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ABSTRACT

When appropriate conditions are present, nonlinear systems of
dynamics, such as water waves, exhibit coherently structured waveforms.
An example is the soliton. Under other conditions,. these systems may behave
quite unpredictably, with great randomness. Connections between these
regimes were sought.

The isentropic dynamics of ideal gas was considered. Lagrangian
coordinates were used. It was argued that the integral of the appro-

priate Hamilton-Jacobi equation for the time dependent system over an
ensemble set of material elements be extremal. A constra nt was imposed
on variations of this integral. The Lagrangian velocity - , and the
density p, were mapped to new dependent variables $ and $T. A constraint
was imposed on the Jacobian relating present time coordinates to time t= 0
coordinates. Resultant Euler-Lagrange governing equations are a general-
ization of the one-dimensional nonlinear Schr6dinger equation. A method
for solving these equations was not found.

Shallow water waves were considered. Much of what was introduced
for the ideal gas dynamics example was repeated and extended. Resultant
governing equations are quite similar to the Davey-Stewartson equations.

Inverse scattering techniques were applied to these latter equations.
Soliton solutions were derived. The simplest single solitons were found
to have sinusoidal lateral variations.

The Eulerian velocity field, convection, and free surface height
corresponding to the simplest single solitons were derived. These were
found to be waves of constant form.



3

Consideration was given to the stability of both the ideal gas
dynamics example and the shallow water waves example. Results are
analogous to those of Davey and Stewartson.

A general approach was not constructed for rotating systems. No
new rules for soliton interactions were obtained.

Thesis Supervisors: "Drs. Edward N. Lorenz, Erik L. Mollo-Christensen

Titles- -Professor of Meteorology, Professor of Oceanography
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1. Introduction

Under certain circumstances, nonlinear phenomena such as sea surface

waves, seem dominated by a few scales of motion and a few specific angles

and seem not characterized by either a continuum of scales of motion or

a continuum of angles. These phenomena seem to have a certain coherency,

order and symmetry inherent to their structure. Chaos is not evident.

The best analytical example of coherency is perhaps the soliton.

Admittedly, these same nonlinear systems can be chaotically random

in many of their other motions at other times. Governing equations are

the same for both regimes.

A similarly dichotomous situation exists between quantum and

classical mechanics, respectively. Jammer (1966) gives a history of the

development of the former from the latter. At its beginning, the

Schrodinger theory assumed the presence of a wave eigenvalue problem.

A substitution, S , was made in Hamilton's equation for the

time independent system,

OU

where S is the action, E , the energy, K , a real constant, and

, the coordinates of the system in phase space. It was postulated

that Y be a finite, single-valued, twice differentiable function, such

that the integral of the functional,

- . O



over all configuration space, be extremal. The resultant wave equation is

the time independent Schr6dinger equation.

The potential energy for the hydrogen atom is -r

The wave equation for 4 is

where yn and .Q are constants and where r is the radial spherical

polar coordinate. A symmetry transformation with respect to an operator

1t - ,OU, is a linear coordinate transformation such

that is of the same form in the new coordinates as in the old.

Examples of real symmetry transformations are,

1. translations, Y= 4 Z. 3. inversions, -- 7

2. rotations, I YIrk 4. reflections, )= C

The time dependent Schrodinger equation was obtained by writing

) V and postulating,

where U may now be time dependent.

The passage of Equation 1.2 back to classical mechanics is

noteworthy. Perhaps this was the dominating concern allowing its'

postulate. The substitution is made, where 2
2

is assumed real. This follows Landau and Lifschitz (1958) . Equation



1.2 becomes,

k S- 4K W , -OS Kl'qS -UWS=O

Real and imaginary parts are equated,

LA 2rn

Of the former, the limit t-> implies,

which is the classical Hamilton-Jacobi equation for a particle with

action S . The latter may be multiplied by 2k and written as,

The classical velocity of a particle is VS . The probability density

of finding the particle at some point in space is

Equation 1.4 appends a classical velocity V. to the probability

density at each point in space and makes it obey a classical equation of

continuity.

Chapter 2 begins with a consideration of the isentropic dynamics

of ideal gas. Lagrangian coordinates are adopted. It is argued



that the integral of the appropriate Hamilton-Jacobi equation for the time

dependent system, over an ensemble set of material elements,

be extremal. A mapping of dependent variables is made,

*
9.21

ataJA

where repeated indices

material element whose

constant, e(A)

aa, 1 zy as

are summed, is the

time I =. 0 position was (.

is the density and

position of a

, Y< is a real

U I XC~Ly24 3)

aJ

The function J(C, ) is related to \. , the convection.

Coordinates are transformed from ( -space to : -space. Appropriate

constraints are assumed. Resultant Euler-Lagrange equations are a

higher dimensional generalization of the usual one dimensional nonlinear

Schr5dinger equation.

Shallow water waves are considered in Chapter 3. Much of what was

introduced in Chapter 2 is repeated and extended. The Euler-Lagrange

equations in new dependent variables are eventually found to be

.3.123

3.24-

_.L . = 93

2.22



In Chapter 4, requisite transformations for the application of the

inverse scattering transform to Equations 3.23 and 3.24 are made. Soliton

solutions are presented.

Chapter 5 uses the solutions of Chapter 4 to determine the function

, the Eulerian velocity U , and the free surface height , for

the shallow water waves example.

The stability of Equations 3.23 and 3.24 is considered in Chapter 6,

3
following Hasimoto -and Ono (1972) The interaction of instability and

4
recurrence, discovered by Yuen and Ferguson (1978) , is mentioned.

Chapter 7 tries to describe how transition among KdV solitons

might occur. An attempt is made to fashion a role for symmetry.

Equations 3.23 and 3.24, as well as the Euler-Lagrange equations of

Chapter 2 are higher dimensional generalizations of the one dimensional

nonlinear Schr5dinger equation. This latter equation has an earlier use

in the approximate description of modulational processes- of free surface

5
waves in deep water. Benjamin and Feir (1967) prove that a uniform

wavetrain of wavelength , in water of depth k is unstable

only if k L 3(o3 . An analysis of gravity waves using the

3
method of multiple scales is done by Hasimoto and Ono (1972) . They

let the free surface height above the undisturbed level be,

an obai

and obtain



Concerning variables, 3 is the acceleration due to gravity, C is a

small expansion parameter, X and Y are known real functions of

and ,and

Equation 1.5 is the one-dimensional nonlinear Schr6dinger equation.

6
Freeman and Davey (1975) consider three-dimensional inviscid non-

linear surface waves on water of finite depth. They show that small

amplitude waves having an appropriately slow variation in the direction

transverse to the propagation direction satisfy a two-dimensional general-

ization of the KdV equation. This is when A = is finite,

where E is an amplitude parameter.

When A is small, governing equations become the two-dimensional

generalization of the one-dimensional nonlinear Schrodinger equation

7
suggested by Davey and Stewartson (1974)

This is to a first approximation.

A variational principle is quite central to the analysis. Serrin

8 9
(1959) and Seliger and Whitham (1968) present many of the situations

where variational principles have been useful in continuum mechanics.

When the system is described in terms of Lagrangian coordinates a strong



analogy to a collection of discrete particles is ever present.

Specifically, the equations of motion are derivable from a Hamilton's

principle that the kinetic energy minus the potential energy be stationary,

given an arbitrary set of material elements.

Eulerian coordinates are more familiar and more widely used than

Lagrangian coordinates. When these are used to describe the system,

this analogy to a collection of particles is lost. Variational principles

are quite difficult to find. There is no obvious set of rules relating

the variational principle of one problem to another. A given set of

equations may not follow from a variational principle, whereas as Seliger

9
and Whitham (1968) point out, an equivalent set of equations, obtained

as a mapping of the original set, may. The extreme example is simply to

map Eulerian coordinates to Lagrangian coordinates and invoke Hamilton's

principle.

Consider an Eulerian fluid defined by

Lit



-13

where \f is the velocity, the density, p the pressure and S

the entropy at position '. in space and time + . The analogous thing

to Hamilton's principle when the coordinates are Lagrangian is,

vo4 L - [ 12

The internal energy at is and variations are with

respect to e , and . . Variations with respect to imply

10
only =O . Herivel (1955) attained some nontriviality by intro-

ducing Lagrange multipliers and and replacing Equation 1.12 with

0 il e voji - S)_V(es),r{e44

Variations with respect to imply

aL

integrating by parts appropriately. Variations in \ vanish on the

boundary k of
Equation 1.14 represents a subset of possible flows available to

Equations 1.8 to 1.11. Isentropic flow can be rotational, which this

11
can not be. The correction, by Lin (1963) , was to introduce another

Lagrange multiplier , and to require that although the representa-

tion is in terms of Eulerian variables, initial coordinates {.,

of the material elements are conserved following the flow,



14

Equation 1.13 is replaced by,

P-0

I (ej -- A

(e (e \j N-) at-a
Variations with respect to \V. yield,

\J = 60--8 A-.

Bateman (1944)
13

and Lamb (.1932, Article 167) extend the resu.lts

due to Clebsch and show that the equations,

are generally solved by

I1 P~pW)

f4~. ~

where
Ok,

'p.
.1

Thus all solutions to Equations 1.8

to 1.11 are included in Equation 1.16, when S is conserved.

a (Qvjs)ay'i

vi = )
2 4L



2. Dynamics of Ideal Gas

2.1 Preface

The guiding element of this discussion is that a route is sought

by which the usual governing equations for a given nonlinear system may

be transformed to an alternate set of equations, consistent with the

existence of coherently structured waveforms within the system. As will

be seen, the alternate set of equations to the usual governing

equations is a higher dimensional generalization of the one-dimensional

nonlinear Schrodinger equation.

The dynamics of an ideal gas is described in terms of a Hamilton's

principle, using Lagrangian coordinates, following Landau and Lifshitz

14 9
(1969) and Seliger and Whitham (1968) . A similarity between

material elements and particles is maintained and becomes the key to

motivating many of the steps leading from the usual governing equations

to an alternate set of equations. Constraints surrounding the formalism

and their relation to the dynamics of the system are considered.

2.2 Classical formulation

Given a material element in an inertial frame with Lagrangian

coordinates Y, =(5,t06) at time t=O , and position X(q,-

at time t , the inviscid equations of motion are,

Coordinates are related to Cartesian coordinates (xy.)

by



The acceleration due to

the pressure e(' Qc)
the continuity relation

CO

gravity is 3 , the density , and

In terms of the initial density (O
13

is, following Lamib (1932, Article 14)

3 t aL.~X2, 3) XL axOax

where -(-.L( and I Q,2,3

From Equation 2.2, Equation 2.1 may be rewritten in terms of derivatives

of x and P(') with respect to d and ,

J _

aA dd%~Ao ~~

The entropy of material elements is assumed constant throughout the

motion. The set of equations is completed by writing the conservation

of entropy equation,

35= 3S0 Gq

the first law of thermodynamics,

T - )

2.4

2.5



and equations among state variables,

E = p/c (- T= p/pe
2.(o

The internal energy is , the temperature T , the time =O

pressure , and the ideal gas constants R , and I.

In Eulerian coordinates, the first law of thermodynamics has the

form

TV3 = CrVT - VP/e

where Cp is the specific heat at constant pressure. Therefore, the

momentum equation in Eulerian coordinates may be written as,

&4 4 V' 2
at ±

j, (vxU) xu TvS - C vT

and the vorticity equation,

V4+ Vx( xA) = vT x V§

This is Crocco's theorem. The assumption of an isentropic process

implies that if the flow was once irrotational, then it shall always

be irrotational.

, pe



A variational principle, Hamilton's principle, leads to Equation

2.1 in the usual manner,

U' iQ e, - kd

2. -iA e

The domain KOU is arbitrary. Variat

trajectories S are arbitrary but van

of .

Let Xj) be varied by SXL

ing the relationships

-2 Pi) from Equations 2.2 and

30I 'x*)3)

ions in material element

ish on the boundary

in Equation 2.7. Recogniz-

E= E(50.,) and

2.5, it follows that,

tz
2 

L0 LX V. ht DxjP" (Y)

Both terms have been integrated by parts. As both the domain,

and the variations in the trajectories of the material elements, SXt ,

are arbitrary, the integrand of Equation 2.8 must vanish. From Equations

2.2, 2.3 and 2.6,

KE =: K ?e dO
DY' 3e & -X e

and therefore Equation 2.8 implies,

~~e _

d'X L



-1(~pTdj = j4"

which is Equation 2.3. The identity,

writing Equation 2.2,

Xi.~ dj Mk-

?ax8 +.9~a~

'Z 7) =O
aCL*-

, follows from

OKay- LX ~Z3
DO3 Jk' o dX-k

and differentiating partially. For example,

_ 'a Pi L _Y2

& 'X2. 3

which vanishes, because jk

11v~zxz 3X3 4.

± ThX2 j

+c 2 d d c 1

crj ay-' A2

ay c9 r3 1k.

- P k-
Let A be the Lagrange multiplier to accommodate the constraint

of mass conservation, Equation 2.2. The variational principle,

Equation 2.7, becomes

*1
R,0(e~)

4V -e. +A . )I o t=

A reference is Gelfand and Fomin (1963)

trajectories of the material elements,

Variations with respect to

, imply,

e

Lay1  _

I % (2kL~

2.10



qt + T.C~ + ZX ~ ' (Ae j-) o

Because and I'O an. T this leads to,

306) 3Yk~

- ~ Tl T ~-~J

which reduces to Equation 2,3.

For each material element, the Lagrangian is taken as

. -In other words, for this

system the Lagrangian density is = -

The corresponding canonical momentum is

Xj 2 .L 2.11

and the Hamiltonian density

_ = I eE4A-e4- 4 ) 2.12
a t at

which represents the total energy of a material element, within the

context of an integral such as Equation 2.10.

Hamilton's equations of motion are sought. Consider an arbitrary

number of material elements at time each having a Lagrangian

of the form - . A Hamilton's principle, with

respect to variations in material element trajectories, may be posed as,



J 2/3

The corresponding Euler-Lagrange equations follow from taking variations

in X ,

ao dxi d~L
± 0? aw~i

and integrating by parts,

o f
sL{

at ~ - 1

As domain , and variations in material element trajectories are

arbitrary, the integrand must vanish,

o __

ax4 - 1. a...-E
a-

Alternately, the substitution 71:2x4 - IL in Equation 2.13

implies

o
tR1.

{1ci~ - tJ ckAiA

Varying 7 L and XL independently,

2.14-



to~ JR.

~a 3R~ -

where the first and second terms of the second integral have been

integrated by parts. As domain X. , and variations

are arbitrary,

aOl
dc

which are Hamilton's equations.

The action ,and the action density A

a/I
dXL.

are introduced by

writing

*f A J d

where the first integral is indefinite with respect to time.

- L the variation of k with respect to

trajectories of the material elements is,

sS~f
axi

ace
at

and integrating by parts,

L1

0 =JI
a~lJ

and Sx.

2.15

Assuming

da'.
DL&

2-1b



5A [ J

{Q-~ 9 ?

aXi~ at aaA

JI* XI

I 1
Variations, SXj , are assumed to vanish on the boundary

The motion is assumed compliant with Equation 2.14. Using the defini-

tion of canonical momentum, Equation 2.11, this implies,

7t4= ~4
R. +

or in view of the definition of action density in Equation 2.16,

and therefore,

A> = 7. SXi. X L = A j at time A' =A (X

2.17

Equation 2.16 may be expressed in the differential form,

cdl} o dAiA 3x

which becomes, substituting

3_ $x.
Ucv

ax

a

7i = az from Equation 2.17,



+ IL1L

The Hamiltonian density is defined as N- 7CL~
di:

in Equation

2.12. Thus,

O =?3A> + $
t

which is the Hamilton-Jacobi equation.

Notice that when the first integral of Equation 2.16 is definite

with respect to time

O= S

2nt

gJ+1 ~kc1 { d +-

I9 ] A Lc~

using Equation 2.18. Therefore, substituting Equation 2.12,

14] decctL
1, Azo

which results that

11] ccd 22

2.100

DI

2.20



2.3 Mapping of dependent variables

The usual governing equations describing the dynamics of ideal

gas have been presented. An alternate set of governing equations, whose

solutions are coherently structured waveforms, is sought, given that

certain constraints are present within the system. It is precisely

characteristics such as coherency and symmetry which occur strikingly

in certain aspects of modern quantum theory. Arguing after a fashion

that leads to a development of modern quantum theory from classical

dynamics, as recounted by Janmer (19661 , a transformation from

dependent variables and to new dependent variables, and

, is made,

2.21

-K .40x', + X,( 2.22

It is assumed that .')f is a know function, X , a real constant.

The second motivation for this step is that under proper con-

ditions, nonlinear fluid mechanical systems may be represented by the

KdV equation,

16 17
As presented by Whitham (1974) and Ablowitz (1978) , this equation

is a member of the set of partial differential equations solvable by

the inverse scattering transform. Within this formalism, the linear



scattering problem associated to Equation 2.23 is

2 1 q k (XI)N + U(X. is real

which is the time independent linear Schr6dinger equation of quantum

mechanics.

Recall that 71 Lyn- from Equation 2.11 and 7C~97[j 9,

from Equation 2.17. Equation 2.22 may be written as,

Let .

and Equation 2,21 implies that

/(, 9h . 9

Therefore, -2

is imposed.

2.25

The condition

Sufficient conditions

for Equation 2.25 are,

or equivalently,

2.26

where is a real constant.

Let Equation 2.12, be substituted

into Equation 2.20,

O=J9A 41+cIi 2.20

2-2+

RX'O

(I-L-)Jj 0Aj = e &
2-

+ (]' L) -4 of-



implying

tz&X~ I~ ~eo~i(&-eTJU AIc

Transform variables via Equations 2.21, 2..22 and 2.26. The system is

represented as,

+ & 0+

+ ±

~eo~jV~~i/

-A ( e.- k VT)JI c.cdt

where E(@,($*
be transformed from O-space to

2.27

from Equation 2.6. Let the coordinates

%-space. Equation 2.27 becomes,

o =sJJ
R.C)

(. -0 p*

Variations with respect to

4Vvhb] d~tL

imply, setting

- 5 A e.

JAC-

~~~t -c~V 2P 4f
-L, k.(~.)

-I:

~fL
where - +

with respect to 4 .

2

Wq L~

'(-1

X.o-
t __

~ 2~

4 A01jW dxtA

2.29

is the variation of

Let K=Q - }! V + g . -

-0

++ 4.)
2.

2.28

le. U.2 Yt

VS .V + (XII) V

S

V'W

-0 (in )t



When is real, l-= 0 . When SP is imaginary,

/7 &. = 0 .Therefore as SP is arbitrary,

In obtaining Equation 2.29, integration by parts has been used

where appropriate. Endpoint conditions have not been written down

because they sum to zero independently of other terms and constitute

18
nothing other than boundary conditions. For details see Luke (1967)

When it is assumed that no variations leading to contributions

from are allowed the resultant set of equations is closer

to those equations solvable by the inverse scattering transform.

Let -Ie - - ± I =2X + ,
- -1

and + .l . Equation 2.29 implies,

o=JJ {~R~± ~,SIL~tx.4t2.30

where 1- , . The condition that tK

be invariant to allowed variations in P is linearly

dependent in variables SJ and 5 to the integrand of Equation 2.30,

1P, + 1 S/LJo 2.S1

If S% 0 implies S4AO or -SAO implies 0

then 2  . If AO implies 5IJ0 and

0 implies =0 then 0. Therefore



d. - K Vz j24 + XX (qtp) I 0~x

The variation of Equation 2.28 with respect to yields no

contribution from the last term,

RI) .R,()

which implies = T(A) No constraint is imposed on

the mapping defined by Equations 2.21 and 2.22 except by way of Equation

2.2,

j=- 4.a, axz ax3
c- - %

The equations which follow become nearly solvable when a function

is introduced, where

e-() -Jcx
d%

7A=k

This restricts the system in that T(A) must obey,

{(X)}17Y - yy

The resultant set of equations may be written as

2.34-

2.3Z

2.33

2.2



iw~ +P + xxpp*)C q +~( 2.35

2. 2.3

= (4~p*) 19 23

Using the inverse scattering transform, Anker and Freeman (1978) have

examined soliton solutions to the Davey-Stewartson equations,

where =4C(,1,§-) and . These resemble Equations

2.35 and 2.36 qualitatively and are a higher dimensional generalization

of the one-dimensional nonlinear Schrdinger equation.

Had the discussion proceeded from Equation 2.7,

(+2d. AX 2X_7

rather than Equation 2.10,

o=~J X=i~ + A.-IpL 2.10

the foregoing discussion would lead to,

in p foG a

in place of Equation 2.32. Generically this equation has the form,



17
The work of Ablowitz (1978) implies that there is a systematic method of

solution in the one-dimensional case when 3

At the center of this section is the mapping from dependent variables

and to new dependent variables and

e - 2.22

The substitutions Y and 2 /V1

are made. Allowed variations in are such that VTO does not

vary. Sufficient conditions for Equations 2.21 and 2.22 are written as,

VAke 0 I7flohT+V 2 Ai= Pi +hAf2

2.26

Connective arguments to this last step follow.

2.4 Justification of the mapping

Necessary conditions for Equation 2.25, given that

S= R(I)) are,



where r(,)
defines

is a tensor operator of rotation. The state of the system

X= [ , VAu , and, as will become evident,

The condition }i 9.0.9 = and Equation 2.25,

VA.iA, = L eRK{. v t 11 +, f.7 4- 2 9(-,)

2.25

determine the variable . The operator is defined by

Equation 2.38. When 0, the general status of the system

is envisaged as,

/1
/ /

/ I
/ I.

/
/

- N

N

VA= r( ,J) e..( ~Y L + '7 a



The evolution of r( ) in time reflects that of the system, which

in turn is specified by governing Equations 2.2 to 2.6.

The Hamilton-Jacobi equation,

the definition of Hamiltonian density,

bt L x -%eT)

and the relation between canonical momentum and action density,

imply,

0= ?4-

It follows that A,
with respect to time,

is the same as when

I Vz6. cAk A (e. e U)

is independent of

given an r NA )

r(j =I . it

-(Xf) . The evolution of 47,

operator of arbitrary form,

is consistent to choose

0o= .k f( (I~bQ' , D4
Thus dependent variables e
resulting in Equation 2.27.

transformed from - -space to

and are mapped to and

The coordinates of this last relation are

X-space. The functional finally

2.19

2.12

2.17

2.39

-4- ec -



obtained, Equation 2.28, is taken to vanish when varied with respect to

Initially the system is defined in terms of Lagrangian coordinates.

A variation in a material element trajectory, %(0c.,t) , corresponds

to a variation in density, = ,and in velocity a .4= 7(1.,I

,of the system. If Equation 2.10

is extremal with respect to variations in X ,t) , Equation 2.28

should be extremal with respect to variations in .

The substitution K f. 7V J = -; was made and it was

assumed that be invariant with respect to allowed variations

in . Alternately the mapping could be specified as,

p ~~ &Qk vvl ~f4 2.25

- e-&.{ ky C2 2.39

where is arbitrary. In one-dimension these equations imply the

compatibility condition, A x

2.4-0

2.5 Equilibrium ideal gas dynamics

Suppose that the total energy of an ensemble set of material



elements is conserved following the flow. That is,

O~-(d I'-f dot dq4-LgLjf
J at - at x a

where is the Hamiltonian density, and .R0(c ) an arbitrary

domain. Integrating the third term by parts and using Hamilton's

equations,

DL -aiq L 3X ax

this becomes,

t

Let the Hamiltonian density be 2 e aX. 4 .E7
Equation 2.7. Using the continuity relation,

Equation 2.2 it follows that

k1 A- e 4L9x- 2 i at

2.1Zi~

as in

of

d U,

where C is time independent. When variables are transformed via

Equations 2.21 and 2.22 this becomes,

S(qIV V) J1 24-1

e, 0 1 12

T-1



where E4 ) ) and from Equation 2.6.

There is no need for the constraint, }2 70.. /2

or the relation A, 4 . The function is

arbitrary.

A Lagrange multiplier , is introduced to cope with the

continuity constraint, . The system is postulated to rest

in the state for which ( is extremal, presumably minimal, with respect

to variations in ) . Equation 2.41 leads to,

0= tJ jy - d~4~~).4Y )~ b~ f oc 2.42
O 6-N

The conditions surrounding variations in are those assumed in

Sections 2.3 and 2.4. The resultant set of equations is,

2.

~ 2.44-

Notice the similarity between this last set of equations and the corre-

sponding set in the time dependent problem,

+ V____ Y - 2.35

Y(-



3. Shallow Water Waves

3.1 Why this problem is of interest

Coherently structured waveforms are most readily observed among

surface waves on deep water. It does not seem possible to analytically

handle that system at this time. Chapter 2 considered an isentropic

process in an ideal gas. The internal energy depended on density to a

fractional power. Mapping of dependent variables eventually led to the

set of governing equations,

YA + 1( = (* I +~P23

These are qualitatively similar to the Davey-Stewartson equations,

Q-11

In contrast to this latter set of equations, Equations 2.35 and 2.36

seem neither to be solvable nor to be consistent with coherently

structured waveforms in any obvious way.

This discussion considers shallow water waves. The internal

energy does not depend on a density equivalent variable to a fractional

power. Equations for mapped dependent variables are eventually matched

to Equations 1.6 and 1.7 and solved by the inverse scattering transform.



3.2 Classical formulation

Given a material element with Lagrangian coordinates (c> L'0

at time t = 0, and position 'X(. ) at time t, in an inertial

frame, the governing equations for shallow water waves are,

1- h. (xA ) . 2

for momentum and mass respectively. The acceleration due to gravity

is g, the free surface height , where initially ().,=0) =h

and the constant density of the system e . The flow is two-dimensional.

The vorticity equation in Eulerian coordinates is,

+ LA ~ + ~ . uQVj o0

implying that if L = 0 initially, then it remains so. Equation 3.1

may be rewritten so that partial derivatives with respect to dependent

variables At are expressed in terms of independent variables (O)

The variational principle, Hamilton's principle for Equation 3.1 is,



Domain }{, is arbitrary, as are variations in material element trajec-

tories SC except for the condition that they vanish on the boundary

'PO .The continuity constraint is accounted for by introducing

a Lagrange multiplier, A . Equation 3.4 becomes,

Varying 'L,, the resultant Euler-Lagrange equation is

Rhi 5K-.)Z a 6MKJj

where integration by parts has been used appropriately. Recall that

- from the discussion following Equation 2.9. This

implies that Equation 3.6 is the same as Equation 3.1.

For each material element the Lagrangian is taken as

= 4.91 ... +X(K-h. That is, the system is rep-

resented as having Lagrangian density,

+ k( -T) canonical moment

.3. G

um,



at

and Hamiltonian density,

_t 2- at~

The total energy density for the system is , given the trajectories

implicit to Equation 3.5.

3.3 Mapping of dependent variables

The transformation from dependent variables and 'X to new

dependent variables P and is analogous to the mapping of

Equations 2.21 and 2.22 in the ideal gas example. Let

K! j fi P Vic L) 3.10

where K is a real constant and is a known function. Recall

that 7 o h i from Equation 3.7 and 7[ ?i from
at 3x.

Equation 2.17. Equation 3.10 may be rewritten as



12()
Let . Therefore -2L and

Equation 3.9 implies - . The condition K.2.7 V 2.

is imposed. Sufficient conditions for Equation 3.11 are

VA) -h f VIt? , + vf2J

or equivalently,

where h, is constant. This specifies initial conditions on R .

Initial conditions on are unspecified.

Let the Hamiltonian density,

be substituted into

t, R.0(NO

This implies,



</7(C L I dot-i

Transform dependent variables via Equations 3.9, 3.10 and 3.12.

system becomes represented as

{

o=~/3f
ta R.0&~)

ho& 0--0 + h.,0 . )'JJ

+6h.1 v~o-~ytP. +

Let coordinates be transformed from . -space to

3.13 becomes,

-2( h.- T) dedt
3.13

Z -space. Equation

t2
o=~fJ

&a .R..(~)
0-0) **$ + K(+00

+ 3 ' v)2q dyde
A

LR.(8)

+ K vt v* 

2 h. d d 

Variations with respect to

_e 2
-2

4.g f4~
~P* ~

+±2 IViV +.AJJ W)dxl

3.+5

%4~.
at

The

+ (A+4) Op*

imply

3.14-

R.

+ IKAk
2.9

+ 9h o%



.43

which leads to,

K! 7 S + + q4tP* +q =0

as is arbitrary. In obtaining Equation 3.15 integration by

parts has been used where appropriate.

A solvable resultant set of equations is sought. Suppose that no

variations in leading to contributions from O are allowed.

These latter terms appeared as FP + g J
in Equation 3.15. Let I i +

and =- % + i. . Equation 3.15 implies

where 0O + L As in the ideal gas dynamics example, the

condition that Y '7}V 4 be invariant to

allowed variations in is linearly dependent in variables

and to the integrand of Equation 3.16,

Ox 3.7

which leads to =

The variation of Equation 3.14 yields no contribution from the last term,



44

This implies T(A) . Equations 3.9 and 3.10 define the

mapping from old dependent variables to new dependent variables. No

*aXt
constraint is placed on except via Equation 3.2,

TOL LI )CZ 0tl

Let be chosen so that,

ky. 3.19

where P and are real constants.

Assuming that this is valid, the resultant set of equations is,

K + V, 23 +3.20

yy__ 3.21

Variables are scaled via



490 bcy) ( 4 )

which leads to,

lik + -+ = ' 9 -31X, y 2

- yy+k'

in place of Equations 3.20 and 3.21. Primes have been dropped.

Had the discussion begun at Equation 3.4

4;

&Cqj
h. 1 4- 4

1 2 a

rather than Equation 3.5,

0=J' V xhh±(hT)c~i

the resultant Euler-Lagrange equation would be

S+ 2 =0

3.22

3.23

3.24

- 3k I jolat



in place of Equation 3.18. This is a two-dimensional generalization

of the one-dimensional nonlinear Schr5dinger equation. Ablowitz (1978)

states that no method of solution is known. The corresponding one-

dimensional case is

K t + K I)-- 2.p ? =

to which no soliton solutions are known

The mapping from dependent variables and

dependent variables Y and was introduced via,

to new

V ~ ~-,~ +

The substitutions and (,~

are made. Allowed variations in P are such that

vary. Sufficient conditions for Equations 3.9 to 3.11 are

3.9

3.10

3.11

2f/.

does not

written as,

V.=KkV f{ITP, +f2]

Conditions surrounding these relations are now considered.

'3.12
I A, = kho I I., Z _ f2l



3.4 Justification of the mapping

Necessary conditions for Equation 3.11 are,

where '( ,) is a tensor operator of rotation. The state of the

system determines h /b , and, as will be seen, VT

The condition KdVQV k 7.. and .4 Y x=c {i, z7 v + vOj

Equation 3.11, determine . Equation 3.26 defines the operator,

r(,) . When the general status of the system is

envisaged as,

/

/

/
I

-4.---

/

1~~

/
/

\K1



The evolution of the system, as specified by Equations 3.2 and 3.3,

dictates the evolution of r( ,) in time.

The Hamilton-Jacobi equation,

the definition of the Hamiltonian density,

and the relation between canonical momentum and action density, via

Equation 3.7,

%x = ak2.17

imply

~~4 1A~ VA. V~j 3hk0 kh 0-T

Therefore, Ag is r('X.4) - independent. Given an '(x) operator

of arbitrary form the evolution of k in time is the same as if

=1 . It is consistent to write,

kO i~~) b 3.27

Dependent variables and d)X have been mapped to new

dependent variables ' and yielding Equation 3.13. Coordinates



are transformed to X -space from OC -space. The resultant is assumed

extremal with respect to variations in .

The system was defined in terms of Lagrangian coordinates initially.

A variation in a material element trajectory, corresponds to

a variation in height of the free surface, , and speed

.. iO=.J/ViO7. Y4- Given that Equation 3.5

is extremal with respect to variations in , Equation 3.14

should be extremal with respect to variations in 'P
In Chapter 1, the passageway leading from quantum mechanics to

classical mechanics was described. It is of interest to consider the

analogous transition regarding Equation 3.18. Let = .

where Aj is the action density and . is real. Equation 3.18 implies,

4-e v7-& -~~4 K.9a. VA 4i La K7'V4, &VA, VA 3  .a
h. h 2 h. z h. h.

Real and imaginary terms may be equated,

. 2 h

The limit K-O implies, of the former,

A+ VA~M 2. )j' 0 032



which is a classical Hamilton-Jacobi relation for a fluid with action

density 4 , and time 1=0 height . The latter may be multiplied

by 2A& and written as,

() + . Ak _ 3.29

The classical velocity is throughout the system. The free s

face height is = Y at any point in space. Equation 3.

attaches a classical velocity - to the free surface height alho
each point in space and compels it to obey a classical continuity

relation.

Suppose that is normalized, .I J and the

coordinates d at time =0 for some material element are

unknown. It is not inconsistent to regard ' as the probability

amplitude that the material element occupies coordinates (M)

Notice that the result of multiplying Equation 3.18 by Y m

the complex conjugate of Equation 3.18 multiplied by is,

r-

29

inus

A- ~kv~P~j =0

The identity implies,

K~ KV.i L

This is the continuity relation in Eulerian variables when the substitu-

tion,



KW K(P 4 VIJ .3.30

or equivalently,

3.31

is made. The Eulerian velocity field is L . The analogous situation

applies to

id +__ 424z 2.32

concerning the ideal gas dynamics example, and to Schro5dinger's linear

time dependent equation,

iam

20
in quantum mechanics. See Merzbacher (1970) , page 37.

Equation 3.31 implies that IJ is irrotational regardless of the

introduction of ) . The condition K. VQ.V4 V2.

implies,

K T. V3.31

in the shallow water waves example, and



in the ideal gas dynamics example. Allowed variations in in Equations

2.30 and 3.16 are such that J~op* does not vary.

3.5 Equilibrium shallow water waves

The total energy of an arbritary number of material elements is

assumed constant following the flow. The Hamiltonian density corre-

sponding to Equation 3.4,

~+

and the continuity relation, imply,

we Oki i en 3.34

where is time independent. Variables are transformed by

+ 3.10



Equation 3.34 becomes

Equation 3.12, VA hf.Z&9 Vf2} Equation 3.27,

y {( 4-12p{4  and the condition V le 917a

do not enter the consideration.

The system is postulated to rest in the state for which . is

extremal, presumably minimal, with respect to variations in

A Lagrange multiplier, , is introduced to cope with the continuity

relation, T . Thus,

0~s {Vv) V 31 t24 ~+}'(idx~ S 1h y
3.35

where conditions surrounding allowed variations in P are those
assumed in sections 3.3 and 3.4. The resultant set of equations is,

which differ from the corresponding relations of the time dependent

problem in a single term,

+ + 9 V.y =i



+ -3.24-

The one-dimensional nonlinear Schr6dinger equation,

was reported to have solutions of the form

3
by Hasimoto and Ono (1972) . These are the so-called equilibrium solu-

tions, balancing the effects of nonlinearity and dispersion. They

found that A n , is a Jacobian elliptical function

and that Ay) 4f - (4u when -S= . The

solution is a solitary modulational wave.



4. The Presence of Solitons

4.1 Preliminary transformation

Shallow water waves were considered in Chapter 3. A mapping of

dependent variables was made which in due time led from the usual

governing Equations 3.2 and 3.3 to an alternate set of equations,

3.24-

which are noticeably similar to the Davey-Stewartson equations,

~ -~L~I~1.7

19
Anker and Freeman (1978) make a transformation on this latter set of

equations, consistent with a search for Stokes-type waves,

where , k, and are constants. Using the inverse scattering

transform on the outcome,



56

they deduce solition solutions.

A transformation of the same sort

77

where A , m and are constants, is made on Equations 3.23 and

3.24. The result is

4:2

+ VAkI~K 43S

upon which, the inverse scattering transform is applied. Solitary

waves with sinusoidal spanwise modulations are obtained.

4.2 The inverse scattering transform

Most of this section and the next repeat relevant parts of the

21 19
papers of Zakharov and Shabat (1974) and Anker and Freeman . The

essential concern is the slight modifications necessary to apply the

inverse scattering transform to Equations 4.2 and 4.3.



Suppose that F is a linear integral operator acting on a vector

valued function $P(,W),. ,where

That is,

F ,)

j -0F z

is a N N matrix. Let be represented

A 

k .

where K+and K. are Volterra operators in the sense,

A

The contours of integration of these integrals are partitions of the

contour of integration used in Equation 4.4. The alternate form for

Equation 4.5 is,

A

and therefore for any $= ,W\A)

This may be expressed as,

where 7., Wf,

as

44.

4-.5

=1+ K4 + FI + KF

~L



AJlc K ,a)fc(j))(1Ns

00

The Jch and JS integrals may be broken, to imply

~~00

F-q) tks) 00Mj

Because is arbitrary and may be specified as nonzero in only a

single neighbourhood about some point within the contour of integration,

for example + it follows that

Z )4- ,-s)KT

o (-,' + F(z,'I) + d K ,s) R(s, ) 4.7

The latter of these is the Gelfand-Levitan equation.

21
Zakharov and Shabat (1974) state that a sufficient condition

for this discussion when the independent variables are real is

SUPJ* 
X.o

X-6



and that if Equation 4.7 is solvable then K+ and .. also satisfy

this condition. The analogous statement applies when independent variables

are complex. It will be seen that for at least some circumstances, K-+
has isolated singularities not on the real axis.

Suppose there is some operator A which commutes with -

0o=3- k . Therefore, for some operator

A + ) +F)A

which implies

In general let

where ( and are constants and is a matrix of constants.

Therefore M has the form,



A
'-5 A

LfA O n .~ f-k-I

4.10

The proof is by applying the operators of Equation 4.8 to and

equating differential parts. The rationale is as before. Because

is arbitrary, it may be specified as non-zero in only a single

neighbourhood about some point within the contour of integration, for

example (L 2.+ 4,) . The differential parts are order 1 in

comparison.

When nl= for example, I ~&± s'_ i and,
a 5 3

Y,' OA +k + l k f- jL(A~ ~A '

integrating by parts.

A

XIW +4-)1J &

The second term of Equation 4.8 is,

4-.i'2

Contributions at Z=00 are neglected. Differential parts of

Equations 4.11 and 4.12 are equated, implying



The linearity of Equation 4.8 in

Il .) .4(-Z IZ) I

A and implies the

generalization that if

A

then

A

a1. + L

4

L =In Lr

Substitution of these into Equation 4.8 and many partial inte-

grations imply

0(+)A' + q1 +T- ,
+

t Y-% 2rt

and,

413

4.14.

=OLk+ k- T ltrv-- I a'r

+



K4VW
(z I lK Cq y

= VLA? +A.7 4. 4 4; ! -Ch

+ some differential terms

Integrands may be equated,

7-()rir" 4L} K.±(z/y)

The extension of Equation 4.8 is to let F

linear integral operator, as before, such that

be an arbitrary

[0 A, A

~ 4L,

A #.

AD 
V~

4:17

= 0 4.18

where Equation 4.18 is the compatibility relation to Equations 4.16

and 4.17. Thence,

+ +A +G1~) 4.19

0 A

A,

ta-

K_ -,. C-4 1) (1)

W (2.) rL

K- (-1) rn



which means,

4~~) V"~J7  ~4(2a(~1~(~ = (I 4f K4 (uir~i)) ~eL~
I I

The difference of

to Equation 4.22 is

applied to Equation 4.21 and applied

I.

34:.

A.

I

4W
Y AA

where Equations 4.21 and 4.22 have been resubstituted into themselves.

A consequence of Equations 4.19 and 4.20 is

O. 4.20

4.21

400 doo

K, + 1:2.



AA

As \IA~. O from Equations 4.16 to 4.18, it follows that

This is a set of nonlinear evolution equations solvable by the inverse

scattering formalism.

L

Suppose that operators and define the associated
A

linear problem as in Equations 4.16 to 4.18. Let F satisfy this

set of equations. The Gelfand-Levitan Equation 4.7,

defines the corresponding kernel, K ,SAt This generates

an exact solution to the nonlinear evolution Equation 4.23.

4.3 Soliton solutions to the shallow water wave example

The theory of Section 4.2 is now applied to Equations 4.2 and

4.3. Let

L. 2 424

-zj'



L
and assume as 2-->+-*0 so that the linear problem

is specified by

^0 At IL 
+

Substitute Equations 4.24 to 4.26 into equations 4.21 and 4.22

0 
2:12. 

"0aft + AT K- . L),MrO
Flat

0

41z

1 00

400

r k 0

ZJ L- , 2 a
The last integral of these equations may be integrated by parts.

Differential parts may be equated,

0 7

-o.215

4-2

0

16da~ 
\

.9 2.J 



7a) - K (I)

Integrand parts of Equation 4.27 may be equated,

Ock 4a k
2.

2 .. ki

Similarly from Equation 4.28,

2 K1, -A- I M-1.) Kit TZ4 .(i J%.1I=0+ ~

og

Evaluated on

a± C

this system of equations is

- t K,, ZZ
-7-

IKi +-K, 4 i-1) 2 ,. -. t = 0

, (~\ ~ 2 9

4.29

4.30

K17 42-,lt Itz

1 - \ = K V7-( ,L) 

- 7,2 7 = 0

13 , k. 2 . K, -(t -LJ2) JK27 -Ki (t -1 =



and analogously with 1 and 2 interchanged. Let -

These may be cast as

At . 4.32

c~i 1 W + 2i 0.43

Let where is real. A set of sufficient conditions that

Equations 4.31 and 4.32 are consistent, are and

2 2A The same is true for Equations 4.33 and 4.34.

A complete set of equations is

Let where and are real. Equating real and

imaginary parts of Equation 4.35,



1 -- T.'+ 'Y1 I?'

The latter is satisfied when

then,

anTfo 46o oai -ns

and from 4.36 one obtains

OC -7 12.

and The former is

4§~

Transforming coordinates,

%~ ______

\~

Equations 4.37 and 4.38 become respectively

Ox".~ - S( Q )

Cc I I2.~ -L v 2xyJ -2L-1, 
j

where 5(J) sign of I ,and YL and are real. Substitute

Whence, it follows that,

4.37

4-m

4-19

-0

L-( Vf/

2. ' na2-l -

I -I i -L - 6 Vj =0



-3ty.4.4

where 9k and oc~~V This set of equations is of the

same form as Equations 4.2 and 4.3.

The associated linear problem is defined by,

^ . % -

A
A

LM~.) t

Thus,

2.

4I1
00~

.00 II

-j -00 COt.~. -~

which is equivalent to

4.41

4.1(0

4.)7

4A40

- I I

= k 3 V.
ai

F (-Z I Y) (7)

L4?

2



Eg 4 3F Fgj =0F I
3Z2j Df

d+ U ) En a Ft A-
aly

+ 2L v +(A)F
31

4 1.

F (-+) 4

a4t)

4 ( F, = F"(A-') -a V, 1,

A solution of the form

,2 M and fl

is sought, where

are real constants. Thus,

m p A.In 4 4(2.) A1 + A,} o.

4 (0,41) kA- Al o

_ (24%) N04 A it

A12{ mc I -i R

A1(2 m+ J241A } I

A. I m + I 4 (.Jn- U 1) (k A42 9 1o 4.50

4A2

4.43

4.4

4.4

All 4.47

4_4

4.49

? .Fit
az

2.i

ct + mv4 n

, ~Fg F (1z,gw,)

= i U 1-)

+ (1 A-4) fv



71

Let where is real, as before. Compatibility

conditions between Equations 4.47 and 4.49 are and

A. The same is true for Equations 4.48 and 4.50. A

complete set of equations is, including Equation 4.42,

A{ mw. g-nl} +2(A* -A i+il =

4.51

4.52

453

Substitute q-2 AVAO
Real and imaginary parts of

zero. Thus,

l= 2A fl2' , and M=-2f CMo +CO41

Equations 4.52 and 4.53 may be equated to

A l e 4.54-

and from Equation 4.51,

The Gelf and-Leitan equa tio

The Gelfand-Levitan equation,

O = 1,T) + Fj (zq) 4 fs Kjjh,s) F a )

4.53

4-7

must now be solved for Kb (z~) . Assume =K'. ~4e"
'.3

A ll = ia'e, L20 + )



As Fu =k(I~e i

SV + MW
o=Kj + A, e

Contributions at

V+rt +

40

f fs en)s &Ag 6)s+m

,S=00 are neglected. Therefore,

I V (n+%) z + mwr

k f(+-) 
+ Z

=-6 1+ z + K. -A.

This set of equations may be inverted, assuming the determinant does

not vanish,

K12..
(n+% +W

which implies from Equation 4.29,

-(c~ -(%e/ V + r(r)Z + Mw . -

1 +A

This is part of the solution to the set of equations,

-voQZ7 + ~0

-t 112k2

4.31

it follows that,

12. -= I + k I z (-L , -Z ) -= I -



Equation 4.56 becomes a solution to Equations 4.2 and 4.3 when coordinates

are transformed,

and O[fc1=1 and the identification

415

made. The resultant is

4.S7
1. + e e

where

3A2. 3 AI + S

so Ag
and using the substitutions

pm= -2.Tf cot, 4 u-,1

c= 2. Al/ , Y\ =2. AA/t

and

4.4 Multi-soliton solutions with a single propagation direction

The generalization to multi-soliton solutions begins by letting

where

4-68



~~>~A jle

where ,L )

4.46 imply,

La A3

and il are real constants. Thus Equations 4.42 to

460

it rI . UA)Kj~~ =(U-.)Ak. .-12ik ry

Let =, where Ais real. Compatibility conditions within

the set of Equations 4.61 are d . The

set of Equations 4.61 may be cast as,

A, = o

12

Nk M

k. (A



.) I + I 4- nAt+kQ2

4 ~ k~

Let I 2.Aml 0 , nk-= 2 AM1~a and YY -- 2 Codek4 c O>

Real and imaginary parts of Equations 4.62 and 4.63 may be equated,

implying

Y2~.Gk.± ~C)

and from Equation 4.60,

The Gelfand-Levitan equation,-

o =K-g(z + F(,)+ if'

& /.k -6

must be solved for K~,o~') . Assume
n *nn;I,

- 2IK~(Z~C41#~

Thus, as F = I" ?

o=K is A oja+ A
KF, 'Pe.

~.)l s 4 PW4

-z =k k k

which integrates to, neglecting contributions at

=-0

2
(%5,(y)

X ". 1

dS

S = 00

m,+ 'iY [ , -nj
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Equation 4.64 is equivalent to,

t' (c ~ n w')x

re-
?4 ,

where each of are r\xf\ matrices, YC

and e are YI-vectors.

A solution to Equations 4.37 and 4.38

+ 27- +

C. 2 - 2V
L-f

- . (0

A6 MW

4.17

4-.38

is, using Equation 4.29, I K 2 )

ItK Y"
t~ k~n-~-i k e

is the determinant A , with the k-th column replaced by the

vector on the right side of Equation 4.65, by Cramer's rule.

4;
L p -- l

~2.K.

dk

4.",

- Cj

-A e,+



4.5 Propagation and modulation at various

Single soliton solutions of the form

where , and Yl are real, were sought

set of equations

OL.~ +g F-- Fy=O
at 31 at

ingles

Ln Section 4.3 to the linear

, F6 = E5 (z', ,w,) 447

~ 4 12 1 (V1 2. - 2) _ j122.4(r~

-S' Fi( At)

4A44

4.4Ir

4.4'

These equations eventually define the linear problem associated to the

nonlinear evolution equations of the shallow water waves example,

Had , YY\ and Y1 been assumed complex, the set of equations

subsequent to Equations 4.42 to 4.46 wuld be as in Section 4.3,

4.3



respectively,

Aai{@ r 4j 4-t\ 4X ( A9.) k2%+ kill ~ 4-47

It is necessary that = where is real, if this discussion

is to be consistent with that concerning the nonlinear problem,

Equations 4.2 and 4.3 in Section 4.3. The compatibility conditions,

and , appropriate when ,M

and ti were real are no longer evident. Equation 4.51 implies

-4. f-7

Letting

Alo46

Equations 4.47 to 4.50 imply
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Av. a,, -i( n)

The Gelfand-Levitan equation,

o = g U1, Q) + Fj (z') +

must be solved for

II
00

d~ K;j~s)

. Assume
- *

recall that

F (SIry)

K. K
Whence,

(iwA) e V

% +ynw

O=KS (L, W) - 4
1

As K() .je

Contributions at

(~4~L4~lW

.5= ** are neglected.

rt+%

fl+%L--iV

(nI)-+M

47

and

4wi~r

Thus,

0

0

K

4?

A

Fl = A. ()Q



which implies,

I %Z*jnv

Substitutions for Ajare made from Equations 4.67 to 4.70, and for
Z and W from Equation 4.39

III1

W = -(x-ig)

where, as in Section 5.1, A -/IE=~Z and 'ot '/ .

Unspecified parameters are 1, , and A . Equation 4.29

requires 2 42. . . The relation results

in solutions to Equations 4.2 and 4.3 of the form,

4.72-sN

where

A121
RX- -(Vn)Qr 7(%n)

2.2, 4 Zia K -La h 2ta) e:

, z= -ax..y)

M Y-n iy --jr Sn (y, VO,)
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Constants , and t\ may be complex. These dictate the direction of

propagation and the modulational traits of the soliton.

The multi-soliton situation may be considered analogously.



5. Eulerian Variables

5.1 Single soliton solutions of the shallow water waves example

The mapping from dependent variables and X to dependent

variables $ and was

Section 3.4 saw the identification of the Eulerian velocity field

as

S Kq1

where q -=

seen to satisfy,

et$6 . The function was

3.32

where V. is

particular,

the convection. When the scalings of Equation 3.22, in

(~9 V3

3.22.

are imposed, it follows that,

.3.10

Y,



khyF=

.5.2

5.32(9 )1

Let primes on independent variables be dropped. A further transformation

is made in Chapter 4,

"I = Aqe' 4.1

Single soliton solutions are found to be,

4.57

where,

I ct2 (G * ) Ai t - L%/ An{+1
3 A)

T~®i4±

A 00

& 0Alki Al

Urqoj

9

Vt. 71

-99
2-

F2 (4-8
5

2(

- L?



For simplicity, let
-. ~--

A~ Q4~/3 . Therefore

.5.4

+ +- eY

whence, as

VLK

I

from Equation 4.1,

A *-X ~A4-Y %F(*1eA J (1 )

kA) 12y

el + -

5.7[

where

ZJ=I + Aim (Z( +'i) 4. el

st ((3Y -iV 4.)

24~Aa(~J4k 4- A.%

Variables in Equations 5.4 to 5.8 are scaled. Equation 5.2 defines

Equations 5.3 and 3.9,

5.5

. -;4A2e
4-

S.',

5A.

1 &0 = and

C&t (4S Y +

-2%. 

1

^ A-2.x
e, A A ( 2 j

4-y", (O ,+ X I...+

- -I,
e, I \f "2-

3t - 3 Y.
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Furthermore, from Equations 5.1 and 4.1,

These variables, r, the Eulerian velocity, , the convection,

and , the free surface height, are waves of constant form propagating

in the X direction with modulations along the axis. The general

case of Equations 4.57 and 4.58 is of this form.

5.2 A meaning for

The equations of motion for the shallow water wave examples were

found to be,

.2

Section 3.4 presented a transition in analogy to the path leading from

quantum mechanics to classical mechanics. The assumed form of the

solution to Equations 3.18 and 3.2 was



where L is the action density and . is real. It follows from this

that

J=& 2KA"~' 0L44\~VA 7

where the scaling of Equation 3.22 has been imposed.

Viewed as a WKB approximation, Equation 5.9 and the limit K.-->O

imply a region of rapid oscillation for . The region is characterized

by waves whose wavelength is K in order of magnitude. See Bender and

22
Orszag (1978) . It is evident from Equation 5.10 that when the

approach of this section is taken, the limit K-90 implies -- o.

An alternate situation is Equation 5.3 where F is independent of K .

Suppose that YP= PA describes the dynamics of either situation.

The former equation assumes ( ) , the latter, f = (0)
as K-

5.3 Two soliton solutions

Suppose that both solitons have modulations along the Y axis

and propagate in the X direction. Equations 4.65 and 4.66 imply that

when Y1t2 ,

4- Y1 ' -

+



C i - -Mt
4 C' 7e
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where

1e A- e- A-e

co",~o

cs1 G + )C( ~ e4K

- 2f". CAUn aj ct2(83 +j ) -XAL(9-+ ) 9i Cot(O +
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2. j j

5.12.

The limit -~) 00 implies, concerning Equations 5.11,

-it 7

- -2

-2

- Ma1

S -1 te.

v = -'1/2

2.



and similarly, the limit P --+>00 . This matches the single soliton

solutions, Equations 4.57 and 4.58. The limit /Ai-oo implies that

Equation 5.11 becomes

where

This is a soliton with center shift 6 (24 C t. and phase

shift 12A .- T relative to the sort represented by Equations 4.57

and 4.58. An analogous result corresponds to the limit .-.- > -no

When parameters are chosen appropriately, Equations 5.11 and 5.12

represent two solitons which come together, interact in a very complex

manner, and then separate. Center shifts and phase shifts are what

they carry with them as marks of the interaction. It seems clear that

, the Eulerian velocity, the convection; and h , the free

surface height, are composed of two waves of constant form, propagating

in the % direction with modulations along the y axis. These waves

come together, interact, and separate, bearing with them center shifts

and phase shifts.

An attempt was made at finding , , and for a simpli-

fying choice of parameters in the general situation specified by

Equations 5.11 and 5.12. The mathematics consortium symbol manipulation
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program, MAXSYMA, was used. The derivation was not ran to completion.

As far as it went, there is one conclusion. The functions V , F and

are composed of two waves as described in the paragraph above.



6. Stability and Recurrence

6.1 Stability of time independent states

The Euler-Lagrange governing equations to the shallow water waves

example were found to be

These reduce to become, in the one-dimensional X -independent problem,

which is a special case of the one-dimensional nonlinear Schradinger

3
equation of Hasimoto and Ono (1972) . This equation has nonlinear

plane wave solutions of the form,

where and 0 are constants.

Dependent variables were mapped in Chapter 3, via

k 44*3.9



where and . There-

fore, the free surface height corresponding to Equation 6.2 is h ,'J

and the squared Lagrangian speed 3_. N = K.2 Variables -

and are time independent. Variable is zero.

Suppose that . , a constant, and 0=0 . The linear-

ization of Equation 6.1 is obtained by setting
A

where 4 and are assumed real. Thus,

2Y + 1tkJ 0 6.3

'I

yy 2.

This is a set of linear differential equations with constant coefficients.

Let

4 complex conjugate

where and are constants. Equations 6.3 and 6.4 imply

(- +~?v r +2N 0 G=

which have nontrivial solutions provided there is a dispersion relation

of the form,



2. J

When 4 3 . , US becomes imaginary and the distrubance grows.

The maximum growth rate is \S Q -7\L occurring at S 13
The resultant of assuming that Equations 3.23 and 3.24 are -

independent is

which is, as before, a special case of the one-dimensional nonlinear

3
Schr6dinger equation considered by Hasimoto and Ono (1972) . The

corresponding linearized equations are,

A

The substitution,

4 complex conjugate

yields the dispersion relation,



The system is neutrally stable. Disturbances do not grow.

The Euler-Lagrange equations governing the dynamics of ideal gas

were found to be,

IK- 4 4+ X, ) -

These reduce to simply

-i~ ~ ~ C~i~6.7

in the ). -independent problem. The nonlinear plane wave solutions of

this equation are

OA 2.

where 9 and k4 are constants.

Dependent variables were mapped in Chapter 2, via

~~V KV V,~ + 1(X1) 22

where E and Therefore

the density corresponding to Equation 6.8 is , the squared

Lagrangian speed, _ K . Dependent variables and
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- are time independent. Variable J is zero.

The analysis applied to the shallow water waves equations is

repeated analogously. The linearized equations are

K.

An assumed nontrivial substitution,

-4 -4 complex conjugate
s 6.

implies the dispersion relation

The example is neutrally stable.

The one-dimensional j -independent version of Equations 2.35 and

2.36 is quite similar.

6.2 The interaction of Benjamin - Feir instability and recurrence

The one-dimensional nonlinear Schrudinger equation, as written in

Equation 6.1 is solvable by the inverse scattering transform when initial

conditions decay sufficiently rapidly as * * . The

characteristics of the solutions are less clear for other initial condi-

tions. As presented in Section 6.1, when boundary conditions are periodic,

uniform wavetrain solutions of the form are unstable
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with respect to perturbations of wavenumber 119 3Rk . The maximum

instability occurs at L =R3 \. Historically, this is the Benjamin-
5 

E

Feir (1967) instability. Given a weakly nonlinear uniform deep-water

wavetrain, a Stokes wavetrain, the instability is with respect to modula-

tional perturbations, specifically, a pair of side bands around the

primary component in the power spectrum.

Fermi-Pasta-Ulm recurrence is the situation in which the initial

condition of an unstable nonlinear system is periodically reconstructed,

or almost reconstructed, in time.. Concerning the one-dimensional non-

linear Schr6dinger equation, the recurrence begins with the growth of

unstable modulations to the uniform solution. The growth is at exponen-

5
tial rate as predicted by Benjamin and Feir (1967) and is followed by

the eventual demodulation and return of the system to almost uniform

state.

4

Yuen and Ferguson (1978) investigated the relationship between

initial instability and the long time evolution of the one-dimensional

nonlinear Schrdinger equation. They found that the number of free modes

actively taking part in the energy sharing experience following the

onset of instability is governed by the number of unstable modes

associated with the initial conditions. If the initial instability has

no higher harmonics that are unstable, that are below the critical

wavenumber for the occurrence of instability, then the instability is

simple. There is only one mode which grows unstably at exponential

rate when triggered by the forced oscillation. Otherwise, when higher

harmonics of the initial instability are also unstable, then each in

turn must dominate the evolution of the system. The recurrence is

complex.



Subsequent evolution of the system, following initial instability

consists of growth and decay of these unstable modes. Between each

instance of maximum modulation, the initial conditions are at some point

reconstructed, or almost reconstructed. If there were no critical upper

bound on wavenumbers for the occurrence of instability, the system might

be expected to thermalize, a permanent leakage of energy to high wave-

numbers taking place.

23
In another study by Yuen and Ferguson (1978) , the nonlinear

evolution equation for a deep-water gravity wave train subject to two-

dimensional modulation, namely,

is considered. The frequency and wavenumber of the carrier wave are

LA, and , respectively. Numerical work using simple initial

conditions such as sinusoidal perturbations in the X and y directions

show recurrence. The existence of simple and complex recurrence is not

clear, nor is the relationship between initial instability and long time

evolution of the system.

Equation 6.9 is a two-dimensional nonlinear Schr6dinger equation

similar to that written in the set of Equations 3.23 and 3.24. Both

reduce to the same one-dimensional nonlinear Schr6dinger equations when

spatial variation is regimented to one direction. Therefore, in the

sense that stability was considered in Section 6.1, both have the same

stability characteristics. It seems reasonable to expect that both may

have a similar interaction of Benjamin-Feir instability and recurrence.

As yet, these relationships are unknown.



7. Transition and Symmetry

7.1 Transition among solitons

What are the necessary conditions for a soliton to change signifi-

cantly or split into a multiple of other solitons? What are the necessary

conditions for the inverse to occur? Are there rules which govern the

transition of a soliton into a modification of itself, or into a dis-

integration stage from which a new set of solitons arise? These phenomena

are observed in experiments on waves generated by wind over deep water

24
as executed by Mollo-Christensen and Ramamonjiarisoa (1979) . It is

not possible to analytically approach the system these experiments

were done on at this time. Transition among solitons of the KdV

equation is considered.

7.2 Inverse scattering transform solution to the KdV equation

25
Ablowitz, Kaup, Newell and Segur (1974) discuss solutions to

the KdV equation

U~W0, 7.1

via the inverse scattering transform. Initial conditions require that

U(Y,0) decay to zero sufficiently rapidly as X-o

The associated linear eigenvalue problem is,

+ .0u4)~~



which appeared in Chapter 2, Equation 2.24. This is the one-dimensional

time independent linear Schradinger equation of quantum mechanics. For

real ll(.) , the spectrum of Equation 7.2 consists of a finite

number of discrete imaginary values -n ,where 11 \,

and a continuum set of real . The corresponding eigenfunctions

have the asymptotic behavior, when - ,

2C - C3

and when $ = k I k is real,

There is a normalization constraint, f \.
26 -**

Greene, Kruskal and Muira (1967) found that when

as in Equation 7.1, the spectrum of Equation 7.2 is

Gardiner,

., evolves

time invariant, if

"1 + C' ~ q)

When is real, ,4. . When is imaginary, C..=0 .

The finding of as a function of time requires a knowledge

of . In the limit -~ >.oo , this is no longer

a constraint. The time evolution of the scattering data is

0T

t1\ - Y,
QL) e..,

Y"C %
Dft ) el



R (. ) = i)

Define,

C' ) =%k C'q)

e-Cn(.)e 74..L (..k) e dk
2f

and solve the Gelfand-Levitan equation,

+ J/dz K(x~zd) B

. Boundary conditions are

(x+ Z)) - 0

as Z--.-

Thence, u(X = k-_ 4X. Segur (1973) presents a computation

when N -=1

K, (y/,- x j - A I 1j. = 1o4,Fi

4%Ki4QKI- (l

I 7.7

4-4 -11 Y
C2 e

-j .~ J2 ~~f'-.2. '.

N

nfl

4 B( Y )

for . x

of

7.S

and when ! 2.

4.Q0.KI

L .1S, 4I~
;2.

4'. _

where

= .L

K -KA
R-t -KJ

IL

4- -K?.
K, -)r K')

W!' - Y,'.t

K (xY#A)
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When K. 7K 7 and -, Equation 7.7 implies,

7.8

where,

4 +

Solitons survive interactions, retaining their identity, suffering only

28
phase shift, as observed by Lax (1968)

7.3 Transition among KdV solitons

Suppose that the spectrum of Equation 7.2 consists of a doubly

degenerate eigenvalue. This corresponds to a system having a single

soliton solution, as described by Equation 7.6. At some instant in time

let a perturbative influence be imposed upon the system. In all prior

time, as in all later time, the spectrum is time invariant, due to

eigenfunction evolution Equation 7.3. However, with the imposition of

the perturbative influence, Equation 7.2 has a spectrum of two discrete

eigenvalues, assuming the degeneracy splits. The corresponding solution

of the KdV equation consists of two solitons, as described by
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Equations 7.7 and 7.8. Initially, as the perturbation is being applied

to the system, the solution of the KdV equation looks quite like

Equation 7.6 describing a single soliton. In due time, the two 2 solitons

order themselves according to size and speed, as in Equation 7.8. The

system has made a transition from 1 soliton to 2 solitons.

As it turns out, the author does not know of any La(')

which would have degenerate eigenvalues when used in Equation 7.2.

There is an alternate mechanism to the above scenario. Suppose

that initially the system has a single soliton solution

2<Aa.U K, (%- - 7

Suppose that at some instant a perturbative influence is imposed upon

the system so that Equation 7.6 is modified to

w hr

where,

U 1.4 . 4% x
j~~f(T TV 2* A

A- Q~t~

4-< =

+K
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The example is simply the limit of Equation 7.7 when K2 = K, + &

and A approaches zero. For all time after the instant the perturbation

is imposed, the spectrum consists of two very close discrete eigenvalues,

, and K%+ t . The evolution equation ensures that K, , and

K% +L remain invariant with respect to time. Initially, as the

perturbation is being applied to the system, it may seem as though only

one soliton is present. In due time, the two solitons will order

themselves according to size and speed, as in Equation 7.8. The system

has made a transition from 1 soliton to 2 solitons.

7.4 Symmetry and directional instability

The Euler-Lagrange governing equations for ideal gas were generally

found to be, in Chapter 2,

;T) X 2.12

and when the system is assumed at equilibrium,

2.2

Equations 2.32 and 2.43 may be linearized by setting

where . Thus,
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ik+ evk +V(C-I) I' = AJ 7.10

-V V

The representation, ~ , and , is

generally valid. Assume that so that Equations 7.10 and 7.11

may be written as,

These equations are of the same form as the three-dimensional time

dependent and time independent linear Schr6dinger equations of quantum

mechanics respectively, Let VV dependent only on ' , the spherical

polar radial coordinate. Equations 7.12 and 7.13 then represent a

system having central forces. The angular momentum associated with

the state, is conserved. Suppose that \'

Equation 7.13 then has an infinite set of eigenvalues and eigenfunctions.

20
The Y1I level eigenvalue is f-fold degenerate. Merzbacher (1970)

considers the situation in detail.

A perturbation of the system can be expected to cause loss of

symmetry, splitting of degenerate eigenfunctions, and transitions among

these eigenfunctions. Loss of all symmetry implies loss of all

degeneracy. This in turn implies that all transitions among
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29
eigenfunctions are allowed. This is discussed in Falicov (1966) and

30
Tinkham (1964)

There is a weak generalization from this. Higher symmetry implies

fewer transitions which implies greater stability. Absolute chaos

implies minimal symmetry which implies ultimate instability.

7.5 The Rayleigh-Schrodinger perturbation formalism

The usual methods for computing the effect of a perturbation in

shifting eigenvalues and eigenfunctions and in splitting degenerate

eigenfunctions of a system described by Equation 7.2 are presented.

20
The reference is Merzbacher (1970)

Write Equation 7.2 as

where . A small perturbation & is imposed on

V . The system may be represented as having ~- I
where lies between 0 and 3.

S15

Eigenfunctions and eigenvalues of may be expanded in powers of

+ +

+4 ,+ K -" 7. I(



105

which implies, equating coefficients of equal powers of

K7- 717

KK q - 712

Equations 7.14 and 7.17 are the same. Equation 7.18 may be rewritten as,

which is an inhomogeneous linear equation for , given K

In general given a vector V , and a Hermitian operator A with

a complete set of eigenvectors such that for some tk

AU= 720

then either there are nontrivial solutions U such that =0 and

A has zero eigenvalues or there exists a unique inverse operator

such that U = \f . In the former case, given W such

that ANf z , then any \A W4U is also a solution to Equation

7.20.

Of course \ can not have any component in the subspace spanned

by U' . The argument for this is the following. Operator A may be

represented as the sum of projection operators 2. Thus,
L
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A =0 means that regardless of the spaces into which each of the

projection operators f , project vectors, these spaces are not the

same as the subspace of which. U' is a member. Letting P' be the
projection operator of this latter space, then clearly Z )A-Z 0.

L

In other words, .V = P., 0 There is no component of \F in

the subspace spanned by i.

A specific W may be constructed. Assuming V\ , then

There is always some K such. that AK 1.- . Operator 

is simply what is needed so that K.\- \AT belongs to the subspace

spanned by d . There are an infinite number of other operators ,

obtained one from the other by adding , where S is arbitrary.

To select K uniquely, the constraint =0 is imposed.

Symbolically, k. may be represented as,

K
A

Equation 7.21 implies AW = , or

A

This is a particular solution to A\r . By construction it

is orthogonal to the subspace spanned by d
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OW

Thus, if Aq= 0 has nontrivial solutions, then A\A=\T has the

general solution il = V where \ 0
A

To approach Equation 7.19, match K toA . The

presence of nontrivial solutions, namely , to the corresponding

homogeneous equation is evident. These are orthonormal since N is a

Hermitian operator. The condition corresponding to Arf 0 is

where A is the projection vector for the direction n . This

follows from Equation 7.17. Because , this last

equation implies

The result of this is, as is Hermitian,

where the left inner product with has been taken. This is the

first order correction to the l level eigenvalue.

Eigenvalues are assumed nondegenerate. To each eigenvalue there

corresponds a single eigenfunction. Equation 7.22 implies that the
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general solution to Equation 7.19 is

(I(K'

As CM is arbitrary, it may be set to zero. The symbol for Y( is

{ P . This acts on any solution of the homogeneous equation

to give zero, implying that Equation 7.23 may be simplified to,

(1) k7.2P O

The summation of projection operators is unity,

where . Thus, Equation 7.23 is simply,

This is the first order correction to the Y level eigenfunction.

To first order in , 4 Q is normalized to unity.

Suppose that the unperturbed eigenvalue K, is doubly degenerate,

that to this eigenvalue there corresponds two linearly independent

eigenfunctions. The assumed expansion of Equation 7.16 is no longer

valid because the unperturbed eigenfunction to which on collapses as

approaches zero is unknown. The denominator of Equation 7.25

vanishes.

Impose a perturbation on the system and assume that the eigenvalue

level splits,
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The unperturbed degenerate eigenfunctions nd and I are assumed

orthonormal. The perturbed eigenvectors corresponding respectively to

the eigenvalue expansions above are,

1A- A 1V - Z 7

These expansions are substituted into Equation 7.17, (

and powers of are equated. The results are,

CO

t~7.
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The inhomogeneous terms, that is the right sides of Equations 7.28 and

7.29, have no component in the subspace spanned by solutions, t and

of the corresponding homogeneous equations. The operator appro-

priate to this space is In = Prm 4 . Applying it to Equation

7.28 implies,

~~~~~~~ Z3~1 -P ~r E~~i

The operator
(d)
nr

~o)
4

may be expanded,

*1 - Af

Equation 7.30 is separable into the set of equations,

- O .4+ c21SI2. =
4.0

7.31

which has nontrivial solutions if the determinant vanishes. Equation

7.29 may be handled in the same way and leads to,

C L l .4-0-22j2. 0 1 ~ ~c 2 jK - =. )

This set of equations is of the same form as Equation 7.31. The secular

equation gives EM and E - as well as the correct relations

of Z% to C1% and C to C22.

~(.32.
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8. Motivating Features and Concluding Remarks

The foregoing has sought clarification of an apparent duality in

the nature of certain nonlinear systems of dynamics. Observationally,

sea surface waves are often seen to be turbulent, chaotic and random.

On the other hand, there are circumstances in which these same systems

manifest coherently structured waveforms.

At the outset, an Euler-Lagrange equation similar in form to the

linear Schr5dinger equation, Equation 7.12, was sought. The operator of

this relation is Hermitian, something to which symmetry arguments may

be applied. It was not expected that nonlinear Schr5dinger equations

would arise.

It seems essential that a given nonlinear system be described in

terms of Lagrangian coordinates, that similarities between material

elements and classical particles be evident. The approach to systems

described by Eulerian coordinates is less clear. Seliger and Whitham

9
(1968) show that often these systems may be represented by a variational

principle where the Lagrangian is simply the pressure. However there is

no analogy between material elements and classical particles. When the

system was represented by Lagrangian coordinates, this analogy was the

key to motivating the path taken.

Consider the ideal gas dynamics example. A material element was

taken to have Lagrangian coordinates (V, -. Y-3) at time =

The momentum equation is

X, L
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where ')l(5, is the material element trajectory, the

density, and the pressure. The continuity relation is,

2.2

where is the initial density.

The dynamics of the system are described in terms of a Lagrangian

density

where E is the internal

canonical momentum is,

energy and X , a Lagrange multiplier. The

RI \

the Hamiltonian density, following Goldstein (1950)

An action S , and an action density A; , are introduced, where

7C = A'

The Hamilton-Jacobi relation is

Q.1k

212

2.17

2LZ=- - 4 A- ea
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and a corresponding variational principle,

A mapping of dependent variables is made,

Q.al

where and K is a real constant.

It is important that the system have a continuity relation such as

Equation 2.2 or an equivalent, as in the shallow water waves example.

Otherwise an alternative to Equation 2.21 must be written.

A consistent choice for is

Coordinates of Equation 2.20 are transformed from OC -space to ' -space.

Variations are taken with respect to Y . Resultant governing equations

are,
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2V13

In varying the integral of Equation 2.20 with respect to , the

constraint . O is imposed, The Eulerian velocity is

found to be Therefore, $$Pq = in the

shallow water waves example, and e in the dynamics

of ideal gas example. In the former problem, a further transformation,

leads to the resultant set of equations

Application of inverse scattering techniques implies the simplest waveform

solutions of constant form,

4.1



115

where

and

(9 Ar Q - ~~ 4

so 4.5a

Equation 3.19 amounts to the constraint,

:,)L

Variations with respect to X in Equation 2.20, yield Euler-

Lagrange equations in which A does not appear. The transformation of

coordinates from OC -space to X -space and the mapping of dependent

variables from 3X and e to ' and changes the situation so

that A does appear. Were it not for the need to introduce in

accounting for the continuity relation there would be no known method of

solving the resultant Euler-Lagrange equations.
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Suppose that the frame of reference is rotating uniformly at

angular velocity ! . It is not clear how to apply the foregoing

formalism to the variables of the rotating frame. In place of Equation

2.1, the momentum equation is

A time independent, equilibrium, version of the problem may be

considered. The Hamiltonian density integrated over.an ensemble of

material elements is assumed extremal with respect to variations in

material element trajectories. That is,

2.42.

where the mapping of Equations 2.21 and 2.22 has been substituted.

Coordinates are transformed from k< -space to X-space. Variations in

are taken subject to -0 . Resultant governing

equations are

An attempt was made to discuss transition among KdV solitons. In

general, given a nonlinear evolution equation solvable by the inverse

scattering transform, there is an associated linear eigenvalue problem.
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An understanding of the degeneracies, the symmetry, and the manner in

which degeneracies may be eliminated within the linear eigenvalue problem

is sought. The hope is that this will determine how transitions among

solitons occur within the system.. The KdV equation almost seems to work

this way.
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