches the point of equilibrium moving along

"equilibria curve" with a damped motion.

These two complex eigenvalues with

eigenvectors

b C

the

their

(5. 19)

give rise to a damped oscillation in the zonal flow together

with damped standing and propagating waves. In fact the

stream-function for the wavy part of these perturbations can

be written as:

FWZCx,~) e~~L/ 0

Z(~,t) =

1~
(~)

z.
- -I-

Z.

0-

z-.

(5. 20)

We have two cases:

L> d. , we have c { -l

Z (xQ) = .4. .- c

for the super-resonant case,

and

) +-x

where

LL
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where the first term rapresents an eastward moving "slow

Rossbu wave" and the second term a smaller standing wave out

of phase with the topography; for the sub resonant-case,

U we have and

where the first term represents a westward moving "fast

Rossby wave" and the second term a smaller standing wave in

phase with the topography.
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6. Stability of the equilibria

Using figures 6. (a) and 6. (b) we can discuss the

properties of the equilibria; for a chosen 0 , dotted

parabola in figure 6.(a), we have three intersections with

the equilibria curve, heavy line; for each intersection we

have drawn the energy ellipsoid, dashed lines, Eq. (4.4).

As we can see, for the two stable equilibria C and E, any

nearby point, on the QGcurve, has larger energy and cannot

be reached. For the unstable equilibrium D, the energy

ellipsoid intersects the 0 surface so that neighboring

points with finite B's and smaller energies in the U and A

fields can be reached conserving energy and potential

enstrophy; this trajectory is the heavy dashed line of

figure 6. (b).

7. Numerical integration

To illustrate part of the linear and non linear

dynamics of the preceeding discussions we have integrated,

with a fourth order Runge Kutta method, the system

(3.12)-(3.13)-(3.14). We have chosen the following values

x = .8 and .05 . In figures 7a,7b,7c we have

considered, for different initial conditions, the system

with three equilibria (CD,E); as we can see, the two
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stable equilibria (C,E) are approached with oscillations

almost on the isolines of G, together with a net

displacement along the inviscid equilibria curve toward the

stable equilibrium.

In figure 8 we have considered parameters such that

the system has only one equilibrium. We no longer have any

forced and damped equilibria on the branch number two of the

equilibrium curve, but the equilibrium curve is still a zero

order equilibrium solution so that we can see damped

oscillations, with 0 nearly conserved, together with a mean

motion along the equilibrium curve toward the saddle point.

After crossing this point, the oscillations grow again and

the system evolves toward the only equilibrium left.
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FIGURE CAPTIONS

Figure 1 : see text

Figure 2 : see text

Figure 3 : The heavy line represents the equilibrium

curve, and the light lines are contours of constant

Q in the plane (UA).

Figure 4 : Shape of the potential function for different

value of

Figure 5 : Graphical solution of Eq. (1.48), heavy line,

for different values of the forcings U , Eq. (1.49).

Figure 6 : The equilibria points (C,DE) are points in

which the energy and the potential enstrophy

surfaces-are tangent and the stability is determined

by whether nearby points can be reached.

Figure 7 : Examples of time evolutions, starting from

different regions of the phase space in presence of

three equilibria (CD,E). The heavy line represents

the trajectory of the system, the medium heavy line

represents the equilibria curve and the light lines

are the intersections of the constant G surfaces

with the (UA) plane. For this evolution we have

ch osen: U = 4.8, 9= .05 and .8

Figure 8 As in figure 7 but in presence of only

one equilibrium, C. For this evolution we have

chosen: U = 4.8, :? .05 and .8.
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SECTION 2

MULTIPLE EQUILIBRIA IN A BAROCLINIC MODEL

1. Introduction

In the barotropic case the multiplicity of

equilibria is due essentially to the resonant structure of

the form-drag. Because the form-drag oresents a maximum

when the speed of the zonal flow goes close to a resonance,

the mean zonal flow has the possibility,

for a constant external forcing, of reaching different

statistical equilibrium values on the two sides of the

resonance. From this point of view, we have a strong

analogy with the two different equilibrium velocities that

an airplane can reach, for a constant propelling force: a

subsonic speed or, after having overcome the maximum in the

form-drag, a supersonic speed. These general qualitative

considerations continue to apply also to the baroclinic

case, but here we have some evidence that the equilibria

found could be unreachable if the system is too unstable to

synoptic scale baroclinic instability (Reinhold, 1981).

We have organized our study in a compact way that

allows us to discuss the multiple equilibria problem in a
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more general and simple way as function of the external

thermal forcing. We have demonstrated that the multiple

equilibria suggested by Charney and Straus for realistic

parameter values are baroclinically unstable to short waves.

We have found that the balance implied by one of the model

equations, the barotropic zonal flow equation, is quite

different from the real atmospheric balance. We have then

shown that a simple correction to this equation, simulating

a constant flux of zonal angular momentum from the tropics,

leads to more baroclinically stable equilibria. New

equilibria are then hypothesized in which the solutions have

a large scale stationary part and a synoptic scale time

dependent part. this large scale state is near the

stability boundary but the synoptic motions also play an

important role in the heat and momentum balances.
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2. Equations of motion

In the barotropic case it was decided to force the

zonal flow directly, arguing that this forcing, in a

baroclinic atmosphere, would correspond to the thermal wind

driven by the radiation field. To take into account the

direct thermal forcing and to study the effects of

baroclinicity of the flow, Charney and Straus (1980) decided

to look for multiple equilibria in a highly truncated

two-layer model. Following their notation, we consider the

potential vorticity equations for the two layers

Lb (4.

(2. 1)

where the subindex 1

the subindex 2

1represents

V< represents

represents

indicates the upper layer

indicates the lower layer

internal dissipation

bottom Ekman dissipation

the Rossby deformation radius

quantities represent

C,

+1

the externalThe starred

( .)19 = _F 1 2-
qz.) _j 7- V V q7 t
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forcing of the temperature field, here parameterized as a

Newtonian relaxation with an inverse time scale of

The potential vorticities in the two layers are

defined by

+ [ -

where h is the height of the topography and H is the mean

depth of each layer.

We consider this flow in a channel with meridional

walls at y = 0 and y = T L. Let x and y be scaled by L, t

by , u and v by L by L /9 by , h

by H and define the non dimensional parameters

XL Vol y~K~'~V

respectively. To get a spectral model we develop all our

variables, now dimensionless, on a complete set of

functions, here denoted by F such

that F- and F F -T. ; we let
U LV



f3 =

(cZ.o) =

and we define F F'

horizontal average on

definitions in (2. 1) we

CI where

the channel.

get

the bar implies a

Substituting these

AL L L-

(2. 2)

L9Q j9 P All ~(~ W L P I [ i Y J &:j W J
LL ~ ~ ~ ~ ±~\ 97IA"4kzVIL i

wh ere

and

Qi =- .L4 1L 1-- (W

An alternative set of variables is usually

uced to discuss the dynamics of the two layers and

interactions: the barotropic and baroclinic

ents of the stream-function

(c:- cj-)f
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their

compon
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\~'iL' eat)

8*-.L - ± ( 4 ~ .Q)

and the barotropic and baroclinic component of the potential

vorticity

(9)= (9 93) = -( + ) - tK

With these new variables the equations of motion

(2. 1) bec ome

kwz zj +i p) (91~ fX '~Q

(2. 3)

= ~A()~- ~ (v~~± \('L &.

- aCX~Q -.-).A (Q~O9

In our discussion we shall consider the energy

equation obtained from adding the first equation of (2. 2)

multiplied by 1I to the second equation multiplied by

After changing to the new
'(-and summing over i.
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variables, the energy equation takes the form

ole.-.- 2: 4. // . o9+ A1  - -v.Y

We shall also consider the

equations for both layers obtained

first equation of (2.2) multiplied by

equation multiplied by 9. ; for the

2. (e) 9L9
(2.4)

potential enstrophy

by summing over i the

. and the second

upper layer we get

A~ 3~q -C1

dCL %L LiL
(2 5

and for the lower layer

9. .- 9 .. R( J- (2.6)a4 L -L. IL L

z U
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3. Low-order model

Following the procedure used for the barotropic

model to find multiple equilibria we consider only three

modes, the same as Charney and Straus (1980; from now on

referred as C-B):

a zonal mode

Fa = tw c ose( y)

and two wavy modes

= I

F = 2 sin( y )*cos( m*x

F = 2 sin( y )*sin( m*x
.3

x= 1+ .A7

= I -M
.3

This choice, in particular, enables our system to

have baroclinic instability and to balance the generation of

heat with the divergence of the eddy fluxes of sensible

heat. The interaction coefficient between these modes is

given by

The term has projection only on F ,

and we choose / to match the C-S value;
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we consider a single mode topography with projection only on

F, and

The evolution equations for the zonal flow become

A. 3 (3. 1)

_j+ -+ -( .2K + (- (3.2)

In a long time mean we can see from the first

equation that, in the lower layer, the form drag must push

the zonal flow to balance the dissipation due to the Ekman

bottom boundary layer. In this simple model the Reynolds'

stresses are identically zero, and from the second equation

we can see that the eddy fluxes of sensible heat, the

internal dissipation and the Newtonian cooling must balance

the external generation of heat.

If complex variables are introduced for the wavy

part of the flow:

/141+ L
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Eqs. (2. 3) can be rewritten as:

+09

OX1 + I Z. - 6

C 2.1 +- Q G + 6

where aI a I a# a and b are functions only of

(3.3)

(3.4)

the

zonal quantit

QVZ =

ies, and 19i defined by

-- G '7 )

aZ

-L x x , L C
Z. ? I N - (-X?-- 1)
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4. Multiple equilibria

Without the topography this system has a simple

behavior. For a small forcing it has a stable stationary

solution, with no waves and with the heat balance satisfied

by the mean meridional circulation; if the forcing is

increased this solution becomes unstable to baroclinic

instability and the system reaches a different stable

equilibration with the meridional temperature gradient set

to the two-layer critical value for baroclinic instability

and with a translating baroclinic wave large enough to

transfer all the heat necessary to balance the external

forcing. This second state corresponds to a stable cycle in

the phase space.

The presence of topography enriches the system with

several new behaviors and, as C-S discussed, it can show

stationary, periodic or aperiodic solutions, depending on

the range of parameters chosen and on the initial

conditions.

In this paper we shall mainly consider the

stationary solutions and their stability.

To compute stationary solutions

Eqs. (3.1)-(3.2)-(3.3)-(3.4) are solved without the time

dependence. A graphical solution in the plane ( )

is presented in Fig.1. This is obtained by computing at

each point ( kV , GI ) the wavy part, from Eqs. (3.3)-(3.4)
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which are linear once the zonal flow is specified, then

computing the external forcing 9 from Eq. (3.2) (the light

lines represent curves of constant ) and finally

looking for the points where the form-drag and the Ekman

dissipation are in balance (heavy lines), Eq. (3.1). The

straight heavy line at forty five degrees represents the

Hadley solutions with no wave present and with zero wind

speed in the lower layer; the closed heavy line represents

non trivial balances between form drag and dissipation.

The intersections between the heavy lines and a

selected light line define the stationary solutions for a

selected strengh of forcing

In the case here studied the external parameters

have been set to the following values:

7TL = 5000 Km channel width

H = 5 Km mean depth of each layer

= 1000 Km Rossby deformation radius

2L A = 5.

The internal and Ekman dissipation time scales as

well as the Newtonian heating time scale have been set to

ten days corresponding to:

= h =.0114
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For the topographically forced wave we have chosen zonal

wave number three, n = 3 and m = ( n/2.83 ), and the

amplitude of the sinusoidal topography has been set to 1 Km.

With these choices we get the same equations with

the same parameter values as C-S.

Before discussing the stationary -solutions of the

full system it is useful to consider the stationary waves

that are forced by the topography for a fixed (

In Figs.2 and 3 the amplitude and the phase, relative to the

topography, of the barotropic and baroclinic forced waves

are drawn. Because the topography interacts only with the

lower-layer flow we also present the amplitude and the phase

of the forced wave on this layer (Fig.4). The straight line

divides the plane in two regions; in the upper

part the zonal flow has easterlies while in the lower part

it has westerlies in the lower-layer. The region of

positive form drag, where the topography pushes the zonal

flow eastward (i.e., the phase is between - Tr and 0 ),

have been shaded (Fig.4b).

As we can see the amplitude of the forced solutions

is dominated by the intensity of the zonal flow in the lower

layer, ( 'j-91), and by the presence of a resonant curve.

In the inviscid case this resonant curve (heavy line of

Fig.5) is the two-layer baroclinic extension of the resonant

barotropic point, 0 and 4- , and in particular
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it can be shown that, for westerly flows in the interior of

this semicircle (shaded region), the barotropic and the

baroclinic forced waves are in phase with the topography,

with cyclonic curvature on the peaks and anticyjclonic

curvature in the valleys) as in the barotropic subresonant

case.

It is interesting to point out that the system

(3.3)-(3.4) has a true resonance, infinite response, even in

the presence of dissipation. In fact there is a point

P that lies on the closed heavy line of Fig.1, where the

dissipation is balanced by the generation and it is possible

to have a stationary wave also without the topography; of

course, this stationary solution cannot be reached for a

finite value of the external forcing . We find a

resonance when the determinant of coefficients of 4 and

, Eqs. (3. 3)-(3. 4), vanishes.

QO -Q Q =

The real part vanishes on the heavy line of Fig.5

while the immaginary part vanishes on the dashed line; the

intersection between this two curves defines the position of

the infinite resonance. Thus unlike the barotropic case

where the amplitude of the wave is limited by dissipation as
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the forcing is increased, the stationary wave amplitudes

here grow as when the forcing is increased.

Due to the presence of this true resonance we can

anticipate that in its neighborhood the forced stationary

wave are large enough to tranfer meridionally all the heat

necessary to balance the external heat forcing and therefore

we can expect multiple equilibria. As we can see, after

having solved the problem, (Fig.1) for small values of the

forcing ( K. 140) we have only one intersection

corresponding to a stable direct Hadley circulation, without

any forced wave. For values of the forcing between .140 and

.175 two new equilibria are present; one has easterly zonal

wind ( > PI) in the lower layer and the forced waves exert

a negative form drag while the other has westerly zonal wind

).in the lower layer and the forced waves exert a

positive form drag. For values of the forcing between .175

and .200 two other equilibria appear; for C.195 both

have westerlies and for ,>.195 one has easterlies at the

ground. When the forcing is increased further, the two

solutions with easterlies disappear leaving three

equilibria. One is the Hadley solution that has only a mean

meridional circulation and, as we can see, is not very

efficient in transfering heat meridionally and therefore

gives meridional temperature gradients 9i close to the

forced ones & . The other two equilibria are locked to
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the true resonance and, in analogy with the barotropic case,

one can be called subresonant and the other superresonant,

depending on whether it is inside or outside the resonant

curve of Fig.5.

Before continuing our study of these equilibria, let

us try to state why these equilibria are important and from

which characteristics they get their importance.

The presence of equilibria points or, more

generally, the existence of regions in the phase space where

some components are slowly varying, increases the

predictability of these components. In our case these are

the mean zonal flow and those modes directly forced by the

topography. Following Speranza (private comunication) these

regions can be seen as examples of islands of predictability

in a stochastic, unpredictable space. In our case, because

we are considering stationary solutions. the high

predictability is a consequence of the high persistence.

There are four classes of persistence islands that

we can find:

a) * Stable stationary solution * In the most

simple and fortunate case we could find a full stationary

stable solution, for which the system remains confined

inside its attractor basin, once it gets there.

b) * Unstable stationary solution * In a s t ill
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simple case we could find a full non-linear stationary

solution with some linearly unstable eigenvectors. In this

case, once the system is close enough to the equilibrium

point, it continues to go closer in some directions, on the

stable manifold, while along others, on the unstable

manifold, it departs. Once the system enters the region of

validity of the linear stability theory around such

equilibrium, its persistence , i.e., the amount of time that

the system spends close to this point becomes directly

related to the amplitudes of the most unstable eigenvectors

and the values of their growth rates. The unstable

stationary points of the Lorenz system in the aperiodic

reqime are examples of this case.

c) * Stable quasi-stationary solution * This

corresponds to a stable solution with only some components

stationary or nearly stationary, where this

quasi-stationarity is due to the non-linear interaction with

the full non-stationary components. A stable cycle with

some constant components is a simple example of this case.

d) * Unstable quasi-stationary solution* In the

more general case we can find an unstable solution with only

some components nearly stationary. Here, to understand the

time behavior of the system in the neighborhood of this

point, we have to consider the instability of this state
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taking into account the role of the non-stationary

components.

We do not have any evidence that full stationary

solutions do exist, but we have some experimental evidence -

blocking situations - and some theoretical suggestions -

multiple equilibria theory - of the existence of solutions

with a non trivial quasi-stationary part. The solutions

that have been found until now have been obtained with

spectral highly truncated models and, therefore, must be

seen only as possible approximations to real persistent

solutions. Here we still have an open question on the

validity of these stationary truncated solutions, but we

realize that these solutions can be very relevant even if

they are only approximations of unstable quasi-stationary

solutions.

Once the system is supposed to be in the presence of

one of these islands we still have to determine its impact

on the time behavior of our system. An island gets its

importance from the amount of time spent by the system in

its neighborhood and this is a function of the extent of the

attractor basin in its stable manifold and on the growth

rates present in the unstable manifold.

Here we conclude our general considerations and

believing that our truncated stationary solutions are

approximations of real quasi-stationary solutions we
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continue our study. To begin our understanding of the

unstable manifold around the C-S stationary solutions we

shall study the linear "internal" instabilities in the

subspace including only the forced waves and the zonal flow

and then we shall consider some "external" instabilities in

the subspace containing the most unstable baroclinic wave.

Let us first consider the "internal" instabilities

of these stationary solutions, i.e., perturbations in the

zonal flow and in the wave field with the same zonal and

meridional wave number of the topography, described by the

system of Eqs. (3.1)-(3.2)-(3.3)-(3.4) linearized around the

chosen stationary solution. As we shall see, as a

consequence of the introduction of another external forcing,

all the points ( I , 91 ) can correspond to stationary

states; therefore we compute the growth rates of the

unstable modes on the whole plane. We have a sixth-order

eigenvalue problem with real coefficients. The number of

unstable roots is plotted in Fig.6a and the number of

unstable non propagating (real) roots is plotted in Fig.6b.

Without the topography we do not find any finite area region

of growing stationary perturbations; there is only a line

(dashed line in Fig.6b) that divides the eastward

propagating from the westward propagating ones. As we see,

while this line now has been broadened to a region of finite

area new regions of orographic instabilities (here defined
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as instabilities that grow in place) have appeared. In

Fig.7 we have plotted isolines of the largest growth rate in

presence of topography. In Fig.8 we have plotted isolines

of the largest growth rate obtained, solving the same

instability problem without topography; in this case the

basic state that we perturb has no wave and we have pure

baroclinic instability. As we can see the barotropic part

of the flow influences the growth rate as well as the phase

speed of the perturbation; this is because the mode

describing the zonal flow always vanishes at the two walls

and a change in the barotropic part is not equivalent to a

Galileian transformation. Comparing Fig.7 with Fig.B we see

the presence of a strong orographic instability that

dominates the picture for low values of the baroclinic zonal

flow near the true resonance. The indentation on the

isolines in the upper part of the figure shows the stronger

influence of the topography on those unstable modes that,

also without topography, were growing almost in place. In

presence of orography (Fig.7) we have essentially two kinds

of instabilities: for high values of 61 we have almost

pure baroclinic instability and the source of the

perturbation energy is the available potential energy of the

zonal flow; for low value of & and close to the true

resonance we have almost a pure orographic instability and

the forced stationary wave is the main source of energy for
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the instability as in the super-resonant barotropic case.

The heavy line of Fig.7 indicates the stationary solutions

of the C--S model for different values of the forcing and we

see that some of these solutions are stable, or weakly

unstable, to "internal" perturbations (same wavenumber as

topography), suggesting that, if these are the dominant

instabilities, some of these equilibria can play an

important role in the time behavior of the system.

At this first level of truncation we could still

find a stable stationary solutions. Another subspace that

has been studied by C-S is the one including modes with the

same zonal wave number of the topography, but with a higher

meridional wave number; theu found that all their

stationary solutions were unstable to these perturbations.

The effects of this higher y-mode instability have been

studied by Arakawa and his collaborators (private

comunication) who ran a two-layer highly truncated spectral

model including one zonal wave number and three meridional

ones; they found that, instead of multiple stationary

solutions,1 multiple statistical steady states can be reached

resemblina the C-S multiple equilibria. In this way they

have shown that these instabilities are not able to take and

to keep the system completely away from the equilibria but

they weakly modify the equilibration. In particular, these

unstable modes participate in the meridional heat transfer
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lowering the equilibrium value meridional temperature

gradient. At this second level of truncation they show that

there may be stable quasi-stationary solutions.

Serious concerns about the importance of the C-S

multiple equilibria arise when we consider the subspace

containing the most unstable baroclinic wave. With the

parameters chosen in this model the most unstable baroclinic

wave has the largest meridional wave lenght and zonal wave

number five. To consider its influence we neglect the

direct topographic forcing on the most unstable baroclinic

wave with zonal number five and we study a new instability

probleem, adding to Eq.s (3.1)-(3.2)-(3.3)-(3.4) the

analogous equations for zonal wave number five. This

problem can be factored in two sub-problems: the first

describing the zonal flow and the topographic forced waves

that we have just studied and the second describing the

instability of wave number five in a constant zonal flow.

In Fig. 9 we have plotted isolines of the largest growth rate

obtained in this second problem (no topography and zonal

wave number five). To understand the stability of the C-S

stationary solutions for the most unstable baroclinic wave

we have superimposed the curve that delineates the C-S

stationary states for different values of the forcing in

Fig.9 (heavy lines). As we can see only the Hadley solution

for small value of the forcing is stable.
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Stone (1978) has shown that at middle latitudes the

real atmosphere is very close to the neutral value for

baroclinic instability in the two-layer model) and the same

result has been confirmed with a numerical time integration

of a two-layer model. The fact that the C-S stationary

solutions require a meridional temperature gradient almost

twice as big raises some suspicions about their importance,

and indeed it has been shown (Reinhold, 1981) that the

system does not stay close to any of these multiple

equilibria. To prove the preceding point Reinhold used a

two-layer highly truncated model including the zonal flow

and two zonal wave numbers, one directly forced by the

topography and another more baroclinicly unstable, with two

meridional wave numbers, to allow some non-linear

interactions.
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5. Search for more stable equilibria

From Fig.9 we have seen how all the C-S wavy

equilibria are strongly baroclinically unstable. To

understand if this negative result is a consequence of some

neglected important physical phenomena, we studied the

assumptions of the C-S model. We started by considering the

parameters involved and, as pointed out by Reinhold, we

verified that this model is sensitive to reasonable changes

in the parameters, but is also very consistent in producing

multiple equilibria which are strongly baroclinically

unstable.

To understand the reason for their instability we

must understand why the non-trivial balances between form

drag and dissipation are obtained only for high values of

9B . Because this is a complex balance we did not find a

simple explanation and we decided to compare this balance in

our model with the one in the real atmosphere.

The model equation (3.1) states that, in equilibrium

or in a long time average, the mountain acts to balance the

dissipation of zonal momentum due to the surface Ekman

boundary layer. This statement does not agree with the

observational studies on the relative role of mountain

torque and surface friction. Newton (1971) and Oort and

Bowman (1974) found that, on the average, the mountain

torque and the surface friction work together against the
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convergence of angular momentum flux, the Reynolds' stresses

neglected in our model.

It is interesting to point out that this problem is

not present in the barotropic studies where the zonal flow

is directly forced, and also that if we compute the

convergence of momentum necessary to give the zonal forcing

used by Charney and DeVore (1979), we get a somewhat higher

but still realistic value of the atmospheric convergence of

momentum due to Reynolds' stresses. In Table 1 we have

computed the barotropic and baroclinic convergence of eddy

flux of angular momentum in the latitudinal band from 30* to

60* N for the extreme seasons using the data of Oort and

Rasmusson (1971); for this calculation we divided the

atmosphere in two layers, one from the ground to 500 mb and

the other from 500 mb to 50 mb. As we can see the tropics

are a source of both barotropic and baroclinic angular

momentum for the mid-latitudes, and these momentum exchanges

(that are neglected in channel models when the meridional

boundary condition, v = 0, is applied) can play an

important role on our stationary solutions.

To take this momentum source for the zonal flow into

account we decided to include a constant forcing,

( , F ), in the barotropic and baroclinic zonal momentum

equation:
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C- 3 9 - -+(5.1)

±y k (Z 3t 3 (&''(ti ~)± + (5.2)

The balance for the barotropic part becames now more

realistic and we can have stationary states where mountain

torque and friction work together to balance the momentum

flux convergence. To discuss the effects of this forcing we

looked for the equilibria solving for P in the ( 91 ,

plane. The balance for the baroclinic zonal flow is not so

drastically influenced; in fact the flux of baroclinic

zonal momentum simply adds its contribution to the external

radiation forcing in trying to set a larger vertical shear

and we can simply continue our discussion by introducing a

new effective forcing given by . However

the discussion of the baroclinic flux of momentum will no

longer be so simple once this quantity is parameterized as

function of the wave field. Presumably as becomes less

Nw
than I" , the form drag will have to become positive;

however the data suggests that this is not the parameter

range of atmospheric interest, since the momentum forcing is

positive in the lower layer. In Fig. 10 the intersections

between a selected heavy line ( const) and a selected

light line ( const) define the stationary solutions for
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the particular values of the forcings e. and Irt. As we

can see the equilibria move in the right direction, becoming

more baroclinicly stable and, for realistic values of the

zonal momentum forcing, we start to have, in the lower left

side of Fig.10, equilibria with considerable energy in

stationary long waves which are baroclinicly stable for

shorter, synoptic-scale waves.

Along with the other factors that have been taken

into account, we want to mention that changes in the ground

friction parameterization (extrapolation to the ground

instead of lower layer value being used to compute the Ekman

dissipation, i.e., the Ekman term V V4z.. in Eq. (2.1) has

been replaced b y34) improve, but not to the point

of stability, the stability of the wavy equilibria (Fig.11).

Another interesting physical term until now

neglected, being difficult to parameterize, but which can

play a role in the stabilization of our equilibria, is the

latitudinally varying heat forcing due to radiation and

moist convection. To get an idea of the sensitivity of our

equilibria to non-symmetric heat forcing we considered a

simple Newtonian perturbation with the same zonal wave

number as the topography, i.e. we introduced a wavy forcing

term * in Eq. (2. 3). In Fig.12a, b, c, d we present the

equilibria obtained for a strong zonally varying heat

forcing. The amplitude of the forced wave is 40 K and the



PAGE 75

Newtonian time scale is ten days, with different phase

relations between the topography and the heat forcing. From

Fig.12b we have the suggestion that when the heating is in

phase with the topography multiple equilibria which are

baroclinicly stable can be obtained.
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6. Conclusion

We have seen how, taking into account in a simple

way the fluxes of angular momentum from the tropical

regions, our highly truncated two-layer system can have

stationary forced large scale waves stable with respect to

the baroclinic instability of shorter synoptic scale waves.

This state requires a barotropic zonal flow about twice the

baroclinic zonal flow in reasonable agreement with what we

measure in the real atmosphere.

To discuss the properties of this equilibrium state,

varying V and ~v, we consider a low order model with

only one meridional wave number and with two zonal wave

numbers: a planetary topographically forced wave, zonal

wave number three, and the most baroclinically unstable

wave, zonal wave number five in our model.

For small value of the tropical forcing 1g the

equilibria obtained with a stationary wave number three and

with no wave number five are strongly baroclinically

unstable, 9 > I (where 9 is the neutral value for

baroclinic instability, dashed line of Fig.10), and

therefore the shorter wave develops and keeps the value of

close to 9 preventing the forced long wave from

reaching its equilibria.

When we increase and the isoline tp constant

becomes tangent to 0 = (dashed line of Fig.10), we have
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two situations depending upon the strength of the external
fC

radiation forcing. For values of less than (the

value of 0, on the intersection between 91 = and the

isoline of ) we can have a stationary solution in which

the long stationary wave is the only- wave present and it

transports meridionally all the heat necessary to balance

the external radiation forcing and keeps the meridional

temperature gradient below the critical value for baroclinic

instability. For values of 9 e. greater than 9, the long

forced wave reaches the equilibrium state at the

intersection between the isoline F constant and

G while the shorter baroclinic wave reaches an amplitude

large enough to transfer the heat required to balance the

difference between and 9 .

We have explored the possibility of the atmospheric

system reaching states in which long stationary waves are

present and we have found that a determinant factor for the

realization of such a state is the presence of a barotropic

zonal momentum flux coming from the tropics into the

mid-latitudes. This angular momentum flux is especially

strong in winter when examples of atmospheric blocking are

more frequent.
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FIGURE CAPTIONS

Figure 1 : Graphical solution of the equilibria in the plane

( . & ), the light lines represent lines of constant

91 , the heavy line indicates balances between the

form drag and the Ekman dissipation.

Figure 2a: Amplitude of the

dimensional units.

Figure 2b: Phase, relative to

forced wave.

Figure 3a: Amplitude of the

dimensional units.

Figure 3b: Phase, relative to

forced wave.

Figure 4a: Amplitude of the

barotropic forced wave in non-

topography, of the barotropic

baroclinic forced wave in non-

topography, of the baroclinic

forced wave in the lower layer

in non-dimensional units.

Figure 4b: Phase, relative to topography, of the forced wave

in the lower layer.

Figure 5 : Resonant curve for our two layer channel model

without dissipation (heavy line). In presence of

dissipation there is still a line on which the

dissipative effects balance and in P we therefore have

a true infinite response.

Figure 6a: Number of "Internal instabilities". In the white

areas we have no unstable roots, while in the other

regions we find 1,2 or 3 unstable roots as written.
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Figure 6b: Number of "Internal instabilities" with zero

phase velocity. In the white areas we have no stationary

unstable roots, while in the other regions we find 1,2

or 3 unstable stationary roots as written . The dashed

line represents the only unstable stationary root in

absence of topography.

Figure 7 : Largest growth rate for the "internal instability".

The heavy line, representing balances between form drag

and Ekman dissipation, indicates possible equilibria.

Figure 8 : Largest growth rate for the "internal instability"

without topography; i.e. growth rate for the baroclinic

instability of wave number three.

Figure 9 :Largest growth rate for the most unstable

baroclinic mode present in our channel model: zonal.

wave number five.

Figure 10: Graphical solution of the equilibria in the plane

( ,9) in presence of a zonal momentum forcing

the light lines represent lines of constant ,the

heavy line represent lines of constant , where

Figure 11: As in Fig.10 but with ground extrapolation to

compute the Ekman dissipation.

Figure 12a: Graphical solution of the equilibria in the plane

( ,01:) in presence of a zonal momentum forcing

and a latitudinal Newtonian heat forcing (with amplitude

of 400 and a Newtonian time scale of ten days). The

heating is in phase with respect to the topography. The
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light lines represent lines of constant e the heavy

lines represent lines of constant where

Figure 12b: As in Fig.12a but here the heating is out of phase

with respect to the topography.

Figure 12c: As in Fig.12a but here the heating is leading the

topography by 904 .

Figure 12d: As in Fig.12a but here the heating is behind the

topography by 90".
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TABLE CAPTION

Table 1 :Barotropic and baroclinic eddy flux of angular

momentum and its convergence between 300 and 60* north.

in m/sec (or in our non--dimensional units).
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Winter Summer

Eddy fluxes of barotropic at 300 16.4 7.4

angular momentum (m /s ) : BR at 60" -3. 6 -1. 2

Eddy convergence of barotropic
angular momentum between 30* o 8. 5*10 3. 6*10
and 60 N. (m/s)

* -3 -3
(non-dimensional units) .53*10 . 23*10

Eddy fluxes of baroclinic at 30* 7.0 4.2

angular momentum (m'/s ) - at 600 -1.9 -0.7

Eddy convergence of baroclinic -. -
angular momentum between 300 3. 8*10 2. 1*10

and 60* N. (m/sE - - a C

(non-dimensional units) .24*10 .13*10

TABLE 1
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SECTION 3

STATIONARY ADIABATIC FRICTIONLESS FLOW OVER TOPOGRAPHY

1. Introduction

In this last section we shall examine a stationary

quasi-geostrophic inviscid flow over topography and the

vertical propagation of zonal momentum and energy; we then

analyze in some detail how these transports are accomplished

in a simple fully non-linear solution. In particular we

shall consider the implication of a top radiation boundary

condition on the mean meridional circulation.

Our study clarifies the role of the stationary waves

in forcing a mean meridional circulation and in particular

suggests that there will be a strong meridional mass flux in

the layer containing the topography. It also points out the

necessity of studying the time dependent problem to increase

our understanding of the mean meridional circulation in the

upper atmosphere.
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2. Equations of motion

We study a quasi-geostrophic adiabatic frictionless

flow in a zonally periodic beta channel. We assume the

validity of the hydrostatic balance and we choose to work in

pressure coordinates.

We consider the following quasi-geostrophic

equations:

zonal momentum equation

- 4 L- - _( --

vorticity equation

avk' .J ( q+7 +o

thermodunamic equation

-- - + J - -- +

mass conservation equation

(2. 1)

(2.2)

(2. 3)
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I

-- - 0

and the following energy equation

I ( - ,I±f. I -41 TT"D
(( tP Z IVq1 4- -) Tes / S ( J3t-

(2. 4)

(2. 5)

which can be obtained by multiplying (2.2) by , (2.3) by

> .W adding them together and averaging over a p-surface.
S ')P

where LAL eastward component of the geostrophic wind

V northward component of the geostrophic wind

eastward component of the ageostrophic wind

V northward component of the ageostrophic wind

Coriolis parameter = 2.bvMMf .j +

t Coriolis parameter evaluated at mid-latitude

d4-
derivative of the Coriolis parameter

geopotential

y stream-function for the geostrophic wind

V horizontal divergence or gradient
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C2D individual pressure change
d1

dry static stability = -

zonal average at constant p and y

C horizontal average at constant pressure
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3. Simple theorems

We now proceed to prove three statements.

Theorem 1. For a stationary channel flow the total upward

flux of energy, must vanish.

Proof. This is a straightforwar-d consequence of the

thermodynamic equation. In fact, multiplying (2.3) by

kV and horizontally averaging, we have:

-- y A4I~ /?3 (V =- ' I Dq
(3. 1)

where we have used the zonal periodicity and the presence of

lateral meridional walls.

Lemma 1. If we have a stationary wave that propagates

energy upward we must have a mean meridional circulation

that transports back the same amount of energy.

Lemma 2. No level can be a net source of energy.

Theorem 2. For a stationary channel flow the form drag due

to the topography must be balanced by the Coriolis force in

the layer containing the topography.

Proof. We start from the zonal momentum equation (2. 1),

C - V
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and, to avoid the problem arising where p-surfaces intersect

the ground, we integrate vertically from the ground

(quantities evaluated at the ground are hereafter denoted

with the sub-index g), p = P (xy), to a generic level p,

then we take the spatial derivatives outside the integral to

get

P PF P

P p
PCP

ID X (3.2)

where the term (u L-) ) has been neglected been second order

in the Rossby number. Taking a p-level, p = P just above

the topography we can perform a horizontal average. All the

terms having in front a horizzontal derivative vanish due to

our zonal periodicity and our meridional boundary conditions

and we are left with

(3.3)

Lemma 3. If the net meridional

latitudes the form drag must

valid once p Is lower than

particular we can choose p = 0.

flux

van i

any

of mass is zero at all

sh. In fact Eq. (3. 2) is

ground pressure; in

Because we a Te working with quasi

/ZX

- V+ /cP =
P

e-3

geostrophic
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equation we conclude that the form-drag must be a second

order term in the Rossby number. To point out more clearly

this result we can do the quasi-geostrophic scaling on the

zonal momentum equation

/- k D X /~, Dp /D x

where now (U,V,cO) are the full components of the velocity

field. We scale all our variables in the quasi geostrophic

framework

L/ ) /((L )

L.

where Ro is the Rossby number and P the

typical value of the ground pressure, has been choosen to

scale the vertical variations of the pressure field.

Substituting we get

-, 4 V 4- r- -,
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Integrating from P to P=0 and horizontally averaging we

find:

D

P

and assuming no meridional mass flux

Z >.
1 ;IAw~

Q~J'4)

_x

Transforming the x-derivative following the ground

to x-derivative at constant height, using the definition of

geostrophic wind in z-coordinates and neglecting the

horizontal variations of the ground density, 4)1  we can

write:

"R7( '' /10J VyI'J7 1
A/-

where now H is the internal height scale defined as

H =(g /P Assuming a realistic small topography,
h/ R 0;

h/H 2 Ro, we-find that -the part of the meridional wind
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correlated with the topography must be of order Rossby

number. In the linear theory of topographically forced

waves this does not hold when we .go close to a resonance so

that the linear theory must break down.

Our third statement is a relation between the form

drag and the vertical component of the Palm and Eliassen

flux.

We start by considering the zonally averaged zonal

momentum equation

4-
.- x& f/'X (3. 4)

We write the ageostrophic wind using the zonally

averaged continuity and thermodynamic equations

V-
= --- CDPl'f77

We integrate once in

boundary condition V V 0

get

jX .--

y, using the meridional

on the lateral boundary, to

I (3. 5)
--a P / 5
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We then substitute X

VX 7-VX

(3.4) getting

.-
0/'O

where now on the right hand side we have the divergence of

the Palm and Eliassen flux (Andrew and McIntyre, 1976). The

second term on the R. H. S can be interpreted as a vertical

convergence of "geostrophic vertical flux of zonal

momentum."

Theorem 3. For a stationary flow the total "geostrophic

vertical flux of zonal momentum" is constant with pressure

and it is related to the topography by:

(3.7)

Proo f.

equation

We consider the zonal averaged thermodynamic

on a pressure surface P above the topography, then we

vertically integrate the conservation of mass from P (xy)

(3. 6)

LA - X k4-
-p e-D

10 X
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to P and we zonally average to get:0

S = - -- V+ V')

Equating these two expressions for and integrating

once in the meridional direction we get:

(3. 8)

P

Using Eq. (3. 3), substituting f by

neglecting second--order terms in the Rossby

and

number, we can

rewrite the R.H.S of Eq. (3.8) as

x eA
P ~4~

substituting the definition of geostrophic streamfunction,

taking the partial x-derivative outside the integral sign

and integrating once by part we find:

-V -~ __

proving the theorem.

-D

1

-Z3 X

X 14-

f" - P y
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For small topography

R[D (3. 9)
_____x

~L v~V
.5 P

This result, without any y-integration comes from (3.8) if

we neglect the coupling between the ageostrophic wind and

the topography; i. e. we neglect

p

Lemma 4.
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4. A simple non-linear analytical solution

We now solve a particular case and we study how

these requirements are satisfied.

We use the quasi-geostrophic potential vorticity

equation, obtained by eliminating e-) between (2.2) and

(2. 3),

- (4.1)

To define the bottom boundary condition we consider that the

ground is a material surface:

Where in the stationary case the ground pressure is

only, a function of x and y. Transforming the horizontal

derivatives following the ground to horizontal derivatives

at constant height, and using the hydrostatic balance, we

can write:

(V~v) -~ ~~S 43~ O~.Vh (4.2)
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In the last expression we have neglected the advection of

the ageostrophic pressure, which is a second order term.

We approximate this boundary condition assuming a

small topography and consistently we assume a constant

ground density and we apply (4.2) on a constant pressure.

level P , instead that on p = P
0 

1

Eliminating ch between the thermodynamic equation

(2.3) and (4.2) we get

J~n4} 3 9) O f(4.3)

An analytical solution of (4. 1) and (4. 3) can be obtained

assuming the quasi-geostrophic potential vorticity to be a

linear function of the geostrophic stream-function

4 - -- ;a (4.4)

and assuminQ

-P -~ (4.5)

Putting in explicity the barotropic zonal flow
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. --- - 4 (4. 6)

and setting C = - A/U we can rewrite (4. 5) and (4.6)

as:

I ~

-s ~~Z:~p U

(4. 7)

These equations are linear and can be easily solved for any

assigned topography.

To solve the problem we approximate,

Wiin-Nielsen (1959), the dry static stability as:

_S 4-,

following

1-4 . AAA 6

where H at mid-latitude is approximatly 1.07 *

We define the following non-dimensional quantities:

4z
L
L >' ' (4. 8)

V

V4 z
VO

T0P

H h
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where 7i-L is the meridional width of the channel, is a

reference ground pressure, P = 1000 mb, k To

and H is an internal scale height, H Po J . 8 km.

With these substitutions and introducing a new vertical

coordinate Eq. (4.7) becomes:

(4.9)

Assuming no topography on the meridional walls of

the channel we can use a Fourier expansion

2-M I m' Aim X4 )

rL
Where =A. 1- and L is the channel lenght. Because of

the linearity of the problem we can consider each component

independenly. We must consider two cases, for

-/3 L( L 
L7 (pp)Lz~

the forced wave decays exponentially and the solution is

given by:
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(4. 10)X+ + C

and applying the bottom boundary condition we get

'Y;o
MI

(4. 11)

We see that the forced wave is in phase with the topography

and theref~ore the form drag vanishes.

ZC-ZL- Uii
In the second case,

L -

the solution has upward, A and A' and downward, B and B',

energy propagating waves and it is given by:

Ada X +Am Cr+ 4-? cl 4-

(4. 12)

and applying the bottom boundary condition we get

A(A-A = B ( +B)

± (4--B) +
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Applying a top radiation boundary condition

determine the solution we have:

B 0

I 4 -L4

to

(4. 13)

Because the solution is not in phase with the topography we

now have a topographic form drag. To get no form drag and

to satisfy the bottom boundary condition we must have

A 0= B'= O FI= B= -- Al

i.e., we have two waves with the same amplitude, one

propagating upward and the other downward.

The most interesting solution is that obtained with

the top radiation boundary condition because it does not

require a source of wave eneTgy at infinity; in presence of

a single-mode topography this is given by

L(4.14
(4. 14)

S-Z 'U4 c.'O " ( J4X, -- AU)

A =7, - -3'LU R
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As we have said, this solution transfers wave energy upward;

hence, for Theorem 1, we must have a mean meridional

circulation that transfer energy downward. The vertical

energy flux due to the mean meridional circulation is given

by TL ---x

The vertical motion can be computed from the

thermodynamic equation (2.3)

(4. 15)

--X
and the zonal average c. reduces to

(4.16)

independent of the pressure. Hence, due to the mean

meridional motion we have a downward flux of energy,

independent of height, that balances exactly the upward flux

of wave energy. To understand the source of this energy at

infinity we should consider the time dependent problem and
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study the upward propagation of the wave front; the mean

meridional circulation should be set up behind the wave

front that should be also the source of the energy which is

advected downward.

From Eg. (4.16) we also see that at some latitudes we

get a constant upward mass flux starting from the surface

p =P and leaving the atmosphere while at other latitudes we

get a mass flux entering the upper atmosphere and coming

down to the surface p =P . From Theorem 2 we can

anticipate that in the layer containing the topography there

will be a net meridional transfer of mass able to close the

lower part of the meridional circulation. To close the

upper part of the mean meridional circulation we think that

we should, as we said before, study the time evolution of

the wave front.
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