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Abstract 

 
Cell rolling is a physiological phenomenon, which allows leukocytes to attach to 

activated vascular endothelium and reach sites of inflammation. A novel approach to 

model cell rolling is presented in this thesis. The model incorporates all the aspects 

known to be important to rolling in a semi-analytical framework making it 

computationally efficient. Bond kinetics have been used to define microvillus attachment 

probability which is in turn used to find out the net force on the cell. Deformability is also 

taken into account by an empirical relation which allows shear modulation of cell-surface 

contact area. The model showed excellent agreement with experimental results over a 

wide range of shear stresses. Using the model, the effects of cell deformability and 

microvillus structure have been studied and its implications discussed. The model was 

also used to predict rolling of microspheres, which showed reasonable agreement with 

experiments. Finally, the contribution of different features towards stabilization of rolling 

was elucidated by simulating different hypothetical cases with contributions from 

different cellular features.   
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Chapter 1. Introduction 

Leukocytes or white blood cells are a part of the immune system responsible for 

fighting against pathogens. Recruitment of leukocytes from blood and homing to the site 

of infection is a challenging task for which nature has evolved a sophisticated 

mechanism. Inflammation sites release cytokines that activate the endothelial cells and 

lead to expression of glycoproteins known as selectins and other signaling molecules on 

their surface (3, 4). Leukocytes in resting state posses ligands for selectins on their 

surface enabling them to attach to activated endothelium (5-7). Selectin mediated 

adhesive bonds have high formation  rate and  breakage rate which enables transient 

bonds to form between the leukocytes and the endothelium (8). Bonds form at the leading 

edge of the cell and break at the trailing edge resulting in the cell to ‘roll’ forward. 

Selectin mediated rolling is followed by cytokine activation of leukocytes, firm adhesion 

through integrins and finally extravasation. Figure 1 illustrates the different stages of the 

inflammatory cascade.   

Cell rolling has also been implicated in the trafficking of other cell types such as 

lymphocytes, platelets, hematopoietic and mesenchymal stem and progenitor cells, and 

metastatic cancer cells (6, 9, 10). Cell rolling is thus important for understanding 

physiological processes including inflammatory response, homing of stem cells, and 

metastasis of cancer. Recently, cell rolling has been used as a method for separation of 

cells, and holds promise for therapeutic and diagnostic applications. (11, 12). A 

systematic study of cell rolling is thus important for understanding many physiological 

process and development of new separation technologies. 
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The complexity of cell rolling has been revealed through in vivo and in vitro experiments 

and a number of remarkable features have become known. Binding kinetics of receptors 

and sensitivity to force, mechanics of microvilli and the cell, and receptor clustering have 

evolved specialized properties to ensure very robust cell rolling over a range of shear 

stresses (see figure 2). However, several aspects of cell rolling are not completely 

understood: For example, What role do cellular features like deformability play in cell 

rolling? what are the effects of microvillus ? and importantly, what is the mechanism for 

stabilization of rolling at high shear rates? Rolling behavior has been mimicked in vitro 

using cell-free systems (ligand-coated microspheres) to resolve some of these issues by 

separating the cellular contributions from molecular contributions to rolling (13). 

However, the strong coupling between various parameters such as ligand density and 

microvillus rheology that affect rolling makes it extremely difficult, if not impossible, to 

Figure 1. The inflammatory cascade illustrating capture, rolling, activation and 

extravasation of leukocytes from blood. Adapted from http://www.mpi-

muenster.mpg.de/nvz/wilde.shtml  
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study the effect of individual parameters experimentally without affecting the others. 

Figure 2. Rolling of neutrophils. (a) Neutrophils are covered with small 

protrusions called microvilli (shown in the electron micrograph). Microvilli tips 

are decorated with transmembrane receptors (like PSGL-1, L-Selectin) which 

can bind to complementary ligand molecules on the endothelium or an artificial 

substrate. Adapted from (1). (b) Neutrophils show extremely stable rolling on P-

selectin surface over a wide range of shear stress while ligand coated 

microspheres roll with high velocities only until moderate shear stress. Data 

reproduced from Yago.et.al (2)   
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Thus, models of cell rolling serve an important role in exploring the effects of different 

parameters on cell rolling. Coupled with experiments, models can give new insights into 

the biophysics of cell rolling. 

In this study, we present a semi-analytical model of cell rolling that includes all 

the biophysical features – deformability, force-dependent molecular interactions, 

microvillus dynamics and receptor clustering – that are implicated in cell rolling. Using a 

novel approach, the deterministic kinetics of bond formation have been integrated into a 

probabilistic framework governing the transport of surface-tethered microvilli. The model 

agrees very well with earlier experimental results both quantitatively and qualitatively. 

The model has been used to study some of the intriguing aspects of rolling like the effect 

of different cellular features on rolling and interesting trends have been discussed. Lastly, 

the model was applied to predict rolling behavior of ligand coupled microspheres where 

it showed agreement with experiments. 
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Chapter 2. Background 

Cell rolling was studied in vitro by Lawrance et.al (3) by rolling neutrophils on P-selectin 

incorporated lipid bilayers. They observed that cells could roll on selectin surfaces in a 

steady manner with stable velocities similar to that observed in vivo. Puri.et.al (14) 

compared the kinetics of rolling for different selectin molecules (P, E and L-selectin) and 

concluded that the interaction of P-selectin was strongest. P-selectin glycoprotein ligand-

1 (PSGL-1) was first identified by Moore (7) as a ligand for P-selectin present on 

neutrophils. It was also observed that 70% of PSGL-1 was located on the tips of 

microvilli on neutrophils. Similar observation showing clustering of L-selectin was also 

later made by Bruehl (15). In order to mimic cell rolling, Hammer and co-workers used 

ligand coated microspheres that rolled on selectin coated surfaces (16). Although the 

microspheres could attach and roll on the selectin surfaces, they could not show stable 

rolling as seen with cells and often rolled with higher velocities. Several aspects of 

neutrophils like ligand dimerization (17) and microvilli tethering (transition of 

microvillus rheology to viscous dominated regime) (18) were also been implicated in cell 

rolling. Although some of the aspects of cell rolling have been studied experimentally, 

proper investigations of different features have been largely left to modeling and 

simulation studies.  

A series of theoretical and computational models have been developed over the 

past two decades to explore cell rolling. Among the first models of cell rolling was the 

peeling dynamics model by Dembo et al (19). They considered only the trailing edge of 

the cell and modeled the cell membrane as inextensible and elastic and the bonds as 
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Hookean springs. Coupling the reaction kinetics with the bending mechanics of the 

membrane, constitutive relations governing membrane peeling were obtained. The model 

was used to predict transient and steady rolling characteristics of cells. The stochastic 

nature of cell rolling was first studied by Cozen-Roberts (20, 21) and later by Zhao (22) 

who modeled bond formation and breakage as probabilistic events, which was used to 

predict the instantaneous rolling velocity of the cell. These early models could simulate 

the stochastic motion of the cell seen through experiments (23), but they excluded many 

relevant biophysical interactions such as microvillus mechanics, receptor clustering, and 

cell deformability, thus limiting the usefulness of these models. Adhesive dynamics 

developed by Hammer and co-workers (24) was the first detailed model of cell rolling 

which modeled the reaction kinetics as probabilistic events and also accounted for van 

der Walls attraction, electrostatic interactions, gravitational forces, steric stabilization, 

microvillus structure and glycocalyx interaction. Adhesive Dynamics could recreate the 

transient ‘stop and go’ motion of the cells and calculate the mean and the variance in 

velocity. It was also used to study the effects of different parameters like bond properties, 

number of receptors on microvillus tips etc. Later versions of the model incorporated 

Bell’s equation for calculating force-dependent bond dissociation (8, 25), which revealed 

the sensitive dependence of the rolling velocity on bond kinetics. Using the same model, 

Caputo et al. (26) studied the effects of receptor clustering and microvillus rheology, and 

found that rolling was slowest at a microvillus viscosity close to that measured 

experimentally.  

Although AD is the most advanced model of cell rolling, it is computationally 

intensive, making it difficult to rapidly examine the effects of different parameters on cell 
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rolling. Moreover, Adhesive Dynamics models the cell as a rigid sphere neglecting its 

deformability which is known to play an important role in the rolling response (27). 

Semi-analytical models are more suited for parametric studies because of their simplicity 

and flexibility. Although semi-analytical models may not enable detailed simulations like 

Adhesive Dynamics, they can be used to gain deeper understanding into the physics of 

cell rolling. 

A simple semi-analytical model was developed by Tozeren and Ley (28), where 

the cell was modeled as a rigid sphere with the assumption that bonds between the cell 

and the surface were stressed everywhere except at the leading edge of the cell. Bond 

formation and disassociation rates were assumed to be independent of applied force and 

obtained by fitting the model to experimental data. The authors showed that bond length 

and flexibility were critical parameters for rolling to occur. Although an useful model, it 

suffered from unphysical assumptions like compression of bonds, high on and off rates 

and mechanical properties of the cell. Later, Krasik and Hammer (29) presented an 

improved semi-analytical model of cell rolling based on insights obtained from Adhesive 

Dynamics simulations. Their model assumed cells to be rigid spheres, with the load being 

carried only by bonds at the trailing edge of the cell. The rate of the transport of bonds to 

the trailing edge was equated with the force-dependent dissociation rate, leading to an 

estimation of the net force acting on the cell due to the strained bonds. Parametric study 

of cell rolling was made using different non-dimensional numbers and a relationship 

between various parameters necessary for rolling was discussed. Although the rolling 

velocity at different shear stresses predicted by the model was numerically close to 

experimental results, they were qualitatively different. The model predicted a monotonic 
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increase in rolling velocity with shear stress that was almost exponential in nature. On the 

contrary, experimental data showed an initial rapid increase in rolling velocity with shear 

stress (upto 2 dyn/cm
2
) followed by a steady rolling velocity with little or no increase 

with shear stress (3). This phenomenon of stabilization of rolling at high shear stress has 

also been observed in other studies for upto shear stress of 35 dyn/cm
2
 (2, 14). Although 

features like microvillus extension (18), PSGL-1 dimerization (17) and other cellular and 

molecular properties (2) have been implicated in stabilization of rolling, a clear 

understanding  is yet to be obtained. Thus the qualitative disagreement between the 

Karsik model (29) and experimental observations was probably because microvillus and 

cell deformation were not accounted in the model.  
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Chapter 3. Model Description 

We consider a cell rolling at a steady velocity V under a fluid flow with shear rate   

(Figure. 3). The cell has flexible microvilli on its surface which posses adhesion 

molecules on their tips (7, 15). Deformability of the cell allows for a considerable surface 

area of the cell to come in close proximity to the ligand coated substrate and the 

microvilli can bind to the substrate. As the cell rolls forward, the attached microvilli 

extend, exerting a tensile force both on the receptor-ligand bonds and on the cell. The 

force carried by the microvillus is distributed equally amongst the existing number of 

bonds on its tip which in turn governs the lifetime of the bonds and  ultimately the time 

span for which the microvillus remain bound to the substrate. At any given instant of 

time, the sum of forces exerted by all the microvilli on the cell balances the fluid drag 

force, enabling the cell to roll with a steady velocity. The details of each aspect of the 

model are described below. 

 

3.1 Model of the cell 

The cell is modeled as a sphere of radius R and the rolling substrate (or 

endothelium) as a flat plane. The cell being deformable forms a circular contact area of 

radius r with the surface. Extensible structures known as microvilli exist on the cell 

surface at a density of Nm µm
-2

 each with a tip area of Am. Adhesion molecules (e.g. 

PSGL-1) are expressed on the surface of the cell at an average density of RN . However, 

consistent with previous electron microscope studies (7, 15), we assume that the adhesion 
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molecules are localized on the tips of the microvilli. Thus, the actual receptor density on 

the microvillus tip will be much higher than the average density and is given by 

 R R m mN N N A , NmAm representing the fraction of the cell surface actually contacting 

the substrate and is an indicator of receptor distribution. This number can vary between 0 

and 1 , a lower value representing a tighter packing of adhesion molecules either due to 

fewer or thinner microvilli. 
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Figure 3. (a) Schematic diagram of the model. (b) Microvillus extension.  
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3.2 Cell Deformability 

Experiments and numerical studies have shown that fluid shear modulates the 

contact area of the cell during rolling. The contact area increases with fluid shear initially 

but saturates to a stable value at large shear rates (30, 31). Since an accurate prediction of 

the contact area is not possible through a semi-analytical treatment, we used an empirical 

relation to incorporate the effect of shear modulation of contact area. We assume that the 

cell maintains a finite contact area with the substrate even at zero shear stress because of 

the microvilli and flexible adhesion molecules present on its surface. As the shear stress 

increases, the contact area increases remaining circular in shape until it saturates at a 

maximum value. Then the contact radius at any given shear stress is approximated by the 

relation  

    max max min exp or r r r       (1) 

rmin and rmax are the minimum and maximum contact radius of the cell , τ is the fluid shear 

stress while τo is a measure of rigidity of the cell indicating how the contact radius 

changes from rmin to rmax. A conservative estimate of rmin can be made by calculating the 

area of contact due to microvilli. We consider the cell as a hard sphere with stiff 

microvilli present on its surface. At zero shear stress, the cell is expected to rest on three 

microvilli. Since the average distance between the microvilli are approximately 1 µm, 

rmin is taken as 0.5 µm. We can also reach a similar value by considering the flexibility of 

the ligand only. Assuming the cell as a hard sphere coated with highly flexible ligands, 

the contact area would be defined as the region where the ligands are not extended and 

hence are force free. This happens upto a point where the separation between the sphere 



22 

 

surface and the substrate is less than the natural length of the ligand. For neutrophil with 

radius of 4 µm and PSGL-1, a homodimeric ligand of around 50 nm length (28, 31) 

present on its surface, we calculated rmin to be approximately 0.5 µm. Other properties 

like rmax and τo are found from comparison with experiments.  

 

3.3 Microvillus Mechanics 

Microvilli play an important part in the rolling process by acting as a mechanical 

linkage between the adhesive bond and the cell body. Micropipette experiments by Shao 

et.al (32, 33) showed that neutrophil microvillus undergoes elastic dominated extension 

at low pulling force but behaves like a viscous material under a large force. Both 

microvillus extension and tethering have been implicated in stabilization in rolling of 

neutrophils under high shear stress (18, 34), and its effects shown though numerical 

studies (26). However, the extension model for microvillus used in the previous cell 

rolling studies (26, 29) is valid only for static forces and is inaccurate under dynamic 

loading. In this paper the microvillus is modeled by a three-element model consisting of a 

series of a spring (stiffness Km) and damper (viscosity ηm), both in parallel to a second 

spring (stiffness Kc) (see figure 4). Transmembrane proteins like PSGL-1, L-selectin are 

anchored to the cytoskeleton (35) and hence any force applied to the molecule is 

transmitted both to the cytoskeleton and the membrane. The cytoskeletal extension is 

elastic in nature and is represented by the spring Kc while the viscoelastic membrane is 

represented by the spring Km and damper ηm in series. The membrane and the 

cytoskeleton contribute individually to carry the load on the molecule - hence a parallel 
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arrangement of their representative elements in our model. Microvillus undergoing 

extension suffers a transition to a viscous dominated regime after the pulling force 

exceeds a critical value (33, 36), and is believed to be caused by the uprooting of the 

PSGL-1 molecule from the cytoskeleton (36). This phenomenon is know as tethering. In 

order to incorporate tethering in our model, we assumed that once force in the 

cytoskeletal spring (Kc) reaches a critical value of F0 the cytoskeletal link is severed and 

the force in that component is clipped at F0. Hence, when the pulling force is large or the 

microvilli are pulled to a long length a viscous dominated behavior is observed, which 

gives similar results to experimental observations (32, 33, 36, 37). Using this model, the 

constitutive relation at a steady rolling velocity is given by 

 

 

 

0

0 0

    for  

              for  

m m m c
m m c c

m m

m m
m m c

m

dF K K K dl
V F l K K V K l F

dx dx

dF K dl
V F F K V K l F

dx dx

 






   


    


 (2) 

Where l is the microvillus extension, Fm is the force exerted on the microvillus and F0 is 

the transition force. Comparing the behavior of the model with previously published 

results of Shao (33) we assign the values of the cytoskeletal spring Kc to 43 pN/µm and 

the membrane damper ηm as 11 pN-s/µm. The resulting model, which has Km as the only 

unknown parameter, was fitted with the experimental data for viscoelastic relaxation of a 

micovillus by Xu (37) which yielded a value of 200 pN/µm for Km.   Although another 

three element model with a different arrangement of the elements has been used by Xu 

(37), we chose to use the current model because of its physical significance which 
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correlates directly with the biology and its ability to predict microvillus behavior both 

before and after transition to tethering.  

The microvillus is attached to the surface through the receptor-ligand bonds 

which also carries its load. Assuming that the load is shared equally between the existing 

bonds on the microvillus tips, the force per bond can be obtained from / ( . )b m mf F N A

where fb is the force per bond on the microvillus tip and N is the density of bonds on the 

tip. 

 

3.4 Kinetics of bond formation 

We consider two distinct regions in this model – the ‘formation zone’ where the 

microvilli are stress free allowing bond formation and breakage to occur at intrinsic rates, 

and the ‘breakage zone’ where the microvilli are stretched and only bond dissociation 

occurs (see figure 1). The bond disassociation rate kb is dependent on the force on the 

bond as given by Bell’s model (25)  where kb
0
 is the intrinsic 

breakage rate,  rc is the reactive compliance (that corresponds to the range of the 

interaction),  fb is the force on a single bond and kBT is the thermal energy. Pinning the 

coordinate system at the trailing end of the cell as shown in figure 3, the kinetic rates in 

formation zone (x<0) are kf =kf
0
 and kb= kb

0
 while those in the breakage region (x≥0) are 

kf =0 and kb  obtained from the Bell’s equation. At steady state, the kinetic equation 

governing bond formation can be expressed as 
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   f R L b

dN
V k N N N N k N

dx
      (3) 

where N is the bond density on the tip of a microvillus positioned at  x, NR is the actual 

receptor density on the microvillus tip, NL is the ligand density on the surface, kf  is the 

formation rate, and kb is the breakage rate.  

  

 3.5 Kinematic relations 

The extension of a microvillus is expressed in terms of the cell geometry and the 

distance between the point of attachment of the microvillus to the surface and the cell. 

We assume that the cell itself does not undergo any deformation except for the contact 

area, and that the microvilli are unstretched at the trailing edge (x=0) (see Figure. 3b). At 

a given location x, defining β0= sin
-1

(r/R) and β=x/R, the microvillus extension l and the 

angle θ between the microvillus and the surface (see figure. 3b) can be expressed as 

Km 

Kc 

ηm 

Fm Fm 

Km ηm 

Fm Fm 

(a) 

(b) 

Figure 4. Viscoelastic model of microvillus for a force less than (a) and 

greater than (b) the threshold force Fo. 

Fo 

Constant Force 
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  

   

 (4) 

3.6 Force balance 

The net force exerted on the cell due to the receptor-ligand bonds is obtained by 

integrating the forces due to individual microvilli. The probability of bound state of a 

microvillus, defined as (x), is equivalent to the probability of existence of atleast one 

bond on the microvillus tip. Since bond formation only occurs inside the contact region, a 

microvillus starts with a certain number of bonds from the trailing edge and gradually 

loses more bonds as it moves further into the breakage zone. Thus the probability of 

existence of a bond can be defined as pi=N/N0 where N0 is the bond density that the 

microvillus started with, in current case at x=0. Defining the total number of bonds a 

microvillus starts with before entering the breakage zone as z=N0Am, the probability that 

the microvillus is attached to the substrate or in bound state is given by 

  1 1
z

ip     (5) 

The net bond force in x-direction is then obtained from  

  . . . 2 .cosx
m m

dF
F N r

dx
   (6) 

where Fx is the x-component of the net force exerted by the bonds on the cell. The 

definition of the bound state enables us to compute many interesting parameters like local 

microvillus density, average microvillus length, simply by using the bound state 
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probability as a weighing function. The definition of probabilistic weights eliminates the 

need for arbitrarily defining the extent of the breaking region as with earlier models (27, 

38). 

Under steady state, the external fluid flow imposes a drag force on the cell, which 

balances the net force exerted on the cell due to receptor-ligand bonds. The drag force is 

calculated from Goldman’s equation (39). 

  21.7 6xF R  (7) 

where is the fluid shear stress, and R is the radius of the cell. Eqn. (7) assumes that the 

cell is stationary, which enables a simple expression of the drag force. This assumption is 

not in serious error as velocities of rolling cells are typically an order of magnitude 

smaller than the fluid flow velocity at a distance R away from the surface. It is 

noteworthy that Eqn. (7) was derived for a hard sphere and employs lubrication theory – 

a situation not physically valid for cell rolling since cells are deformable. Computational 

models have shown that although the drag force scales linearly with shear stress, the pre-

factor (which is 1.7 in Eqn. (10)) is smaller for a deformed cell than an undeformed 

sphere. Although computational models are required to obtain the exact drag force, Eqn. 

(10) provides a reasonable approximation. 
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Chapter 4. Numerical scheme 

The formulation presented above involves simultaneous solution of coupled ordinary 

differential equations along with nonlinear equations. Hence, we have adopted a novel 

iterative scheme which is accurate and computationally inexpensive. Our approach 

involves iterating the rolling velocity in order to find the desired fluid shear stress. From 

the target shear stress, the contact radius is calculated from Eqn. (1) and a rolling velocity 

V is assumed. Based on rolling velocity, the microvillus force history is obtained by 

solving Eqn. (2) along with the kinematic relations in Eqn. (4). The force history is used 

to get the bond kinetics from Eqn. (3) with the initial condition of N = 0 at x = -2r, which 

is then used to get the value of   at each location. Then, Eqn. (6) is solved to obtain Fx , 

which gives the value of shear stress τ using Eqn. (7). Depending on the error of the 

calculated value of shear stress, the rolling velocity is updated and the process is repeated 

till the iterations converge. A binary search algorithm was employed to search for the 

rolling velocity in the above-mentioned manner with a maximum error in shear stress as 

0.1-1%. All the ordinary differential equations were solved using a variable order solver 

in MATLAB with error tolerance of 10
-4

 and maximum step size of 10
-2

. The 

convergence of the scheme was fast and required about 10-30 s to converge for a single 

value of shear stress on a PC. Thus, this scheme easily allowed for a parametric study 

with little computational resources. 
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Chapter 5. Results 

In the present study, we use our model to study the rolling of neutrophils on P-

selectin coated surfaces mediated through the PSGL-1 ligands present on the neutrophil 

surface. The numerical values for the parameters used in the simulations along with their 

source references are listed in Table 1. Although the numerical values for most of the 

parameters were taken directly from experimental studies available in literature, 

deformability and the microvillus properties have been estimated indirectly as described 

in previous sections.  

Table 1. Numerical values of parameters used in simulation (unless otherwise 

mentioned). 

Symbol Definition Value Source 

R Cell Radius 4 μm (26) 

rmax Maximum contact radius 2 μm 

Best case match 

with (14) 

rmin Minimum contact radius 0.5 μm Estimated 

τ0 Deformability factor 15 dynes/cm
2
 

Best case match 

with (14) 

Kc 

Microvillus spring constant representing 

cytoskeletal stiffness 

43 pN/μm 

Comparison with 

(33) 
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Km 

Microvillus spring constant representing 

membrane stiffness 

200 pN/μm 

Fitting with data 

of  (37) 

F0 Transition force 45 pN (33) 

ηm Membrane viscosity 11 pN-s/μm 

Comparison with 

(32, 33) 

kf
0
 Intrinsic bond formation rate 0.1 μm

2
/s (29) 

kb
0
 Intrinsic bond breakage rate 1 s

-1
 (40) 

rc Reactive compliance of bond 0.5 Å (40) 

T Temperature 300 K  

RN  Average receptor density on cell 24 μm
-2

 (26) 

NL Ligand density on substrate 100 μm
-2

  

Nm Microvillus density on cell 4 μm
-2

 (7, 26) 

Am Area of microvillus tip 0.02 μm
2
 (7, 26) 

 

5.1 Comparison with experiment 

In order to validate the model we compared our numerical results with the 

experimental data of Puri et.al (14). The ligand density was matched with that used in the 

experiment (NL =90 µm
-2

) and the rolling velocity was obtained for different fluid shear 
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stresses. The same process was repeated for different values of rmax and τ0 and we found 

that the best case match was for rmax = 2 µm and τ0= 15 dynes/cm
2
 which are 

quantitatively reasonable. The comparison plotted in Figure 5, shows an excellent 

agreement between the experimental and numerical data both at low and high shear 

stress. In the following sections, we used the model to study the contributions of specific 

cellular features to cell rolling to answer some interesting questions. 

 

5.2 Effect of cell deformability on rolling 

Deformability has long been identified as an important feature in cell rolling. 

Experiments with live cells and fixed cells showed marked difference in rolling 

characteristics between the two cases (2) indicating the importance of cell deformability. 

However, cellular deformation and the contact area are known to be modulated by the 

fluid shear (31). We used our model to explore how this modulation of deformation 

Figure 5. Comparison of model with experimental data of neutrophil rolling on 

P-Selectin by Puri et.al (14). The ligand density is 90 sites/μm
2
. 
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affects the rolling characteristics of a cell. In our model τ0 represents the rigidity of the 

cell and determines how strongly fluid shear changes the contact radius (see figure 3). 

We compared the variation of rolling velocity with fluid shear for different values of τ0 

(see figure 6) and found that the change in contact area can profoundly affect the rolling 

behavior of the cell. While extremely rigid cells (τ0=∞) showed unstable rolling with high 

rolling velocity that increased almost exponentially with increase in shear stress, highly 

deformable cells (τ0=0) exhibited stable rolling with only moderate increase in rolling 

velocity with increase in shear stress. Interestingly the effect of shear modulation was 

prominent in moderately deformable cells (intermediate values of τ0) which exhibited a 

rapid increase in rolling velocity at low shear stresses ( < 5 dyn/cm
2
) but attained steady 

rolling velocity, similar to the highly deformable case, at higher shear stresses. In fact, 

Yago. et al (2) observed that K562 cells coupled with PSGL-1 could roll on P-selectin 

surface at high shear stress only when they were alive, and rolling was impaired when the 

cells were fixed. Although, we could not recreate their experiment because of the 

uncertainly of cellular and structural properties of K562 cells, the experimental 

observation qualitatively agrees with our prediction.  An important fact that this result 

shows is that shear modulation of contact area helps the neutrophils in maintaining a 

stable rolling velocity over a wide range of shear stress. This phenomenon might have a 

biological relevance as it provides a mechanism to prevent aggregation of cells at places 

of low shear stresses like junctions of arteries and veins. 
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5.3 Role of microvillus and localization of receptors 

The structure and function of microvilli have been shown to be important for cell 

rolling and have been extensively studied before (26). Tethering of microvilli, where their 

rheology shifts from elastic to viscous dominated regime, has been attributed to 

stabilization of rolling at high shear stresses (18). In this study, we investigate some 

important mechanical aspects of the microvillus and study its implications on cell rolling. 

Microvilli localize the adhesion molecules on their tips resulting in a co-operative effect 

during bond breakage. As a microvillus moves from the leading edge through the 

formation and breakage zone, the number of bonds formed on its tips changes. The 

history of the number of bonds on present on a microvillus tip at different locations (x-

distance) is plotted in figure 7a. The shear stress was 2 dyn/cm
2
 and the corresponding 

Figure 6. Effect of deformability on cell rolling. Rolling velocity as a function of 

shear stress (a) is plotted for several values of τ0. The modulations of the radius 

of contact for these values of τ0 are also shown (b). 
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contact radius was approximately 0.69 µm. Bonds form in the contact region, reach 

equilibrium quickly and start to break as soon as they enter the breakage zone (x>0). 

Interestingly, the number of bonds in the breakage region falls steadily upto a point after 

which there is a sharp drop until no bonds are left. This behavior results from the co-

operative load sharing by the bonds whereby the force on a bond is reciprocal to the 

number of surviving bonds. As the number of bonds on the tip starts reducing, the load on 

the surviving bonds increases leading to faster breakage. Previous models which do not 

account for microvilli, did not observe this effect (28). Instead of a sharp breakage of 

bonds, an exponential decay of bonds typical of first order reaction was seen. Our results 

are also agreement with experimental results of Ramchandran (18) where the tethers of 

around 2µm were observed at a shear stress of 2 dynes/cm
2
.  

 Microvilli attached at each location contribute towards the net force experienced 

by the cell depending on its extension. In order to find the relative contribution of 

microvillus at each location towards the net force, we plotted the x-direction force 

distribution given by the right side of Eqn. (6) as a function of x (see figure 7b). We 

found that the force distribution peaks at an intermediate value x showing that the 

microvilli located at that position have a maximum contribution to the net force on the 

cell. It should be remembered that the force distribution depends on the force carried by 

each microvillus and the microvillus density. As we move away from the trailing edge, 

the extension of the microvillus increases along with the force carried by it. However, the 

number of attached microvilli (given by the product of Nmφ) also decreases with 

increasing extension (see figure 7b). Hence, an optimum exists because of the two 

opposing effects. 



35 

 

 Tethering of microvilli is believed to be important in stabilizing rolling at high 

shear stress (18). Tethered microvilli carry a nearly constant load and prevent any 

increase of force on the bonds, thus increasing the lifetime of the bonds. We plotted the 

fraction of the total attached microvillus that tethered along with rolling velocity against 

shear stress as shown in figure 7c. We found that tethering started only for shear stress in 

excess of 0.7 dynes/cm
2 

and continued to increase with increasing shear. However, at 

higher shear stresses (> 15 dyn/cm
2
) the tethering fraction was stable at about 40% and 

increased only modestly with increase in shear. It is known that tethers grow into more 

complex structures over time (18) which might explain the stabilization at high shear 

stress. However including such effects in the model is difficult and outside the scope of 

the present study. 
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Figure 7. (a) Number of bonds on microvillus tip at different positions (b) 

Number of attached microvillus per µm
2
 at different distance from the trailing 

edge (blue) and the x-direction force distribution (green). (c) Fraction of the total 

microvilli that are tethered at a given instant of time at different shear stress 

(blue) and corresponding rolling velocity vs shear stress (red). The shear stress 

was 2 dyn/cm
2
 in all the cases. 
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An important aspect of the microvillus structure is localization of the adhesive 

receptors on its tip. Redistribution of receptors has two direct implications – it increases 

the receptor concentration to very high values on the tip and it allows the bonds to share 

load leading to a co-operative effect. To study the first effect we varied the microvillus 

tip area keeping their density (Nm) constant. This represents the case when the microvilli 

on the cell become thinner but their numbers remain the same. The result is plotted in 

Figure 8a which shows that on decreasing the tip area, the rolling velocity remains 

constant upto a certain value after which it increases sharply and the cell can no longer 

support rolling. The observation can be explained based on the bond density. The only 

parameter that variation of Am affects is the local concentration of the receptor at the tip 

NR. As long as NR is lower than the ligand density NL, all the available receptors can form 

bonds and contributes toward the load. However, at lower values of Am, NR is much larger 

than NL and bond formation is compromised due to unavailability of ligands. Hence 

rolling becomes unstable as the tip area decreases.  The critical tip area below which 

rolling would be unstable can be found as Am
*
~NR/(NLNm) which for the present case 

gives 0.05 µm
2
. The predicted trend can clearly seen in figure 8a.  

 We studied another interesting scenario where each microvillus splits into two or 

more smaller microvilli, their total tip area (NmAm) remaining constant. This arrangement 

keeps the local receptor concentration at the tip NR constant, but changes the number of 

receptors on each microvillus thus changing their co-operative effect. Rolling velocity 

was plotted against microvillus density, keeping the product NmAm constant at 0.08 (see 

figure 8b). Surprisingly we found that optimum rolling existed only when the number of 

receptors on microvillus tip was between 8 to 60. Either increase or decrease in receptor 
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number resulted in an increase in rolling velocity upto a point where rolling became 

unstable. We believe two independent mechanisms results in this behavior. As the 

number of receptors per microvillus tip decreases, the co-operative effect is lost and 

lifetime of bonds decreases, resulting in faster breakage of bonds and higher rolling 

velocity. On the other extreme, if too many bonds are present on a single microvillus, the 

number of available microvilli reduces (since NmAm is constant). As a result, even if the 

lifetime of individual microvilli is longer, their collective effort or the net force reduces 

and rolling velocity is higher.  
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Figure 8. (a) Effect of the microvilli tip area on rolling velocity. Different 

markers and colors represent different shear stresses. All other properties 

are kept constant. (b) Effect of number of microvilli on rolling velocity for 

constant receptor density on microvillus tip and constant total tip area 

(NmAm) .Total number of receptors per unit area was kept constant. 
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5.4 Case study: Rolling of cells and microspheres 

In this last section, we apply our model to different situations and answer some 

interesting questions. We used our model to simulate rolling of neutrophils and 

microspheres and compared the results with experimental data of Yago et.al (2). The 

ligand density (P-selectin) of the substrate was adjusted to 145 µm
-2

 and the neutrophil 

radius was set to 4.25 µm as reported. Other parameters were used as reported in Table 1. 

In order to simulate rolling of microspheres we changed the cell radius to 3 µm, and set τ0 

to a large number (i.e. the contact radius was fixed at 0.5 µm). The receptor density (NR) 

was taken as 203 µm
-2

 corresponding to 23,000 sPSGL-1 molecules per particle 

measured during the experiment (2). Microspheres have random distribution of bonds and 

no microvilli. Instead the bonds acts as molecular springs to carry load (41). We 

considered this by setting Nm=NR and assumed the bonds to be pure elastic with spring 

constant 1000 pN/µm (Kc=1000 and Km=0) which is in the range of molecular springs 

(41). Figure 9(a) shows a good agreement between the experimental and numerical 

results for both the neutrophil and microsphere asserting the flexibility of the model to 

describe different systems. 

 One of the intriguing aspects of cell rolling is the ability of the cell to roll steadily 

with almost constant velocity over a wide range of shear stress. In order to understand 

this behavior, Yago et.al (2) performed a series of experiments with sPSGL-1 coated 

microspheres and neutrophils, and studied the contribution of molecular and cellular 

features separately. Their results showed that the molecular properties, although 

necessary, are not sufficient to provide stable rolling and cellular properties are important 
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in this context. It also showed that deformability is very important for the cell to roll 

stably. Although this study could elucidate the difference between cellular and molecular 

features, the relative importance between the different cellular features was not clear. 

Studies had independently confirmed the importance of microvilli in stabilizing of rolling 

(18). Hence, we wanted to investigate the relative contribution of deformability of the 

cell and microvillus dynamics on stabilization of rolling. 

In order to compare the contribution of microvillus and deformability towards 

stable rolling, we simulated three hypothetical cases – first, where the neutrophils can 

extend microvilli but are not deformable, second, where the neutrophils are deformable 

but cannot extend microvilli (like a deformable microsphere uniformly coated with 

receptors) and third, with no deformation or microvilli (microspheres with same radius 

and receptor density as neutrophils). While the first case was simulated by setting τ0 to a 

large value, for the second case we switched the microvillus properties to those of elastic 

molecular springs similar to those used for microspheres. The third case was simulated by 

using the same procedure as used before with microspheres, but with the parameter 

values similar to neutrophils (Nm= NR = 24 µm
-2

, Am=1/Nm). We found that in all the 

three hypothetical cases the cell could not roll over the full range of shear stresses (0-10 

dyn/cm
2
) (See figure 9(b)) and the plotted lines ended abruptly referring to the region 

where rolling cannot be supported according to our model. Rolling was worse when none 

of the cellular features were present and became progressively better as deformability and 

microvilli extension was incorporated. It seemed to be the case that microvilli extension 

were more potent in stabilizing rolling than deformability alone. Deformability acts to 

increase the contact length and hence the total number of bonds formed. However, 
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because of high rate of formation, equilibrium is attained very quickly and any advantage 

gained by added deformability is not useful unless rolling velocity is high. On the other 

hand, microvillus extension actually increases the bond lifetime in the breakage region 

directly helping in carrying more load. This might explain the observed effect of the two 

cellular properties. 
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Figure 9. Contribution of different cellular features to stability of cell rolling. (a) 

Comparison of rolling of neutrophils (radius 4.25 µm) and sPSGL-1 microspheres (3 

µm radius) rolling on P-selectin coated surface (145 sites/µm
2
) with experimental 

results of Yago (7). (b) Hypothetical case of rolling of neutrophils without 

deformation, without microvillus or both, presented along with normal neutrophils 

to evaluate the relative contribution of the two features in rolling.  
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Chapter 6. Conclusion 

  Cell rolling is an extremely complex phenomenon brought into effect by 

orchestration of different molecular and cellular features of the cell and its surrounding. 

Although our knowledge of cell rolling has progressed tremendously in the last decade 

with insight into the biophysics of molecular features, some very basic questions remain 

unanswered. In the current study, we have presented a model of cell rolling that considers 

all the major relevant phenomenon which are known to affect cell rolling. The semi-

analytical nature of the model provides it with simplicity and makes it easily 

implementable. The model could recreate rolling of neutrophils over a wide range of 

shear stresses with excellent agreement with experimental data, not achieved previously 

by any other model. Our study showed that the stability of rolling over a wide shear 

stresses is a result of multiple cellular features. Shear modulation of contact area ensures 

that rolling velocities are moderate even at low shear stresses while microvillus extension 

along with increased deformation maintains stability in high shear stress regime. The 

model could also recreate the rolling of microspheres which points towards its flexibility. 

However, a few deviations from experimental results for rolling of microspheres was 

observed. Since microspheres are devoid of the cellular features, their rolling behavior is 

critically dependent on properties like bond kinetics, and an accurate prediction would 

require advanced stochastical simulations. Nevertheless, the results were in qualitative 

agreement.  
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