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Abstract: We perform a general analysis on the possibility of obtaining metastable vacua

with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant

in the moduli sector of string models. More specifically, we study the condition under

which the scalar partners of the Goldstino are non-tachyonic, which depends only on the

Kähler potential. This condition is not only necessary but also sufficient, in the sense

that all of the other scalar fields can be given arbitrarily large positive square masses if

the superpotential is suitably tuned. We consider both heterotic and orientifold string

compactifications in the large-volume limit and show that the no-scale property shared

by these models severely restricts the allowed values for the ‘sGoldstino’ masses in the

superpotential parameter space. We find that a positive mass term may be achieved only

for certain types of compactifications and specific Goldstino directions. Additionally, we

show how subleading corrections to the Kähler potential which break the no-scale property

may allow to lift these masses.
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1. Introduction

It is widely believed that the existence of four-dimensional de Sitter (dS) vacua in low energy

compactifications of string theory entails the presence of extended energy sources, such as

D-branes, contributing to the vacuum energy density. This is motivated in part by the

observation that smooth compactifications of 10-D and 11-D supergravities do not admit

solutions to Einstein’s equations characterised by both a positive cosmological constant and

a stable ground state [1 – 3]. It has become clear, however, that this class of no-go theorems
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can be circumvented by including localised sources and/or taking into account higher order

corrections in α′ or the string coupling gs in the low energy analysis. In ref. [4] it was

indeed shown that in type-IIB string theory compactified on Calabi-Yau orientifolds with

D-branes wrapping around cycles and nontrivial background fluxes a potential is generated

for many of the scalar fields (moduli) present in the four-dimensional N = 1 supergravity.

Including non-perturbative contributions all moduli can be stabilised but, generically, in a

supersymmetric ground state which is either anti-de Sitter or Minkowski [5 – 9] whereas a

positive cosmological constant necessarily requires the breaking of supersymmetry. For the

‘uplifting’ from a supersymmetric vacuum to a dS vacuum a variety of mechanisms has been

proposed and studied. For example, in ref. [5] it was shown that the joint contribution of

non-perturbative effects and an explicit supersymmetry-breaking term induced by anti-D3

branes can lead to a dS vacuum with fine-tuned cosmological constant and stable volume

modulus. Alternatively, there have been attempts to construct metastable vacua where

supersymmetry is broken spontaneously either by D- or F -terms [10 – 27].

Interestingly, there are no known examples of metastable vacua with spontaneously

broken supersymmetry produced only by the volume moduli –or Kähler moduli– in the

absence of α′ and worldsheet instanton corrections to the Kähler potential. At first sight

this fact is a bit counter-intuitive. The superpotentials available in flux compactifications

and/or compactifications on generalised geometries are sufficiently generic [28] that one

could expect no serious obstacle towards this end. Nevertheless, it was shown in ref. [29]

that for N = 1 supergravities describing string compactifications with a single volume

modulus T and a no-scale Kähler potential

K = −3 log(T + T̄ ) , (1.1)

stationary points of a positive scalar potential V generated only by F -terms are always

characterised by the existence of at least one tachyonic direction, independently of the

superpotential W = W (T ). This result was made more precise in ref. [30] and extended

to more general situations, and in particular to the class of compactifications in which the

Kähler geometry spanned by the moduli is factorised into one or several sub-manifolds of

constant curvature. More precisely, it was shown that also for the no-scale Kähler potential

K = −
∑

i

ni log(T i + T̄ i), with
∑

i

ni = 3, (1.2)

stationary points of a positive scalar potential V have at least one tachyonic direction

independently of W . Moreover, this tachyonic direction was shown to become marginally

flat only when the superpotential W is chosen in such a way that V = 0. Similar results

were derived in ref. [31] for coset manifolds arising in orbifold compactifications. This new

class of no-go theorems –which relies only on the properties of the Kähler potential– raises

the natural question about the role of the volume moduli in the construction of metastable

vacua in more generic string compactifications where the Kähler geometry spanned by the

moduli becomes nontrivial.

The purpose of this paper is twofold. First we refine the previous analysis of four-

dimensional N = 1 supergravities given in refs. [30 – 32] by emphasising that the crucial
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quantity to study in order to achieve vacuum metastability is the mass of the scalar su-

perpartners of the Goldstino. We show that all of the other scalar fields can be made

arbitrarily massive by appropriately choosing the superpotential. However, this is not the

case for the two sGoldstinos since in the limit of global supersymmetry the Goldstino is ex-

actly massless and therefore the sGoldstinos can never get a mass from the superpotential.

Instead their masses are generated by the supersymmetry breaking mechanism with their

mass-difference being of the order of the supersymmetry breaking scale. As a consequence

their masses are not necessarily positive. It is precisely this fact which is at the heart of the

problem of identifying locally stable dS vacua. From this discussion it is also immediately

clear that a positive sGoldstino mass is a necessary condition for the metastability of any

dS vacua and, furthermore, this condition does not depend on the superpotential but only

on the form of the Kähler potential. This observation considerably simplifies the search

for a viable dS ground state.

The second aspect of this paper concerns an analytical study of specific classes of N = 1

supergravities which appear as the low energy limit of string compactifications. We show

that there exist entire classes of compactifications which do not admit any metastable dS

vacua, irrespectively of the superpotential or the vacuum expectation values that the moduli

may acquire. For instance, we show that de Sitter vacua are excluded in the case of K3

fibrations regardless of the number of moduli or their vacuum expectation values. On the

other hand, we also identify particular classes of compactifications in which the necessary

conditions are indeed fulfilled and thus viable dS vacua should exist. Let us stress here that

we do not minimise any explicit potential. Rather we study the condition for the existence

of dS vacua and show that irrespectively of the superpotential this condition is not easily

satisfied. We think that this is the reason for the difficulties encountered in constructing

explicit metastable de Sitter vacua in low energy compactifications of string theory.

The organisation of this paper is as follows. In section 2, we start by reviewing the

conditions under which a generic supergravity model with chiral multiplets admits viable

vacua with spontaneously broken supersymmetry and non-negative cosmological constant.

Then in section 3 we apply the resulting condition to the class of models where the Kähler

potential satisfies either the no-scale property or a more restrictive homogeneity property

respected by large-volume scenarios of string theory. In sections 4 and 5 we study the

large-volume limit of heterotic and orientifold models respectively and derive in each case

the form of the metastability condition. There we also apply our general results to classes

of models where the metastability condition can be studied analytically and show explicitly

that a positive square mass may be achieved only for certain types of compactifications

and particular Goldstino directions. We also study the effect of (subleading) α′ corrections

to the Kähler potential and show that they contribute to the sGoldstino masses and can

render them positive even for those models where it is not possible at leading order. Finally,

in section 6 we present our conclusions.

2. Metastable vacua in supergravity

In this section, we briefly review and extend the strategy that was presented in refs. [30 – 32]
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to study the stability of non-supersymmetric vacua in general supergravity models with

N = 1 supersymmetry in four dimensions.1 We assume that vector multiplets play a

negligible role in the dynamics of supersymmetry breaking, and focus thus on theories

with only chiral multiplets.

Recall first that the most general two-derivative Lagrangian for a supergravity theory

with n chiral superfields is entirely defined by a single arbitrary real function G depending

on the corresponding chiral superfields Φi and their conjugates Φ̄ı̄. Derivatives with respect

to Φi and Φ̄̄ are denoted by lower indices i and ̄. Using Planck units where MP = 1, the

function G can be decomposed in terms of a real Kähler potential K and a holomorphic

superpotential W in the following way:

G(Φ, Φ̄) = K(Φ, Φ̄) + log W (Φ) + log W̄ (Φ̄) . (2.1)

The quantities K and W are however defined only up to Kähler transformations acting as

K → K + f + f̄ and W → We−f , where f is an arbitrary holomorphic function of the

superfields. The bosonic part of the action takes the form:

S =

∫ √−g

[

1

2
R − gī ∂φi∂φ̄̄ − V (φ, φ̄)

]

. (2.2)

The Kähler metric gī = Kī = ∂i∂̄K is used to raise and lower indices, and defines a

Kähler geometry for the manifold spanned by the scalar fields. It is assumed to be positive

definite, such that the scalar’s kinetic energy is positive. The potential takes the following

simple form:

V = eG(GiGi − 3) . (2.3)

The auxiliary fields of the chiral multiplets are fixed by their equations of motion to be

F i = m3/2G
i with a scale set by the gravitino mass m3/2 = eG/2. Whenever F i 6= 0 on

the vacuum, supersymmetry is spontaneously broken, and the direction Gi in the space of

chiral fermions defines the Goldstino which is absorbed by the gravitino in the process of

supersymmetry breaking.

2.1 Condition for metastability

Supersymmetry-breaking metastable vacua with non-negative cosmological constant are

associated to local minima of the potential at which F i 6= 0 and V ≥ 0. These vacua can

be classified by looking at stationary points with V ′ = 0, imposing that the value of the

potential should not be negative, V ≥ 0, and finally requiring that the Hessian matrix

should be positive definite: V ′′ > 0.

The derivatives of the potential (2.3) are most conveniently computed by using the

covariant derivative ∇i defined by the Kähler metric gī, and the associated Riemann cur-

vature tensor Rīmn̄. The first derivative is just Vi = ∇iV , and the stationarity conditions

Vi = 0 read

eG
(

Gi + Gk∇iGk

)

+ GiV = 0 . (2.4)

1A similar strategy has also been used in ref. [33] to explore the statistics of supersymmetry breaking

vacua in certain classes of string models.
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The second derivatives of the potential can also be computed by using covariant derivatives,

since the extra connection terms vanish by the stationarity conditions. There are two

different n-dimensional blocks, Vī = ∇i∇̄V and Vij = ∇i∇jV , and these are found to be

given by the following expressions:2

Vī = eG
(

Gī + ∇iGk∇̄G
k − Rīmn̄ GmGn̄

)

+ (Gī − GiḠ) V , (2.5)

Vij = eG
(

2∇iGj + Gk∇i∇jGk

)

+ (∇iGj − GiGj)V . (2.6)

The metastability condition is then the requirement that the whole 2n-dimensional Hessian

mass matrix M2 should be positive definite, where

M2 =

(

Vī Vij

Vı̄̄ Vı̄j

)

. (2.7)

It is clear that for a fixed Kähler potential K, most of the eigenvalues of this mass

matrix can be made positive and arbitrarily large by suitably tuning the superpotential W .

More precisely, the n − 1 chiral multiplets that are orthogonal to the Goldstino multiplet

can acquire a large overall supersymmetric mass contribution from W , which can overcome

the mass splitting of order m3/2 induced by supersymmetry breaking, and lead to positive

square masses for the scalar field components. The Goldstino multiplet, on the other hand,

cannot receive any supersymmetric mass contribution from W , since in the limit of rigid

supersymmetry its fermionic component must be massless. The mass splitting of order

m3/2 induced by supersymmetry breaking can then potentially make the square mass of

the scalar field component negative.

From a more technical point of view, this conclusion can be obtained by recalling that

derivatives of G with mixed holomorphic and antiholomorphic indices depend only on K,

while quantities like Gi, ∇iGj and ∇i∇jGk depend also on W , and more precisely on

(log W )i, (log W )ij and (log W )ijk. Keeping K fixed and tuning W , one can then vary in

an arbitrary way these quantities. This allows to adjust first the quantities ∇i∇jGk to

set the block Vij to zero, and next the quantities ∇iGj to make most of the eigenvalues

of Vī positive. On top of that, one still has the freedom of arbitrarily choosing Gi. The

only restriction in the second step comes from the fact that the projection of Vī along

the Goldstino direction Gi is actually fixed by the stationarity condition (2.4), and can

therefore not be adjusted. This means that the square masses of the two sGoldstinos

cannot be arbitrarily shifted by adjusting W , and that their value crucially depends on K.

In order to study metastability, it is thus sufficient to study the projection of the

diagonal block Vī of the mass matrix along the Goldstino direction Gi. More precisely, we

find it convenient to rescale this quantity by the overall mass scale m2
3/2

and consider the

following parameter:

λ = e−G Vī GiḠ . (2.8)

Strictly speaking λ is a linear combination of eigenvalues of Vī with non-negative coeffi-

cients in front of them. It therefore defines a natural mass scale m̃2 ≡ eGλ/GiGi which

2Our conventions for the Riemann tensor are given by eq. (A.5) in the appendix.

– 5 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
7

can be thought of as the mass obtained by projecting Vī along the Goldstino direction Gi.

Accordingly, we identify here m̃ with the mass of the sGoldstinos.

By using eqs. (2.4) and (2.5), one can compute λ more explicitly. The result is found

to depend only on the parameters Gi = e−G/2F i defining the direction of supersymmetry

breaking, contracted with the metric and the Riemann tensor of the scalar geometry:

λ = 2 gī GiḠ − Rīmn̄ GiḠGmGn̄ . (2.9)

For given K and arbitrary W , the quantities Gi can be varied but the metric and the

Riemann tensor are fixed. One can then look for the preferred direction that maximises

λ.3 If λmax < 0, then one of the sGoldstinos is unavoidably tachyonic, and the vacuum is

unstable. If instead λmax > 0, then the sGoldstinos can be kept non-tachyonic by choosing

W such that the Goldstino direction is close enough to the preferred direction, and more

precisely inside a cone for which λ ∈ [0, λmax]. As already mentioned, the rest of the scalars

can always be given a positive square mass by further tuning W . The crucial condition for

metastability, which constrains both the Kähler geometry and the supersymmetry breaking

direction, is then [30]

λ > 0 . (2.10)

2.2 Analysis of the metastability condition

The implications of the metastability condition λ > 0 have been studied in refs. [30, 31]

for models with a fixed cosmological constant. But one can actually perform a similar

study without specifying the value of the cosmological constant and only requiring that it

is non-negative. It is clear from the form of eq. (2.9) that for sufficiently small values of

the Gi, it would always be possible to find configurations such that λ > 0, since the quartic

term becomes subdominant and the quadratic term is positive. However, in this regime the

cosmological constant would necessarily be negative. Whenever some of the Gi are instead

of order 1, as required to achieve a non-negative cosmological constant, the quadratic and

quartic terms compete, and the existence of configurations with λ > 0 strongly depends

on the form of the curvature tensor. To analyse the rather constrained problem of finding

whether there exist vacua with V ≥ 0 and λ > 0 it is convenient to rewrite λ as the sum

of two pieces,

λ = −2

3
e−GV

(

e−GV + 3
)

+ σ, (2.11)

where σ is defined to be

σ =

[

1

3
(gī gmn̄ + gin̄ gm̄) − Rīmn̄

]

GiḠGmGn̄ . (2.12)

As long as V > 0 the first term in eq. (2.11) is always negative and its precise value depends

only on the length of the vector Gi which determines the cosmological constant. The second

term in eq. (2.11) has instead a sign that depends only on the orientation of the vector Gi,

3See ref. [34] for an algebraic method for finding the minima for a wide class of superpotentials.
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and not on its length. Therefore, the possibility of finding solutions to the metastability

condition λ > 0 depends exclusively on the sign of σ. Indeed, starting from any Gi such

that σ(Gi) > 0, one can always tune the superpotential W to rescale Gi by some real factor

r to achieve V (rGi) = 0 and thus λ(rGi) > 0, proving the existence of Minkowski vacua.

Moreover, by slightly increasing r one can make V (rGi) > 0 and still keep λ(rGi) > 0,

achieving thereby de Sitter vacua. For a fixed value of the gravitino mass scale m3/2 = eG/2

it is however clear that how big a cosmological constant V can be achieved while keeping

λ > 0 depends on the size of σ for the reference situation where V (Gi) = 0. The same kind

of reasoning tells us that if σ < 0 for all the possible orientations of Gi, then one can never

achieve V ≥ 0 and λ > 0 simultaneously. We can therefore conclude that the analysis

of the sign of the function λ for non-supersymmetric vacua with V ≥ 0 is equivalent to

the analysis of the sign of the function σ without specifying the value of the cosmological

constant. More precisely, the condition for the existence of viable vacua is that

σ > 0 . (2.13)

It is easy now to check a few well known results concerning the existence of metastable

vacua. Consider for instance those models where the Kähler potential is of the canonical

form K =
∑

i |Φi|2 for which the Kähler manifold has a vanishing Riemann tensor. In this

case one has

σ =
2

3
(GiḠi)

2 > 0 , (2.14)

and no obstruction is met towards the construction of metastable vacua. Another simple

example is provided by string compactifications described by a single volume modulus T

and a no-scale Kähler potential of the form K = −3 log(T + T̄ ). In this case, one finds that

σ = 0 , (2.15)

independently of the value GT , and thus dS vacua are excluded [29] (see also [35]). Finally,

models with separable K = −3 log(T + T̄ ) +
∑

i |Φi|2 also grant the existence of de Sitter

vacua as long as Gi 6= 0. If W is separable as well, so that the 2 sectors interact only

gravitationally, it is actually possible to uplift any would-be supersymmetric minimum

in the T sector with a Φi sector breaking spontaneously supersymmetry well below the

Planck scale [30]. See [36] for a generalization to a certain class of non-separable W ,

and [37, 38] for specific examples. On the other hand, for similar models with non-separable

K = −3 log(T + T̄ − 1/3
∑

i |Φi|2), as those considered in ref. [39], the scalar manifold is

maximally symmetric and one finds again σ = 0 [31]. See ref. [27] for a recent general

study of this type of uplifting.

Notice that σ has the very useful property of being a homogeneous function of degree

(2, 2) in the variables (Gi, Ḡ), meaning that

Gi
∂σ

∂Gi
= Ḡ

∂σ

∂Ḡ
= 2σ . (2.16)

As a consequence of this property, any stationary point of σ as a function of Gi leads to

σ = 0. This implies in turn that, at any given point in the Kähler manifold spanned by
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the chiral fields, the function σ can have only one such stationary point, or a degenerate

family of them, with σ = 0. This is due to the fact that if the value of the function becomes

non-zero when moving away from such a stationary point, then its first derivative is no

longer allowed to vanish again.

Based on this property, it is possible to outline a general and systematic procedure to

find out whether σ > 0 can be achieved in a particular model by only requiring that the

set of points G0
i , at which σ becomes stationary, is known. Indeed, it is sufficient to study

the convexity of the function σ(Gi) in the vicinity of G0
i by scanning all the orientations

of Gi away from G0
i for which σ is allowed to grow. If σ(G0

i ) = 0 is a local minimum

then, by the method described before, any direction Gi 6= G0
i may be rescaled to render a

metastable vacuum. If instead σ(G0
i ) = 0 turns out to be a maximum, then one is forced to

exclude the Kähler potential K of the model as a possible candidate to generate metastable

vacua. Finally, if σ(G0
i ) = 0 turns out to be a saddle point, then only a reduced subset of

orientations Gi will qualify to render metastable vacua. We should bear in mind, however,

that the metric and the Riemann tensor appearing in the definition of σ depend on the

values of the scalar fields. Therefore, one should also scan over the allowed values of φi.

The procedure just described is very useful and in principle simple to implement when

the convexity of the function σ cannot be determined analytically. This is particularly the

case of the class for models appearing in large volume compactifications of string theory.

As we show in the next section, the scaling properties respected by the type of Kähler

potentials appearing in such scenarios imply two important properties of the function σ:

first, stationary points of σ are of the form Gi ∝ Ki, and second, such points are either

of the saddle-point type or maxima. One is then left with the task of determining, by

studying the vicinity of Gi ∝ Ki, which one of these two situations is being dealt with.

3. Metastability in large-volume scenarios

We now focus on some generic properties respected by models emerging in large-volume

scenarios of string theory. More specifically, we apply the analysis of the previous section

to the class of models where the Kähler potential satisfies either the no-scale property or

an even more restrictive scaling property.

3.1 No-scale models

A common characteristic found in string compactifications is the no-scale property [40]

KiKi = 3 , (3.1)

which holds for the Kähler moduli parameterising the shape and size of the compactified

volume in the large-volume limit. Similarly, it also holds for the complex structure moduli

in the large-complex-structure limit. We would then like to study the function σ as defined

in (2.12) for the particularly relevant class of supergravity models satisfying this no-scale

property, in order to understand whether this restriction implies any useful information

concerning metastability.
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The simplest examples of such no-scale models are certain coset manifolds of the type

SU(p, q)/(U(1) × SU(p) × SU(q)) and SO(2, 2 + p)/(SO(2) × SO(2 + p)), with appropriate

constant curvature, arising in orbifold string models. Due to the fact that they are ho-

mogeneous and symmetric, these particular spaces lead to a simple form of the Riemann

tensor. The implications of the stability condition can then be worked out completely. It

was in fact shown in [31] that in these models the maximal value of σ is precisely zero, and

that this value is obtained for the particular direction Gi = Ki, or equivalent directions

related to this by the isometries of the space.

In more complicated situations where the curvature is not constant, like in Calabi-

Yau models with and without orientifolds, the Riemann tensor takes a more complicated

form and the study of the metastability condition becomes substantially more complicated.

However, since the property (3.1) is valid at any point of the Kähler manifold, it implies

some simple and nontrivial restrictions on the Riemann tensor, and in particular on its con-

tractions with the special vector Ki. For instance, taking one derivative of (3.1) one finds

Ki + Kk∇iKk = 0, (3.2)

whereas taking two derivatives one deduces the following relations:

gī + ∇iKk∇̄K
k − Rīmn̄KmK n̄ = 0 , (3.3)

2∇iKj + Kk∇i∇jKk = 0 . (3.4)

Contracting the first of these relations with KiK ̄ and K ̄ respectively, one can then derive

the relations

Rīmn̄KiK ̄KmK n̄ = 6 , (3.5)

Rīmn̄K ̄KmK n̄ = 2Ki . (3.6)

These relations are useful to study the function σ for this class of models. In order to

do so, it is natural to introduce the projector onto the subspace orthogonal to Ki, since we

know that at least in the particular case of constant curvature manifolds this is the special

direction that maximises σ. Thanks to the no-scale property, this projector is simply

P j
i = δj

i −
1

3
KiK

j . (3.7)

We can then decompose the vector Gi into two independent pieces, one parallel to Ki and

parameterised by a numerical coefficient α, and one orthogonal to Ki and parameterised

by a vector Ni satisfying N iKi = 0:

Gi = αKi + Ni . (3.8)

The quantities α and N i are given by

Ni = P j
i Gj , α =

1

3
KiGi . (3.9)
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The function σ, as defined in eq. (2.12), may then be expressed in terms of the independent

quantities α and Ni in the following way:

σ = 4|α|2
(

gī − Rīmn̄KmK n̄
)

N iN ̄ −
(

ᾱ2Rīmn̄KiKmN ̄N n̄ + c.c
)

−2
(

ᾱRmn̄īK
mN n̄N iN ̄ + c.c

)

+

[

1

3
(gī gmn̄ + gin̄gm̄) − Rmn̄ī

]

N iN ̄NmN n̄ . (3.10)

Note that this result is at least quadratic in the variables N i. This implies that there is

a degenerate family of stationary points for N i = 0 and arbitrary α, that is for Gi ∝ Ki,

with value σ = 0. To say more about the convexity of σ at this set of points we still require

some more information regarding contractions between Ki and the Riemann tensor. As we

will see in the following, this additional information can be obtained by imposing an extra

condition generically respected by large-volume string compactifications.

3.2 Real homogeneous no-scale models

A more restrictive property characterising large-volume scenarios is that their Kähler po-

tential depends only on the real part of the superfields and exhibits therefore n independent

shift symmetries, under which δiΦ
j = iǫδj

i with constant ǫ. This means in particular that

any distinction between holomorphic and antiholomorphic indices can be dropped. Fur-

thermore, it turns out that there exists a coordinate frame where e−K is a homogeneous

function of degree 3 in the fields Φi + Φ̄i. This implies that

−(Φi + Φ̄i)Ki = 3 . (3.11)

Taking a derivative, it then follows that

Ki = −(Φi + Φ̄i) . (3.12)

This equation guarantees, together with the previous one, that the no-scale property

KiKi = 3 is satisfied. But taking a derivative, it also implies that ∂iK
j = −δj

i , which

after lowering the indices implies

KijmKm = 2 gij . (3.13)

Taking another derivative of this, one finds also

KijmnKm = 3Kijn . (3.14)

From these two equations, it follows then that

RijmnKm = Kijn , (3.15)

RijmnKmKn = RimjnKmKn = 2 gij . (3.16)

Finally, contracting these equations with one and two more Kk’s and using the no-scale

condition, one also recovers the same relations (3.5) and (3.6) holding for general no-scale

models.
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It is convenient at this point to introduce a new notation to deal with complex quanti-

ties such as Gi and Gı̄ in such a way that the bar does not appear on top of the indices. Com-

pared to the usual notation, we introduce the following substitutions: Gi → Gi, Gı̄ → Ḡi,

Gi → Ḡi, Gı̄ → Gi. Similarly, for the Ni’s we use: Ni → Ni, Nı̄ → N̄i, N i → N̄ i, N ı̄ → N i.

Using eqs. (3.5), (3.6), (3.15) and (3.16), and decomposing as before Gi = αKi + Ni

and Ḡi = ᾱKi + N̄ i, one finds that the function σ takes in this case the following form:

σ = −2
(

αN̄ i + ᾱN i
) (

αN̄i + ᾱNi

)

− 2Kimn

(

αN̄ i + ᾱN i
)

NmN̄n

+

[

1

3
(gij gmn + gin gmj) − Rijmn

]

N iN̄ jNmN̄n . (3.17)

This result shows that σ has a local maximum with value 0 at Ni = 0 at quadratic order in

the N i variables for orientations of Gi characterised by αN̄ i + ᾱN i 6= 0. Nevertheless, this

does not imply that σ is negative definite, because when αN̄ i + ᾱN i = 0 the potential is

flat at the quadratic and cubic orders and its convexity is determined by the quartic terms

in Ni. In order to gain further insight it is useful to complete the squares in the variable

αN̄ i + ᾱN i and rewrite σ in the form

σ = −2 sisi + ω , (3.18)

where

si = αN̄ i + ᾱN i +
1

2
P ijKjmnNmN̄n , (3.19)

ω =

[

1

3
(gij gmn + gin gmj) − Rijmn +

1

2
KijkP

klKlmn

]

N iN̄ jNmN̄n . (3.20)

Observe now that all the dependence on α is contained in the semi-negative definite term

−2sisi involving the norm of the vector si. This fact allows us to eliminate one redundant

direction in the superpotential parameter space spanned by the Gi’s in the analysis of σ.

Indeed, observe that σ can be maximised with respect to α when α is chosen in such a

way that siNi = 0. Since our interest is to determine whether σ > 0 can be achieved,

this condition fixes α in terms of N i. It also reduces the number of orientations of Gi

that need to be analysed in order to deduce the convexity of σ about the set of stationary

points Gi ∝ Ki. Notice additionally that in the particular case of two moduli i = 1, 2,

the condition siNi = 0 is equivalent to si = 0, as there is only one possible direction

perpendicular to Ki, implying that si and Ni are parallel to each other.

In the next two sections we study more concretely the function σ for the two relevant

cases of heterotic and orientifold compactifications of string theory.

4. Heterotic compactifications of string theory

In this section we consider a class of supergravity models which arises in compactifications

of the heterotic string on Calabi-Yau threefolds.4 Let us first discuss some generic features

of these compactifications and then continue with specific examples.

4Alternatively they can also be viewed as the NS-sector of type II compactifications.
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4.1 General discussion

The moduli of heterotic Calabi-Yau compactifications include the dilaton/axion and the

deformations of the Calabi-Yau metric. The latter are divided into deformations of the

Kähler class and deformations of the complex structure. Locally, the moduli space M is

the product manifold

M = Mks ×Mcs × SU(1, 1)

U(1)
, (4.1)

where Mks is the space spanned by the Kähler moduli, Mcs is spanned by the complex

structure moduli while the dilaton/axion are the coordinates of the last factor. Mks and

Mcs are special Kähler manifolds in that their Kähler potential can be expressed in terms

of a holomorphic prepotential f = f(Φ). One has [41 – 43]

K = − log Y, with Y = −2(f + f̄) + (fk + f̄k̄)(Φ
k + Φ̄k) , (4.2)

where in the large-volume limit Y cs/ks are given by

Y cs = i

∫

X
Ω ∧ Ω̄ , Y ks = V ≡ 4

3

∫

X
J ∧ J ∧ J . (4.3)

Here Ω and J are, respectively, the holomorphic (3, 0)-form and the Kähler (1, 1)-form of

the Calabi-Yau threefold. V is the classical volume in that the equality Y ks = V only holds

in the large-volume limit, and it is modified by α′ and worldsheet-instanton corrections.

There exist various dynamical effects, such as fluxes or gaugino condensates, which

can induce a nontrivial superpotential W for the moduli [28]. We do not systematically

discuss here all the possible superpotentials but rather assume that most of the moduli

are stabilised in a supersymmetric way at high energy scales. In addition we assume that

supersymmetry is broken by F -terms of the remaining moduli multiplets.5 This latter

sector is the one we want to study in the spirit of sections 2 and 3. In other words, we

want to understand under what conditions the moduli sector can simultaneously break

supersymmetry and generate a de Sitter vacuum.

For concreteness, let us focus on the Kähler moduli sector in the large-volume limit and

assume that it induces supersymmetry breaking. Of course we could equivalently consider

the complex structure moduli in the large-complex-structure limit which –due to mirror

symmetry– would lead to an identical analysis.

Since J is harmonic, it can be expanded in a h1,1-dimensional basis wi, i = 1, . . . , h1,1

of the cohomology group H1,1 via J = viwi. The NS two-form enjoys a similar expansion

B2 = biωi. The coefficients in these expansions vi and bi are scalar fields which combine

into the complex coordinates T i = vi + ibi. Inserting this into (4.3), one obtains

K = − logV , with V =
1

6
dijk (T i + T̄ i)(T j + T̄ j)(T k + T̄ k) , (4.4)

where dijk =
∫

X wi ∧ wj ∧ wk are the Calabi-Yau intersection numbers.6

5We similarly assume that matter fields are stabilised at supersymmetric points and that their vacuum

expectation values remain zero after supersymmetry is broken by the moduli.
6This is indeed a special Kähler geometry since V can be derived from the holomorphic prepotential

f(T ) = 1/6 dijkT iT jT k.
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Before we continue let us emphasise that such a Kähler potential also appears as a

subsector of other string compactifications, for example, in Calabi-Yau compactifications

of type IIB with O5/O9-orientifold planes [44]. Therefore the following analysis is not

only valid for heterotic compactifications but rather for any moduli-sector with a Kähler

potential of the form given in eq. (4.4).

In order to compute σ let us first recall a few further properties of K (for more details

on the following computations we refer the reader to the appendix). Its first derivative reads

Ki = −Vi

V , Vi =
1

2
dijk(T

j + T̄ j)(T k + T̄ k) . (4.5)

The Kähler metric is then given by

gij = −Vij

V +
ViVj

V2
= eKdijkK

k + KiKj , (4.6)

where the matrix Vij = dijk(T
k + T̄ k) has a signature (1, h1,1 − 1) for all allowed values

of T i + T̄ i, i.e. those values for which V is positive and the Kähler metric is positive-

definite [43]. The inverse metric is conveniently expressed in terms of the matrix V ij which

is defined as the inverse of Vij, i.e. V ijVjk = δi
k. Using 2V ijVj = T i + T̄ i = −Ki one has

gij = −VV ij +
1

2
KiKj. (4.7)

From (4.5) and (4.7) it follows that K obeys the the no-scale condition (3.1) and also the

homogeneity property (3.11).

Using (4.5)–(4.7) one also easily computes the third derivative of K and its Riemann

tensor:

Kijk = −eKdijk + gijKk + gikKj + gjkKi − KiKjKk , (4.8)

Rijmn = gijgmn + gingmj − e2Kdimpg
pqdqjn . (4.9)

Notice that the specific form of the Riemann tensor holds for any special Kähler manifold

with dijk replaced by the third derivative fijk of the prepotential [45, 46]. Inserting (4.9)

into eq. (2.12) we finally obtain

σ = −4

3
(GiḠi)

2 + e2KGiGjdijpg
pqdqmnḠmḠn. (4.10)

As in the last section we can rewrite σ in terms of Ki and its orthogonal complement

Ni as defined in eqs. (3.8) and (3.9). Inserting (4.8) and (4.9) into (3.19) and (3.20) we

arrive at σ = −2sisi + ω with si and ω given by

si = αN̄ i + ᾱN i − 1

2
eKP ijdjmnNmN̄n , (4.11)

ω =

(

−4

3
gij gmn+

1

3
gim gjn+

1

2
e2KdijpP

pqdqmn+e2KdimpP
pqdqjn

)

N iN̄ jNmN̄n .(4.12)

Let us recall here that with these expressions it is possible now to study the convexity of

σ by scanning N i and keeping α fixed in such a way that siNi = 0.
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4.2 Particular classes of models

We now discuss a few specific classes of Kähler moduli spaces that can be handled analyt-

ically. As we shall see, it is possible to obtain examples of models where σ > 0 for certain

directions Gi offering the possibility of generating metastable vacua. Nevertheless, we shall

also see that there are entire classes of models for which σ is unavoidably negative-definite,

implying the existence of at least one tachyonic state in the spectrum which renders the

theory unstable independently of the form of the superpotential.

4.2.1 Factorisable Kähler manifolds

As our first example we discuss Calabi-Yau threefolds which are K3-fibrations over a P1-

base. In the limit of a large P1 the Kähler potential simplifies and reads [47, 48]

K = − log

(

1

2
d1ab(T

1 + T̄ 1)(T a + T̄ a)(T b + T̄ b) + . . .

)

, (4.13)

where T 1 parametrises the volume of the P1-base while the T a, a = 2, . . . , h1,1 are moduli

of the K3 fibre. The dots indicate further cubic terms which, however, are independent of

T 1 and therefore subleading in the large P1-limit. In that limit the Kähler metric is block

diagonal (g1a = 0) and hence the moduli space factorises into the special Kähler space7

Mks =
SU(1, 1)

U(1)
× SO(2, h1,1 − 1)

SO(2) × SO(h1,1 − 1)
. (4.14)

The Kähler potential also enjoys the properties

K1K1 = 1 , KaKa = 2 . (4.15)

In order to compute σ we observe that (4.6) implies d1ab = e−KK1 (gab−KaKb) which,

together with (4.15), leads to

e2K d1ac dc
1b = g11 gab , e2Kdab1 d1

ce = (gab − KaKb) (gce − KcKe) . (4.16)

Inserting this into (4.10) we obtain

σ = −4

3

(

G1Ḡ1 + GaḠa

)2
+
∣

∣

∣
GaG

a − (KaG
a)2
∣

∣

∣

2

+ 4
(

G1Ḡ1

) (

GaḠa

)

. (4.17)

To find an upper bound for this function, we use the inequality |A ·B|2 ≤ |A|2|B|2 for

Aa = (gab − KaKb)Gb and Ba = Ga. This together with (4.15) yields

∣

∣

∣
GaG

a − (KaG
a)2
∣

∣

∣

2

≤
(

GaḠa

)2
. (4.18)

As a consequence, the function σ given in eq. (4.17) obeys

σ ≤ −1

3

(

2G1Ḡ1 − GaḠa

)2
. (4.19)

7This also uses the fact that the matrix d1ab has signature (1, h1,1
− 2).
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We see that σ is always negative and vanishes along the flat direction where 2G1Ḡ1 =

GaḠa. This means that the preferred supersymmetry breaking direction is Gi ∝ Ki as for

models with constant curvature. We conclude that in this class of models one always has

a tachyonic sGoldstino, which can at best become massless for Minkowski vacua and for a

special Goldstino direction.

Note that the scalar manifold (4.14) associated with these factorisable models is a

constant curvature coset manifold. The implications of the metastability condition for this

type of models were also studied in ref. [31]. It was in particular shown that the second

factor in (4.14) behaves effectively as two copies of the first factor, independently of h1,1.

This implies that the metastability condition for K3 fibrations is analogous to that of

models with 3 independent moduli, as in eq. (1.2) with ni = 1, providing an alternative

derivation of the fact that σ is at best zero in these models.

4.2.2 Two-field models

Another class of models that can be studied analytically are those with only 2 moduli

T i = vi + ibi, with i = 1, 2. To perform this analysis we recall that σ may be written as

σ = −2sisi + ω with si and ω given by eqs. (4.11) and (4.12) respectively. In the case of

2 moduli it was shown in section 3.2 that it is always possible to choose si = 0, thereby

maximising σ. We are thus left with the task of computing the function ω and check if ω > 0

is allowed. As can be read from (4.12), the function ω depends on the variables Ni. Since

these are orthogonal to Ki, they can be parameterised with a single complex quantity C as

(N1, N2) = (K2,−K1)C . (4.20)

With this definition, one has N iNi = 3det g|C|2. One first case that we can analyse is the

case of models with only diagonal intersection numbers d111 and d222. In this example the

Kähler potential takes the form

K = − log

(

1

6
d111(T

1 + T̄ 1)3 +
1

6
d222

(

T 2 + T̄ 2
)3
)

. (4.21)

Computing the metric and its inverse, and using eqs. (4.20) and (4.21) with (4.12), we find

that

ω =
81

8
e4K d2

111d
2
222

det g
|C|4 . (4.22)

This result is positive since the metric has to be positive definite. This shows that σ can

be made positive and that the stability condition can be fulfilled for certain particular di-

rections of Gi. As shown for general large-volume scenarios, we find that the point N i = 0,

where Gi ∝ Ki, is indeed a stationary point with σ = 0. Nevertheless, as can be read off

from (4.22), in this case this stationary point is a saddle point, and σ(Gi) can actually be

made positive along some directions.

By now we have shown that in the case of factorisable Kähler potentials we get ω = 0

and in the case of diagonal intersection numbers we get ω > 0. But one may wonder

– 15 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
7

whether in some cases one can have ω < 0. In order to answer this question, let us consider

a model with the following Kähler potential:

K = − log

(

1

2
d122

(

T 1 + T̄ 1
) (

T 2 + T̄ 2
)2

+
1

6
d111

(

T 1 + T̄ 1
)3
)

. (4.23)

Note now that in the limit d111 → 0 this Kähler potential becomes of the form (4.13)

describing factorisable models, for which the maximal value of σ is zero. One can then

study how this result is modified in the case where d111 ≪ d122 by performing an expansion

in the small parameter

ǫ =
d111

d122

. (4.24)

Following now the same strategy as before it is straightforward to find that

ω =
81

2
ǫ e4K d4

122

det g
|C|4 . (4.25)

This result can be either positive or negative depending on the sign of ǫ. This implies that

σ can be positive or must be negative, depending on the sign of ǫ.

Actually, for these two-field models it is possible to compute the function ω for generic

values of all the independent intersection numbers d111, d222, d122 and d112. Using the

general form for the Kähler potential (4.4) and following the same steps as in the previous

examples one finds, after some algebra, that the value of ω can be cast into the simple form

ω = −3

8
e4K ∆

det g
|C|4 , (4.26)

where the quantity ∆ is the discriminant of the cubic polynomial defined by dijkv
ivjvk

after scaling out one variable, and reads

∆ = −27
(

d2
111d

2
222 − 3 d2

112d
2
122 + 4 d111d

3
122 + 4 d3

112d222 − 6 d111d112d122d222

)

. (4.27)

Since we must require det g > 0, the sign of ω is fixed by the sign of ∆. Moreover, it becomes

now clear that the two categories of models with ω > 0 and ω < 0 are of comparable size

and that they merge in the very special class of models with factorisable Kähler geometries,

for which ω = 0.

4.3 Including α′ corrections

So far we have analysed models respecting the no-scale property KiK
i = 3. This property

is however violated when α′, worldsheet instanton or string loop corrections to the Kähler

potential are taken into account, although they are suppressed in the large-volume and

weak-coupling limit. It is therefore interesting to study how the bounds on the mass of

the sGoldstinos are modified by these effects, particularly for those models in which σ ≤ 0

at leading order. For concreteness we here consider only α′ corrections, but the effect of

other corrections can be studied in a similar way.

When α′ corrections are taken into account, the Kähler potential is K = − log Y

where [49]

Y = V + 4ξ . (4.28)
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The quantity ξ = −ζ(3)χ/2 is a real constant determined by the Euler characteristic of

the Calabi-Yau manifold, given by χ = 2(h1,1 − h2,1). The geometry is still of the special-

Kähler type, with prepotential f(T ) = 1/6 dijkT
iT jT k − ξ. However, as mentioned above,

α′ corrections break the no-scale property (3.1), which is seen from eqs. (A.2) and (A.3) of

the appendix with n = 1 and θ = (3/2)V/(V + 4ξ).

The natural small dimensionless parameter controlling the effect of α′ corrections rel-

ative to the leading-order Kähler potential is given by

δ =
4ξ

V . (4.29)

In the following, we work at leading order in this parameter, which is small when the

volume is large. Using eqs. (A.1) and (A.3) with θ ≃ 3/2(1 − δ), one then finds that

KiK
i ≃ 3 + 6 δ . (4.30)

The Riemann tensor is given by eq. (A.7). The quantities fijk are as before given by

the intersection numbers, whereas the metric gij and its inverse gij are affected by the

corrections and can be computed from (A.1).

In order to understand how the corrections modify the bounds on the sGoldstino

masses, it is useful to compute the function σ(Gi) up to second order in the N i’s and at

leading order in δ. One finds

σ(Gi) ≃ 120 δ |α|4 − 4 (1 − 2 δ) |α|2gijN
iN̄ j

− 2 (1 + 9 δ)
(

α2gijN̄
iN̄ j + c.c.

)

+ O(N3) . (4.31)

Notice that σ continues to be stationary at N i = 0, but its value at that point becomes

σ0 ≃ 120 δ |α|4. If χ < 0 (i.e. h2,1 > h1,1) then this is positive and the special direction

Gi ∝ Ki always allows to fulfil the metastability condition.

Up to this point we have left α undetermined. We can however express |α|2 in terms

of the vacuum energy density V = eG(GiGi − 3) and gravitino mass scale m3/2 = eG/2 as

|α|2 = 1 + V/(3m2
3/2

)+O(δ). Inserting this relation back into eq. (4.31) and evaluating at

N i = 0 one obtains

σ0 ≃ 120 δ

(

1 +
V

3m2
3/2

)2

. (4.32)

This relation can be used to compute the mass scale m̃2 = eGλ/GiGi, as introduced

in section 2.1, at the critical value Gi ∝ Ki. This is particularly important for models

where σ ≤ 0 at leading order, as it then provides a bound on the attainable values of the

sGoldstino mass. By inserting eq. (4.32) into eq. (2.11), and specialising to the relevant

regime V/m2
3/2

≪ 1, one obtains

m̃2

m2
3/2

≃ 40 δ − 2

3

V

m2
3/2

. (4.33)

It immediately follows that if δ & V/(60m2
3/2

) then the metastability condition is fulfilled.

This gives a criterion on how large α′ corrections have to be for given gravitino scale and
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vacuum energy density in order to admit viable vacua. Notice that under these circum-

stances the value of the sGoldstino mass is essentially the gravitino mass suppressed by

α′ corrections. We should bear in mind, however, that other corrections to the Kähler

potential could compete against α′ corrections and modify this result.

5. Orientifold compactifications of string theory

5.1 General discussion

In contrast to the heterotic string, type IIB Calabi-Yau compactifications give theories with

N = 2 supersymmetry in 4 dimensions. The RR forms which are present in 10-D type

II supergravities lead to additional massless 4-D fields which, together with the geometric

moduli, arrange into N = 2 supermultiplets. The scalars in the vector multiplets span

again a special Kähler manifold MSK whereas the scalars in the hypermultiplet span a

dual quaternionic manifold MQ.

One way to obtain a theory with N = 1 supersymmetry is to impose an orientifold

projection. In type IIA, this involves O6-planes while in type IIB one has O3/O7 or

O5/O9-planes. The moduli space in all of these three cases has the form [44, 50, 51]

M̃ = M̃SK × M̃Q , (5.1)

where M̃SK is a special Kähler submanifold of the “parent” N = 2 moduli space MSK

while M̃Q is a Kähler submanifold of MQ. In the large-volume large-complex-structure

limit, the M̃SK factor satisfies the no-scale property and the Kähler potential does in fact

coincide with the Kähler potential of eq. (4.4). Therefore the analysis of section 4 holds

unmodified for the moduli of M̃SK. On the other hand the M̃Q sector, which includes the

dilaton, satisfies KiKi = 4, and if the dilaton is fixed, the latter sector is also no-scale [44].

However, the Kähler potential of M̃Q is different for the three orientifold compactifications.

For concreteness let us focus on type IIB with O3/O7 planes, where the Kähler poten-

tial in the large-volume limit reads [44]

KQ = −2 log V − log(S + S̄) , with V =
1

48
dijkvivjvk . (5.2)

V is again the classical volume of the Calabi-Yau orientifold, S is the dilaton/axion and the

vi, i = 1, . . . , h1,1
+ are the Kähler moduli of the Calabi-Yau orientifold. However the vi do not

appear as components of chiral multiplets in the low energy effective action. Instead, they

determine the real part of the Kähler coordinates T i = ρi + iζi via the quadratic relation8

ρi =
1

16
dijkvjvk . (5.3)

8Strictly speaking there can also be h1,1
−

moduli G with couplings specified in [44] which however we

neglect during the analysis of this paper.
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Due to this relation the Kähler potential of eq. (5.2) cannot explicitly be expressed in terms

of the coordinates T i, but is only implicitly defined through eq. (5.3).9 As in the previous

section we assume that the dilaton is fixed to a supersymmetric configuration and focus

only on the Kähler moduli.

The metric can be conveniently expressed in terms of

dij ≡ ∂ρi

∂vj
=

1

8
dijkvk , dij ≡

∂vi

∂ρj
. (5.4)

Using (5.2)–(5.4), one computes

Ki = − 1

2
eK/2vi , dij = − 1

4
e−K/2dijkKk . (5.5)

This in turn determines the Kähler metric and its inverse to be

gij =
1

2
KiKj −

1

4
eK/2dij , gij = 4 ρiρj − 4 e−K/2dij . (5.6)

One can now check that K satisfies the no-scale property KiKi = 3 as well as the special

identity Ki = −2ρi, which again results from the fact that e−K is a homogeneous function

of degree 3 in ρi. This can be used to slightly rewrite the inverse metric as

gij = e−KdijkKk + KiKj . (5.7)

Notice that this expression for the inverse metric is equal in form to the metric (4.6) of the

heterotic case. Similarly, the inverse metric of the heterotic case is equal in form to the

metric (5.6) for the orientifold case examined here. As was shown in ref. [52] this property

directly follows from the fact that in the orientifold case the Kähler coordinates T i feature

the dual variables ρi instead of vi as the real part.

In order to determine σ we need again the third derivatives of the Kähler potential

and the Riemann tensor. For this it is convenient to first compute derivatives of gij . Using

the above relations we find

[

gij
]

k
= e−Kdijmgmk − (gij − KiKj)Kk − δi

kK
j − δj

kK
i ,

[

gij
]

mn
= −e−2Kdijpgpqd

qrsgrmgsn + δi
mδj

n + δi
nδj

m . (5.8)

Kijm and the Riemann tensor are expressed in terms of these derivatives as

Kijm = −gip[g
pq]jgqm ,

Rijmn = −gipgqj [g
pq]mn + gir[g

rp]mgpq[g
qs]ngsj . (5.9)

9In order to comply with the standard notation whereby chiral coordinates carry upper indices, we have

slightly abused the notation by lowering the indices of v and raising them for the intersection numbers d.

We have also rescaled the intersection numbers as dijk → dijk/8. However we stress that they are exactly

the same objects as in the heterotic case.
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Inserting (5.8) into (5.9) and using (5.4)–(5.6) we arrive at10

Kijm = e−K d̂ijm − gijKm − gimKj − gjmKi + KiKjKk ,

Rijmn = −gimgjn + e−2K(d̂ijkg
kld̂lmn + d̂inkg

kld̂ljm) + ginKjKm + gjmKiKn

+ gimKjKn + gjnKiKm + gijKmKn + gmnKiKj − 3KiKjKmKn

− e−K(d̂imjKn + d̂imnKj + d̂injKm + d̂nmjKi) , (5.10)

where we abbreviated

d̂ijk ≡ gipgjqgkld
pql . (5.11)

Inserting (5.10) into (2.12) we finally arrive after some algebra at

σ =
2

3
(GiḠi)

2 + |GiGi − (KiGi)
2|2 + 2|KiGi|4 − 4|KiGi|2GjḠj

−2 e−2KGiḠjd
ijpgpqd

mnqGmḠn + 2 e−KdijkGiḠj(GkK
nḠn + ḠkK

nGn) . (5.12)

It is also possible to write σ in terms of the decomposition Gi = Ni + αKi defined

in (3.8). Doing so, one finds the result (3.17) or (3.18), with the quantities gij , Kijk

and Rijmn given by eq. (5.10). Again only the few terms transverse to Ki contribute in

contractions with N i. The quantities si and ω are obtained by inserting (5.10) into (3.19)

and (3.20) and are given by

ω =

(

gimgjn − 3

2
e−2KdijpPpqd

pmn

)

NiN̄jNmN̄n , (5.13)

si = αNı̄ + ᾱNi −
1

2
e−KPijd

jmnNmNn̄ . (5.14)

It is interesting to compare both of these quantities with their heterotic counterparts, given

in eqs. (4.11) and (4.12). While si of eq. (4.11) is equal in form to the one given here, ω

of eq. (4.12) has essentially the opposite sign to the one shown here, and involves the

inverse metric instead of the metric and e−K instead of eK . As we shall see, this result is

particularly relevant for models with two moduli, for which σ can be maximised by setting

si = 0 and thus the sign of σ is determined by ω.

5.2 Particular classes of models

As for the heterotic case, we can only make further progress by computing σ for specific

classes of Calabi-Yau orientifolds. In the following we consider the same examples as in

section 4.2.

5.2.1 Factorisable Kähler manifolds

We again start with K3-fibred Calabi-Yau threefolds where the Kähler potential takes the

form

K = −2 log

(

1

16
d1abv1vavb

)

. (5.15)

10This Riemann tensor was also computed in ref. [53].
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For these intersection numbers (v1, va) can be explicitly determined in terms of the (ρ1, ρa)

via (5.3). One finds v1 = 2 (d−1
1abρ

aρb/ρ1)1/2 and va = 4 d−1
1abρ

b(ρ1/d−1
1cdρ

cρd)1/2. Inserting

into (5.15) and using ρi = (T i + T̄ i)/2 yields

K = − log

[

1

2
d−1
1ab(T

1 + T̄ 1)(T a + T̄ a)(T b + T̄ b)

]

. (5.16)

This is exactly the same K as in the heterotic case but with an inverse intersection matrix.

In particular, K obeys again K1K1 = 1 and KaKa = 2. It is nevertheless instructive to

recompute the function σ by using the formulae obtained for orientifold models. From

eq. (5.7) we first infer d1ab = eKK1(gab − KaKb). This allows us to compute

e−2KGiḠjd
ijpdmn

p GmḠn = (GaḠa − |KaGa|2)2 + GaGa(K
1Ḡ1)

2

+ ḠaḠa(K
1G1)

2 + 2GaGa|K1G1|2 , (5.17)

e−KdijkGiḠjGkK
nḠn = 2 (K1Ḡ1 + KaGā)K

1G1(G
bGb − |KbGb|2)

+ (K1Ḡ1 + KaḠa)K
1Ḡ1(G

bGb − (KbGb)
2) . (5.18)

Inserting into (5.12) we arrive at

σ = −1

3
(GaḠa + |K1G1|2)2 + |GaGa − (KaGa)

2|2 − (GaḠa − |K1G1|2)2 . (5.19)

Using the same inequality (4.18) as for heterotic models, and noticing also the simplification

|K1G1|2 = G1Ḡ1, one finally deduces the same upper bound as before:

σ ≤ −1

3
(2G1Ḡ1 − GaḠa)

2 . (5.20)

Therefore, we arrive at the same conclusion as for heterotic models: in this class of fac-

torisable models the stability bound is always at least marginally violated.

5.2.2 Two-field models

As for heterotic models, another class of models where the analysis simplifies are those

involving two fields. In such a situation, there is again a single direction N i orthogonal to

Ki, which can be parametrised as

(N1, N2) = (K2,−K1)C . (5.21)

With this definition, one has N iNi = 3/det g|C|2. As before using this parametrisation we

can compute the value of the quantity ω defined by (5.13), which provides an upper bound

to σ.

As for the heterotic models we consider first the simplest case of models with only diago-

nal intersection numbers d111 and d222. The corresponding Kähler potential is of the form11

K = −2 log

(

1

48
d111v3

1 +
1

48
d222v3

2

)

. (5.22)

11In ref. [53] the same manifold was studied as an example where the Riemann tensor of the manifold

and its dual manifold do not coincide.
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Using (5.3) one determines v1 = 4(ρ1/d111)1/2 and v2 = −4(ρ2/d222)1/2 which, when in-

serted back into (5.22), yields

K = −2 log

(√
2

3
(d111)−1/2(T 1 + T̄ 1)3/2 −

√
2

3
(d222)−1/2(T 2 + T̄ 2)3/2

)

. (5.23)

The function ω is now easily computed and is found to be

ω = −81

8
e−4K (d111)2(d222)2 det g|C|4 . (5.24)

This result is negative and shows that in this case σ ≤ 0 for any choice of Gi. It is there-

fore impossible to obtain stable de Sitter vacua in this case. Furthermore, this inequality

is saturated only for Ni = 0, which corresponds to the configuration Gi ∝ Ki. The result

presented here should be contrasted to the one presented in eq. (4.22).

To understand whether this negative sign for ω persists or not in more general 2-field

models, let us as before consider a small deformation of a factorisable model. The simplest

example has non-zero d122 and d111, and a Kähler potential given by

K = −2 log

(

1

16
d122v1v

2
2 +

1

48
d111v3

1

)

. (5.25)

In the limit d111 ≪ d122, in which the model is nearly factorisable, one can expand at

leading order in the small parameter

ǫ =
d111

d122
. (5.26)

One finds v1 = 2 (d122ρ1)−1/2ρ2[1 + ǫ/8(ρ2/ρ1)2] and v2 = 4 (d122/ρ1)−1/2[1− ǫ/8(ρ2/ρ1)2].

The Kähler potential can then be rewritten as

K = − log

(

1

2

1

d122
(T 1 + T̄ 1)(T 2 + T̄ 2)2 − 1

24

d111

(d122)2
(T 2 + T̄ 2)4

T 1 + T̄ 1

)

. (5.27)

After a straightforward computation, the function ω is found to be

ω = −81

2
ǫ e−4K (d122)4 det g |C|4 . (5.28)

As in the heterotic case we have again that this result can be either positive or negative,

depending on the sign of ǫ. This means that also in orientifold compactifications one can

have models with σ > 0 and models with σ < 0.

Note that the results (5.24) and (5.28) take the same form as (4.22) and (4.25) for

heterotic models but with the substitutions eK → e−K , det g → (det g)−1 and a flip in

the overall sign. This is due to the fact that in the case of two-field models, where the

parametrisations (4.20) and (5.21) can be used, the functions (4.12) and (5.13) get indeed

precisely mapped into each other by these substitutions. This map can then be used to infer

that also for orientifold models the result for generic intersection numbers d111, d222, d122
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and d112 should take a simple form, obtained by applying it to the heterotic result (4.26).

This leads to the result

ω =
3

8
e−4K ∆ det g |C|4 , (5.29)

in terms of the discriminant

∆ = −27((d111)2(d222)2 − 3 (d112)2(d122)2 + 4 d111(d122)3

+ 4 d222(d112)3 − 6 d111d112d122d222) . (5.30)

It is not straightforward to verify this result explicitly, because performing the change of

variables (5.3) involves in this general case finding the roots of a quartic polynomial. But

we were nevertheless able to verify it by brute force with computer assistance. Since we

must require det g > 0, the sign of ω is again determined by the sign of the quantity ∆,

which has exactly the same structure as for heterotic models.

It is important to note that the results found for heterotic and orientifold models imply

that for any given string compactification with non-zero ∆, one can have either viable

heterotic models but no viable orientifold models (if ∆ < 0), or vice-versa (if ∆ > 0).

5.3 Including α′ corrections

We now include α′ corrections in orientifold compactifications. When these corrections are

taken into account, the Kähler potential of eq. (5.2) is modified to K = −2 log Y −log(S+S̄),

where [54]

Y = V +
ξ

2

(

S + S̄

2

)3/2

. (5.31)

One difficulty arises from the fact that these corrections depend on the dilaton which,

strictly speaking, now should be considered as a dynamical quantity (this is due to the fact

that in the presence of α′ corrections the Kähler potential is not factorisable). To simplify

the presentation of this section we nevertheless assume that the dilaton can be fixed to a

constant value in eq. (5.31), and define the new constant ξ̃ = (ξ/2)[(S + S̄)/2]3/2.12 As

before, α′ corrections break the no-scale property (3.1), which can be seen from eqs. (A.2)

and (A.3) of the appendix with n = 2 and θ = 3V/(V + ξ̃).

The small dimensionless parameter controlling the relative effect of the α′ corrections

is in this case given by

δ̃ =
ξ̃

8V . (5.32)

We will work at leading order in this parameter. Using the results of the appendix with

θ ≃ 3(1 − 8δ̃), one finds then that

KiK
i ≃ 3 + 12 δ̃ . (5.33)

The Riemann tensor, given by eq. (A.5), can be evaluated by using Yij = 1/8 dij , Yijm =

−1/128 dirdjsdmtd
rst and Yijmn = 24Yijsd

srYrmn.

12Similar conclusions are obtained in the full computation with a dynamical dilaton by assuming that S

is fixed to a supersymmetric configuration GS = 0.
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As worked out in section 4.3 for the case of heterotic compactifications, one may

compute σ up to second order in N i and at first order in δ̃:13

σ(Gi) ≃ 105 δ̃ |α|4 − 4 (1 + 14 δ̃) |α|2gijN
iN̄ j

− 2 (1 + 27 δ̃)
(

α2gijN̄
iN̄ j + c.c.

)

+ O(N3) . (5.34)

Again, σ is stationary at N i = 0 with a value σ ≃ 105 δ̃ |α|4. Observe that the only

difference with respect to the result found for heterotic models, shown in eq. (4.31), is

the numerical factor in front of δ̃. We can now calculate the mass scale m̃2 = eGλ/GiGi

associated to the sGoldstino. By repeating the steps of section 4.3 and assuming that

V/m2
3/2

≪ 1 one arrives at

m̃2

m2
3/2

≃ 35 δ̃ − 2

3

V

m2
3/2

. (5.35)

Similarly to the case of heterotic compactifications, if δ̃ & 2V/(105m2
3/2

) then the metasta-

bility condition is fulfilled and the sGoldstino mass becomes of the order of the gravitino

mass suppressed by α′ corrections. This is for instance the case in the models of ref. [7, 17].

6. Conclusions

In this paper we have analysed the role that neutral chiral multiplets have in the construc-

tion of 4-D metastable vacua, paying special attention to the generic class of models ob-

tained in large-volume compactifications of string theory. In general, metastable vacua with

spontaneously broken supersymmetry are only granted in models where a non-vanishing

F -term F i = m3/2G
i exists such that σ(Gi) > 0, as defined in eq. (2.12). This necessary

condition was shown to be equivalent to the requirement of having a positive square mass

for the sGoldstinos when the vacuum energy density V is non-negative. Interestingly, this

condition was also shown to be sufficient, with the understanding that all of the other

scalar fields can be given arbitrarily large positive square masses if the superpotential of

the theory is suitably tuned.

In the particular case of large-volume string compactifications the function σ respects

some severe restrictions. For instance, from the general analysis made in section 3, we have

learned that the set of values Gi ∝ Ki corresponds to a family of stationary points of σ with

σ = 0. Moreover, they are either saddle points or maxima, depending on the intersection

numbers of the particular model. Despite of the difficulties posed by a complete analytical

study of the function σ we were still able to outline a general procedure to determine

whether a particular compactification admits dS vacua. This procedure was introduced

first for generic supergravity models in section 2.2 and then refined in section 3.2 for

the particular case of string compactifications. We believe that such a procedure can be

implemented numerically and should be of considerable help in any computer scan of string

ground states. We also saw, however, that there are interesting and nontrivial examples of

13For this computation, the following contractions are needed: YijK
iKj = 3 (θ − 1)−2

V, YijmKiKj =

Y/2 (θ − 1)−2Km, YijmnKiKjKmKn = 9 (θ − 1)−4
V.
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compactifications which can be handled analytically. For K3 fibrations, for instance, we

showed that σ can be at best zero. For 2-field models, on the other hand, the maximal

value of σ can be non-vanishing, and its sign is controlled by the discriminant ∆ of the

cubic polynomial defined by the intersection numbers. Moreover, for ∆ < 0 one can find

viable heterotic models but no viable orientifold model, and vice-versa for ∆ > 0.

The results of this paper are useful for determining which type of configurations within

a given model should help in the construction of vacua. We have seen for example that

exploring configurations in the superpotential parameter space close to the critical point

Gi ∝ Ki give a vanishing value for σ and that α′ corrections can help in obtaining a positive

— although suppressed — square mass for the sGoldstinos, independently of whether σ > 0

is admitted or not at leading order. In fact, one could expect this to be a generic feature

of any additional sector which breaks the no-scale property KiKi = 3 respected by the

Kähler moduli sector.

Finally, let us mention here that a strategy similar to the one used in this paper could

be used also to study the possibility of constructing successful models of slow-roll inflation

within a string-theoretical scenario. This requires finding some direction in field space

with small first and second derivatives of the potential. The first condition corresponds

approximately to stationarity, whereas the second one requires a small negative mass. The

algebraic problem defined by these two conditions is then very similar to the one faced in

this paper [55].
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A. Details of Kähler geometries

In this appendix, we collect some useful formulae concerning the geometry of Kähler and

special-Kähler manifolds, which are needed in some derivations in the main text.

A.1 Logarithmic Kähler potentials

Let us consider a Kähler potential of the form K = −n log Y , where Y is some real function

of the scalar fields φi and n is a real number. Denoting by Y ī the inverse of Yī, one easily
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finds

Ki = −n
Yi

Y
,

gī = −n
Yī

Y
+ n

YiȲ

Y 2
= −n

Yī

Y
+

1

n
KiK̄ ,

gī = −Y Y ī

n
+

1

n

1

θ − 1
Y ir̄Yr̄Y

̄sYs = −Y Y ī

n
+

θ − 1

n
KiK ̄ ,

Ki = − 1

θ − 1
Y ir̄Yr̄ . (A.1)

The quantity θ is defined as

θ ≡ YiY
īȲ

Y
, (A.2)

and controls the value of the contraction defining the no-scale property:

KiKi = n
θ

θ − 1
. (A.3)

The third derivatives of K are

Kīm = − n

Y
Yīm +

n

Y 2
(YiȲm+ YmȲi + ȲYim) − 2n

Y 3
YiȲYm ,

Kīn̄ = − n

Y
Yīn̄ +

n

Y 2
(ȲYin̄+ Yn̄Yī + YiȲn̄) − 2n

Y 3
YiȲYn̄ . (A.4)

Finally, the Riemann tensor for the Kähler manifold is

Rīmn̄ = Kīmn̄ − Kimr̄g
r̄sKs̄n̄

=
1

n
(gī gmn̄ + gin̄ gm̄) −

n

Y
Yīmn̄ − n

Y 2

(

nYims̄g
s̄rYr̄n̄ +

1

θ − 1
YimȲn̄

)

+
n2

Y 3
(YimȲn̄rg

rs̄Ys̄ + Ȳn̄Yims̄g
s̄rYr). (A.5)

A.2 Special Kähler manifolds

We now consider the case of special Kähler geometries, for which the Kähler potential

K = − log Y itself admits a holomorphic prepotential f , in terms of which

Y = −2(f + f̄) + (fk + f̄k̄)(φ
k + φ̄k). (A.6)

The Riemann tensor simplifies substantially in this case. Indeed, one easily computes

Yi + Yı̄ = Nij(φ
j + φ̄̄) and Yī = Nij, where Nij = fij + f̄ı̄̄. Combining these two

expressions, one gets then Y ī(Yj + Ȳ) = (φi + φ̄ı̄). Finally, combining this result with

Yij = fijk(φ
k + φ̄k̄) and Yijk̄ = fijk, one obtains the relation Yijs̄Y

s̄r(Yr + Yr̄) = Yip. Using

these relations, one finally finds [46]

Rīmn̄ = gī gmn̄ + gin̄ gm̄ −
1

Y 2
fimrg

rs̄f̄s̄̄n̄. (A.7)
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R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string

compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327];

B. Wecht, Lectures on nongeometric flux compactifications, Class. and Quant. Grav. 24

(2007) S773 [arXiv:0708.3984].

[29] R. Brustein and S.P. de Alwis, Moduli potentials in string compactifications with fluxes:

mapping the discretuum, Phys. Rev. D 69 (2004) 126006 [hep-th/0402088].

[30] M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in

supergravity, JHEP 05 (2006) 015 [hep-th/0602246].

[31] M. Gomez-Reino and C.A. Scrucca, Constraints for the existence of flat and stable

non-supersymmetric vacua in supergravity, JHEP 09 (2006) 008 [hep-th/0606273].

[32] M. Gomez-Reino and C.A. Scrucca, Metastable supergravity vacua with F and D

supersymmetry breaking, JHEP 08 (2007) 091 [arXiv:0706.2785].

[33] F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005)

061 [hep-th/0411183].

[34] J. Gray, Y.-H. He and A. Lukas, Algorithmic algebraic geometry and flux vacua, JHEP 09

(2006) 031 [hep-th/0606122];

J. Gray, Y.-H. He, A. Ilderton and A. Lukas, A new method for finding vacua in string

phenomenology, JHEP 07 (2007) 023 [hep-th/0703249].

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB633%2C125
http://arxiv.org/abs/hep-th/0506181
http://jhep.sissa.it/stdsearch?paper=04%282006%29021
http://arxiv.org/abs/hep-th/0602239
http://jhep.sissa.it/stdsearch?paper=10%282006%29079
http://arxiv.org/abs/hep-th/0602253
http://jhep.sissa.it/stdsearch?paper=03%282007%29102
http://arxiv.org/abs/hep-th/0611332
http://jhep.sissa.it/stdsearch?paper=05%282007%29100
http://arxiv.org/abs/hep-th/0701154
http://jhep.sissa.it/stdsearch?paper=08%282007%29080
http://arxiv.org/abs/0707.0497
http://jhep.sissa.it/stdsearch?paper=09%282007%29125
http://arxiv.org/abs/0707.4583
http://jhep.sissa.it/stdsearch?paper=04%282008%29015
http://arxiv.org/abs/0711.4934
http://arxiv.org/abs/0712.1196
http://arxiv.org/abs/0712.3460
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://arxiv.org/abs/hep-th/0509003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C79%2C733
http://arxiv.org/abs/hep-th/0610102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C445%2C1
http://arxiv.org/abs/hep-th/0610327
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2CS773
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2CS773
http://arxiv.org/abs/0708.3984
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C126006
http://arxiv.org/abs/hep-th/0402088
http://jhep.sissa.it/stdsearch?paper=05%282006%29015
http://arxiv.org/abs/hep-th/0602246
http://jhep.sissa.it/stdsearch?paper=09%282006%29008
http://arxiv.org/abs/hep-th/0606273
http://jhep.sissa.it/stdsearch?paper=08%282007%29091
http://arxiv.org/abs/0706.2785
http://jhep.sissa.it/stdsearch?paper=03%282005%29061
http://jhep.sissa.it/stdsearch?paper=03%282005%29061
http://arxiv.org/abs/hep-th/0411183
http://jhep.sissa.it/stdsearch?paper=09%282006%29031
http://jhep.sissa.it/stdsearch?paper=09%282006%29031
http://arxiv.org/abs/hep-th/0606122
http://jhep.sissa.it/stdsearch?paper=07%282007%29023
http://arxiv.org/abs/hep-th/0703249


J
H
E
P
0
6
(
2
0
0
8
)
0
5
7

[35] I. Ben-Dayan, R. Brustein and S.P. de Alwis, Models of modular inflation and their

phenomenological consequences, arXiv:0802.3160.

[36] O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys.

Lett. B 636 (2006) 126 [hep-th/0603047].

[37] R. Kallosh and A. Linde, O’KKLT, JHEP 02 (2007) 002 [hep-th/0611183];

H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Moduli stabilization, F-term uplifting and

soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019 [hep-th/0611024].

[38] E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically

generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297].

[39] M.A. Luty and R. Sundrum, Radius stabilization and anomaly-mediated supersymmetry

breaking, Phys. Rev. D 62 (2000) 035008 [hep-th/9910202].

[40] E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological

constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61.

[41] A. Strominger, Yukawa couplings in superstring compactification, Phys. Rev. Lett. 55 (1985)

2547.

[42] L.J. Dixon, V. Kaplunovsky and J. Louis, On effective field theories describing (2, 2) vacua of

the heterotic string, Nucl. Phys. B 329 (1990) 27.

[43] P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355

(1991) 455.

[44] T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys.

B 699 (2004) 387 [hep-th/0403067].

[45] B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2

supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89.

[46] E. Cremmer, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, B. de Wit and

L. Girardello, Vector multiplets coupled to N = 2 supergravity: superhiggs effect, flat

potentials and geometric structure, Nucl. Phys. B 250 (1985) 385.

[47] A. Klemm, W. Lerche and P. Mayr, K3 Fibrations and heterotic type-II string duality, Phys.

Lett. B 357 (1995) 313 [hep-th/9506112].

[48] P.S. Aspinwall and J. Louis, On the ubiquity of K3 fibrations in string duality, Phys. Lett. B

369 (1996) 233 [hep-th/9510234].

[49] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as

an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21.

[50] T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl.

Phys. B 718 (2005) 153 [hep-th/0412277].

[51] T.W. Grimm, The effective action of type-II Calabi-Yau orientifolds, Fortschr. Phys. 53

(2005) 1179 [hep-th/0507153].

[52] R. D’Auria, S. Ferrara and M. Trigiante, C-map, very special quaternionic geometry and dual

Kähler spaces, Phys. Lett. B 587 (2004) 138 [hep-th/0401161].

[53] R. D’Auria, S. Ferrara and M. Trigiante, Homogeneous special manifolds, orientifolds and

solvable coordinates, Nucl. Phys. B 693 (2004) 261 [hep-th/0403204].

– 29 –

http://arxiv.org/abs/0802.3160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB636%2C126
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB636%2C126
http://arxiv.org/abs/hep-th/0603047
http://jhep.sissa.it/stdsearch?paper=02%282007%29002
http://arxiv.org/abs/hep-th/0611183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C025019
http://arxiv.org/abs/hep-th/0611024
http://jhep.sissa.it/stdsearch?paper=02%282007%29028
http://arxiv.org/abs/hep-th/0610297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C035008
http://arxiv.org/abs/hep-th/9910202
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB133%2C61
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2547
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2547
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB329%2C27
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB355%2C455
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB355%2C455
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C387
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C387
http://arxiv.org/abs/hep-th/0403067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB245%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C385
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C313
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C313
http://arxiv.org/abs/hep-th/9506112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB369%2C233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB369%2C233
http://arxiv.org/abs/hep-th/9510234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB359%2C21
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C153
http://arxiv.org/abs/hep-th/0412277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C53%2C1179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C53%2C1179
http://arxiv.org/abs/hep-th/0507153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB587%2C138
http://arxiv.org/abs/hep-th/0401161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB693%2C261
http://arxiv.org/abs/hep-th/0403204


J
H
E
P
0
6
(
2
0
0
8
)
0
5
7

[54] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′-corrections to

flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254].

[55] L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, Constraints on

modular inflation in supergravity and string theory, arXiv:0805.3290.

– 30 –

http://jhep.sissa.it/stdsearch?paper=06%282002%29060
http://arxiv.org/abs/hep-th/0204254
http://arxiv.org/abs/0805.3290

