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Abstract

This paper is due to the question whether with the constraint from the Bethe ansatz solution
on the ASEP boundary parameters the matrix product ansazt fails to produce the stationary
state. We discuss applicability of the matrix product ansatz from the point of view of the tridi-
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the Bethe ansatz integrability constraint is the defining condition for a finite dimensional rep-
resentation of the boundary algebra when the system reaches a steady state satisfying detailed
balance.
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1 Introduction

The asymmetric simple exclusion process (ASEP) has become a paradigm in nonequilibrium
physics [1, 2] due to its simplicity, rich behaviour and wide range of applicability. It is an exactly
solvable model of an open many-particle stochastic system interacting with hard core exclusion.
Introduced originally as a simplified model of one dimensional transport for phenomena like
hopping conductivity [3] and kinetics of biopolymerization [4], it has found applications from
traffic flow [5] to interface growth [6], shock formation [7], hydrodynamic systems obeying the
noisy Burger equation, problems of sequence alignment in biology [8]. At large time the ASEP
exhibits relaxation to a steady state, and even after the relaxation it has a nonvanishing current.
An intriguing feature is the occurrence of boundary induced phase transitions [9] and the fact
that the stationary bulk properties strongly depend on the boundary rates.

The ASEP dynamics is governed by a master equation for the probability distribution
P (si, t) of a stochastic variable si = 0, 1, at a site i = 1, 2, ....L of a linear chain. In the set
of occupation numbers (s1, s2, ..., sL) specifying a configuration of the system si = 0 if a site i
is empty, or si = 1 if the site i is occupied. On successive sites particles hop with probability
g01dt to the left, and g10dt to the right. The event of hopping occurs if out of two adjacent
sites one is a vacancy and the other is occupied by a particle. The symmetric simple exclusion
process is the lattice gas model of particles hopping between nearest-neighbour sites with a
constant rate g01 = g10 = g. The asymmetric simple exclusion process with hopping in a
preferred direction is the driven diffusive lattice gas of particles moving under the action of an
external field. The process is totally asymmetric if all jumps occur in one direction only, and
partially asymmetric if there is a different non-zero probability of both left and right hopping.
The number of particles in the bulk is conserved and this is the case of periodic boundary
conditions. In the case of open systems, the lattice gas is coupled to external reservoirs of
particles of fixed density and additional processes can take place at the boundaries. Namely,
at the left boundary i = 1 a particle can be added with probability αdt and removed with
probability γdt, and at the right boundary i = L it can be removed with probability βdt and
added with probability δdt. Without loss of generality we can choose the right probability rate
g10 = 1 and the left probability rate g01 = q. The totally asymmetric process corresponds to
q = 0 and the symmetric - to q = 1.

The master equation has the form

dP (s, t)

dt
=

∑

s′

Γ(s, s′)P (s′, t) (1)

where the transition rate matrix (which in the general case of n-species process is an n2 × n2

matrix) has the property that its columns sum up to zero due to probability conservation. The
RHS of eq.(1) reads explicitly

∑

s′ 6=s

Γ(s′ → s)P (s′, t) −
∑

s′ 6=s

Γ(s → s′)P (s′, t) (2)

where the first term gives contributions of all possible hops (transitions) into configuration
{s} from other configurations {s′} while the second term accounts for the transitions out of
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configuration {s} into other configurations {s′}. In a steady state these gain and loss terms are
equal providing thus a balance condition and causing the time derivative to vanish.

The master equation can be mapped to a Schroedinger equation in imaginary time dP (t)
dt

=
−HP (t) for a quantum Hamiltonian with nearest-neighbour interaction in the bulk and single-
site boundary terms. The ground state of the Hamiltonian, in general non-Hermitian, corre-
sponds to the steady state of the stochastic dynamics where all probabilities are stationary.
Through the mapping the equivalence to the integrable spin 1/2 XXZ quantum spin chain by
means of the similarity transformation Γ = −qU−1

µ HXXZUµ(see [10] for the explicit form of
Uµ); HXXZ is the Hamiltonian of the Uq(su(2)) invariant quantum spin chain with anisotropy
∆q and with added non diagonal boundary terms B1 and BL.

HXXZ = HQGr
XXZ + B1 + BL (3)

HQGr
XXZ = −1/2

L−1
∑

i=1

(σx
i σx

i+1 + σy
i σ

y
i+1 + ∆qσ

z
i σ

z
i+1 + h(σz

i+1 − σz
i ) + ∆q) (4)

with

∆q = −1

2
(q + q−1), h =

1

2
(q − q−1) (5)

The transition rates of the ASEP are related to the boundary terms in the following way (µ is
a free parameter, irrelevant for the spectrum)

B1 =
1

2q

(

α + γ + (α − γ)σz
1 − 2αµσ−

1 − 2γµ−1σ+
1

)

(6)

BL =

(

β + δ − (β − δ)σz
L − 2δµqL−1σ−

L − 2βµ−1q−L+1σ+
L

)

2q

The mapping allowed for the derivation of exact results for the ASEP using Matrix Product
Approach (MPA) and Bethe Ansatz (BA).

Bethe Ansatz solution was recently achieved [11, 12] for the XXZ chain Hamiltonian and
subsequently for the ASEP [13] provided the model parameters satisfy a condition which in
terms of the ASEP notations reads

(q
1

2
(L+2k) − 1)(αβ − q

1

2
(L−2k−2)γδ) = 0 (7)

with |k| ≤ L/2. Given k, the first factor zero in (1) assumes q to be a root of unity which is
unacceptable for the ASEP. The second factor zero imposes a relation between the bulk and
the boundary parameters and, as pointed out by de Gier and Essler, it is believed [10, 14, 15]
that with this constraint the MPA fails to produce the stationary state. Quite remarkably,
however, for generic q, one can satisfy the constraint [13] by choosing k to be k = −L/2, which,
as commented in [14] implies additional symmetries for the ASEP.

Emphasizing the dependence of the steady state bulk behaviour on the boundary rates we
consider a tridiagonal boundary algebra which reveals hidden symmetries of the ASEP. We
discuss the consequences of the algebraic properties on the applicability of the MPA in relation
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to the BA integrability condition. We show that the choice of k for which (7) is automatically
satisfied for arbitrary values of the parameters is intimately related to the boundary algebra of
the ASEP within the matrix ansatz.

2 Matrix Product State Ansatz

The idea is that the steady state properties of the ASEP can be obtained exactly in terms
of matrices obeying a quadratic algebra [7, 16]. For a given configuration (s1, s2, ..., sL) the

stationary probability is defined by the expectation value P (s) =
〈w|Ds1Ds2 ...DsL

|v〉

ZL
, where Dsi

=

D1 if a site i = 1, 2, ..., L is occupied and Dsi
= D0 if a site i is empty and ZL = 〈w|(D0+D1)

L|v〉
is the normalization factor to the stationary probability distribution. The operators Di, i = 0, 1
satisfy the quadratic (bulk) algebra

D1D0 − qD0D1 = x1D0 − D1x0, x0 + x1 = 0 (8)

with boundary conditions of the form

(βD1 − δD0)|v〉 = x0|v〉 (9)

〈w|(αD0 − γD1) = −〈w|x1.

and 〈w|v〉 6= 0. We stress the one parameter dependence of the MPA due to x0 = −x1 = ζ with
0 < ζ < ∞. In most known applications it is fixed and restricted to the choice ζ = 1. In our
opinion it is important to keep this parameter since the relation x0 + x1 = 0 implies an abelian
symmetry with a conserved quantity D0+D1. As readily seen from D0 → D0+x0, D1 → D1+x1

it follows D0 + D1 → D0 + D1.

The MPA is an efficient method to evaluate exactly all the relevant physical quantities such
as the mean density at a site i,

〈si〉 =
〈w|(D0 + D1)

i−1D1(D0 + D1)
L−i|v〉

ZL

(10)

the two-point correlation function

〈sisj〉 =
〈w|(D0 + D1)

i−1D1(D0 + D1)
j−i−1D1(D0 + D1)

L−j|v〉
ZL

(11)

and higher the correlation functions, the current J through a bond between sites i and i + 1
which has a very simple form J = ζ ZL−1

ZL
.

Exact results for the ASEP with open boundaries were obtained within the MPA through
the relation of the stationary state to q-Hermite [18] and Al-Salam-Chihara polynomials [19]
in the case γ = δ = 0 and to the Askey-Wilson polynomials [20] in the general case. Finite
dimensional representations [10, 17] have been considered too and they simplify calculations.

3



Due to a constraint on the model parameters they define an invariant subspace of the infinite
matrices and give exact results only on some special curves of the phase diagram.

The efficiency of the matrix product ansatz is that the algebraic relations (8) provide solv-
able recurrences for the current and the correlation functions. For the ASEP such recurrence
relations were already obtained in earlier works, however they were not readily generalized to
other models. The MPA was readily generalized to many-species models and to dynamical
MPA [21]. One conceptually important question remained open and it is now raised by the
Bethe ansatz integrability constraint, namely the conditions under which the MPA is success-
fully applied. In particular, it important to have a clear interpretation of the second factor in
the Bethe Ansatz constraint. The crucial point in shedding light on this is, in our opinion, to
understand the importance of the parameter ζ behind x0 + x1 = 0 in eqs. (8) and (9). As we
pointed out this parameter has been fixed to ζ = 1. Then the boundary conditions become

(βD1 − δD0)|v〉 = |v〉 (12)

〈w|(αD0 − γD1) = 〈w|

and with the simple argument given in Section IV of [10] it is very easy to see that for

αβ = γδ (13)

the DEHP algebra as given in (8) (with x0 = −x1 = 1) and (10) does not have any repre-
sentations (if q 6= 1). This conclusion is only true if x0 = −x1 = ζ, for fixed nonzero ζ. As
readily seen, if the RHS of eqs.(9) vanish, there exists a solution for the algebraic relations
given by 〈w|D0|v〉 6= 0 and 〈w|D1|v〉 6= 0. From the point of the boundary algebra this solution
corresponds to the finitedimensional representation of the latter. We will discuss it in detail in
a later section.

3 Boundary Askey-Wilson Symmetry

In the general case of incoming and outgoing particles at both boundaries with all boundary
parameters nonzero there are four operators βD1,−δD0,−γD1, αD0 and one needs an addition
rule to form two linear independent boundary operators acting on the dual boundary vectors.
Led by the equivalence of the ASEP to the XXZ quantum spin chain we argue that a solution
to the boundary problem can be obtained by using the bulk Uq(su(2)) (0 < q < 1) symmetry
with

[N,A±] = ±A± [A+, A−] =
qN − q−N

q1/2 − q−1/2
(14)

with a central element

Q = A+A− − qN−1/2 − q−N+1/2

(q1/2 − q−1/2)2
(15)

The representations, labelled by the values of the Casimir Q(κ) = qκ+q1−κ

q−1/2(1−q)2
for a fixed real

parameter κ (κ < 0), are finite dimensional and in a basis |n, κ〉 (where |0, κ〉 is the vacuum
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with r0 = 0) are given by

N |n, κ〉 = (κ + n)|n, κ〉, (16)

A−|n, κ〉 = rn|n − 1, κ〉,
A+|n, κ〉 = rn+1|n + 1, κ〉

where r2
n = (1−qn)q1/2(qκ−q1−n−κ)

(1−q)2
. The dimension l+1 of the spin j = |κ|-representation is defined

by the condition
qκ − q−l−κ = 0 (17)

for some n = l. As known the Uq(su(2)) can act on a lattice of L sites by means of the
coproduct; for the XXZ spin chain the configuration space (C2)⊗L is the tensor product of
L two-dimensional representations which is a highly reducible representation of dimension 2L.
The highest weight subrepresentation is the spin 2j = L representation of dimension L + 1.
With the identification l ≡ L eq.(17) becomes

qL+2κ − 1 = 0 (18)

which is the same condition on κ ≡ k as the first factor in (7). Therefore the first factor in
(7) can be interpreted as the constraint reflecting the Uq(su(2)) finitedimensional spin 2j = L
representation of dimension L + 1 with j ≡ |k| ≡ |κ|.

Given the Uq(su(2)) generators A± and N we can present the boundary operators in the
form

βD1 − δD0 = − x1β√
1 − q

qN/2A+ − x0δ√
1 − q

A−qN/2 (19)

− x1βq1/2 + x0δ

1 − q
qN − x1β + x0δ

1 − q

αD0 − γD1 = +
x0α√
1 − q

q−N/2A+ +
x1γ√
1 − q

A−q−N/2

+
x0αq−1/2 + x1γ

1 − q
q−N +

x0α + x1γ

1 − q

Separating the shift parts from the boundary operators and denoting the corresponding rest
parts by A and A∗ we can prove that the operators A and A∗ defined by

A = βD1 − δD0 +
x1β + x0δ

1 − q
(20)

A∗ = αD0 − γD1 −
x0α + x1γ

1 − q

and their q-commutator [A,A∗]q = q1/2AA∗ − q−1/2A∗A form a closed linear algebra

[[A,A∗]q, A]q = −ρA∗ − ωA − η (21)

[A∗, [A,A∗]q]q = −ρ∗A − ωA∗ − η∗
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where the operator-valued structure constants depend on q, α, β, γ, δ and the Uq(su(2)) Casimir
Q. In particular

−ρ = x0x1βδq−1(q1/2 + q−1/2)2, (22)

−ρ∗ = x0x1αγq−1(q1/2 + q−1/2)2

−ω = (x1βq1/2 + x0δ)(x1γ + x0α) − (x2
1βγ + x2

0αδ)(q1/2 − q−1/2)Q (23)

η = q1/2(q1/2 + q−1/2)

(

x0x1βδ(x1γ + x0α)Q − (x1βq1/2 + x0δ)(x
2
1βγ + x2

0αδ)

q1/2 − q−1/2

)

η∗ = q1/2(q1/2 + q−1/2)

(

x0x1αγ(x1βq1/2 + x0δ)Q +
(x0α + x1γ)(x2

0αδ + x2
1βγ)

q1/2 − q−1/2

)

Relations (21) are the well known Askey-Wilson (AW) relations for the shifted boundary opera-
tors A,A∗. The algebra (21) was first considered in the works of Zhedanov [22, 23] and recently
discussed in a more general framework of a tridiagonal algebra [24, 25]. This is an associative
algebra with a unit generated by a (tridiagonal) pair of operators A,A∗, determined up to an
affine transformation A → tA + c, A∗ → t∗A∗ + c∗ where t, t∗, c, c∗ are some scalars. Taking the
commutators of the first and second lines of (21) with A and A∗ respectively one finds

[A[A[A,A∗]q]q−1 ] = ρA, (24)

[A∗[A∗[A∗, A]q]q−1 ] = ρ∗A∗

which are the deformed version of the Dolan-Grady relations [26].

The AW algebra possesses some important properties that allow to obtain its ladder repre-
sentations, spectra, overlap functions [22, 25, 27]. Namely, there exists a basis (of orthogonal
polynomials) fr according to which the operator A is diagonal and the operator A∗ is tridiag-
onal. There exists a dual basis fp in which the operator A∗ is diagonal and the operator A
is tridiagonal. The overlap function of the two basis 〈s|r〉 = 〈f ∗

s |fr〉 is expressed in terms of
the Askey-Wilson polynomials. Let pn = pn(x; a, b, c, d|q) denote the nth AW polynomial [28]
depending on four parameters a, b, c, d,

pn =4 Φ3

(

q−n, abcdqn−1, ay, ay−1

ab, ac, ad
|q; q

)

(25)

with p0 = 1, x = y + y−1, 0 < q < 1 and a three term recurrence relation

xpn = bnpn+1 + anpn + cnpn−1, p−1 = 0 (26)

The explicit form of the matrix elements reads

an = a + a−1 − bn − cn (27)

bn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
(28)
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cn =
a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
(29)

After rescaling A → 1
β
A, A∗ → 1

α
A∗ we have found the explicit form of the infinite dimensional

representation (and the dual one) for the boundary operators. Let A denote the matrix sat-
isfying (26) in the basis (p0, p1, p2, ...). Result: There exist a representation π in the space of
Laurent polynomials with basis (p0, p1, p2, ...)

t with respect to which π(D1 − δ
β
D0) is diagonal

with diagonal eigenvalues

λn =
1

1 − q

(

bq−n + dqn−1
)

+
1

1 − q
(1 + bd) (30)

and π(D0 − γ
α
D1) is tridiagonal

π(D0 −
γ

α
D1) =

1

1 − q
bAt +

1

1 − q
(1 + ac) (31)

The dual representation π∗ has a basis p0, p1, p2, ... with respect to which π∗(D0 − γ
α
D1) is

diagonal with eigenvalues

λ∗
n =

1

1 − q

(

aq−n + cqn
)

+
1

1 − q
(1 + ac) (32)

and π∗(D1 − δ
β
D0) is tridiagonal

π∗(D1 −
δ

β
D0) =

1

1 − q
aA +

1

1 − q
(1 + bd) (33)

The choice
〈w| = h

−1/2
0 (p0, 0, 0, ...), |v〉 = h

−1/2
0 (p0, 0, 0, ...)

t (34)

(where h0 is a normalization) as eigenvectors of the diagonal matrices π∗(D0 − γ
α
D1) and

π(D1 − δ
β
D0) respectively yields a solution to the boundary equations which uniquely relates

a, b, c, d to α, β, γ, δ. Namely a = κ∗
+(α, γ), b = κ+(β, δ), c = κ∗

−(α, γ), d = κ−(β, δ) where

κ
(∗)
± (ν, τ) =

−(ν − τ − (1 − q)) ±
√

(ν − τ − (1 − q))2 + 4ντ

2ν
. (35)

It is important to emphasize that these are the functions of the parameters that define the
phase diagram of the model. In previous applications they have been taken for granted, here
they follow from the properties of the boundary algebra representations.

It can be further shown that the transfer matrix D0+D1 and each of the boundary operators
generate isomorphic AW algebras [29]. In the tridiagonal representation the transfer matrix
D0 +D1 satisfies the three-term recurrence relation of the AW polynomials which was explored
in [20] for the solution of the ASEP in the stationary state. The exact calculation of all the
physical quantities, such as the current, correlation functions etc, in terms of the Askey-Wilson
polynomials was achieved without any reference to the AW algebra. The ultimate relation of
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the exact solution in the stationary state to the AW polynomials was possible due to the AW
boundary hidden symmetry of the ASEP with most general boundary conditions.

The condition for the representation to be finite dimensional is bn = 0 for some n = n0 +nf ,
where nf = 1, 2, ... is the dimension of the representation. From the explicit form of bn it follows
that the representation is finite dimensional if any of the factors in the numerator in (28) is
zero, in particular, with our normalization abcd = γδ

αβ
, if the condition holds

αβ = qnf−1γδ (36)

Since we are using Uq(su(2)) besides the constraint (36) there is one more constraint (given by
eq.(18)) which is in fact the first factor in (7). We thus obtain the condition for a finitedimen-
sional representation of the boundary Askey-Wilson algebra

(qL+2κ − 1)(αβ − qnf−1γδ) = 0 (37)

Comparison of eq. (36) with the second factor in (7) (with the value k = −L/2 as following
from the first factor) suggests that the latter defines a finite dimensional representation of
the MPA boundary operators of dimension nf = L. As known [13, 30] the condition (7)
is a reflection of the non-semisimplicity of an underlying Temperley Lieb algebra with two
additional boundary generators ( explored in the study of the XXZ chain with nondiagonal
boundary terms). We thus obtain that the condition for finitedimensional representation of
the Askey-Wilson boundary algebra constructed as the linear covariance for Uq(su(2)) using
the L + 1-dimensional representation of the latter coincides with the condition reflecting the
non-semisimplicity of the two boundary Temperley-Lieb algebra.

Finite dimensional representations of the ASEP boundary algebra imply finite dimen-
sional matrices D0 and D1. The examples considered in [17] correspond to the condition
ab = κ∗

+κ+ = q1−L, which defines an L-dimensional representation of the boundary algebra
according to the first factor in the nominator of bn. A special case of the tridiagonal algebra
with c = d = 0 is the open system with only incoming (outgoing) particles at the left (right)
boundary when the (shifted) diagonal elements are of the form q±n and the tridiagonal oper-
ators satisfy the recurrence relation for either q-Hermite or Al-Salam-Chihara polynomials. A
nontrivial special case of an open system with four boundary parameters related to the rep-
resentations above with b = 0 and c = 0, was considered in [15] for the MPA solution of the
weakly ASEP. The constraint αβ = qL−1γδ was found there to describe the detailed balance
when the steady state is a Bernoulli measure at density, the same for both reservoirs.

4 Detailed Balance and Matrix Product Ansatz

Detailed balance (DB) means that the probability P ({s}) for a transition from a configuration
{s} to another configuration {s′} is equal to the probability of the reverse transition. Thus for
the event of hopping between site i and i + 1 one has

P (s1, ..., 0, 1, ..., sL) = q−1P (s1, ..., 1, 0, ..., sL), (38)
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for an event at the left boundary -

P (1, s2, ..., sL) =
α

γ
P (0, s2, ..., sL) (39)

and correspondingly at the right boundary

P (s1, ..., sL−1, 1) =
δ

β
P (s1, ..., sL−1, 0) (40)

Starting from a given configuration and using eqs. (38) and (39) one can always calculate
the weights of all configurations by removing particles at the left boundary and the consis-
tency with eq.(40) [15] requires αβ = qL−1γδ which is the DB condition. As can be readily
verified the above detailed balance relations with P expressed as matrix elements of the type
〈w|Ds1

Ds2
...DsL

|v〉 are consistent with the limit x0 = −x1 = 0 of the MPA defining relations (8)
and (9). The presence of the parameter dependent linear terms in the bulk algebra is due to the
boundary processes and these quadratic-linear algebraic relations provide recursive expressions
for matrix elements of the steady weights, the current, the correlation functions. The quadratic
algebra induces a reordering property and an element of length L can be brought in a linear
combination of elements of length L − 1 with positive coefficients. Hence one can compute
all matrix elements of length L if 〈w|Dk

0D
L−k
1 |v〉, k = 0, 1, ..., L, and all (L − 1)- elements are

known. From the boundary conditions (9) and after reordering one has

β〈w|Dk
0D

L−k
1 |v〉 − qL−k−1δ〈w|Dk+1

0 DL−k−1
1 |v〉 = x0PL−1

−qkγ〈w|Dk
0D

L−k
1 |v〉 + α〈w|Dk+1

0 DL−k−1
1 |v〉 = −x1P

′
L−1

where PL−1 and P ′
L−1 are positive linear combinations of matrix elements of length L − 1. The

conclusion is straightforward: If αβ − qL−1γδ 6= 0, then the recursions are consistent. If

αβ − qL−1γδ = 0 (41)

then in order that a matrix element of length L exists, the zero determinant

x0αPL−1 − x1q
L−k−1δP ′

L−1 = 0 (42)

implies
x0 = −x1 = 0 (43)

All matrix elements of length L − k, with k = 0, 1, ..., L − 1 are nonzero if αβ − qL−k−1γδ = 0
for some α, β, γ, δ. This has the consequence that the current

J = ζ
〈w|(D0 + D1)

i−1(D1D0 − qD0D1)(D0 + D1)
L−i−1|v〉

ZL

(44)

vanishes and the probabilities satisfy the detailed balance condition. Thus with the constraint
on the boundary parameters even though the boundary processes are present they become
irrelevant and the nonequilibrium behaviour of the system is no longer maintained. The MPA
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in the limit x0 = x1 = 0 produces a stationary state whose probability weights satisfy detailed
balance.

One may wonder that the boundary Askey-Wilson algebra has finite dimensional represen-
tations corresponding to the constraint αβ − qL−1γδ = 0 for nonzero x0 = −x1 = ζ unlike the
quadratic MPA algebra for which the constraint is consistent with x0 = −x1 = 0. The reason
for this lies in the fact that the representations of the quadratic algebra are contained among
the representations of the tridiagonal algebra whose representation theory is richer. (see [27]
for details).

The boundary operators of the detailed balance case satisfy an Askey-Wilson algebra with
η = η∗ = 0 and ρ = ρ∗, ω ≃ Q. Without writing the explicit form of the representation,
related now to q-Hahn polynomials [31], we note that in the limit x0 = −x1 = 0 from the

boundary equations it follows b = d and a = c, with b =
√

−β
δ

and a =
√

− γ
α
. Inserting it

in the condition abcd = a2b2 = q1−L we obtain the DB condition. Formally a2b2 = q1−L for
some parameters a′ = −a2, b′ = −b2, with L = 1, resembles the limit q → 1 and we recover the
detailed balance case at equal density ρa′ = ρb′ , with ρa′ = α

α+γ
, ρb′ = β

β+δ
[32]. The system will

be in a product measure state with uniform density and zero current when a′b′ = 1, valid for
the one dimensional representation. We can identify the one dimensional representation of the
boundary operators with 〈w|D1|v〉 and 〈w|D0|v〉, which are non zero in the limit x0 = −x1 = 0.
A non vanishing matrix element of length L can be formed as the product of single-site matrix
elements 〈w|D1|v〉L−k and 〈w|D0|v〉k. Given the detailed balance condition αβ = qL−1γδ, we
can always find corresponding α′β′ = γ′δ′ which define the one dimensional representation of
the boundary algebra and hence determine the steady state as a Bernoulli product measure at
equal density for both reservoirs.

5 Conclusion

The MPA defining algebraic relations(8) and boundary conditions (9) provide solvable recur-
sions for the stationary state, the current, the correlation functions of an open L-site nonequi-
librium system for all values of the parameters in the range 0 ≤ α, β, γ, δ,≤ 1, αγ 6= 0, βδ 6= 0,
0 < q < 1 and x0 = −x1 = ζ > 0. The recursions remain valid with final dimensional matrices of
dimension L determined by (one of) the conditions κ+(α, γ)κ+(β, δ) = κ+(α, γ)κ−(β, δ) = q1−L,
which also define L dimensional representations of the boundary AW algebra. Exceptional sub-
range of parameters is given by the constraints αβ = qL−1γδ and ζ = 0 when the MPA produces
a stationary state satisfying detailed balance.

In the Bethe ansatz condition (7) the first factor zero with k = −L/2 defines a representa-
tion of dimension L+1 of the bulk Uq(su(2)) symmetry. The second factor zero defines a finite
L-dimensional representation of the boundary AW algebra. The BA condition relates a spin
|k| = L/2 representation of the Uq(su(2)) symmetry to a finite L representation of the boundary
algebra. The Bethe integrability condition on the boundary parameters corresponds to finite

10



dimensional representations of the MPA matrices which constrain the parameters of the open
system to a range when the system will eventually reach a steady state satisfying detailed bal-
ance. For arbitrary values of the ASEP parameters the Bethe ansatz condition is automatically
satisfied by the spin |k| = L/2 representation of the bulk Uq(su(2)). The symmetry behind this
property is the boundary algebra, which assures the exact solvability and allows for employing
Bethe ansatz or applying matrix product ansatz with no restriction on the physics of the system.
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