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Abstract 
Recent technological advancements have enabled us to collect large volumes of geophysical noisy 
measurements that need to be combined with the model forecasts, which capture all of the known 
properties of the underlying system.  This problem is best formulated in a stochastic optimization 
framework, which when solved recursively is known as Filtering.  Due to the large dimensions of 
geophysical models, optimal filtering algorithms cannot be implemented within the constraints of 
available computation resources.  As a result, most applications use suboptimal reduced rank algorithms. 

Successful implementation of reduced rank filters depends on the dynamical properties of the underlying 
system.  Here, the focus is on geophysical systems with chaotic behavior defined as extreme sensitivity of 
the dynamics to perturbations in the state or parameters of the system.  In particular, uncertainties in a 
chaotic system experience growth and instability along a particular set of directions in the state space that 
are continually subject to large and abrupt state-dependent changes.  Therefore, any successful reduced 
rank filter has to continually identify the important direction of uncertainty in order to properly estimate 
the true state of the system.  In this thesis, we introduce two efficient reduced rank filtering algorithms for 
chaotic system, scalable to large geophysical applications. 

Firstly, a geometric approach is taken to identify the growing directions of uncertainty, which translate to 
the leading singular vectors of the state transition matrix over the forecast period, so long as the linear 
approximation of the dynamics is valid.  The singular vectors are computed via iterations of the linear 
forward and adjoint models of the system and used in a filter with linear Kalman-based update. 

Secondly, the dynamical stability of the estimation error in a filter with linear update is analyzed, 
assuming that error propagation can be approximated using the state transition matrix of the system over 
the forecast period.  The unstable directions of error dynamics are identified as the Floquet vectors of an 
auxiliary periodic system that is defined based on the forecast trajectory.  These vectors are computed by 
iterations of the forward nonlinear model and used in a Kalman-based filter. 

Both of the filters are tested on a chaotic Lorenz 95 system with dynamic model error against the 
ensemble Kalman filter.  Results show that when enough directions are considered, the filters perform at 
the optimal level, defined by an ensemble Kalman filter with a very large ensemble size.  Additionally, 
both of the filters perform equally well when the dynamic model error is absence and ensemble filters fail.  
The number of iterations for computing the vectors can be set a priori based on the available 
computational resources and desired accuracy. 

To investigate scalability of the algorithms, they are implemented in a quasi-geostrophic ocean circulation 
model.  The results are promising for future extensions to realistic geophysical applications, with large 
models.  
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Title: Bacardi and Stockholm Water Foundation Professor of Civil and Environmental Engineering 

Thesis Supervisor: Dennis McLaughlin 
Title: H.M. King Bhumibol Professor of Water Resource Management 
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1 Introduction 

1.1 Background and Motivation 

Our ability to characterize geophysical systems and to forecast their behavior impacts society in 

different forms.  Decisions to utilize the natural resources are directly influenced by our 

understanding of the underlying system.  In this thesis, we focus on chaotic geophysical systems 

such as the ocean and the atmosphere, which are characterized by their extreme sensitivity to 

errors in initial conditions or model parameters.  This brings serious difficulties to estimation of 

the state or the parameters of the system, as well as making predictions about its behavior 

(Ruelle, 1989; Foale and Thompson, 1991).  For example, it was shown that forecasting of the 

state of atmosphere is limited to two weeks under the most promising conditions (Lorenz, 1963).  

However, the situation can be considerably improved if frequently available measurements of 

relevant variables (observations) are combined with the predictions of the model (forecasts) in 

order to produce improved estimates of the state of the system or its parameters (analysis).  

Because of the inherent uncertainty in the forecast and observations, this problem is best 

formulated in a probabilistic framework, widely known as Data Assimilation.   

Mathematically speaking, data assimilation solves a Bayesian optimization problem where the 

expected magnitude of the estimation error, i.e. the distance between the analysis and the truth, is 

minimized subject to the constraints of the dynamical model of the underlying system and the 

observation model that relates the observations to the truth.  Sequential data assimilation 
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algorithms aim at solving this optimization problem via recursive assimilation of the 

observations; thus they are more efficient in assimilating streams of incoming observations 

(Gelb, 1974).  Depending on the time window of the incorporated observations, sequential 

algorithms are generally categorized as "Smoothing" when the analysis is conditioned on both 

before and after the estimation time, or "Filtering" when only past observations are used to 

compute the analysis at a given time.  The focus of this thesis is on filtering in geophysical 

applications, which in general are highly nonlinear and have an enormous state vector with 

O(106) variables.  Filtering is particularly appealing for real-time assimilation of the streams of 

incoming observations and forecasting. 

Optimal filtering in linear systems with Gaussian uncertainty is solved by the well-known 

Kalman Filter (KF).  In KF, the analysis is a linear combination of the forecast and the 

observation, with the linear weights (gain matrix) depending on the forecast error covariance and 

the observation noise covariance  (Gelb, 1974).  In the presence of nonlinearity, the uncertainties 

will not remain Gaussian and higher moments beyond the mean and the error covariance are 

needed to characterize the distribution of the variables.  In fact, finding the optimal solution 

entails solving the Fokker-Plank equation in order to compute the distribution of the forecast.  

Generally, this does not have any closed form solutions and is not feasible in large systems 

(Risken, 1996).  Instead, Monte-Carlo-based methods such as the Particle Filter try to solve the 

optimal Bayesian estimation by approximating the evolved distribution with an ensemble of 

propagated replicates, model runs with different initial condition, forcing, or parameters drawn 

from the corresponding distributions (Ristic et al., 2004).  However, the large number of 

replicates needed for the Particle Filter to converge is a practical impediment for its 
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implementation in large systems.  Therefore, optimal filtering in large geophysical systems is not 

feasible, and the problem must be redefined as solving for a suboptimal solution with reasonable 

performance. 

Because of the simplicity of the linear update scheme in the KF, it has been used in many 

suboptimal filters mainly designed for quasi-linear systems (Fukumori and Malanotte-Rizzoli, 

1995; Cane et al., 1996; Buehner and Malanotte-Rizzoli, 2003; Farrell and Ioannou, 2001; 

Heemink et al., 2001; Lermusiaux and Robinson, 1999; Pham et al., 1998).  In nonlinear 

systems, again Monte-Carlo-based linear filters such as the Ensemble Kalman Filter (EnKF) are 

the most popular.  In EnKF, an ensemble are random replicates are drawn from the distribution 

of the initial state and propagated in the nonlinear dynamics.  The ensemble's sample mean and 

covariance are assumed to represent the forecast and its error covariance, and are used in the 

Kalman linear update scheme (Evensen, 1994, 2003, 2004; Bishop, 2001; Anderson, 2001). 

The required number of replicates for convergence of the second order statistics is remarkably 

smaller than the number needed for the full probability distribution as in the Particle Filter, but 

implementation of ensemble-based methods in geophysical systems faces some difficulties.  

Firstly, the required ensemble size for successful implementation of the ensemble methods in 

geophysical systems with enormous state size is still beyond the capacity of current 

computational resources.  Secondly, it is frequently observed that over a few assimilation cycles 

the ensemble filter becomes rank deficient in the sense that the ensemble members, which 

supposedly cover a wide range of possibilities of the truth, start to collapse to a much smaller 

range than the true uncertainty field (Kalnay, 2003).  This is mathematically equivalent to the 
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loss of mutual independence of the ensemble members and the loss of rank of the ensemble 

covariance matrix.  Rank deficiency is avoided if dynamic model error with enough intensity is 

added to each replicate to enhance the independence of the ensemble members.  Although this 

will mathematically stabilize the ensemble filters, adding dynamic model error is not a viable 

option in many geophysical systems such as the ocean and the atmosphere where the dynamics 

exhibit chaotic behavior.  Specifically, additive noise may trigger structural instabilities in such 

systems, leading to non-physical predictions of the model (Daley, 1991; Fillion, 2002; Neef et 

al., 2006).  A simple demonstration of this issue is given in Appendix A.  To avoid this problem, 

it is common in meteorological and oceanic applications to assume that the dynamic model error 

is zero, amid ongoing research for appropriate formulation of the dynamic model error. 

There are a number of techniques to enhance the rank of the ensemble covariance when dynamic 

model error is zero.  A widely used method is the localization of the correlation information, 

which is accomplished either by damping the spurious correlations between the distant states 

(Houtekamer and Mitchell, 2001; Hamill et al., 2001), or by assimilating the observations locally 

in the physical space (Ott et al., 2006).  Localization techniques by construction are suitable only 

for the spatially extended systems with weak long-range spatial correlations.  Otherwise they 

may eliminate the physically meaningful correlation between distant states.  Additionally, 

localization methods need to be designed for a given system based on its properties and the 

ensemble size, both of which require an understanding of the system that is often beyond what is 

available or convenient.  Another common technique for resolving the rank deficiency is additive 

variance inflation, where the variance of different state variables are empirically increased 

(Anderson, 2007).  This approach artificially increases the rank of the ensemble covariance, and 
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due to its ad hoc nature, is not robust.  Thus, although ensemble-based filters provide promising 

features, they generally face practical limitations in chaotic geophysical systems. 

This thesis is motivated by the need for robust filtering algorithms that are designed for chaotic 

dynamics and are also scaleable to large systems.  Two algorithms are introduced that are 

suitable for such applications.  In the first algorithm, the problem is formulated from a geometric 

point of view and the gain matrix is adaptively computed in a way that the estimation error is 

continually reduced.  The second algorithm focuses on the stability of the error dynamics, 

leading to a gain matrix that stabilizes the unstable modes of error growth.  The computational 

costs of these methods are also discussed and it is shown that in presence of dynamic model 

error, their cost is comparable to the cost of the ensemble methods.  It is further shown that after 

a minor modification, both of these algorithms perform well when dynamic model error is zero 

and ensemble methods fail. 

In order to investigate the scalability of the algorithms, both of the algorithms are tested on a 

chaotic wind-driven reduce-gravity quasi-geostrophic ocean circulation system without dynamic 

model error.  The algorithms are revised modified to enhance the computational efficiency in 

assimilating a large vector of observations, a common situation in remote sensing applications.  

Results confirm the ability of the proposed algorithms in tracking the true state of chaotic 

systems, suggested by experiments on a small Lorenz 95 system. 

Additionally, we show in that if the observed states are too few or are not selected properly in the 

quasi-geostrophic ocean system, an otherwise successful filter will have a poor performance.  

Our proposed framework for reduced rank filtering provides a mean to a more elaborate analysis 
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of the observability of the nonlinear systems, which is beyond the scope of this thesis and is left 

to future research.   

In this thesis, performance of the algorithms are demonstrated with models that are structurally 

stable, meaning that given the convergence of the trajectory of a nominal initial state to an 

attractor of the system, any perturbed trajectory, whose initial state is slightly different from the 

nominal initial state will converge to the same attractor.   In other words, perturbing the state 

does not make its trajectory to depart the basin of attraction.  The extension to more realistic 

geophysical systems that may have multiple attractors, possibly exhibiting nonphysical dynamics 

is an important step, but falls beyond the scope of this work.   
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2 A Singular Vector Approach to Suboptimal 

Filtering in Chaotic Systems 

2.1 Introduction 

In a wide range of geophysical applications the system under investigation exhibits chaotic 

behavior, in the sense that two slightly different initial states, such as a true state and a forecast, 

quickly separate over time, following much different trajectories (Nagashima and Baba, 1999; 

Ruelle, 1989; Foale and Thompson, 1991).  In chaotic systems the true and forecast trajectories 

will remain inside a bounded region but differences between them may become too large for the 

forecast to be useful (Lorenz, 1963). These differences may be temporarily reduced if the 

forecast is updated with measurements, so long as care is taken to insure that the updated states 

remain physically reasonable. In particular, the update process should be able to identify and deal 

with rapidly growing errors before they become unacceptably large.   

This paper examines some of the distinctive issues that arise in data assimilation for chaotic 

systems such as a turbulent atmosphere or ocean. Our focus is on computationally efficient 

reduced rank Kalman filters, which yield updates that are linear combinations of measurements 

and forecasts. From a geometrical perspective reduced rank filters propagate low rank 

covariances that are projections of full covariances on a low dimensional subspace of the system 

state space. These low rank covariances provide a concise characterization of uncertainty. While 

there are many choices for the reduced rank subspace, some tend to give better performance and 
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are able to maintain physical constraints better than others. Here we describe a reduced rank 

filter that projects a portion of the forecast covariance onto a subspace constructed from the 

leading singular vectors of the state transition matrix (a linearized approximation to the nonlinear 

state equation). If the measurements used for updating are sufficiently informative and the 

linearization remains valid the filter updates keep growing errors in check, for both with and 

without dynamic model error. The subsequent sections describe the singular vector Kalman filter 

and present some preliminary results obtained for the Lorenz 95 system (Lorenz and Emanuel, 

1998).  

2.2 Background 

2.2.1 Error Growth and Decay in Chaotic Systems 

It is useful to begin by considering some of the design constraints encountered in chaotic data 

assimilation problems   We suppose that the system of interest can be completely described by an 

n -dimensional vector of states represented by ( )tx  at time t . The state vector ( )tx  is composed 

of non-dimensional variables and is related to the vector of dimensional physical variables ( )tξ  

by the non-singular linear transformation ( ) ( )ttCtx ξ)(= . Consequently, the norms used to 

measure distances in the ( )tx  and ( )tξ  spaces are related as follows: 

CC

TTT

T

tttCtCttxtxtx )()()()()()()()( ξξξ ===     (2-1) 
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where )()( tCtC T  is a positive definite weighting matrix.  For simplicity we work with the 

transformed state ( )tx  here, recognizing that the choice of the application-specific 

transformation matrix )(tC  has an important influence on the dynamical properties of the state, 

which will impact the performance of the data assimilation algorithms (Orrell, 2002; Palmer et 

al., 1998). 

We use the superscripts t , f , and a  to differentiate the true (unknown), forecast (prior) and 

analysis (posterior) states.  These various states can be viewed geometrically as points in the n -

dimensional state space. Differences between states (errors, perturbations, etc.) can be viewed as 

n -dimensional vectors with characteristic magnitudes and directions. We suppose the true states 

evolve from time s  to time t  according to the following state equation: 

( ) ( ) ( )ttsxftx tt ω+⎥
⎦

⎤
⎢
⎣

⎡
= ,         (2-2) 

where ⎥⎦
⎤

⎢⎣
⎡ txf ,  is a nonlinear function of the state and ( )txt  represents a multidimensional 

trajectory through the state space. We assume the initial condition ( )0txt  at 0ts =  is a random 

vector with a known mean ( )0txt  and covariance ( )0tPt . The dynamic model error )(tω  is a zero 

mean temporally uncorrelated random vector with known covariance ( )tQ . For convenience we 

assume that )(tω and ( )0txt  are uncorrelated.  

Since it is impractical to characterize a full nn×  matrix ( )tQ  for a large system the dynamic 

model error covariance is sometimes assumed to have a sparse (e.g. diagonal) structure.  
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However it can still be difficult to interpret what model error represents if the system of interest 

is chaotic, especially when this error can generate non-physical trajectories. In such cases ( )tQ  is 

often assumed to be zero (i.e. the dynamic model error is zero) and the estimation problem 

focuses on initial condition uncertainty. Here we consider filtering with and without dynamic 

model error, represented respectively by a diagonal ( ) 0≠tQ  and ( ) 0=tQ .   

When the nonlinear system defined by (2-2) is chaotic, perturbations around a nominal state may 

grow or decay.  To examine this behavior more precisely we consider points on or near the 

system attractor A .  The attractor is a subset of the state space that has the following properties: 

1) ( ) ⎥⎦
⎤

⎢⎣
⎡ tsxf ,  is in A  if )(sx  is in A , 2) there is a neighborhood )(AB  of A  (commonly called 

the basin of attraction of A ) composed of points that evolve arbitrarily close to A  for 

sufficiently large t , and 3) A  is the smallest set that obeys the first two properties. 

The neighborhood of a point ( )tx0  on the attractor can be divided into stable and unstable 

manifolds, depending on their long-term temporal behavior (Jaeger and Kantz, 1997).  This 

concept can be adapted to assimilation problems by considering the behavior of small 

perturbations over the time periods between measurement updates.  In particular, consider the 

evolution between time t  and a later time Tt +  of a perturbation around )(txa , the updated 

estimate (or analysis). Suppose that )(txa  is known at the analysis time t  and a forecast 

)( Ttx f +  is derived at the forecast time Tt + , as follows: 
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( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,         (2-3) 

In a sequential filtering context the forecast time is the time of the next measurement update.  

We define the decaying manifold ( )⎥
⎦

⎤
⎢
⎣

⎡
txW aD

T  to be the set of perturbations from ( )txa  that decay 

over the time interval ],[ Ttt + : 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+>−<−∈

=⎥
⎦

⎤
⎢
⎣

⎡

TtxTtxtxtxtxtxAtx

txW

faa

aD
T

,ε

  (2-4) 

If the ( )tx  values in this manifold are interpreted as possible values of the true state ( )tx t  the 

perturbations ( ) ( )txtx a−  define a set of possible analysis errors ( ) ( )txtx at −  at t .  

The manifold of growing forecast errors ( )[ ]TtxW fG
T +  is the set of perturbations from ( )Ttx f +  

that have grown over ],[ Ttt + : 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−>+−+<+−+∈+

=⎥
⎦

⎤
⎢
⎣

⎡
+

txtxTtxTtxTtxTtxATtx

TtxW

aff

fG
T

,ε (2-5) 

If the ( )Ttx + 's in this manifold are interpreted as possible values of the true state ( )Ttxt +  the 
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perturbations ( ) ( )TtxTtx f +−+  define a  set of possible forecast errors ( ) ( )TtxTtx ft +−+  at 

Tt + . 

It is possible to approximate the manifolds of decaying and growing errors if ε  and T  are 

sufficiently small.  To do this we divide ],[ Ttt +  into k  time steps each of length dt  and 

approximate the forward time evolution as follows: 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−≈⎥

⎦

⎤
⎢
⎣

⎡
+−⎥⎦

⎤
⎢⎣
⎡ +=+−+ + txtxFTttxfTttxfTtxTtx a

Ttt
af

,,,   (2-6) 

where TttF +,  is an nn×  state transition matrix defined by: 

( ) dtttdttdttkdttdtktkdtttTtt FFFFF ++++−+++ ×××== ,2,,1,, L      (2-7) 

and each term on the right hand side, 

)(

,

),(

τ

ττ

ττ

x

dt x

dtxf
F

∂

⎥⎦
⎤

⎢⎣
⎡ +∂

=+  is an nn×  Jacobian matrix 

(or propagator) evaluated at ( )τx , the best estimate of the state, which is the forecast except just 

after an update, when it is the analysis. 

The state transition matrix may be characterized by its singular value decomposition: 

T
TttTttTttTtt VUF ++++ Σ= ,,,,         (2-8) 

where TttU +,  and TttV +,  are matrices with columns consisting of the left and right singular vectors 
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of TttF +, , respectively, and Ttt +Σ ,  is a diagonal matrix of ordered singular values 

nN σσσσ ≥>≥≥≥≥ LL 121 .  Let the N  leading columns of TttU +,  and TttV +,  which 

correspond to Nσσ ,,1 L  be placed as columns of N
TttU +,  and N

TttV +, , respectively, and the 

remaining columns of TttU +,  and TttV +,  be placed as columns in Nn
TttU −

+,  and Nn
TttV −

+, .  In  this case 

(2-8) can be rewritten as: 

T

Nn
Ttt

N
TttNn

Ttt

N
TttNn

Ttt
N

TttTtt VVUUF
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Σ
Σ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −

++−
+

+−
+++ ,,

,

,
,,, 0

0
    (2-9) 

where N
Ttt +Σ ,  and Nn

Ttt
−
+Σ ,  are diagonal matrixes. In practice the singular vectors and singular values 

of TttF +, can be computed following the procedure outlined in Appendix A, without actually 

forming and storing TttF +, . 

In order to facilitate discussion of the geometrical aspects of error growth we define the column 

space of a matrix as the space spanned by its columns, which can be viewed as vectors in the 

state space. When the linearization of (2-6) applies perturbations at t  lying in the column space 

Nn
tE −  of Nn

TttV −
+,  will decay to smaller perturbations at Tt +  that lie in the column space of Nn

TttU −
+, . 

Similarly, small perturbations at t  lying in the column space of N
TttV +,  will grow to larger 

perturbations at Tt +  that lie in the column space N
TtE +  of N

TttU +, . These relationships provide a 

practical characterization of the decaying and growing manifolds. When certain regularity 

conditions hold Nn
tE −  is tangent to the manifold ( )[ ]txW aD

T  of decaying analysis errors while 
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N
TtE +  is tangent to the manifold ( )][ TtxW fG

T +  of growing forecast errors (Jaeger and Kantz, 

1997).  The relationships between the singular vectors and the spaces Nn
tE −  and N

TtE +  are 

illustrated in Figure  2-1.  

The singular vectors of the state transition matrix provide a convenient characterization of error 

growth and decay so long as the linear approximations they rely upon are valid (Mukougawa et 

al., 1991).  In chaotic systems the use of singular vectors to describe growing and decaying 

directions may break down at bifurcations and at certain other points on the attractor (Palis and 

Takens, 1993; Kraut and Grebogi, 2004; Robert et al., 2000; Schroer et al., 1998).  However, 

singular vectors can provide valuable information about nonlinear dynamical properties in many 

situations of practical interest.  We consider how singular vectors can be used to construct 

efficient and accurate reduced rank filters after reviewing some of the properties of linear update 

algorithms. 

2.2.2 Properties of Linear Updating Procedures 

With the distinctions between growing and decaying errors in mind we can now examine the 

structure of a sequential data assimilation algorithm that uses a linear update to derive state 

estimates. We assume that the observations used at update time t  are assembled in the m -

dimensional vector, )(ty  which is a linear function of the true state: 

( ) ( ) ( ) ( )ttxtHty t υ+=         (2-10) 
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where ( )tH  is an nm×  observation matrix, the measurement error ( )tυ  is a zero mean random 

vectors with known covariance ( )tR , which is mutually uncorrelated with both ( )0txt  and ( )tω . 

The forecast and analysis equations for a sequential filter with a linear update are: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,         (2-11) 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+= txtHtytKtxtx ffa       (2-12) 

where ( )tK  is an mn×  weighting (or gain) matrix and the filter is initialized with 

( ) ( )00 txtx ta = .  

The algorithm uses the nonlinear function ( ) ⎥
⎦

⎤
⎢
⎣

⎡
stxf a ,  in (2-11) to propagate the analysis ( )txa  at 

time t  forward to give a forecast ( )sx f  at some time ts > . When Tts +=  the forecast is 

updated in (2-12) with the measurement ( )ty . 

The weighting matrix used in a linear filtering algorithm can be derived in a number of different 

ways.  One option is to select the gain to minimize the expected value of the Euclidean norm of 

the analysis error.  When the measurements are linear functions of the states and the system 

dynamics are also linear, this norm yields the Kalman Filter (KF) (Gelb, 1974), which uses the 

following gain: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1
−

−
⎥
⎦

⎤
⎢
⎣

⎡
+== tRtHtPtHtHtPtRtHtPtK TfTfTa    (2-13) 

The analysis error covariance matrix ( )tPa  required in (2-13) can be computed from the forecast 

error covariance ( )tP f  as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tPtHtRtHtPtHtHtPtPtP fTfTffa

1−

⎥
⎦

⎤
⎢
⎣

⎡
+−=     (2-14) 

and the forecast error covariance is computed from the previous analysis covariance using the 

following covariance propagation equation: 

( ) ( ) ( ) ( ) ( )TtQTtPTtQFtPFTtP fT
Ttt

a
Ttt

f +++=++=+ ++
~

,,    (2-15) 

where ( ) ( )00 tPtP ta = , TttF +,  is the state transition matrix over [ ]Ttt +, , and we have defined 

( ) ( ) T
Ttt

a
Ttt

f FtPFTtP ++=+ ,,
~ .  The covariance ( )TtP f +~  may be viewed as the portion of the total 

forecast covariance due only to uncertainties in the previous analysis. Note that ( )TtP f +  

includes the effect of model error but ( )TtP f +~  does not. 

When the dynamics and/or the observation operator are nonlinear, the linearized expressions in 

(2-13)-(2-15) may be adopted as approximations, giving the classical extended Kalman filter 

(EKF) (Miller et al., 1994; Miller et al., 1999; Picard, 1991, Ide and Ghil, 1997a and 1997b).  

Here, we assume that the observation operator is linear as in (2-10) and focus only on nonlinear 

dynamics. The approximation in (2-15) is useful for a chaotic system only if the state transition 
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matrix TttF +,  is recomputed with a sufficiently small dt  to track the continually changing 

directions of error growth and decay. This can be computationally demanding for the large 

nonlinear systems of most interest in geophysical applications. 

The computational difficulties encountered with covariance propagation and updating can be 

mitigated if some of the matrices used in the filter algorithm are replaced by reduced rank 

approximations.  Reduced rank versions of Kalman filtering have been described by Fukumori 

and Malanotte-Rizzoli (1995), Cane et al. (1996), Buehner and Malanotte-Rizzoli (2003), Farrell 

and Ioannou (2001), Heemink et al. (2001), Lermusiaux and Robinson (1999), Pham et al. 

(1998), Ubaldi et al. (2005), Ubaldi and Travisan (2006), and Evensen (2003, 2004). Here we 

use a reduced rank approximation of TttF +,  to compute ( )TtP f +
~  in (2-15). By contrast, most 

other reduced rank approaches are based on approximations of ( )TtP f + . 

It is useful to consider the impact of a reduced rank approximation on the Kalman update both 

with and without model error. The update from forecast to analysis given in (2-12) must lie in the 

column space of the Kalman gain )(tK . If we assume that )(tR  has a full rank of m  the column 

space of )(tK  lies in the column space of the product ( ) ( )Tf tHtP . This implies that the space of 

updates depends on both ( )tP f  and ( )TtH , but has in any case a dimension no larger than m , 

the number of measurements. If ( )tP f  is full rank only the measurement network described by 

)(tH  constrains the update subspace, which has dimension m . If ( )tP f  has rank nr <  the 

update subspace may be further constrained by the rank reduction procedure. When the 

measurement network is properly matched to the reduced rank forecast covariance the update 
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subspace dimension attains its maximum value of ).,min( mr  By contrast, if the errors accounted 

for in the reduced rank forecast covariance cannot be observed (e.g. if the columns of ( )TtH  are 

orthogonal to those of ( )tP f ) the Kalman gain is zero and no updates are made. 

If dynamic model error is zero ( ( ) 0=+ TtQ ) then ( ) ( )TtPTtP ff +=+ ~  and a reduced rank 

approximation of ( )tP f~  has the same impact on the update subspace as a reduced rank 

approximation of ( )tP f . If model error is included, if ( )TtQ +  is full rank, and if a reduced rank 

approximation is only applied to ( )tP f~  then ( )tP f  is full rank and the update subspace will have 

dimension m . In this case the full rank ( )tP f  accounts for uncertainty contributed by all the 

model errors but it only accounts for uncertainty in the propagated analysis errors that lie in the 

column space of ( )tP f~ .  

This discussion suggests that it is advisable to reduce the rank of ( )tP f~  rather than ( )tP f  when 

model errors are included, so that the filter will be able to correct these errors in the update step. 

We shall see in Section 2.3 that this can be done without sacrificing the computational benefits 

of the reduced rank approach.  Moreover, since model errors are properly accounted for we can 

focus on propagated analysis errors when selecting the column space of ( )tP f~ . A reasonable 

design criterion is to require that the column vectors of ( )tP f~  lie in the space N
TtE +  of growing 

errors described in section 2.1. Then the filter will be able to update all growing analysis errors, 

provided that ( ) ( )Tf tHtP has rank Nr ≥ . It should be noted that the growing singular vectors 

that define N
TtE +  are always changing in a chaotic system, so that errors that are growing at one 
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time may soon decay and vice versa. If transient growing errors are missed in the update the 

filter may still be able to track the true trajectory. However, since it is difficult to know how 

large growing errors will become before they may decay, a conservative approach is to design 

the filter so that it can update all growing errors. This objective will be achieved if Nr ≥ , 

Nm ≥ , ( ) ( )Tf tHtP has rank Nr ≥ ,  the column space of  ( )tP f~  projects onto N
TtE + , and 

updates are sufficiently frequent to justify linearization assumptions.  These requirements form 

the basis for the singular vector Kalman filter (SVKF) described in Section 2.3.   

In order to introduce some of the issues that arise in applications of reduced rank filtering to 

chaotic systems it is useful to review one of the most popular reduced rank alternatives, the 

ensemble Kalman filter (EnKF) (Evensen, 1994, 2003, 2004; Bishop et al., 2001, Anderson, 

2001). The EnKF uses (2-2) to propagate through time a set of r  random analysis perturbations 

( )0tx a  generated at 0t  with the specified initial state mean and covariance. Each replicate is 

updated according to (2-13) and (2-14) at the analysis times, with ( )tPa  estimated from the 

forecast perturbations. If dynamic model error is included additional random perturbations are 

added to the forecasts between analysis times.  In this case the Nr <  dimensional update 

subspace at any given time is random (i.e. it is different for every replicate) (Paul, 2007).   

It is important to consider the temporal behavior of the subspace spanned by the forecast 

perturbations generated by any reduced rank filter, including the ensemble Kalman filter.  This 

can be done by constructing a matrix ( )TtLf +  with column j  given by ( ) ( )TtxTtL fjfj +=+ δ . 

This matrix is a square root of the reduced rank forecast covariance. A number of investigators 
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have observed that the rank of ( )TtLf +  tends to decrease as T  increases if model error is not 

included (i.e. if ( ) 0=tQ ), indicating an increase in linear dependence among the propagated 

vectors.  This is true for linear as well as nonlinear systems and can occur even if ( )TtLf +  is 

initially full rank.  The loss of rank occurs because independent perturbation vectors propagated 

through deterministic dynamics eventually all line up with the leading Lyapunov vector (Kalnay, 

2003).  This convergence to the Lyapunov vector can still occur even if the propagation is 

interrupted by linear updates that periodically rotate and rescale the vectors, as is done in reduced 

rank versions of the ensemble Kalman filter. 

Loss of rank in an ensemble Kalman filter manifests itself as ensemble collapse -- the tendency 

for all the random replicates to converge to a single vector.  In this case, there is no variability 

around the ensemble mean and measurements only have an effect in the direction of the single 

remaining replicate.  Ensemble collapse has important implications for ensemble filters that are 

applied to chaotic systems such as those encountered in meteorology.  When there are many 

independent perturbations and the ensemble subspace has a higher dimension than  

( )⎥
⎦

⎤
⎢
⎣

⎡
+ TtxW fG

T  it is likely that this subspace contains projections of all growing directions.  

However, if the perturbations lose their independence and the ensemble collapses the dimension 

of the ensemble subspace will decrease until one or more growing directions in ( )⎥
⎦

⎤
⎢
⎣

⎡
+ TtxW fG

T  

are missed (i.e. they no longer project onto the ensemble subspace).  As the ensemble collapses 

further the subspace dimension approaches one and the filter diverges. 
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Rank loss may usually be prevented if dynamic model error of sufficient intensity is included 

when the vectors are propagated through (2-2).  If the model errors have projections on all 

directions in the state space propagated vectors that are perturbed with these errors at every time 

step will not collapse to a single direction.  This is one reason why most applications of 

sequential filtering to non-chaotic systems include dynamic model error in the forecast step. 

In an ensemble Kalman filter dynamic model error can be included by adding random 

perturbations to the state equation. Unfortunately, such perturbations can induce non-physical 

anomalies or imbalances.  This is a serious problem in numerical weather prediction, where 

small perturbations in model states can generate spurious inertial or gravity waves (Barwell and 

Bromley, 1988, Daley, 1991, Gauthier and Thépaut, 2001, Fillion, 2002, Neef et al., 2006).  In 

effect, the model error perturbation drives forecast vectors off the attractor into regions of the 

state space where they follow non-physical trajectories. For this reason, most ensemble filters 

used in meteorological data assimilation applications do not include dynamic model error and 

use other methods to deal with ensemble collapse (Houtekamer and Mitchell, 2001; Hamill et al., 

2001; Anderson and Anderson, 1999; Pereira and Berre, 2006; Gaspari and Cohn, 1999).  While 

such methods may be effective in certain situations the conflict between ensemble collapse 

(when model error is ignored) and imbalance (when model error is included) makes the EnKF 

problematic in some important application areas.    

The implementation of a reduced rank filter based on singular vectors depends strongly on the 

norm used to define the magnitude of perturbations. In some cases, different norms may be 

specified at the analysis and forecast times. For example, if the analysis and forecast norms are 
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chosen as described in Ehrendorfer and Tribbia (1997) and there is no dynamic model error the 

most rapidly growing singular vectors align with the leading eigenvectors of the forecast 

covariance (the directions of largest uncertainty). These vectors are commonly called the Hessian 

singular vectors since they can be derived from the Hessian of a variational objective function 

(Barkmeijer et al., 1999). Fisher (2001) describes a simplified Kalman filter based on Hessian 

singular vectors. 

The new singular vector Kalman filter proposed here is based on the leading singular vectors of 

the state transition matrix described in Section 2.2.1 rather than the forecast covariance 

eigenvectors. These singular vectors are used to derive the projection of the forecast covariance 

is filter is designed to insure that the Kalman update at Tt +  accounts for uncertainties in the 

subspace N
TtE + of growing errors spanned by the columns of N

TttU +, . In addition to focusing on 

growing errors our SVKF deals explicitly with the rank deficiency problems that arise when 

dynamic model error is neglected. The SVKF is described in Section 2.3 and tested in a set of 

computational experiments in Section 2.4. 

2.3 The Singular Vector Kalman Filter 

In this section, we present the formulation of a reduced rank Kalman Filter that updates in the 

space of growing errors.  We assume that the state vector is already normalized by a chosen 

positive definite deterministic matrix as discussed in Section 2.2.1 and use a simple Euclidean 

norm.  The forecast and analysis equations are exactly as in (2-11) and (2-12) but the Kalman 

gain is derived from a low rank approximation to the analysis covariance square root matrix 
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(Andrews, 1968).  The square root approach in our formulation avoids explicit calculation of 

large analysis and forecast covariance matrices and also has an enhanced numerical precision.   

A square root formulation is more attractive when the square roots ( )tR  and ( )tQ  of the 

noise covariance matrices ( )tR  and ( )tQ  are easy to compute.  Here we assume that ( )tQ  is full 

rank and diagonal so ( )tQ  is an nn×  diagonal matrix.  We assume that nm <<  and that 

( )tR  may be readily computed from a singular value decomposition of ( )tR .  Both of these 

assumptions can be relaxed at the expense of complicating the algorithm. 

The square root algorithm for computing the Kalman gain can be expressed as a recursion which 

is initialized at a specified time 0=t  and repeated at each subsequent measurement (or analysis) 

time.  For simplicity of notation we assume that the time between measurements is fixed at T .  

We start by defining rank nN <  square roots ( ) )(tPtL aa =  and ( ) )(tPtL ff =  of the analysis 

and forecast covariance matrices, which have the same column spaces as ( )tPa  and ( )tP f : 

( ) ( ) ( )
( ) ( ) ( )Tfff

Taaa

tLtLtP

tLtLtP

=

=
         (2-16) 

With these definitions, we can develop square root versions of the classic update and propagation 

equations of (2-13) through (2-15), with t  indicating the initial time or the most recent analysis 

time and Tt +  indicating the next analysis time:  

Forecast from time t  to Tt + : 
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( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=+ TtQTtLTtL ff ~        (2-17) 

where | indicates concatenation of two dimensionally consistent matrices and 

( ) ( ) ( ) ( )tLVUtLFUUTtL aTN
Ttt

N
Ttt

N
Ttt

a
Ttt

TN
Ttt

N
Ttt

f
++++++ Σ=⎥

⎦

⎤
⎢
⎣

⎡
=+ ,,,,,, )(~    (2-18) 

Update at time Tt + : 

( ) ( ) ( ) ( ) ( ) 1−++++=+ TtRTtHTtLTtLTtK TTaa      (2-19) 

where: 

( ) ( ) ( ) ( ) ( )TtLTtHTtTtLTtL ffa +++Ψ−+=+      (2-20) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1−

−

⎥
⎦

⎤
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
+++=+Ψ TtRTtZTtZTtLTtHTtLTt

T
T

ff  (2-21) 

( ) ( ) ( ) ( ) ( ) ( )TtRTtLTtHTtLTtHTtZ
T

ff ++⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+    (2-22) 

In this algorithm the term ( )TtL f +~  in (2-17) and (2-18) is the projection of the propagated 

analysis square root covariance ( )tLF a
Ttt +,  onto the subspace  of growing perturbations (the 

column space of N
TttU +, ). The augmented term ( )TtQ +  in (2-17) accounts for the effect of 

dynamic model error and insures that (2-17) and (2-18) are equivalent to (2-15). The resulting 



 39

expression for the reduced rank square root forecast covariance ( )TtLf +  is consistent with our 

requirement that all growing perturbations are included in the forecast covariance column space.  

The rest of the algorithm is compatible with classic Kalman filtering algorithms. In particular, (2-

19) is the same as (2-13) and (2-20)-(2-22) are the square root equivalent of (2-14) following 

Andrews (1968) and also shown in appendix C. 

For computational efficiency the above expressions are modified to take advantage of the rank 

deficiency of several large matrices. This avoids the need to compute or store any matrices with 

more than ( )Nm,max  columns (where it is presumed that nN <<  and nm << ). The resulting 

recursion is described by the following equations: 

1. Initialization: 

• ][⋅f , )(tH , ( )tQ , and ( )tR  specified for all 0>t  

• ( )0ax  and ( )00
aa PL =  is specified (e.g. as a given diagonal matrix) or derived from 

a specified set of column vectors (e.g. random ensemble replicates). Number of 

columns p  will generally be less than n . 

At each time ( L,2,,0 TTt = ): 

2. Compute the forecast by (2-11): 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,  



 40

3. Compute a truncated singular value decomposition (SVD) of the state transition matrix 

TttF +, , using the procedure described in Appendix A. 

This procedure iterates linear forward and adjoint integrations of the nonlinear model 

around the forecast trajectory over [ ]Ttt +,  to compute the leading singular vectors and 

associated singular values of the state transition matrix. The matrix TttF +,  does not have 

to be calculated or stored. The SVD matrices produced at time t  are N
Ttt

U
+,

N
Ttt

V
+,

, and 

N
Ttt +

Σ
,

. 

4. Compute the matrix Ttt +Γ , : 

If 0=t : aTN
T LV

T 0,0 )(
,0

=Γ , pNDim T ×=Γ ][ ,0      (2-23) 

p  = number of vectors used to construct aL0   

If 0>t : ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ=Γ ++ )(~

,, ttLV aTN
TttTtt , )(][ , nNNDim Ttt +×=Γ +   (2-24) 

( ) )(,~ ttLa Φ  from previous cycle 

5. Compute Ttt +Γ ,
~ , an equivalent to Ttt +Γ ,  in the sense that T

TttTtt
T

TttTtt ++++ ΓΓ=ΓΓ ,,,,
~~ , based 

on an SVD of Ttt +Γ , , NNDim Ttt ×=Γ + ]~[ , . 

6. Compute )(~ TtLf + , ( ) NnTtLDim f ×=+ ]~[ : 
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( ) Ttt
N

Ttt
N

Ttt
f UTtL +++ ΓΣ=+ ,,,

~~        (2-25) 

7. Compute )( TtZ +  in a revised form of (2-22), ( ) mmTtZDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) +⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+

T
ff TtLTtHTtLTtHTtZ ~~

( ) ( ) ( ) ( ) ( )TtRTtQTtHTtQTtH
T

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++   (2-26) 

8. Compute )( Tt +Ψ  in a revised form of (2-21), ( ) mnTtDim ×=+Ψ ][ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ⋅
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
+++=+Ψ

TT
ff TtQTtHTtQTtLTtHTtLTt ~~

( ) ( ) ( )
1−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++ TtRTtZTtZ

T
    (2-27) 

9. Compute )(~ TtLa + , ( ) NnTtLDim a ×=+ ]~[ : 

( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+++Ψ−+=+ TtLTtHTtTtLTtL ffa ~~~     (2-28) 

10. Compute )( Tt +Ξ , ( ) nmTtDim ×=+Ξ ][ : 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++⎥⎦

⎤
⎢⎣
⎡ +Ψ+−⎥

⎦

⎤
⎢
⎣

⎡
++=+Ξ TtQTtHTtTtHTtQTtHTt         (2-29) 
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11. Compute )( TtK + , ( ) mnTtKDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( )

( ) 1

1

)()(

~~

−

−

++Ξ++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=+

TtRTtTtQ

TtRTtLTtHTtLTtK

T

T

aa

( ) 1)()()()( −++Ξ+++Ψ− TtRTtTtQTtHTt T    (2-30) 

12. Compute updated estimate (analysis): 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+ TtxTtHTtyTtKTtxTtx ffa   (2-31) 

13. Compute )( Tt +Φ  (for next cycle), ( ) nNTtDim ×=+Φ ][ : 

( ) ( ) ( ) ( ) ( ) ( ) ( )TtQTtHTtVTtQVTt TN
TtTt

TN
TtTt +++Ψ−+=+Φ ++++ 2,2,  (2-32) 

14. Exit or return to Step 2.  

Appendix B shows that this recursion gives the same Kalman gain as (2-19). 

The recursion algorithm simplifies greatly when model errors can be neglected and 0)( =tQ .   In 

that case it becomes:  

1. Initialization: 

• ][⋅f , )(tH , and ( )tR  specified for all 0>t . 
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• ( )0ax  and aL0  = ( )0aP specified or derived. 

At each time ( L,2,,0 TTt = ): 

2. Compute forecast by (2-11): 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,  

3. Compute singular value decomposition (SVD) of the state transition matrix TttF +, , using 

the procedure described in Appendix A. The SVD matrices produced at time t  are N
Ttt

U
+,

, 

N
Ttt

V
+,

, and N
Ttt +

Σ
,

. 

4. Compute the matrix Ttt +Γ , : 

If 0=t : aTN
T LV

T 0,0 )(
,0

=Γ , pNDim T ×=Γ ][ ,0      (2-33) 

p  = number of vectors used to construct aL0   

If 0>t : ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+Λ=Γ ++ )(,, TttLV aTN

TttTtt , )(][ , nNNDim Ttt +×=Γ +  (2-34) 

( )tLa  from previous cycle and ( )Tt +Λ  is a correction term explained below. 

This term, which is not included in the general recursion, accounts for 

growing errors that are missed in the SVD truncation process in the case 

without dynamic model error:  
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( ) ( ) ( ) ( ) ( )trttIVTt TTN
Ttt ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−=+Λ +,     (2-35) 

( ) =Ω t  an orthogonal matrix with the same column space as ( )tLa  

=)(tr  a scalar 

5. Compute Ttt +Γ ,
~ , which is equivalent to Ttt +Γ ,  in the sense that T

TttTtt
T

TttTtt ++++ ΓΓ=ΓΓ ,,,,
~~ ,  

based on an SVD of Ttt +Γ , , NNDim Ttt ×=Γ + ]~[ , . 

6. Compute )( TtLf + , ( ) NnTtLDim f ×=+ ][ : 

( ) Ttt
N

Ttt
N

Ttt
f UTtL +++ ΓΣ=+ ,,,

~         (2-36) 

7. Compute )( TtZ + , ( ) mmTtZDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) ( )TtRTtLTtHTtLTtHTtZ
T

ff ++⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+ `  (2-37) 

8. Compute )( TtLa + , ( ) NnTtLDim a ×=+ ][ : 

( ) ( ) ( )TtTtLTtL afa +Π+=+       (2-38) 

where ( ) NNTtDim a ×=+Π ][  and: 

( ) ( ) ( ) ( ) ( ) ( )
1−

−

×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
++−=+Π TtRTtZTtZTtLTtHITt

T
T

f
NN

a
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( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++ TtLTtH f~       (2-39) 

9. Compute )( TtK + , ( ) mnTtKDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) 1−+⎥
⎦

⎤
⎢
⎣

⎡
+++=+ TtRTtLTtHTtLTtK

T
aa     (2-40) 

10. Compute updated estimate (analysis): 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+ TtxTtHTtyTtKTtxTtx ffa   (2-41) 

11. Exit or return to Step 2. 

The correction term that appears in (2-34) is needed to account for the fact that errors that were 

formerly decaying but start to grow can be missed if the model error covariance is zero. To see 

this it is useful to consider three successive update times Tt − , t , and Tt + . The update at time 

t  is able to handle errors that grow between Tt −  and t  and lie in the column space of  N
tTtU ,− .  

Now consider an error ε  that was decaying between Tt −  and t  but starts growing between t  

and Tt + . This error lies in the column space of N
TttV +,  at time t  (because it is starting to grow) 

but it also lies in Nn
tTtU −

− ,  (because it was previously decaying). Since it lies in the column space of 

Nn
tTtU −

− ,  the error ε  is orthogonal to the column spaces of N
tTtU ,− , )(tLf  and )(tLa  (note that (2-36) 

and (2-38) imply that the column space of  )(tLa  lies in the column space of )(tLf , which lies in 
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the column space of N
tTtU ,− ). Consequently, )(tLa  has no projection along ε  and the filter 

effectively assumes zero uncertainty in the ε  direction.   

Between t  and Tt +  the error ε  is growing rather than decaying. However, the filter will not 

correct this error at Tt + , even though it is known to be growing and to lie in the column spaces 

of N
TttU +,  and ( )TtLf + . This is because there is no projection of ε  onto )(tLa  and therefore no 

projection onto Ttt +Γ ,  (see (2-34) for ( ) 0=+Λ Tt ). If model error were included ε  would 

project onto ( )TtLf +  at Tt +  even though it has zero magnitude at t . The correction term 

( )Tt +Λ  is designed to compensate for the absence of model error so ε  will project onto Ttt +Γ ,  

at Tt +  if it is in the column space of N
TttU +, .   

To derive ( )Tt +Λ  define ( )tΩ  to be an orthogonal matrix that has the same column space as 

)(tLa . Then the expression )()()( trttI T
n ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−  defines a set of column vectors that lie in the 

null space of )(tLa  and have magnitudes proportional to the specified scalar )(tr . This scalar 

weighting factor can be viewed as a representative standard deviation for uncertainties that are 

decaying at t  but are not resolved in the reduced rank filter.  

When )()()( trttI T
n ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−  is propagated forward to Tt +  using the SVD of TttF +,  the result is 

the augmentation of ( )Tt +Λ  from (2-35) in (2-34).  Note that the column space of this 

correction term lies in the column space of N
TttU +,  (errors growing between t  and Tt + ) but is 
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proportional to postulated uncertainties in the column space of Nn
tTtU −

− ,  (errors decaying between 

Tt −  and t ).   

The scalar )(tr  should be selected to be large enough to insure that some uncertainty is assigned 

to decaying errors that may start growing but small enough to insure that the modified filter does 

not exaggerate the model’s uncertainty. In the application discussed here it is reasonable to relate 

)(tr  to the level of measurement error uncertainty, which provides a rough upper bound for the 

uncertainty in unresolved decaying errors: 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= + tRtHtr   aluesingular vmax        (2-42) 

where ( )tH +  is the mn×  pseudo-inverse of ( )tH .  In other applications, a better )(tr  based on a 

stricter bound may be used. 

2.4 Assimilation Experiments with the Lorenz 95 system 

In this section we test the singular vector Kalman filter (SVKF) on a chaotic Lorenz 95 system 

(Lorenz and Emanuel, 1998, Hansen, 1998), with and without dynamic model error.  The state 

equation for this system is: 

,n,  j      ,   xxxx
dt

dx
jjjj

j
L1)( 121 =+−−= −−+ θ      (2-43) 

with boundary conditions 11011 ,, +−− === nnn xxxxxx .  The cyclic chain created by these 
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boundary conditions can be thought of as an unspecified scalar meteorological quantity at n  

equally spaced locations around a latitudinal circle.  The total energy, ∑
n

jx2  is conserved in the 

first two quadratic advection terms but is dissipated by the negative linear term.  The last term on 

the right hand side is an external forcing that prevents the energy from vanishing.  The mean and 

the standard deviation of jx , are in the ranges of [ ]θ,0  and ⎥⎦
⎤

⎢⎣
⎡

2
,0 θ , respectively.  Thus each state 

variable can be assumed to stay within ( )θθ 2,−  for 95% of the time, meaning that the magnitude 

of the natural variability of each state variable is about θ3 . 

Depending on the magnitude of θ  the system exhibits a wide range of dynamical properties: 

completely dissipative, quasi periodic or chaotic.  To find the forcing threshold for chaotic 

behavior we follow the analysis by Lorenz and Emanuel (1998).  Perturbations jxδ  around the 

steady solution ,n, , jx j L1== θ  can be written as follows: 

( ) ( ) j21 δxδxδxδx
dt
d

jjj −−= −+ θ        (2-44) 

Solving (2-44) for a solution with exponential form ∑=
k

i.j.k
kj epδx  gives: 

( ) k
i.ki.kk pee

dt
dp

⎥
⎦

⎤
⎢
⎣

⎡
−−= − 12 θ        (2-45) 

which becomes unstable only if ( ) 1Re 2 >⎥
⎦

⎤
⎢
⎣

⎡
− − θi.ki.k ee , i.e. ( ) ( ) θ

12coscos >⎥⎦
⎤

⎢⎣
⎡ − kk .  It is easy 
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to show that the maximum of the expression on the left hand side is 8
9 , which happens at 

( ) 4
1cos =k , i.e. a wave with period of about 4.77.  The closest wave with a integer period that 

is a divisor of the state size 144=n , has a period of 6, which makes 3
π=k  and 

( ) ( ) 12coscos =⎥⎦
⎤

⎢⎣
⎡ − kk .  Therefore, the threshold forcing that leads to an unstable solution to (2-

45) with 144 state variables is 1=θ .   

We set 8=θ  because this value is sufficiently large to insure that the system remains in the 

chaotic regime when random dynamic model errors are added to the state equations.  With 8=θ  

and 144=n , Lorenz 95 model has a positive leading Lyapunov exponent while the sum of the 

Lyapunov exponents is negative.  Therefore, the system is chaotic and the uncertainties grow 

exponentially, while the resulting trajectory is bounded within a hyper-cube of θ3  along each 

side.  The largest Lyapunov exponent corresponds to an error doubling time of  ~0.38 units of 

model time, equivalent to about 2 days in an atmospheric model.   

For numerical integration of (2-43), we use a fourth order Runge Kutta scheme with 01.0=dt  

(equivalent to 1.2 hrs in an atmospheric model).  We may occasionally reduce the time step to 

avoid numerical instability.  At every 10 time steps (12 hrs in an atmospheric model), noisy 

observations of 108 of the state variables are available.  The observed states are chosen randomly 

but the observation operator in (2-11) does not change over time.  The standard deviation of the 

observation noise is assumed to be 0.10, corresponding to about 1% of the attractor radius.  

Experiments are conducted over 16 units of model time, equivalent to 80 days in the atmosphere. 
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Figure  2-2 shows plots ranked singular values (from largest to smallest) vs. rank for the 144D 

Chaotic Lorenz 95 model.  These singular values were obtained from linearizations of the model 

about the open loop value of the state at 2000 typical times, representing points distributed 

throughout the attractor. This plot indicates that the number of growing directions (singular 

values greater than 1.0) is typically 50 - 70. 

We measure the performance in terms of the root mean square analysis error (RMSE) defined as 

follows for a given true trajectory ( )txt  (which is known in our synthetic experiments): 

( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−= txtxtxtx

n
xtNRMSE ta

T
tat 1,,      (2-46) 

For the SVKF ( )txa  is the analysis computed at t  from (2-12).  For the ensemble Kalman filer 

( )txa  is the mean over all the analysis replicates at t .  The analysis RMSE can be bounded from 

above with the RMSE of ( )txa  values obtained from a forward integration of the model, with the 

initial states set to mean values and with no updates (OpenLoop).  The lower bound is achieved 

with the ( )txa  values computed by a full rank EnKF with updates included and the number of 

replicates set at nN >>  (Optimal).  In order to obtain this lower bound for the case with model 

error present we use the analysis produced by a square root version of the ensemble Kalman 

filter (Evensen, 2004) with 1440=N  replicates.  The EnKF is not run for the no-model error 

case because it suffers from the problem of ensemble collapse discussed earlier.  However, the 

SVKF is tested for both the model error and no model error cases.  For a given rank N  we 

propagate N  singular vectors (for the SVKF) or 1+N  replicates (for the EnKF). 
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In our first experiment we include dynamic model error with a constant covariance diagonal 

( ) 05.0=tq .  When this level of model error is added to Lorenz 95 the EnKF does not 

experience any of the structural instabilities that can cause problems when dynamic error is 

added to numerical weather prediction models.  Figure  2-3 shows the ( )txtNRMSE ,,  time series 

obtained from the SVKF and EnKF with different values of N  for a typical “true” trajectory 

generated as an open loop solution with a particular set of random initial conditions.  The 

OpenLoop trajectory obtained for mean initial conditions is also shown provided for comparison. 

The RMSE values for both the SVKF and EnKF decrease as N  grows.  For a given N , the 

SVKF gives lower RMSE than the EnKF because its reduced rank subspace is more efficient in 

capturing growing errors.  As N  increases the SVKF converges more quickly than the EnKF to 

the Optimal lower RMSE bound. 

The results shown in Figure  2-3 apply only to a particular true trajectory.  To obtain a more 

general performance assessment we evaluated the filter RMSE over many different possible true 

trajectories.  In this case aggregate performance is measured by ( )NErr , the average of the 

asymptotic level of ( )txtNRMSE ,,  over the I  true values t
I

tt xxx ,,, 21 K : 

( ) ( )∑
=

∞→ ⎥
⎦

⎤
⎢
⎣

⎡
=

I

i

t
it

xtNRMSE
I

NErr
1    

,,lim1        (2-47) 

In our experiments, first we approximate ( )⎥
⎦

⎤
⎢
⎣

⎡
∞→

t
i

t
xtNRMSE ,,lim  by the temporal mean of 

( )txtNRMSE ,,  over all times after a transient period of 8 units of model time.  Then we 
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compute ( )NErr  by averaging this asymptotic level of the analysis error over 80=I  different 

truths. 

Figure  2-4 shows ( )NErr  for the SVKF, EnKF, OpenLoop, and Optimal cases.  As expected, 

( )NErr  for both filters improves as N  grows, while it remains bounded from above and below 

by the OpenLoop and Optimal results, respectively.  The ( )NErr  of SVKF converges to the 

Optimal for 70>N , which is the point where enough singular vectors are retained to insure that 

the reduced rank subspace is the same as N
TtE + .  In this case all of the growing errors are captured 

in the update process (See Figure  2-2). 

This is confirmed in Figure  2-5, where we have plotted the number of growing directions 

captured in the reduced rank subspace as a function of the dimension of this subspace (number of 

singular vectors retained). Note that the EnKF is less efficient in capturing these directions since 

it works in a random subspace that need not capture all growing directions even if the number of 

replicates exceeds the dimension of ( )⎥
⎦

⎤
⎢
⎣

⎡
+ TtxE fG

T .  For example, Figure  2-3 shows that the 

EnKF needs about 140~N  replicates to give ( )NErr  values as small as those obtained with the 

SVKF with a much smaller N . 

In order to compare reduced rank filters for different size problems, we define an Asymptotic 

Optimality Index (AOI), which is the ratio of the log error reduction achieved to the maximum 

possible log error reduction: 
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( )
( )

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡

=

OptimalOpenLoop

OpenLoop

ErrErr

NErrErr
NAOI

loglog

loglog
 ,   ( ) 10 ≤≤ NAOI    (2-48) 

An AOI close to 1 means that the asymptotic performance of the reduced rank filter is nearly 

Optimal, while a small AOI shows that the filter is not providing any significant improvement 

over the OpenLoop case.  Figure  2-6 shows the AOI for the SVKF and EnKF as a function of 

n
N , the ratio of the reduced rank filter size to the size of a full rank filter.  Here, the superiority 

of SVKF to EnKF is evident, reflecting the efficiency achieved by focusing on growing modes.  

In particular, when the rank of the filter is just 20% of the state size, the SVKF is nearly identical 

to Optimal. In order to check that this observation is independent of the state size we repeated the 

experiments used to obtain Figure  2-6 with state sizes of 18, 36, 72, 216, and 288, with the 

number of observed states scaled proportionally. The results were all essentially the same as in 

Figure  2-6. 

To test the SVKF in absence of dynamic model error, we repeated all of the above experiments, 

setting ( ) 0=tQ .  As we discussed earlier, the EnKF suffers from rank deficiency and does not 

perform well when dynamic model error is zero.  This can be seen in Figure  2-7, where RMSE 

time series of EnKF are plotted for three different N 's along with the rank of the error 

covariance.  We have also plotted the RMSE time series of an EnKF with 2880=N  before it 

begins to become rank deficient as the expected Optimal.  It can be seen that performance of 

EnKF improves initially with a larger ensemble size.  However, ensemble members quickly 
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loose their independence in absence of dynamic model error as seen in the rank time series, amid 

the loss of performance of EnKF.   

For the SVKF we have used the algorithm in absence of dynamic model error.  Figure  2-8 shows 

the ( )tNxRMSE t ,,  time series for SVKF over a typical truth similar to Figure  2-3.  When 

dynamic model error is zero, SVKF performs almost the same as before. 

Figure  2-9 and Figure  2-10 show ( )Nerr  and the average number of captured growing modes in 

absence of the dynamic model error, analogous to Figure  2-4 and Figure  2-5, respectively.  It can 

be seen that performance of the SVKF improves as N   grows and stays constant for 50>N , 

which according to Figure  2-10 is the point where all of the growing modes of the system are 

captured.  The plot of AOI  in Figure  2-11 shows that the SVKF again converges to the Optimal 

when the rank of the filter is just 20 % of the state size.  Figure  2-11 is also independent of the 

state size and remains the same when n  is varied. 

2.5 Conclusions 

Practical geophysical data assimilation techniques need to contend with high dimensional 

problems and with nonlinearities.  In combination, these characteristics pose some challenging 

implementation problems since fully nonlinear methods tend to be computationally demanding, 

while computationally feasible methods tend to rely on linear approximations.  The need to 

account for nonlinearities in an efficient way is particularly important for applications involving 

chaotic systems.  In such systems measurement updates are needed to compensate for the effects 
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of uncertain initial conditions, which cause estimates to diverge from the true state.  When 

measurements are sufficiently accurate and sufficiently abundant they can be used to identify and 

correct the growing errors that lead to divergent predictions.  

Reduced rank sequential estimators provide a convenient and relatively efficient way to apply 

linear estimation concepts to chaotic problems.  Reduced rank filters use low rank 

approximations to error covariances (or their square roots) to describe estimation uncertainties.  

These filters update estimates only in subspaces of the complete state space and do not require 

the construction or storage of full rank covariance matrices.  The update subspace used in a 

reduced rank filtering application needs to be carefully chosen to insure acceptable performance.  

One option is to require that the subspace should include directions corresponding to all errors 

that are growing at the update time.  Since these directions are continually changing in a chaotic 

system the reduced rank subspace needs to be continually adjusted.  Also, the estimation 

procedure must include enough measurements to insure that growing errors can be constrained in 

the update, for at least most of the update times. 

The singular vector Kalman filter (SVKF) described in this paper is a reduced rank estimation 

procedure that performs updates in a subspace defined by the growing singular vectors of a 

linearized approximation to the nonlinear state equation.  The update is derived from a reduced 

rank square root covariance that is a projection of the full rank square root covariance onto the 

selected subspace.  The singular vectors of interest are obtained from an iterative procedure that 

relies on tangent linear and adjoint models.  There is no need to compute a full Jacobian matrix. 

The structure of our singular vector Kalman filter depends on whether or not dynamic model 
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error is considered.  The general version of the filter accounts for such errors by explicitly 

including their covariance in the forecast error covariance propagation equation.  When the 

model error covariance is full rank this has the effect of insuring that uncertainty is continually 

injected in all directions of the update subspace.  When dynamic model error is zero errors in 

directions that were decaying in the past but start to grow will not be updated since their 

projected uncertainties are zero.  This difficulty is overcome in the SVKF by assigning 

uncertainty to the null-space of the subspace of growing errors.  This makes it possible to keep 

the dynamic model error zero while accounting for the possibility that changing conditions can 

transfer the past decaying directions to future growing directions.   

The SVKF is formulated for both cases with and without dynamic model error such that it takes 

advantages of the computational efficiencies of the reduced rank approach.  This is achieved by 

using singular value decompositions to replace large rank-deficient matrices by their smaller full 

rank equivalents. When combined with the use of an adjoint-based method for computing 

singular vectors this permits the SVKF to provide good performance for chaotic problems with 

computational effort that is quite competitive with alternatives such as the ensemble Kalman 

filter. 

Results presented for a chaotic Lorenz 95 model with 144 variables indicate that the SVKF 

works well both with and without dynamic model error, with root mean squared errors 

(differences between true and estimated states) reduced far below the error level without update.  

This result applies, in a probabilistic sense, over a population of many alternative “true” state 

trajectories as well as for individual trajectories. 
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The satisfactory performance of the SVKF for this chaotic test problem is to be compared to that 

for the ensemble Kalman filter (EnKF), especially when dynamic model error is zero.  The EnKF 

deals with additive dynamic model error by adding random perturbations to the state equation.  

This can be problematic is certain applications (most notably numerical weather prediction) 

where such random perturbations can induce non-physical imbalances (e.g. gravity waves) in 

model predictions.  This is one reason why dynamic model error is often omitted in numerical 

weather prediction applications of ensemble Kalman filtering.  

However, if model errors are omitted the EnKF ensemble eventually collapses (i.e. the error 

covariance rank decreases to one), as all ensemble members gradually converge to the leading 

Lyapunov vector of the deterministic model equation.  The collapse takes longer when there are 

more replicates but it is eventually expected to occur, with resulting divergence of the EnKF 

estimate.  When dynamic model error is zero covariance inflation or localization methods are 

required to prevent the ensemble collapse.  By contrast, the SVKF can accommodate either case 

with or without dynamic model error.  When dynamic model error is not zero, SVKF accounts 

for it by augmenting the forecast square root covariance expression with a deterministic model 

error square root covariance term, without introducing ant perturbations to the forecast trajectory.  

When dynamic model error is zero the filter accounts for uncertainties in the null space of the 

space of growing errors, which cause divergence.  

The results and analysis provided here suggest that the SVKF provides an attractive and efficient 

alternative to the ensemble Kalman filter and to other reduced rank estimation algorithms, 

especially for chaotic systems where special considerations are needed for imbalances and 
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ensemble collapse.  A definitive assessment of the capabilities and limitations of the SVKF will 

require more extensive tests, especially on larger and more realistic problems.  

2.6 References 

Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear 

filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, pp 

2741-2758. 

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. 

Rev., 129, pp 2884-2903. 

Andrews, A., 1968: A square root formulation of the Kalman covariance equations. AIAA 

Journal, 6, pp 1165-1166. 

Barkmeijer J., M. V. Gijzen, and F. Bouttier, 1998: Singular vectors and estimates of analysis-

error covariance metric. Q. J. R. Meteorol. Soc., 124, pp 1695-1713. 

Barwell, B. R., and R. A. Bromley, 1988: The adjustment of numerical weather prediction 

models to local perturbations.  Q. J. R. Meteorol. Soc., 114, pp 665-689. 

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble 

Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, pp 420-436. 

Buehner, M., and P. Malanotte-Rizzoli, 2003: Reduced-rank Kalman filter applied to an 



 59

idealized model of the wind-driven ocean circulation, J. Geophys. Res., 108(C6), 3192. 

Cane, M., A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert, and A. J. Busalacchi, 1996: Mapping 

tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. 

Res., 101(C10), pp 22 599 –22 617. 

Daley, R., 1991: Atmospheric Data Analysis.  Cambridge University Press, UK, p 457. 

Ehrendorfer M., and J. J. Tribbia, 1997: Optimal prediction of forecast error covariance through 

singular vectors. J. Atmos. Sci. 54, pp 286-313. 

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using 

Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), pp 10 143-10 162. 

Evensen, G., 2003: The ensemble Kalman filter: theoretical formulation and practical 

implementation. Ocean Dynamics, 53, pp 343-367. 

Evensen, G., 2004: Sampling strategies and square root analysis schemes for the EnKF. Ocean 

Dynamics, 54, pp 539-560. 

Farrell, B. F., and P. J. Ioannou, 2001: State estimation using a reduced order Kalman filter, J. 

Atmos. Sci., 58, pp 3666-3680. 

Fillion, L., 2002: Variational Assimilation of precipitation data and gravity wave excitation.  

Mon. Wea. Rev., 130, pp 357-371. 

Fisher, M. and E. Andersson, 2001: Developments in 4D-Var and Kalman Filtering.  ECMWF 



 60

Tech. Memo. 347. 

Foale, S., and J. M. T. Thompson, 1991: Geometrical concepts and computational techniques of 

nonlinear dynamics. Comp. Methods Appl. Mech. Eng., 89, pp 381-394. 

Fukumori, I., and P. Malanotte-Rizzoli, 1995: An approximate Kalman filter for ocean data 

assimilation: An example with an idealized Gulf stream model, J. Geophys. Res., 100(C5), pp 

6777-6793. 

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three 

dimensions. Quart. J. Roy. Meteor. Soc., 125, pp 723-757. 

Gauthier, P., and J. N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the 

preoperational 4dVar assimilation system of Météo-France. Mon. Wea. Rev., 129, pp 2089-2102. 

Gelb, A., Ed., 1974: Applied Optimal Estimation. The MIT Press, p 306. 

Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in 

ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, pp 

3132-3147. 

Hansen, J. A., 1998: Adaptive observations in spatially extended, nonlinear dynamical systems, 

Ph.D. thesis, Oxford University, UK, p 207. 

Heemink, A., M. Verlaan, and A. J. Segers, 2001: Variance reduced ensemble Kalman filtering. 

Mon. Wea. Rev., 129, pp 1718-1728. 



 61

Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for 

atmospheric data assimilation. Mon. Wea. Rev., 129, pp 123-137. 

Ide, K., and M. Ghil, 1997a: Extended Kalman filtering for vortex systems. Part I: Methodology 

and point vortices. Dyn. Atmos. Ocean., 27, pp 301-332. 

Ide, K., and M. Ghil, 1997b: Extended Kalman filtering for vortex systems. Part II: Rankine 

vortices and observing-system design. Dyn. Atmos. Oceans, 27, pp 333–350. 

Jaeger, L., and H. Kantz, 1997: Homoclinic tangencies and non-normal Jacobians - Effects of 

noise in nonhyperbolic chaotic systems. Physica D, 105, pp 79-96. 

Kalnay, E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge 

University Press, UK, pp 220-248. 

Kraut, S., and C. Grebogi, 2004: Escaping from nonhyperbolic chaotic attractors. Phys. Rev. 

Lett., 92(23), 234101. 

Lermusiaux, P. F. J., A. R. Robinson, 1999: Data assimilation via error subspace statistical 

estimation. Part I: theory and schemes. Mon. Wea. Rev., 127, pp 1385-1407. 

Lorenz, E. N., 1963: Deterministic non-periodic flow. J. Atmos. Sci., 20, p 130. 

Lorenz, E., and K. Emanuel, 1998: Optimal sites for supplementary weather observations: 

Simulation with a small model, J. Atmos. Sci., 55, pp 399-414. 

Miller, R., Ghil, M., Gauthiez, F., 1994: Advanced data assimilation in strongly nonlinear 



 62

dynamical systems. J. Atmos. Sci., 51, pp 1037-1056. 

Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic 

models, Tellus, 51A, pp 167-194. 

Mukougawa, H., M. Kimoto, and S. Yoden, 1991: A relationship between local error growth and 

quasi-stationary states: Case study in the Lorenz system. J. Atmos. Sci., 48, pp 1231-1237. 

Nagashima, H. and Y. Baba, 1999: Introduction to Chaos, Physics and Mathematics of chaotic 

phenomena. IOP Publishing Ltd, Bristol, UK. pp 13-40. 

Neef, L. J., S. M. Polavarapu, T. G. Shepherd, 2006: Four-dimensional data assimilation and 

balanced dynamics.  J. Atmos. Sci., 63, pp 1840-1858. 

Orrell, D., 2002: Role of the metric in forecast error growth: how chaotic is the weather? Tellus, 

54A, pp 350-362. 

Palis, J., and F. Takens, 1993: Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic 

Bifurcations, Fractal Dimensions and Infinitely Many Attractors. Cambridge Univ. Press. 

Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza,1998: Singular vectors, metrics and 

adaptive observations. J. Atmos. Sci., 55, pp 633-653. 

Paul, D., 2007: Asymptotics of sample eigenstructure for a large dimensional spiked covariance 

model. Statistica Sinica, 17, pp 1617-1642. 

Pereira, M. B., and L. Berre, 2006: The use of an ensemble approach to study the background 



 63

error covariances in a global NWP model. Mon. Wea. Rev., 134, pp 2466-2489. 

Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter 

for data assimilation in oceanography. J. Marine Sys., 16, pp 323-340. 

Picard, J., 1991: Efficiency of the extended Kalman filter for nonlinear systems with small noise. 

SIAM J. on Applied Math., 51(3), pp 843-885. 

Robert, C., K. T. Alligood, E. Ott, and J. A. Yorke, 2000: Explosions of chaotic sets. Physica D, 

144, pp 44-61. 

Ruelle, D., 1989: Deterministic Chaos: The Science and the Fiction. Proc. R. Soc. Lon. Series A, 

Math. and Phys. Sci., 427(1873), pp 241-248.  

Saad, Y., 1992: Numerical methods for large eigenvalue problems.  Manchester University 

Press, UK, pp 183-185. 

Schroer, C. G., E. Ott, and J. A. Yorke, 1998: Effect of noise on nonhyperbolic chaotic attractors. 

Phys. Rev. Lett., 81, pp 1397-1400. 

Ubaldi, F., A. Travisan, and A. Carrassi, 2005: Developing a dynamically based assimilation 

method for targeted and standard observations. Nonlin. Proc. in Geophys., 12, pp 149-156. 

Ubaldi, F., and A. Travisan, 2006: Detecting unstable structures and controlling error growth by 

assimilation of standard and adaptive observations in a primitive equation ocean model. Nonlin. 

Proc. in Geophys., 13, pp 67-81. 



 64

2.7 Figures 

 

Figure  2-1: Schematic presentation of growing singular and decaying singular vectors over 
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Figure  2-2: Singular value spectra for the 144D Chaotic Lorenz 95 for 2000 typical times, 

indicating that number of growing directions is typically 50 - 70. 
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Figure  2-3: RMSE series for a typical truth, 144D Chaotic Lorenz 95 with dynamic model error 
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Figure  2-4: Err(N) for EnKF and SVKF, 144D Chaotic Lorenz 95 with dynamic model 

error 
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Figure  2-5: Number of captured growing modes for EnKF and SVKF, 144D Chaotic 

Lorenz 95 with dynamic model error 
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Figure  2-6: AOI(N) for EnKF and SVKF, 144D Chaotic Lorenz 95 with dynamic model 

error 
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Figure  2-7: RMSE and rank series for EnKF over a typical truth,  144D Chaotic Lorenz 95 

without dynamic model error 
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Figure  2-8: RMSE series for SVKF a typical truth 144D Chaotic Lorenz 95 without 

dynamic model error 
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Figure  2-9: Err(N) for SVKF, 144D Chaotic Lorenz 95 without dynamic model error 
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Figure  2-10: Number of captured growing modes for SVKF 144D Chaotic Lorenz 95 

without dynamic model error 
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Figure  2-11: AOI(N) for SVKF, 144D Chaotic Lorenz 95 without dynamic model error 
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3 Stabilizing Error Dynamics in Chaotic Systems 

by Filtering 

3.1 Introduction 

In this chapter, we approach suboptimal filtering in chaotic systems from the point of view of 

stabilizing the short term dynamics of the estimation error.  We use a linear approximation of the 

error dynamics and show that capturing the locally unstable directions of error growth is 

essential for the performance of any reduced rank filter.  We identify these unstable directions 

via an iterative procedure that requires only forward integrations of the nonlinear dynamical 

model.  We follow a square root approach to formulate a filter that aims at resolving the 

uncertainty along these unstable directions.  We use a chaotic Lorenz 95 system to examine the 

performance of the filter both in presence of additive dynamic model error and when the 

dynamic model error is zero. 

3.2 Background 

In a geophysical system, approximations in the model and uncertainty in the modeling 

parameters, inputs, initial condition, and boundary conditions lead to undesirable inaccuracies in 

the forecast.  Recent technological advances have provided us with numerous direct and 

remotely sensed observations to improve our forecast or estimated parameters of the system.  
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Data assimilation techniques are methods for utilizing these observations in a probabilistic 

framework to reduce the uncertainty in the forecast or model parameters.  In this paper, we focus 

on filtering defined as a problem where observations are assimilated recursively as they are 

collected, thus only past observations are used in the analysis at any given time.  Filtering is 

particularly attractive for its efficiency in real-time assimilation of the incoming streams of 

observation data.  

In a filter, when a new observation is available, it is combined with the current best estimate of 

the state that is usually computed from a model (forecast) in a Bayesian framework to minimize 

the expected error of the estimated state (analysis), subject to the constraints of the dynamical 

model and the observation operator.  The analysis will then be used for forecasting during the 

subsequent time interval until the next observation is available.  In linear systems with Gaussian 

uncertainties, Kalman Filter (KF) solves the filtering problem by calculating the analysis as a 

linear combination of the forecast and the observation according to an optimal weighing matrix 

(the Kalman gain), which is computed from the forecast error and observation noise covariance 

matrices. 

In most of the geophysical applications, the dynamical model or the observation operator is 

nonlinear and the distributions of uncertainties are not Gaussian any more, meaning that higher 

moments beyond the mean and error covariance are needed to characterize them.  The KF is no 

longer optimal and the optimal filtering needs solving the Fokker–Planck equation for the 

evolution of the probability distributions, which does not have any closed-form solutions 

(Risken, 1996).  Monte Carlo based methods such as the Particle Filter aim at approximating the 
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optimal solution by constructing the higher moments based on the statistics of a set of replicates 

(Ristic et al, 2004).  However, the large number of replicates that are needed for the convergence 

of these methods is a major impediment for application of these algorithms in large geophysical 

systems such as the ocean and the atmosphere with O(106) state variables (Nakano, 2007).  

Therefore, the optimal solution cannot be found in these applications within the limits of our 

computational resources. 

Because of the simplicity of the linear update scheme in the KF and its known properties, a 

number of suboptimal filters have been developed that are based on the Kalman formulation of 

the gain matrix.  For example, when the nonlinearities are not strong, the dynamical model and 

the observation operator can be linearized around the best estimate of the state, and used in a KF 

formulation.  Unfortunately, this approach, which is known as the Extended Kalman Filter (EKF) 

(Gelb, 1974; Verron et al., 1999) is not computationally feasible in many applications with large 

state because propagation of the covariance matrix entails constructing a linear model or 

conducting as many forward integrations of the nonlinear model as the size of the state.  

Consequently, further suboptimal methods are proposed to approximate the gain matrix of the 

EKF.  For example, the Reduced Rank extended Kalman Filter (RRKF) relies on a reduced rank 

approximation of the forecast error covariance that is computed by propagating only the leading 

eigenvectors of the most recent analysis error covariance.  In RRKF, it is implied that the leading 

eigenvectors of the analysis error covariance, which summarize the dominant directions of 

uncertainty at a given time, evolve to the leading directions of uncertainty in the future.  

Although RRKF has a reasonable performance in weakly nonlinear systems, in presence of 

strong nonlinearities or chaotic behavior the linearity assumption in propagating the analysis 



 78

error covariance is easily violated, leading to failure of the RRKF (Fukumori and Malanotte-

Rizzoli, 1995, Cane et al., 1996, Buehner and Malanotte-Rizzoli, 2003, Farrell and Ioannou, 

2001). 

Ensemble-based methods such as the Ensemble Kalman Filter (EnKF) (Evensen, 1994; Evensen, 

2001; Zang and Malanotte-Rizzoli, 2003) and its so-called deterministic flavors such as the 

Ensemble Transform Kalman Filter (Bishop, 2001; Anderson, 2001), have been the popular 

alternatives in nonlinear applications.  In these filters, an ensemble of random replicates are 

propagated by the fully nonlinear model and updated via a linear Kalman scheme, assuming that 

the covariance of the propagated replicates represents the forecast error covariance.  The initial 

replicates are drawn randomly from the initial distribution of the truth that is assumed to be 

given.   

Performance of the ensemble methods depends greatly on the number of the propagated 

replicates.  In most of the applications of interest, the rank of the ensemble covariance, N , is 

much smaller than the dimension of the state space, n .  Consequently, the column space of the 

ensemble covariance matrix is an N -dimensional random subspace (Paul, 2007) in a larger n -

dimensional state space.  Since the update by a Kalman-based gain can correct the forecast only 

in the column space of the forecast error covariance, ensemble filters can correct the forecast 

along the directions with significant uncertainty, only if the N -dimensional subspace of the 

ensemble members span all of those directions.  Additionally, effectiveness of the gain matrix to 

reduce the uncertainty along a particular direction is greatly influenced by the estimated forecast 

uncertainty along that direction, which is computed based on the alignment of the ensemble 
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members.  This explains why the required ensemble size grows so rapidly with the size of the 

state, where uncertainties along many directions need to be resolved. 

Focus of this paper is on systems that exhibit chaotic behavior.  In these systems, dynamics 

amplify the errors along a few directions, while the rest of uncertainties are attenuated.  

However, the directions of growing errors change rapidly over time and state space.  This has 

important implications for Kalman-based filters because the forecast error covariance has to 

specify proper uncertainty along the growing directions to allow robust reduction of the forecast 

error.  As we discussed in chapter 2, the inherent randomness in the ensemble members makes 

the ensemble-based methods inefficient in capturing the largest number of growing directions 

with a given ensemble size. 

Another drawback of the ensemble methods is related to incorporation of dynamic model error in 

the form of adding random perturbations to the forecast trajectory.  In many oceanic and 

atmospheric applications, this may excite structural instabilities, leading to non-physical model 

predictions.  Therefore, it is common in geophysical chaotic applications to assume that the 

dynamic model error is zero (Daley, 1991, Houtekamer et al., 1996, Fillion, 2002, Anderson et 

al., 2005, Neef et al., 2006).  It is frequently reported that in absence of dynamic model error, the 

ensemble members tend to loose their independence over a few assimilation cycles and the rank 

of the ensemble covariance decreases over time.  Therefore, as the rank of the ensemble 

covariance approaches one, some of the directions that require correction fall in the null-space of 

the filter and cannot be corrected.  This problem is widely known as the rank deficiency of the 

filter.  Regardless of the number of ensemble members, ensemble filters will eventually become 
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rank deficient in absence of dynamic model error, unless the algorithm has explicit provisions to 

enhance the independence of the ensemble members and the rank of the ensemble covariance, 

for example by localization or variance inflation techniques (Houtekamer and Mitchell, 2001; 

Hamill et al., 2001; Anderson and Anderson, 1999).  Since correct parameterizations of these 

techniques depend on the specifics of the underlying system and are mostly ad hoc, ensemble 

methods face practical challenges in some important application areas. 

Here, we approach the problem of suboptimal filtering from the point of view of stabilizing the 

locally unstable error dynamics as discussed by Farrell and Ioannou (1996).  Pham et al. (1998) 

formulated the Singular Evolutive Extended Kalman filter (SEEK) that aimed at computing the 

unstable directions of error growth.  The SEEK was successfully implemented on linear or 

slightly nonlinear systems, where the unstable directions of the state transition matrix did not 

change rapidly.  However, it was observed that performance of the SEEK filter deteriorated over 

a few assimilation cycles unless a forgetting factor was introduced to compensate for the 

underestimation of the forecast error.  Pham et al. (1998) showed that choosing a correct 

forgetting factor was essential for the performance of the SEEK filter. 

Carme et al. (2001) showed that the SEEK filter do not perform well in chaotic systems with 

rapidly changing state transition matrix, unless the unstable directions are computed frequently. 

They proposed a modified SEEK filter that tracked the changes in the state transition matrix by 

computing its time derivative.  They successfully implemented this modified SEEK filter in a 

small chaotic system, confirming that a filter’s ability to stabilize the locally unstable directions 

of error dynamics results in a good performance of the filter in chaotic applications.  However 
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the modified SEEK filter requires computing the time derivative of the state transition matrix, 

which is difficult and computationally demanding in large systems. 

In chapter 2, we introduced a suboptimal filter that captured the growing directions of 

uncertainty in chaotic dynamics by computing the leading singular vectors of the state transition 

matrix over the forecast period.  We implemented this singular vector Kalman filter (SVKF) on a 

chaotic Lorenz 95 system and showed that it performed well when all of the growing directions 

were retained in the filter.  As we will discuss in section 3.3, from the point of view of the error 

dynamics a successful implementation of the SVKF, like in any suboptimal Kalman-based filter 

is possible only if all of the unstable directions of the error growth are properly stabilized by the 

filter.  The remarkable performance of the SVKF suggests that retaining all of the growing 

directions enables the filter to stabilize all of the locally unstable directions of error dynamics.  

Although the preliminary results of SVKF were promising, the leading singular vectors of the 

system can be computed only if its state transition matrix is explicitly calculated or the adjoint of 

the model is built.  This can be a drawback in many geophysical applications where forming the 

state transition matrix is not feasible and the adjoint model is difficult or costly to build.   

In this chapter, we formulate a filter that directly aims at stabilizing the locally unstable 

directions of error dynamics.  In section 3.4, we introduce a method for computing the locally 

unstable directions of the error dynamics that requires only forward integrations of the nonlinear 

model.  In section 3.5, we formulate the filter that stabilizes these unstable directions.  Similar to 

chapter 2, a chaotic Lorenz 95 system is used to test this filter in section 3.6 followed by a 

discussion of the results. 
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3.3 Local instability of the error dynamics 

In this section, we review the stability criteria for the dynamics of the estimation error when 

observations are assimilated via a linear update scheme.  Let ( )tx  be the non-dimensional state 

vector of size n , which is related to the n -dimensional vector of physical variables ( )tζ  via a 

non-singular linear transformation ( ) ( )ttCtx ζ)(= .  We use the Euclidean norm to measure 

distances in the state space, which is related to the norm in the physical space as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
CC

TTT
TtttCtCttxtxtx ζζζ ===)(     (3-1) 

where ( ) ( )tCtC T  is a positive definite matrix.  We work with the transformed state ( )tx , 

recognizing that the choice of the transformation matrix ( )tC  is application-specific and has 

important effects on the performance of the data assimilation algorithm.  We use superscripts t , 

f , and a  on ( )tx  to differentiate the true, forecast, and analysis variables, respectively. 

Let the nonlinear model for propagating the true state from time τ  to time t  be written as: 

( ) ( ) ( )ttxftx tt ωτ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,         (3-2) 

where ( )txf ,  is an n -dimensional nonlinear function of the state.  (3-2) is initialized at 0t=τ  

by ( )0txt , a random vector with a known mean ( )0txt  and covariance ( )0tPt .  ( )tω  is the 

dynamic model error, that is added only at the end of the forecast period and is assumed to be a 
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random vector that is zero mean and uncorrelated with ( )0tx t , and has a known covariance ( )tQ .  

In a typical geophysical system with O(106) state variables, working with a full nn×  ( )tQ  is not 

possible.  However, it is commonly assumed that ( )tQ  is either low rank and can be 

characterized by its relatively manageable square root, or has a particular structure such as 

diagonal.  Here we assume that ( )tQ  is diagonal and full-rank, so that only the variances are 

needed to be declared.  A general ( )tQ  can be turned to the diagonal form by means of a rotation 

of the coordinates.  The system without dynamic model error can also be considered as a special 

case with ( ) 0=tQ . 

Without loss of generality, we assume that observations are available at times with regular 

intervals of T .  We consider a simple linear observation model and leave investigation of more 

elaborated observation models to future research.  The observation vector ( )ty  of size m  is 

written as a linear function of the true state: 

( ) ( ) ( ) ( )ttxtHty t υ+=         (3-3) 

with an nm×  observation matrix ( )tH .  The measurement error ( )tυ  is assumed to be zero 

mean and uncorrelated with both ( )tω  and ( )0tx t , with a known covariance ( )tR . 

In a filter with linear analysis scheme, the forecast and analysis equations are written as 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

TtxTtHTtyTtKTtxTtx

TttxfTtx

ffa

af ,

   (3-4) 

where ( )TtK +  is an mn×  weighting (or gain) matrix.  The filter is initialized at 0=t  with 

( ) )( 00 txtx ta = .  Defining the analysis error as ( ) ( ) ( )TtxTtxTt taa +−+=+ε , and substituting 

from (3-2) and (3-4), we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )TtTtKTtxTtxTtHTtKI

TtTtKTtxTtxTtHTtKTtxTtx

TtxTtxTtHTtyTtKTtxTt

tf

fttf

tffa

+++⎥
⎦

⎤
⎢
⎣

⎡
+−+⎥⎦

⎤
⎢⎣
⎡ ++−=

+++⎥
⎦

⎤
⎢
⎣

⎡
+−+++++−+=

+−⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+

υ

υ

ε

        

        

( ) ( ) ( ) ( ) ( )TtTtKTtTtHTtKI f ++++⎥⎦
⎤

⎢⎣
⎡ ++−= υε            (3-5) 

where we have defined ( ) ( ) ( )TtxTtxTt tff +−+=+ε .  (3-4) and (3-5) are useful for 

explaining the behavior of the analysis error in response to different choices of ( )TtK + .  For 

simplicity consider a case where all of the states are observed and ( ) ITtH =+ .  If ( )TtK +  is 

very close to the identity matrix, (3-4) essentially discards the forecast and ( )Ttx a +  is almost 

identical to the observation.  From the point of view of the analysis error in (3-5), ( )Ttf +ε  is 

strongly attenuated, while ( )Tta +ε  is to a large extent influenced by the observation noise 

( )Tt +υ .  Consequently, with such a large ( )TtK + , the analysis error will approach the level of 
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observation noise.  On the other extreme, with a very small ( )TtK + , ( )tx a  in (3-4) ignores the 

observation and remains very close to ( )Ttx f + .  From the perspective of (3-5), 

( ) ( )TtTt fa +≈+ εε  and the effect of ( )Tt +υ  on ( )Tta +ε  is negligible, amid dynamics of 

( )Ttx a +  almost resembling a trajectory without analysis.  This quickly leads to complete loss of 

forecast skill in chaotic applications. 

An important consideration in choosing the gain matrix is that ( )Tt +υ  in the last term on the 

right hand side of (3-5) may enhance the analysis error along the directions that are in the 

column space of ( )TtK + .  Therefore, if the intensity of observation noise is not reflected in 

( )TtK + , the correction to ( )Ttf +ε  may be completely countered by the amplification of the 

observation noise.  This shows that a proper gain matrix should consider the relative uncertainty 

in the forecast and the observations, the principal behind the formulation of the Kalman gain.  

Although Kalman gain is suboptimal under nonlinearities and does not minimize the analysis 

error, it can still be computed and used to reduce the analysis error.  

If ( )Tta +ε  is small enough such that its propagation is almost linear, we have: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )TttxtxF

TtTttxfTttxf

TtxTtxTt

ta
Ttt

ta

tff

+−⎥
⎦

⎤
⎢
⎣

⎡
−≈

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+−+=+

+ ω

ω

ε

,

,,  

( ) ( )TttF a
Ttt +−= + ωε,        (3-6) 
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where TttF +,  is the nn×  state transition matrix over the forecast window [ ]Ttt +, .  If the 

forecast window is divided up to k  time steps, each of small length dt , TttF +,  can be expressed 

as follows: 

dtttdttdttTtdtTtTtt FFFF ++++−++ ×××= ,2,,, L       (3-7) 

where each term on the right hand side is an nn×  Jacobian matrix of ( )  ⋅f  evaluated at ( )τx : 

( )

( )τ

ττ

ττ

x

dt x

dtxf
F

∂

⎟
⎠
⎞

⎜
⎝
⎛ +∂

=+

,

,         (3-8) 

( )τx  is the best estimate of the state at time τ , i.e. the analysis estimate right after an update 

step, and the forecast estimate otherwise.   

By substituting (3-6) in (3-5) we get a recursion for the analysis error: 

( ) ( ) ( ) ( ) ( ) ( ) ( )TtTtHTtKItFTtHTtKITt a
Ttt

a +⎥⎦
⎤

⎢⎣
⎡ ++−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++−=+ + ωεε ,

( ) ( )TtTtK +++ υ         (3-9) 

which is initialized at 0=t  with ( ) )()(0 00 txtx tta −=ε , a zero mean random vector with 

covariance ( )0tPt .   

In a chaotic system, TttF +,  has a few unstable directions whose growth factors are very sensitive 
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to the state around which the system is linearized.  Missing any of these unstable modes for an 

extended time will adversely impact the performance of the filter.  In particular, the estimation 

error will be strongly amplified along the missing unstable direction and adversely impact the 

performance of the filter.  A conservative approach is to formulate ( )TtK +  in a way that all of 

the unstable directions of error dynamics are stabilized.  From the point of view of the feedback 

pole placement, the analysis step should be able to stabilize all of the unstable direction of TttF +, .  

This is accomplished only if ( ) ( )TtHTtK ++  has sufficient projection along all of the unstable 

directions. 

In a Kalman-based update scheme, ( )TtK +  is computed from the analysis error covariance, 

( )TtP a + , as follows (Gelb, 1974): 

( ) ( ) ( ) ( ) ( ) 1−++++=+ TtRTtHTtLTtLTtK TTaa      (3-10) 

where ( )TtLa +  is a square-root of the analysis error covariance, such that 

( ) ( ) ( )Taaa TtLTtLTtP ++=+ .  The nn×  matrix ( ) ( )TtHTtK ++  can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )TtHTtRTtHTtLTtLTtHTtK TTaa +++++=++ −1   (3-11) 

According to (3-11), the analysis step can stabilize TttF +,  only if both 

( ) ( ) ( )TtHTtRTtH T +++ −1  and ( ) ( )Taa TtLTtL ++  project on all of its unstable directions.  

Firstly, the observation operator ( )TtH +  has to have projection along all of the unstable modes.  

This is a question of observability of the system, which we assume it to be resolved in this 
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chapter by observing a large number of states.  Secondly, the second factor ( ) ( )Taa TtLTtL ++  

has to have certain properties as we discuss below. 

Following the assumption that the propagation of the analysis error is almost linear, the reduced 

rank propagation of the forecast error covariance can be written as 

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΞΞ=+ +++ TtQtLFTtL aTN

Ttt
N

TttTtt
f

,,,      (3-12) 

which is an augmentation of the propagation of ( )tLa  with the square-root of the dynamic model 

error covariance ( )TtQ + .  ( )N
Ttt +Ξ ,  is an Nn×  matrix whose columns Nii ,,1, L=ξ  form an 

orthogonal basis.  The reduced rank approximation is only made in the propagation of ( )tLa  over 

the forecast window [ ]Ttt +, , by projecting ( )tLa  on the subspace that is spanned by ( )N
Ttt +Ξ , .  

The filter becomes identical to the Extended Kalman Filter when nN = . 

The square-root of the analysis error covariance may be written as: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )TtLTtH

TtRTtHTtLTtLTtH

TtHTtLI

TtLTtL

f

TTff

TTf

fa

++

⎥
⎦

⎤
⎢
⎣

⎡
++++++

++−

+=+
−1

 (3-13) 

The recursion of (3-12) and (3-13) is initialized by ( )0tLa  defined as ( ) ( ) ( )Taat tLtLtP 000 = .   

(3-12) and (3-13) show that the uncertainties in ( )TtLf +  will be properly reduced only if they 
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are properly captured by ( ) ( )TtLTtH f ++ .  When the system is observable, a proper update is 

solely dependent on the estimated uncertainties in ( )TtLf + .  If the filter is supposed to properly 

reduce the estimation error along the locally unstable directions, this has to be reflected in the 

choice of ( )N
Ttt +Ξ , .    In particular from the perspective of error stability, if ( )N

Ttt +Ξ ,  is continually 

chosen to project on the subspace of unstable modes of TttF +, , the subsequent analysis step is 

guaranteed to stabilize the error growth, because such a ( )N
Ttt +Ξ ,  will allow ( )TtLf +  to have 

appropriate projection on all of the unstable directions of TttF +, .  

In chapter 2 we showed that when uncertainties along the growing directions were properly 

captured in the SVKF, the forecast was corrected in the growing subspace.  The above discussion 

suggests that SVKF has to be able to also stabilize the error dynamics.  As the following theorem 

suggests, when all of the growing directions were included in the SVKF, the computed forecast 

covariance will also resolve some of the uncertainty along all of the unstable directions (see the 

proof in appendix E): 

Theorem: If the state transition matrix in a discreet-time system has p  unstable 

eigenvalues, no unstable right eigenvectors are orthogonal to the subspace of the p  

leading right (initial) or left (final) singular vectors. 

Note that in most of the applications, the equations of dynamics are practically solved discreetly 

in time, and this theorem applies.   

Here, we aim at identifying the locally unstable directions directly.  This is beneficial because 
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the unstable directions can be computed via an iterative eigen-decomposition algorithm as 

explained in the next section.  

3.4 Locally unstable directions and Floquet vectors 

The iterative algorithm for computing a basis for the N  leading unstable modes of TttF +,  can be 

summarized as follows: 

1. Choose N  mutually independent but otherwise arbitrary perturbations of unit length, 

Nii ,,1,0, L=ξ , and set 0=k . 

2. Compute ki
Ttt

ki F ,
,

1,~ ξξ +
+ =  by propagating ki,ξ 's via 

( ) ( )

δ

ξδ
ξξ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

≈= +
+

TttxfTttxf
F

akia

ki
Ttt

ki

,,
~

,

,
,

1,   (3-14) 

where δ  is the magnitude of the perturbation that are added to ( )txa .  δ  should be small 

enough to maintain the validity of the approximation. 

3. Re-orthogonalize 1,~ +kiξ 's by Gram-Schmidt method, rescale them to unit length, and set 

1+= kk : 

 NiNi kiki ,,1,~,,1, 1,SchmidtGram1, LL =⎯⎯⎯⎯ ⎯←= +−+ ξξ  

4. Repeat steps 2 and 3 until the subspace of perturbations becomes invariant under 
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propagation.  The converged perturbations are columns of ( )N
Ttt +Ξ , .  

In this section we look at the above procedure from the perspective of a dynamical system.  At 

this point we just mention that the above procedure is a straightforward and reliable method for 

computing the unstable directions even in nonlinear systems, and only requires an optimal 

number of forward integrations of the model within a Lanczos algorithm.  In most of the 

applications, the maximum allowed number of forward runs can be set a priori in accordance 

with the available computational resources and the desired accuracy.  We will come back to this 

point when discussing the experiments. 

Now consider a forecast trajectory between two consecutive observations at t  and Tt + . 

Rewrite (3-4) in discreet time with time step dt : 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+ dtxfdtx ff τττ ,       , [ ) ( ) ( )txtxTtt af =+∈ ,,τ   (3-15) 

and define the following auxiliary system: 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
= otherwise,,

0,mod,)(

dtssxf

Tstx
sx p

a

p      (3-16) 

where ( )sx p  is the auxiliary state and s  shows the time in the auxiliary system to avoid 

confusions.  ( )sx p  in (3-16) starts at ( )txa  and evolves to ( )Ttx f +  by following the forecast 

trajectory between t  and Tt +  in (3-15), then jumps back to ( )txa  and repeats its trajectory.  In 
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essence, (3-16) is a periodic and piecewise continuous system.  Floquet theory for periodic 

systems states that if the output of such a system is sampled regularly at the period of the system, 

it will be equivalent to the output of a linear and time invariant (LTI) system (Yakubovich and 

Starzhinskii, 1975).  Therefore, the concepts of stable and unstable modes of error growth in LTI 

systems can be expanded to this auxiliary periodic system, which in fact characterizes the 

dynamical properties of the original chaotic system over the forecast window. 

In particular, consider the initial vectors in step 1 of the above procedure, and place 

infinitesimally small perturbations along their directions on columns of an Nn×  matrix 

( )0pXδ .  Evolution of these perturbations over one period of (3-16) can be written in matrix 

form as (Hartman, 1982): 

( ) ( )0,0
pp

T
p XFTX δδ =         (3-17) 

where p
TF ,0  is the state transition (or Floquet) matrix of (3-16) over one period, which equals the 

product of Jacobians along the trajectory of ( )sx p : 

p
dt

p
dtdtdt

p
TdtT

p
T FFFF ,0,,,0 ×××= +− L        (3-18) 

Each term on the right hand side of (3-18) is a Jacobian of (3-16) over one time step as denoted 

by subscripts, 
( )

( )sx

p

p
dtss

p

x

dtssxf
F

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂

=+

,

, .  Since the Jacobian is not defined at the states with 

( ) 0,mod =Ts , we set the Jacobian at this discontinuity point equal to the identity matrix, i.e.  
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IF p
kTdtkT =− ,  for all L,2,1=k .   

Note that dt
p

dtss FF ++ = ττ ,, , when ( ) 0,mod ≠= τTs  and ( ) )(txsx ap =  for ( ) 0,mod =Ts .  

Therefore, under the definition of (3-16), we have Ttt
p
T FF += ,,0 .  Propagation of the perturbations 

in the original system is equivalent to propagating them in the auxiliary system over one period.  

After k  iterations, i.e. k  periods of (3-17), we have: 

( ) ( ) ( )0,
pk

Ttt
p XFkTX δδ +=         (3-19) 

Let the complete real Schur decomposition of TttF +,  be written as follows: 

( ) ( ) ( )nnn
TttF Λ=+ ζζ,          (3-20) 

where ( )nζ  is an nn×  orthogonal matrix of Schur vectors.  ( )nΛ  is an nn×  upper quasi-

triangular matrix with its diagonal elements being the eigenvalues of p
TF ,0  or two-by-two blocks 

of its complex conjugate eigen-pairs.  Substituting for TttF +,  in (3-19) from (3-20) we have 

( ) ( ) ( ) ( ) ( )0p

k
Tnnnp XkTX δζζδ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ=  

( ) ( ) ( ) ( )0                  pTnknn Xδζζ Λ=        (3-21) 

Therefore, as k  grows all of the columns of ( )kTX pδ  collapse on a single column of ( )nζ  that 

corresponds to the largest eigenvalue of TttF +,  and their magnitudes grow due to exponential 

growth of the leading eigenvalue in (3-21).  In practice the initial perturbations have finite length 
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and the computational accuracy is lost when working with large numbers.  Therefore, 

perturbations should be periodically rescaled and orthogonalized to prevent their collapse and 

computational overflow as in step 3 of the procedure. 

If (3-16) has N  unstable modes, the N  columns of ( )kTX p

k
δ

∞→
lim  converge after a few iterations 

of 2 and 3 to a basis for the unstable subspace of (3-16), which we call the N  leading Floquet 

vectors (FVs) of the auxiliary periodic system.  We take ( ) ( )kTX p

k

N
Ttt δ

∞→+ =Ξ lim,  and use these 

locally unstable directions over the forecast period as the projection subspace in a reduced rank 

filter.  Before proceeding to formulate the filter, we explain some geometrical properties of FVs 

in the following section. 

3.5 Geometrical interpretation of Floquet vectors 

Qualitatively speaking, state trajectory in a chaotic system is extremely sensitive to uncertainties 

in the state, model parameters, or forcing.  For example, two trajectories with nearly identical 

initial conditions quickly separate and loose their similarity after a short time (Ruelle, 1989).  In 

particular, because of the numerical inaccuracies and stochastic constraints that are present in the 

problem, such errors are inevitable and their growth leads to complete loss of predictability after 

a finite time.  More specifically, it is not possible to make forecasts beyond a short horizon 

which is about two weeks in atmospheric applications under the most promising conditions 

(Lorenz, 1963). 

Despite the fast initial growth of perturbations in a chaotic system, any arbitrary state within a 
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particular region of the state space known as the basin of attraction evolves after a finite transient 

period to a set that is referred to as the attractor of the system (Foale and Thompson, 1991).  Due 

to the confinement of the chaotic state in the attractor,  errors in these systems does not grow 

indefinitely and state estimation is in fact a problem of identifying the location of the truth within 

the attracting set.  Therefore, understanding the geometrical properties of the attractor is 

important in developing proper algorithms for chaotic applications. 

Global Lyapunov Exponents (GLEs) are a powerful tool for analyzing the attractor.  It is known 

that growth rate of almost any infinitesimal perturbations that is propagated in a chaotic system 

approaches the first GLE and the perturbation itself aligns with the leading Lyapunov vector 

(LV).  Similarly, if an ensemble of N  random replicates of infinitesimal length are propagated 

in the system and frequently orthogonalized to prevent them from collapsing to the first LV, they 

will asymptotically span the subspace that is characterized by the first N  leading LVs.  

Additionally, the volume of a hypercube with ensemble perturbations as its edges, will assume a 

growth rate equal to the sum of the first N  GLEs (Nagashima and Baba, 1999). 

Every chaotic system has a finite number of positive GLEs, while the sum of all of its exponents 

is zero if the system is Hamiltonian or negative if it is dissipative.  The positive GLEs of the 

system show that over the whole attractor, in average how many mutually orthogonal 

perturbations experience growth and what are their growth factors.  Although GLEs converge to 

a unique set, the LVs keep on changing as the perturbations travel along the attractor.  The 

direction of LVs at a given point on the attractor, in essence summarizes all of the past 

amplifications and rotations of the modes of dynamics over the trajectory of that point. 
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The procedure for computing the GLEs and LVs is very similar to the procedure that was 

introduced in section 3.4.  However, the auxiliary periodic system in (3-16) guarantees that the 

perturbations are only subject to the amplifications and rotations within the forecast window.  

Therefore, FVs can be used to analyze the structure of the attractor in the vicinity of the forecast 

trajectory, in the same way that the overall behavior of LVs is useful for understanding attractor's 

global properties.   

In particular, consider the trajectories of a nominal state and a perturbed state over finite forecast 

window.  If the perturbed state does not have any physical interpretation, meaning that it is not 

on the attractor, it will evolve towards the attractor so long as the magnitude of the perturbation 

is small such that the perturbed state is within the basin of attraction. Therefore, this perturbation 

followed a locally stable dynamics as it is propagated by (3-14).  On the other hand, if the 

perturbed state is physically meaningful, it is already on the attractor and the chaotic nature of 

the system will drive it away from the trajectory of the nominal state, leading to a locally 

unstable behavior.  Therefore, local stability of a perturbation or lack there of can reveal the 

meaningfulness of the perturbation from the point of view of the physics of the problem.  The 

iterative propagation of a set of perturbations using (3-14) combined with their periodic 

orthogonalization and rescaling guarantee that the stable components of the perturbations vanish 

over a finite number of iterations and the perturbations align with the locally unstable directions, 

which at the same time correspond to the physically meaningful perturbations. 

Before continuing to formulate the filter, we would like to discuss the relationship between FVs 

and the Bred vectors that are used for ensemble forecasting at the National Center for 
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Environmental Prediction.  Bred vectors are computed via propagation of a set of arbitrary 

perturbations in the system over the forecast window from t  to Tt + , their orthogonalization (if 

needed), rescaling and subsequent propagation over the next forecast window from Tt +  to 

Tt 2+ .  Thus, Bred vector procedure is essentially the procedure in section 3.4 with only one 

iteration.  If dynamics of the system is such that the state transition matrix does not change over 

a few forecast periods, the corresponding breeding cycles become identical to multiple iterations 

of the FV procedure, meaning that Bred vectors converge to the FVs.  Similar convergence 

happens if the stable directions of the state transition matrix over [ ]Ttt +,  are strongly 

dissipative so that even a single iteration is sufficient to eliminate the stable components of the 

perturbations.  Otherwise, the Bred vectors will in general be different from FVs. 

3.6 Local Floquet vector Kalman Filter 

Formulation of the Local Floquet vector Kalman Filter (LFKF) is very similar to SVKF in 

chapter 2.  In particular, the update steps of the two filters are identical.  However, in the 

propagation step of LFKF, instead of the Singular vectors the leading Floquet vectors are used as 

the basis for reducing the rank of the filter. 

We assume that the state vector is already normalized by a chosen positive definite deterministic 

matrix as discussed in section 3.3 and use a simple Euclidean norm.  The forecast and analysis 

equations are exactly as in (3-4).  The Kalman gain is derived from a square root approximation 

to the analysis error covariance via the formulation of Andrews (1968).  The square root 

approach in this formulation is similar to chapter 2 and avoids explicit calculation of large 
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analysis and forecast covariance matrices and also has an enhanced numerical precision.  A proof 

of the equivalence of the square root analysis in Andrews (1968) as appears in Gelb (1974) to the 

classic Kalman analysis equation in (3-10) is given in appendix D.  

A square root formulation requires that the square roots ( )tR  and ( )tQ  of the noise 

covariance matrices ( )tR  and ( )tQ  be easy to compute.  Here we assume that ( )tQ  is full rank 

and diagonal so ( )tQ  is an nn×  diagonal matrix.  We assume that nm <<  and that ( )tR  

may be easily computed from a singular value decomposition of ( )tR .  Both of these 

assumptions can be relaxed at the expense of complicating the algorithm. 

The square root algorithm for computing the Kalman gain can be expressed as a recursion which 

is initialized at a specified time 0=t  and repeated at each subsequent measurement (or analysis) 

time.  For simplicity of notation we assume that the time between measurements is fixed at T .  

We start by defining square roots ( ) )(tPtL aa =  and ( ) )(tPtL ff =  of the analysis and forecast 

covariance matrices, which have the same column spaces as ( )tPa  and ( )tP f . With these 

definitions, we can rewrite the square root versions of the classic update and propagation 

equations, with Tt −  indicating the initial time or the most recent analysis time and t  indicating 

the next analysis time:  

Forecast from time t  to Tt + : 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=+ TtQTtLTtL ff ~         (3-22) 
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where | indicates concatenation of two dimensionally consistent matrices and 

( ) ( ) ( ) ( )tLFTtL aTN
Ttt

N
TttTtt

f
+++ Ξ⎥

⎦

⎤
⎢
⎣

⎡
Ξ=+ ,,,

~       (3-23) 

Update at time Tt + : 

( ) ( ) ( ) ( ) ( ) 1−++++=+ TtRTtHTtLTtLTtK TTaa      (3-24) 

where: 

( ) ( ) ( ) ( ) ( )TtLTtHTtTtLTtL ffa +++Ψ−+=+      (3-25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
+++=+Ψ TtRTtZTtZTtLTtHTtLTt

T
T

ff  (3-26) 

( ) ( ) ( ) ( ) ( ) ( )TtRTtLTtHTtLTtHTtZ
T

ff ++⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+    (3-27) 

Define ( ) ( ) ( )Tfff TtLTtLTtP ++=+ ~~~  with ( )TtL f +~  according to (3-23).  ( )TtP f +~  is the 

projection of the propagated analysis square root covariance ( )tLF a
Ttt +,  onto the subspace of 

locally unstable perturbations (the column space of ( )N
Ttt +Ξ , ). The augmented term ( )TtQ +  in 

(3-22) accounts for the effect of dynamic model error and insures that (3-22) and (3-23) are 

equivalent to the classic covariance propagation equation in Kalman filter.  The resulting 

expression for the reduced rank square root forecast covariance ( )TtL f +  is consistent with our 

requirement that the forecast uncertainties along all of the locally unstable directions are properly 
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represented in ( )TtL f + .  The rest of the algorithm is compatible with classic Kalman filtering 

algorithms. 

For computational efficiency the above expressions are modified to take advantage of the rank 

deficiency of several large matrices. This avoids the need to compute or store any matrices with 

more than ( )Nm,max  columns (where it is presumed that nN <<  and nm << ). The resulting 

recursion is described by the following equations: 

1. Initialization: 

• ][⋅f , )(tH , ( )tQ , and ( )tR  specified for all 0>t  

• ( )0ax  and ( )00
aa PL =  is specified (e.g. as a given diagonal matrix) or derived from a 

specified set of column vectors (e.g. random ensemble replicates). Number of 

columns p  will generally be less than n . 

At each time ( L,2,,0 TTt = ): 

2. Compute the forecast by (3-4): 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,  

3. Compute the locally unstable directions or the Floquet vectors, using the procedure 

described in section 3.4.  We use (3-20) to write the ordered Schur decomposition of 

TttF +,  as ( ) ( ) ( )NN
Ttt

N
TttTttF ΛΞ=Ξ +++ ,,, , where the columns of ( )N

Ttt +Ξ ,  are the leading FVs of 

the auxiliary system and ( )NΛ  is an NN ×  upper-quasi-triangular matrix whose diagonal 

11×  or 22×  blocks correspond to the N  leading eigenvalues or eigen-pairs of TttF +, . 
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This procedure iterates nonlinear forward integrations of the model over [ ]Ttt +, . The 

matrix TttF +,  does not have to be calculated or stored. The matrices produced at time t  

are ( )N
TttTttF ++ Ξ ,,  and ( )N

Ttt +Ξ , . 

4. Compute the matrix Ttt +Γ , : 

If 0=t : ( ) aTN
TttT L0,,0 +Ξ=Γ , pNDim T ×=Γ ][ ,0      (3-28) 

p  = number of vectors used to construct aL0   

If 0>t : ( )( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΦΞ=Γ ++ )(~

,, ttLaTN
TttTtt , )(][ , nNNDim Ttt +×=Γ +   (3-29) 

( ) )(,~ ttLa Φ  from previous cycle 

5. Compute Ttt +Γ ,
~ , a full rank but smaller version of Ttt +Γ , ,  such that 

T
TttTtt

T
TttTtt ++++ ΓΓ=ΓΓ ,,,,

~~ , NNDim Ttt ×=Γ + ]~[ , . 

6. Compute )(~ TtLf + , ( ) NnTtLDim f ×=+ ]~[ : 

( ) ( )
Ttt

N
TttTtt

f FTtL +++ Γ⎥
⎦

⎤
⎢
⎣

⎡
Ξ=+ ,,,

~~       (3-30) 

7. Compute )( TtZ +  in a revised form of (3-27), ( ) mmTtZDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) +⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+

T
ff TtLTtHTtLTtHTtZ ~~
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( ) ( ) ( ) ( ) ( )TtRTtQTtHTtQTtH
T

++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++   (3-31) 

8. Compute )( Tt +Ψ  in a revised form of (3-26), ( ) mnTtDim ×=+Ψ ][ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ⋅
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
+++=+Ψ

TT

ff TtQTtHTtQTtLTtHTtLTt ~~

( ) ( ) ( )
1−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++ TtRTtZTtZ

T
    (3-32) 

9. Compute )(~ TtLa + , ( ) NnTtLDim a ×=+ ]~[ : 

( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+++Ψ−+=+ TtLTtHTtTtLTtL ffa ~~~     (3-33) 

10. Compute )( Tt +ϕ , ( ) nmTtDim ×=+ ][ϕ : 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++=+ TtQTtHTtϕ  

( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++⎥⎦

⎤
⎢⎣
⎡ +Ψ+− TtQTtHTtTtH      (3-34) 

11. Compute )( TtK + , ( ) mnTtKDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( )

( ) 1

1

)()(

~~

−

−

++++

+⎥
⎦

⎤
⎢
⎣

⎡
+++=+

TtRTtTtQ

TtRTtLTtHTtLTtK

T

T

aa

ϕ
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( ) 1)()()()( −+++++Ψ− TtRTtTtQTtHTt Tϕ    (3-35) 

12. Compute updated estimate (analysis): 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+ TtxTtHTtyTtKTtxTtx ffa   (3-36) 

13. Compute )( Tt +Φ  (for next cycle), ( ) nNTtDim ×=+Φ ][ : 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )TtQTtHTtTtQTt TN
TtTt

TN
TtTt +++ΨΞ−+Ξ=+Φ ++++ 2,2,  (3-37) 

14. Exit or return to Step 2.  

As we mentioned earlier, for various reasons it is undesirable to include model error in many 

chaotic geophysical applications.  Not only improper consideration of dynamic model error in 

these systems may lead to non-physical behavior and incorrect results, complete characterization 

of the dynamic model error is also a difficult task.  It is common in geophysical chaotic systems 

to assume that the dynamic model error is zero.  In absence of the dynamic model error, the 

update step changes as follows:  

1. Initialization: 

• ][⋅f , )(tH , and ( )tR  specified for all 0>t . 

• ( )0ax  and ( )00
aa PL =  specified or derived. 

At each time ( L,2,,0 TTt = ): 

2. Compute forecast by (3-4): 
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( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+=+ TttxfTtx af ,  

3. Compute the locally unstable directions or the Floquet vectors, using the procedure 

described in section 3.4.  We use (3-20) to write the ordered Schur decomposition of 

TttF +,  as ( ) ( ) ( )NN
tTt

N
tTttTtF ΛΞ=Ξ −−− ,,, , where the columns of ( )N

Ttt +Ξ ,  are the leading FVs of the 

auxiliary system and ( )NΛ  is an NN ×  upper-quasi-triangular matrix whose diagonal 

11×  or 22×  blocks correspond to the N  leading eigenvalues or eigen-pairs of TttF +, . 

This procedure iterates nonlinear forward integrations of the model over [ ]Ttt +, . The 

matrix TttF +,  does not have to be calculated or stored. The matrices produced at time t  

are ( )N
TttTttF ++ Ξ ,,  and ( )N

Ttt +Ξ , . 

4. Compute the matrix Ttt +Γ , : 

If 0=t : ( ) aTN
T L

T 0,0 )(
,0

Ξ=Γ , pNDim T ×=Γ ][ ,0     (3-38) 

p  = number of vectors used to construct aL0   

If 0>t : ( )( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+Ξ=Γ ++ )(,, TttLaTN

TttTtt φ , )(][ , nNNDim Ttt +×=Γ +  (3-39) 

( )tLa  from previous cycle and ( )Tt +φ  is a correction term explained below. 

This term, which is not included in the general recursion, accounts for 

growing errors that are missed in truncation of the locally stable directions in 

absence of dynamic model error:  



 105

( ) ( )( ) ( ) ( ) ( )trttITt TTN
Ttt ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−Ξ=+ +,φ     (3-40) 

( ) =Ω t  an orthogonal matrix with the same column space as ( )tLa  

=)(tr  a scalar 

5. Compute Ttt +Γ ,
~ , a full rank but smaller version of Ttt +Γ , ,  such that 

T
TttTtt

T
TttTtt ++++ ΓΓ=ΓΓ ,,,,

~~ , NNDim Ttt ×=Γ + ]~[ , . 

6. Compute )(~ TtLf + , ( ) NnTtLDim f ×=+ ]~[ : 

( ) ( )
Ttt

N
TttTtt

f FTtL +++ Γ⎥
⎦

⎤
⎢
⎣

⎡
Ξ=+ ,,,

~~       (3-41) 

7. Compute )( TtZ + , ( ) mmTtZDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) ( )TtRTtLTtHTtLTtHTtZ
T

ff ++⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
++=+ `  (3-42) 

8. Compute )( TtLa + , ( ) NnTtLDim a ×=+ ][ : 

( ) ( ) ( )TtTtLTtL afa +Π+=+       (3-43) 

where ( ) NNTtDim a ×=+Π ][  and: 

( ) ( ) ( ) ( ) ( ) ( )
1−

−

×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++⎥

⎦

⎤
⎢
⎣

⎡
++−=+Π TtRTtZTtZTtLTtHITt

T
T

f
NN

a
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( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++ TtLTtH f       (3-44) 

9. Compute )( TtK + , ( ) mnTtKDim ×=+ ][ : 

( ) ( ) ( ) ( ) ( ) 1−+⎥
⎦

⎤
⎢
⎣

⎡
+++=+ TtRTtLTtHTtLTtK

T
aa     (3-45) 

10. Compute updated estimate (analysis): 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++−++++=+ TtxTtHTtyTtKTtxTtx ffa   (3-46) 

11. Exit or return to Step 2. 

The correction term that appears in (3-39) is needed to account for the fact that errors that were 

formerly stable but are becoming unstable can be missed if the model error covariance is zero. 

To see this it is useful to consider three successive update times Tt − , t , and Tt + .  The update 

at time t  is able to handle unstable directions between Tt −  and t , and lie in the column space 

of  ( )N
tTt ,−Ξ .  Now consider an error ε  that was stable between Tt −  and t  but becomes unstable 

between t  and Tt + . This error lies in the column space of ( )N
Ttt +Ξ ,  at time t  (because it is starting 

to grow) but it also lies in ( )Nn
tTt

−
−Ξ ,  (because it was previously stable and hence truncated from 

( )N
tTt ,−Ξ ). Since it lies in the column space of ( )Nn

tTt
−

−Ξ ,  the error ε  is orthogonal to the column 

spaces of ( )N
tTt ,−Ξ , )(tLf  and )(tLa  (note that (3-41) and (3-43) imply that the column space of  

)(tLa  lies in the column space of )(tLf , which lies in the column space of ( )N
tTt ,−Ξ ). 
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Consequently, )(tLa  has no projection along ε  and the filter effectively assumes zero 

uncertainty in the ε  direction.   

Between t  and Tt +  the error ε  is unstable rather than stable. However, the filter will not 

correct this error at Tt + , even though it is known to be unstable and to lie in the column spaces 

of ( )N
Ttt +Ξ ,  and )( TtLf + . This is because there is no projection of ε  onto )(tLa  and therefore no 

projection onto Ttt +Γ ,  (see (3-39) for ( ) 0=+ Ttφ ). If model error were included ε  would project 

onto )( TtLf +  at Tt +  even though its uncertainty at t  only consisted of dynamic model error. 

The correction term ( )Tt +φ  is designed to compensate for the absence of dynamic model error 

so ε  will project onto Ttt +Γ ,  at Tt +  if it is in the column space of ( )N
Ttt +Ξ , .   

To derive ( )Tt +φ  define ( )tΩ  to be an orthogonal matrix that has the same column space as 

)(tLa . Then the expression )()()( trttI T
n ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−  defines a set of column vectors that lie in the 

null space of )(tLa  and have magnitudes proportional to the specified scalar )(tr . This scalar 

weighting factor can be viewed as a representative standard deviation for uncertainties that are 

stable at t but are not resolved in the reduced rank filter.  

When )()()( trttI T
n ⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−  is propagated forward to Tt +  using the truncated TttF +,  the result is 

the augmentation of ( )Tt +φ  from (3-40) in (3-39).  Note that the column space of this 

correction term lies in the column space of ( )N
Ttt +Ξ ,  (errors unstable between t  and Tt + ) but is 
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proportional to postulated uncertainties in the column space of ( )Nn
tTt

−
−Ξ ,  (errors stable between 

Tt −  and t ).   

The scalar )(tr  should be selected to be large enough to insure that some uncertainty is assigned 

to stable errors that may become unstable but small enough to insure that the modified filter does 

not exaggerate the model’s uncertainty. In the application discussed here it is reasonable to relate 

)(tr  to the level of measurement error uncertainty, which provides a rough upper bound for the 

uncertainty in unresolved stable errors as follows: 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= + tRtHtr   aluesingular vmax       (3-47) 

where ( )tH +  is the mn×  pseudo-inverse of ( )tH .  In other applications, a better )(tr  based on a 

stricter bound may be used. 

3.7 Experiments with Lorenz 95 system 

To test the filter, we have used a 144 dimensional Lorenz 95 system (Lorenz and Emanuel, 1998, 

Hansen, 1998).  The governing equations are defined as follows: 

( )

11011

121

,,

1,

xxxxxx

,n,jx.xxx
dt

dx

nnn

jjjj
j

===

=+−−=

+−−

−−+ Lθ
    (3-48) 

where 144=n  and the variables make a cyclic chain.  The first two quadratic terms only shift 
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the energy between state variables, while conserving the total energy, ∑
n

jx 2 .  The negative 

linear term damps the total energy and tends to bring the system to rest.  This is countered by the 

forcing θ , which replenishes the energy and makes the system exhibit a wide range of dynamical 

properties; completely dissipative, quasi periodic or chaotic. 

The mean and the standard deviation of jx , are in the ranges of [ ]θ,0  and ⎥⎦
⎤

⎢⎣
⎡

2
,0 θ , respectively.  

Thus each state variable may be assumed to stay within ( )θθ 2,−  for 95% of the time, meaning 

that the magnitude of the natural variability of each state variable is about θ3 . 

To find the forcing threshold for chaotic behavior we follow the analysis by Lorenz and Emanuel 

(1998).  Given a steady solution as ,n,, jx j L1== θ , dynamics of perturbations  

,n,, jx j L1=δ  around this steady solution can be written as follows: 

( ) j21 δxδxδxδx
dt
d

jjj −⎟
⎠
⎞

⎜
⎝
⎛ −= −+ θ        (3-49) 

Solving (3-49) for a solution with exponential form ∑=
k

kji
kj epδx  gives: 

k
kikik pee

dt
dp

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= − 12 θ        (3-50) 

which becomes unstable only if 11Re 2 >
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− − θkiki ee , i.e. ( ) ( )

θ
12coscos >⎥⎦

⎤
⎢⎣
⎡ − kk .  It is 
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easy to show that the expression on the left hand side reaches its maximum value of 
8
9  at 

( )
4
1cos =k , i.e. a wave with period of about 4.77.  The closest wave with a integer period, that is 

a divisor of the state size, has a period of 6, meaning that 
3
π

=k  and ( ) ( ) 12coscos =⎥⎦
⎤

⎢⎣
⎡ − kk .  

Therefore, the threshold forcing that leads to an unstable solution to (3-50) with 144 state 

variables is 1=θ .  Following previous work on Lorenz 95 system, we set 8=θ  in our 

experiments, guaranteeing the chaotic behavior of the system in the sense that uncertainty in the 

state grows exponentially, while the resulting trajectory is bounded within a hyper-cube of θ3  

along each side.   

For numerical integration of (3-48), we use a fourth order Runge-Kutta scheme with 01.0=dt  

(equivalent to 1.2 hrs in an atmospheric model), which we may occasionally reduce in case of 

numerical instability.  We assume that at every 0.1 units of model time (12 hrs in an atmospheric 

model), noisy observations of 108 of the state variables are available.  The standard deviation of 

the observation noise is assumed to be 0.10, corresponding to about 1% of the attractor radius.   

Experiments are conducted over 16 units of model time (equivalent to 80 days in an atmospheric 

model), and the root mean square error (RMSE) time series is computed for different filters 

(LFKF, SVKF, and EnKF) as follows: 

( ) ( ) ( )
2

1,, txtx
n

tNxRMSE tat −=       (3-51) 
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where N  is the rank of the filter, equal to the number of computed FVs (SVs) in LFKF (SVKF).  

In reduced rank EnKF when nN ≤ , the ensemble size is 1+N .  When nN > , the filter is full-

ranked with 1+N  ensemble members.  SVKF implementation follows the formulation in 

chapter 2, that uses an iterative method for computing the singular vectors.  A maximum of 5 

iterations per singular vector (Floquet vector) are allowed in SVKF (LFKF).  EnKF 

implementation is via a squared root scheme without Localization as appears in Evensen (2004).  

Our implementation of EnKF does not have the bias problem, which has been discussed in Sakov 

and Oke (2008), and Livings et al. (2008).   

In the first set of experiments, we set ( ) nnItQ ×= 05.0  and examine the performance of LFKF, 

SVKF and EnKF for a given N .  Although Lorenz 95 system is chaotic, we have not 

experienced any structural instability due to the dynamic model error.  The worst and best 

possible performances of a Kalman-based filter are benchmarked by an unconstrained integration 

of the model with no analysis (Openloop) and an EnKF with 1440 replicates (Optimal), 

respectively. 

The time series of ( )tNxRMSE t ,,  of different filters over a typical truth, for a number of chosen 

N's are plotted on Figure  3-1, along with the Openloop and Optimal time series.  Universally, 

RMSE of all of the filters is between the Openloop and the Optimal as expected, while all of the 

filters have a lower RMSE with a larger N .  EnKF has the worst RMSE for a given rank of the 

filter, revealing its inefficiency due to the inherent randomness of the ensemble members.  In 

particular, RMSE of the EnKF with 15=N  shows almost no improvement over the Openloop, 

while SVKF and LFKF with comparable rank are reducing the RMSE.  When 75=N , EnKF 
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shows some improvement, but SVKF and LFKF have already converged to the Optimal.  At last 

with 135=N , EnKF is able to reduce the RMSE to a level near the Optimal.  

To guarantee that the results are general and do not depend on a special truth or selection of the 

observed states, the experiments are repeated for 40 different true trajectories, each with a 

different observation matrix.  We measure the performance by the expected value of the 

asymptotic level of ( )tNxRMSE t ,, : 

( ) ( )
tx

t

t
tNxRMSENErr ,,lim

   ∞→
=        (3-52) 

where tx
⋅  denotes the expected value over different truths.  In experiments, first we 

approximate ( )tNxRMSE t

t
,,lim

   ∞→
 by the mean value of ( )tNxRMSE t ,,  after the initial transient 

period of 8 units of model time (80 assimilation cycles).  Then we compute ( )NErr  by 

averaging the asymptotic level of the analysis error over the 40 different truths.  Figure  3-2 

shows ( )NErr  for SVKF, LFKF, and EnKF.  OpenloopErr  and OptimalErr  are also plotted to mark 

the worst and the best expected performance, respectively.   

In agreement with Figure  3-1, ( )NErr  of all three of the filters with a small N start at somewhere 

between OpenloopErr  and OptimalErr , and improves towards OptimalErr  as N  grows.  The 

performance of EnKF does not improve much for 50<N , followed by a rapid improvement for 

7050 << N , and convergence to the Optimal for 70>N .  This is because the ensemble 

members in the EnKF pick the unstable directions randomly, meaning that an ensemble with size 
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smaller than the number of unstable directions may be missing the important modes with 

stronger instability.  Thus, the overall performance of the EnKF starts to improve only after the 

number of replicates grows beyond the number of unstable directions.   

The rate of improvement of SVKF and LFKF is remarkably faster and more uniform as N  

grows, because LFKF and SVKF follow a more systematic approach in picking the unstable 

directions based on their importance.  The LFKF is out performed by SVKF, but closely follows 

its performance, even though LFKF follows a more convenient approach for building the rank 

reduction subspace than SVKF. 

As a side note, after about 16 units of model time the performance of EnKF with 500=N  is 

almost identical to the assumed Optimal, i.e. EnKF with 1440 replicates.  This validates our 

assumption that the EnKF with 1440 ensemble members (the assumed Optimal) performs 

equally well as the EnKF with infinite ensemble (the true Optimal). 

In order to normalize the performance of different filters, we define the Asymptotic Optimality 

Index of a filter as the ratio of its error reduction with respect to the Openloop, to the maximum 

error reduction that is achieved by the Optimal filter: 

( )
( )

( ) 10,
loglog

loglog
AOI ≤≤

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡

= NAOI
ErrErr

NErrErr
N

OptimalOpenloop

Openloop

  (3-53) 

An AOI close to unity means that the filter performs asymptotically near the Optimal, while an 

AOI near zero shows that the filter does not make any improvement over the Openloop, meaning 
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that the filtered trajectory is as poor of an estimate of the truth as the trajectory with no 

assimilations.  Figure  3-3 shows the AOI of SVKF, LFKF, and EnKF versus 
n
N , the rank of the 

filter normalized by the state size.  This plot is a normalized demonstration of Figure  3-2, 

showing that the LFKF performs nearly as well as the SVKF, while both of the filters are almost 

as good as the Optimal when 3.0>
n
N  ( 50>N ).  The EnKF converges to the Optimal when 

5.0>
n
N  ( 70>N  as suggested in Figure  3-2). 

In addition to 144=n , we repeated the above experiments with Lorenz 95 with different state 

sizes (18, 36, 72, 216, and 288, while the number of observed states was also scaled 

proportionally).  We have found that Figure  3-3 does not change by the state size.  This suggests 

that the number of unstable modes of Lorenz 95 is about 
3
1  of the state size, and both SVKF and 

LFKF are able to capture all of them with as small of a rank as possible. 

To better understand the average computational cost of SVKF and LFKF for various N  's, we 

measured the CPU-time for each filter to complete the above experiments, and computed the 

average CPU-time per truth normalized by the CPU-time for a single forward integration of the 

model.   The computational cost of the linear model and the adjoint model that are used in the 

SVKF, are in general different from the cost of the nonlinear model that is used in the LFKF and 

the EnKF.  We have made the appropriate corrections to the CPU-time of SVKF, so that a single 

integration of the linear model and the adjoint model together, is equivalent to one integration of 

the nonlinear model.  Therefore, this cost measure shows the computational cost of each filter in 
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terms of the equivalent number of non-linear model runs, as plotted against the rank of the filter 

in Figure  3-4.  In reality, one iteration of the nonlinear model is cheaper than one iteration of the 

linear model and the adjoint model together. 

As expected, EnKF shows a one-to-one linear growth of the computational cost with the rank of 

the filter.  SVKF has an initial five-by-one increase rate due to the maximum allowed number of 

iterations being 5.  However, slope for 50>N  starts to decrease, indicating that in average less 

than 5 iterations are needed for each vector to converge.  LFKF has a higher cost for smaller N  

because the number of vectors that should be considered in the iterative procedure is larger than 

the number of desirable Floquet vectors N .  This is true so long as N  is smaller than the 

number of unstable modes, as verified by the crossing of the cost of SVKF and LFKF when N  

is about 50. 

To see the tradeoff between the cost and the performance, the normalized CPU-times of different 

filters are plotted against the performance in Figure  3-5.  The Optimal performance level is also 

shown for clarity.  It can be seen that SVKF has the best efficiency.  The competition between 

LFKF and EnKF depends on the required performance level.  In particular, if a performance 

close to the Optimal is needed, LFKF is clearly more efficient than EnKF.  However, if the 

computational resources are scarce and a moderate performance is acceptable, EnKF can be a 

good choice.  It should be mentioned that these conclusions are model specific.  In particular, the 

relative efficiency of the filters depends on the number of unstable directions and the number of 

required iterations for SVKF and LFKF to converge.  It is expected that the LFKF outperforms 

the EnKF in the large geophysical systems that have a relatively small number of unstable 
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directions, because the efficiency of random ensemble members to capture the unstable modes 

will be drastically diminish. 

To check whether the results will improve or not if we allow further iteration, we repeated the 

experiments allowing up to 100 iterations per vector.  The results were almost identical to Figure 

 3-3 and not shown here.  We conclude that limiting the number of iterations is a viable 

possibility for reducing the computational cost of LFKF and SVKF, without sacrificing the 

performance. 

To test the LFKF when dynamic model error is zero we use the same experimental setup but 

with ( ) 0=tQ .  Since a straightforward implementation of EnKF in absence of dynamic model 

error does not give satisfactory results due to rank deficiency LFKF is not tested against EnKF.  

Similar to the above experiments, a forward integration of the model without any update 

(Openloop) is assumed to represent the worst case scenario.  For the best case scenario, the 

asymptotic RMSE level of the EnKF with a large ensemble size will not be a good measure 

because regardless of the ensemble size, EnKF will become rank deficient.  However, if the 

ensemble size is large enough so that the EnKF does not diverge over the time frame of the 

experiments (16 units of model time), the corresponding limited time RMSE can still be used as 

the expected RMSE level of the Optimal filter.  We observed that in most of the experiments, 

1440 ensemble members were enough to prevent the divergence of the EnKF over 16 units of 

model time.  Hence we use the corresponding RMSE level as the Optimal. 

Figure  3-6 shows the RMSE of LFKF and SVKF for a typical truth.  Similar to Figure  3-1, 

RMSE of SVKF and LFKF is between the bounds of the RMSE from the Openloop and the 
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Optimal.  In general, the RMSE levels are lower than Figure  3-1 because there is no dynamic 

model error.  Over this truth, the SVKF reduces the RMSE more rapidly than the LFKF.  

However, we have observed that over some other truths, LFKF has a more rapid response that 

SVKF.  Therefore, in terms of transient behavior, neither LFKF nor SVKF are superior.  In terms 

of the asymptotic level of RMSE, Figure  3-6 suggests that both filters perform equally well for 

large N .  However, to confirm this observation we need to look at the average asymptotic 

RMSE level over multiple truths.   

Figure  3-7 depicts ( )NErr  for LFKF and SVKF, computed via (3-52).  Similar to Figure  3-2, the 

performance of Openloop and the Optimal are also plotted for reference.  In contrary to Figure 

 3-2, the improvement in the performance of both of the filters as N  grows is no longer uniform.  

In particular, there is a sharp drop in ( )NErr  of both of the filters.  This is due to the absence of 

dynamic model error.  In particular, when dynamic model error is present, the reduced rank 

approximation of the forecast error covariance is combined with the dynamic model error 

covariance.  This will compensate for the underestimation of the forecast error in the reduced 

rank filters with a too small N  along the important directions that cold not be considered in the 

filter. 

Figure  3-7 clearly shows the impact of the geometry of the attractor on the performance of the 

filter.  When 50>N , both of the filters perform at the same level because all of the unstable 

directions are considered.  In contrast when 20<N , both of the filters perform poorly, 

suggesting that the first 20 unstable directions are essential for performance of the reduced rank 

filter.  The unstable directions corresponding to 5020 << N  are still necessary for convergence 
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of the reduced rank filter, but have less importance than the first 20.  Additionally, every 

additional singular vector projects on all of the remaining unstable directions, while the number 

of unstable directions that are considered in LFKF directly grow with N .  Therefore SVKF is 

able to project on more unstable directions than LFKF, with a given rank.  

To complete the discussion, the normalized performance of SVKF and LFKF are plotted in 

Figure  3-8.  Again we can see that both of the filters perform near the Optimal when 3.0>
n
N  

( 50>N ), while SVKF outperforms LFKF for the same reason as above in the discussion of 

Figure  3-7. 

3.8 Conclusion 

Due to the large state size in geophysical applications, dynamics of the system is often projected 

on a lower dimensional subspace.  The main difference among various reduced rank KF-based 

algorithms is in the choice of basis for this projection subspace.  In this paper, we framed the 

reduced rank filtering problem from the perspective of stabilizing the local dynamics of the 

estimation error and followed a linear approximation of the error propagation.  We showed that 

the locally unstable directions of the state transition matrix are needed to be captured for near 

optimal performance of any reduced rank filter. 

We introduced an iterative procedure for computing a basis for the subspace of unstable 

directions that we called Floquet vectors because they were equivalent to the unstable directions 

of the Floquet matrix of an auxiliary periodic system, which we constructed over the forecast 
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trajectory.  We discussed that the interpretation of Floquet vectors from the point of view of local 

geometry of the attractor of the system, parallels the interpretation of the Lyapunov vectors with 

regards to the global geometry of the attractor.  We also explained the relationship between 

Floquet vectors and the Bred vectors. 

We built a reduced rank filter using the Floquet vectors and examined its performance against 

SVKF and EnKF on a chaotic Lorenz 95 system with dynamic model error.  We showed that for 

a given rank of the filter, LFKF performs very closely to SVKF, while both of the filters 

outperform EnKF due to its inefficiency in capturing the maximum number of unstable 

directions with a given ensemble size. 

In terms of the computational cost, the iterative process for computing the Floquet vectors 

requires about 5 iterations per vector for Lorenz 95.  This makes LFKF inferior to EnKF for 

small problems.  However, in large systems of interest in geophysical systems, a successful 

implementation of EnKF requires too many replicates that may not be possible.  In such 

problems, LFKF can be an appealing algorithm due to its rigorous approach to stabilize the error 

dynamics. 

Additionally, when the rank of the filter was too small, the procedure would not converge 

because the number of computed Floquet vectors was much smaller than the number of unstable 

directions.  Therefore, more Floquet vectors than the rank of the filter had to be computed, 

seeming to add to the computational cost of the filter when the selected rank is too small.  

However, the suggested rank for a successful implementation of LFKF is at least equal to the 

average number of unstable directions.  In other words, similar to any reduced rank filter, 
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implementation of the LFKF with a rank that is much smaller than the number of unstable 

directions will be far from optimal and is not recommended.  Therefore, the computational cost 

of LFKF with a very small rank is not important for practical purposes. 

When dynamic model error is zero, we proposed a solution for possible rank deficiency of 

LFKF, by formulating a provision for the filter to consider the stable directions that due to the 

chaotic dynamics become unstable, following an approach similar to the SVKF.  We showed that 

LFKF performs near optimal under when dynamic model error is zero, as long as all of the 

unstable directions are considered.   

Although the preliminary results of LFKF are very promising and the algorithm is in principle 

scalable to large systems, an actual implementation of LFKF in a large chaotic system will be 

very informative and is the natural step to follow this work.  Additionally, through out this paper, 

we maintained that the model is structurally stable.  We leave in depth analysis of the suitability 

of LFKF for systems that are subject to structural instabilities to future work. 
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3.10 Figures 

Figure  3-1: RMSE time series for a typical truth, 144D chaotic Lorenz 95 with dynamic 
model error 
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Figure  3-2: Performance vs. Rank of the filter, 144D chaotic Lorenz 95 with dynamic 

model error 
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Figure  3-3: Normalized Optimality, 144D chaotic Lorenz 95 with dynamic model error 
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Figure  3-4: Computational cost vs. Rank of the filter, 144D chaotic Lorenz 95 with 
dynamic model error 
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Figure  3-5: Computational cost vs. Performance, 144D chaotic Lorenz 95 with dynamic 
model error  
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Figure  3-6: RMSE time series for a typical truth, 144D chaotic Lorenz 95, no dynamic 

model error 
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Figure  3-7: Performance vs. Rank of the filter, 144D chaotic Lorenz 95, no dynamic 

model error 
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Figure  3-8: Normalized Optimality, 144D chaotic Lorenz 95, no dynamic model error 
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4 Filtering in Chaotic Geophysical Systems: 

Implementation in an Idealized Quasi-geostrophic 

Ocean Model 

4.1 Introduction 

Results in chapters 2 and 3 suggest that Singular Vector Kalman Filter and Local Floquet vector 

Kalman are two promising algorithms for filtering in chaotic geophysical applications.  In this 

chapter, an idealized wind-driven reduced-gravity quasi-geostrophic ocean circulation model is 

used to investigate some of the issues that arise in implementation of these filters in large 

systems.  The dynamic model error is assumed to be zero.  This allows an efficient revision of 

the covariance update equation that is suitable for assimilating a very large vector of 

observations.  The experiments suggest that the proper selection of the observation operator is 

crucial for the performance of the filters.  A metric for observability is suggested that can be 

helpful for verifying effectiveness of an observation operator as well as for designing an adaptive 

observation network.  Results show that when the system is observable, both of the filters can 

reduce the estimation error down to the level of observation noise. 
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4.2 Background 

Data assimilation as a method for estimating variables and/or parameters of a system has 

received considerable attention in a wide array of geophysical applications.  The estimation 

problem is posed in a probabilistic framework as the minimization of the expected error in the 

estimated values of variables of interest (analysis) with respect to their true values (truth), by 

combining the predicted values (forecast) by a model of the underlying dynamical system and 

noisy measurements of the truth (observation).  The optimum analysis is computed according to 

the Bayes rule, using the joint probability distribution of the forecast error and the observation 

noise.  We focus on filtering, where the observations are assimilated sequentially as they arrive 

via a recursive formulation. 

When both the dynamical model (for propagating the state) and the observation operator (for 

relating the observations to the truth) are linear, and the uncertainties are Gaussian random 

variables, the optimum estimate is computed by the Kalman filter as a linear combination of the 

observation and the forecast, with the weights specified according to the covariance matrices of 

the observation noise and the forecast error.  In presence of nonlinearities, the uncertainty 

distributions do not remain Gaussian and higher moments are needed to characterize them.  This 

involves nonlinear operations on the probability distribution functions, and in general does not 

have any analytical solutions.  A Monte Carlo based Particle Filter was proposed to approximate 

the optimal estimate by evaluating the statistics of a set of replicates (Arulampalam, 2002).  

However the number of replicates that are needed for convergence in these methods grows with 

the number of state variables, rendering them impractical for large systems such as in 
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geophysical applications with O(105) state variables. 

When the nonlinearities in the dynamical system or the observation operator are not too strong, 

they can be linearized around the best estimate of the state and used in a Kalman filter to 

compute a suboptimal solution, a technique known as the Extended Kalman Filter (EKF) (Miller 

et al., 1994; Miller et al., 1999; Picard, 1991).  Unfortunately, even when the linearization is 

valid, the EKF is too costly in large systems.  In fact, full specification of the forecast error 

covariance entails computing the state transition matrix of the system over the forecast window 

(also known as the tangent linear model (TLM) in geophysical sciences).  This requires 

developing a code for the TLM, which is difficult in complex systems, or conducting as many 

integrations of the nonlinear model as the size of the state, which is not computationally feasible. 

Reduced rank methods have been developed to resolve just the dominant structures of the 

forecast error covariance (Fukumori and Malanotte-Rizzoli, 1995; Cane et al., 1996; Buehner 

and Malanotte-Rizzoli, 2003; Buehner et al., 2003 Farrell and Ioannou, 2001; Heemink et al., 

2001; Lermusiaux and Robinson, 1999; Pham et al., 1998; Ubaldi, 2005 and 2006; Evensen, 

2003 and 2004).  The success of these methods depends on the dynamical properties of the 

underlying system and the validity of the rank-reduction assumptions.  In linear or weakly 

nonlinear systems with quasi-stationary dynamics, the dominant structures of uncertainty do not 

undergo strong changes over time and can be identified by the long term  evolution of the 

system.  These dominant structures, also known as the Empirical Orthogonal Functions (EOFs) 

of the system capture most of the uncertainty structures in quasi-stationary systems (Toumazou, 

2001; Buehner and Malanotte-Rizzoli, 2003, henceforth BM).  Thus, they can be used for 
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reduced rank representation of the forecast error covariance in a filter, as in the Reduced Rank 

extended Kalman Filter of BM who showed that a few leading EOFs were able to resolve most 

of the forecast uncertainty in a periodic quasi-geostrophic ocean circulation model, and 

successfully implemented the RRKF on the periodic ocean model.  BM reported that the RRKF 

did not perform well on a chaotic version of the model.  This can be explained by dynamical 

properties of chaotic systems. 

When the underlying system is chaotic, as in many oceanic and atmospheric applications, the 

dominant uncertainty structures change considerably over time (Nagashima and Baba, 1999).  

Therefore, attempting to reduce the rank of the system by means of a set of stationary structures 

such as the EOFs is inappropriate.  The results of BM in chaotic ocean model are in agreement 

with other experiments on chaotic systems, emphasizing the importance of resolving the time-

varying structures of forecast uncertainty (Zichmann, 2000; Nese, 1989; Hokougawa, 1991; 

Gyarmati, 2003; Trevisan, 1993 and 1995). 

Ensemble-based methods such as the Ensemble Kalman Filter (EnKF) use an ensemble of 

replicates to propagate the structures of uncertainties over the forecast window (Evensen 1994, 

1997, 2003, and 2004).  Specifically, it is assumed that the ensemble members that are computed 

at the update step represent the uncertainty structures in the analysis estimate.  These analysis 

ensemble members are propagated by the nonlinear dynamics, yielding a set of propagated 

ensemble members, which are assumed to represent the uncertainty structures in the forecast 

estimate.  Since the ensemble members are propagated by the nonlinear forward model, they 

aggregate the time-varying structures of the dynamical model over the forecast window, hence 
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the appeal of ensemble based filters for chaotic systems ( Zang and Malanotte-Rizzoli, 2003, 

henceforth ZM ).  However, performance of ensemble filters greatly depends on the ensemble 

size, which becomes a burden in large oceanic and atmospheric applications.  In particular, the 

affordable number of replicates in these applications is much smaller than the dimension of the 

state space, meaning that almost always the covariance of the ensemble members has a low rank.  

In other words, the forecast covariance does not have any projections on many directions that are 

in the null-space of the ensemble covariance.  This can be problematic in many applications. 

From a geometrical point of view, the filters ability to reduce the estimation error along any 

directions depends solely on the relative magnitude of the observation uncertainty and the 

forecast uncertainty based on the approximated forecast covariance.  But the forecast uncertainty 

along any directions in the null-space is zero.  Thus, the filter assumes the forecast to be perfect 

in the null-space and corrects it only in the subspace of ensemble members.  This does not cause 

any problems as  long as the ensemble subspace includes all of the directions that require 

correction in the forecast  In particular, if ensemble members can resolve the dominant structures 

of uncertainty at all times, then the filter will perform well.  In oceanic and atmospheric 

applications, the number of these dominant structures is much smaller than the size of the state 

(Kalnay, 2003; Yano, 1992).  However, since the ensemble members are inherently random, 

EnKF is inefficient in capturing them, meaning that the number of replicates that are needed for 

convergence of the filter is much more than the number of dominant structures. 

Another issue in implementation of EnKF in chaotic oceanic and atmospheric applications is the 

representation of the dynamic model error, which is typically included by adding random 
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perturbations to the state equation. Unfortunately, such perturbations can induce non-physical 

anomalies or imbalances.  This is a serious problem for example in the numerical weather 

prediction, where small perturbations in model states can generate spurious inertial or gravity 

waves (Barwell and Bromley, 1988, Daley, 1991, Gauthier and Thépaut, 2001, Fillion, 2002, 

Neef et al., 2006). It is a much less serious problem in oceanographic applications as the 

hydrostatic approximation used in most Ocean General Circulation models, and in particular QG 

models , filter out gravity waves,  In effect, the model error perturbation drives forecast vectors 

off the attractor into regions of the state space where they follow non-physical trajectories. For 

this reason, most ensemble filters used in meteorological data assimilation applications do not 

include dynamic model error, also known as the perfect model scenario assuming that the only 

sources of uncertainty in the forecast are the initial condition and the noisy observations,.   

Unfortunately, when the EnKF is formulated without dynamic model error, the ensemble 

members tend to loose their independence over a few assimilation cycles, and become rank 

deficient.  In other words, the rank of the ensemble covariance, i.e. the number of independent 

ensemble perturbations decline and the filter eventually looses its ability to capture all of the 

dominant directions of uncertainty.  To resolve the rank deficiency of the EnKF, a number of 

empirical methods such as Variance Inflation and Localization have been suggested, which 

increase the rank of the ensemble covariance at the expense of altering its correlation structures 

(Houtekamer and Mitchell, 2001; Hamill et al., 2001; Anderson and Anderson, 1999).  Here, we 

briefly discuss the Localization which is more common. 

In Localization, the ensemble covariance matrix is multiplied element-by-element by a matrix of 
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weights that are computed   using a Localization function, enforcing our a priori knowledge 

about the physically meaningful correlation structures.  For example, it is commonly assumed 

that the states which are distant in the physical domain are not strongly correlated (Pereira and 

Berre, 2006; ZM).  The resulting correlation function eliminates the spurious correlations and 

essentially increases the rank of the ensemble covariance matrix.  As the result, the filter 

considers some non-zero but suboptimal uncertainty along the null-space directions, which 

would otherwise be missed.  Although the EnKF with Localization seems to be a viable option in 

many applications, its performance will deteriorate severely with a bad choice of Localization 

function.   

In chapters 2 and 3, we introduced two Kalman-based algorithms, the SV-based Kalman Filter 

(SVKF) and the Local Floquet vector Kalman Filter (LFKF), that were based on identifying the 

transient dominant structures of uncertainty in a chaotic system.  Specifically, SVKF resolves 

propagation of uncertainties along the directions they are growing (leading singular vectors of 

the TLM), and LFKF resolves propagation of uncertainties along the locally unstable directions 

(leading Floquet vectors of the TLM).  The preliminary results from implementation of the filters 

in the Lorenz95 system were promising for both the cases with and without dynamic model 

error. 

This work constitutes a logical extension not only of the work in chapters 2 and 3 but also of the 

work by ZM, as it implements the SVKF and LFKF in the same quasi-geostrophic model of the 

wind-driven ocean circulation, which exhibits chaotic dynamics in the low viscosity regime. 

ZM’s goal was to compare the effectiveness of assimilations carried out using the RRKF and the 
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EnKF.  They found that in the chaotic regime the EnKF greatly outperforms the RRKF (which is 

equivalent to Optimal Interpolation) and that 32 ensemble members are sufficient to describe the 

non-stationary, inhomogeneous and anisotropic structure of the forecast error covariance. As 

both SVKF and LFKF are based on directly identifying the transient dominant structures of 

uncertainty in a chaotic system, they do not need a Localization function as the E KF of ZM. 

The paper is organized as follows. In section 4.3 we exploit the absence of dynamic model error 

to revise the covariance update equation to a form that is more efficient than the formulations in 

chapters 2 and 3.   In Section 3 we briefly describe the model, its parameters and properties. In 

section 4.5 we discuss the experiment setup and results. Finally, in section 4.6 we present our 

conclusions.  

4.3 Filter formulation 

In this section, we present a version of the analysis step in SVKF and LFKF that is suitable when 

Nm >>  and the dynamic model error is assumed to be zero, a common situation in oceanic and 

atmospheric applications with remotely sensed data where a large vector of observations has to 

be assimilated.  First we review the general formulation of the filters from chapters 2 and 3. 

We choose the potential vorticity as the n -dimensional state vector ( )tq , and measure the 

distance in the state space by the Euclidean norm in the space of potential vorticity:  

)()()( tqtqtq T=          (4-1) 
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We use the superscripts t , f , and a  to differentiate the true (unknown), forecast (prior) and 

analysis (posterior) states.  These various states can be viewed geometrically as points in the n -

dimensional state space. Differences between states (errors, perturbations, etc.) can be viewed as 

n -dimensional vectors with characteristic magnitudes and directions. We suppose the true states 

evolve from time s  to time t  according to the following state equation: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
= tsqtq tt ,ϕ          (4-2) 

where ⎥⎦
⎤

⎢⎣
⎡ tq,ϕ  represent the nonlinear operator for propagating the state by the model as 

explained in Section 4.4.  We assume the initial condition ( )0tq t  at 0ts =  is a random vector 

with a known mean ( )0tq t  and covariance matrix ( )0tPt . 

We consider a simple linear observation operator and denote the m -dimensional vector of 

observations by ( )tY , which whenever available can be written as a linear function of the true 

state: 

( ) ( ) ( ) ( )ttqtHtY t υ+=         (4-3) 

with ( )tH  being the nm×  observation matrix.  The measurement error ( )tυ  is assumed to be 

uncorrelated with ( )0tq t , and have a zero mean and known covariance ( )tR . 

The equations for the analysis and the forecast states follow  
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

tqtHtYtKtqtq

TttqTtq

ffa

af ,ϕ

      (4-4) 

It is understood that the analysis state is computed whenever a new observation is available.  The 

filter is assumed to be initialized with ( ) )( 00 tqtq ta = . 

( )tK  is a Kalman-based mn×  gain matrix: 

( ) ( ) ( ) ( ) ( ) 1−
⎥
⎦

⎤
⎢
⎣

⎡
= tRtLtHtLtK

T
aa        (4-5) 

where ( )tLa  is a square-root of the analysis error covariance, ( ) ( ) ( )Taaa tLtLtP = .  Note that in 

practice we do not have to compute the Kalman gain explicitly.  Instead, we can just compute the 

product ( ) ( ) ( ) ( ) ( ) ( ) ( )

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ − tqtHtYtRtLtHtL f
T

aa 1  by three matrix-vector multiplications, 

starting with the innermost bracket. 

Let ( )tLf  denote the square-root of the forecast error covariance, ( ) ( ) ( )Tfff tLtLtP = .  When 

the dynamic model error is zero, ( )tLa  and ( )tLf  in a filter of rank N  are Nn×  matrixes that 

are related as follows: 

( ) ( ) ( )ttLtL fa ∆=          (4-6) 
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where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−=∆

−
−

tLtHtWtRtZtZtLtHIt f
m

T
T

f

1

   (4-7) 

( ) ( ) ( ) ( ) ( ) ( )tRtLtHtLtHtZ
T

ff +⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=       (4-8) 

and  ( )tWm   is an arbitrary mm×  orthogonal matrix.   

Although ( )t∆  is only NN × , (4-7) requires inversion of large mm×  matrices ( )tZ  and 

( ) ( ) ( )tWtRtZ m+ , which can be avoided as follows.  For convenience, we drop the time 

notation.  It is understood that all of the variables are at time t . 

First we perform a change of variables in the observation space to make the observation noise 

white.  Let HRH
1ˆ −

=  so that HRH ˆ= .  We can rewrite the equation for Z  as 

( )( )
( )( ) TTTff

Tff

RRRLHLHR

RLHRLHRZ

+=

+=

ˆˆ

ˆˆ
 

( )( ) TmmTff RILHLHR
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ×ˆˆ        (4-9) 

Let 

( ) ( ) mmTff ILHLHZ ×+= ˆˆˆ         (4-10) 
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and define its square-root Ẑ  such that 
T

ZZZ ˆˆˆ = .  It easily follows that ZRZ ˆ= .   

Let the SVD of the Nm×  matrix fLH~ˆ  be written as 

T
mmm

f VULH Σ=~ˆ          (4-11) 

where columns of the Nm×  matrix mU  form the orthogonal basis for an N -dimensional 

subspace within an  m -dimensional space, mΣ  is NN ×  and diagonal, and mV  is NN ×  and 

orthogonal.   

Now we solve (4-7) in the N -dimensional space that is spanned by the columns of mU .  If ⊥
mU  

denote the ( )Nmm −×  complement of mU , 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⊥
mm UU  is an mm×  orthogonal matrix, and we 

have  

mmT

mm
T

mm IUUUU ×⊥⊥ =+         (4-12) 

Substituting from (4-11) and (4-12) in (4-10) we have 

T

mm
T

m
NN

mm

T

mm
T

mm
T

mmm

T

mm
T

mm

T
T

mmm
T

mmm

UUUIU

UUUUUU

UUUUVUVUZ

⊥⊥×

⊥⊥

⊥⊥

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Σ=

++Σ=

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Σ=

2

2

ˆ

    (4-13) 

Therefore, Ẑ  may be written as 
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( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +Σ
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+Σ=

−×−

×
⊥⊥×

NmNm

NN
m

mmm
NN

mm
I

IUUUIUZ
0

0ˆ
2

2  (4-14) 

Substituting for H  and Z  in (4-7) we have 

( )

( )

( )

( )

( ) f
m

TTf

f
m

TTf

f
m

TTTTf

f
m

TTTTf

f
m

T
TTf

f
m

T
T

f

LHWZZLHI

LHIWZZILHI

LHRRWZZRRLHI

LHRRWZZRRLHI

LHRWZRRZRLHI

LHRWRZRZRLHRI

ˆˆˆˆ

ˆˆˆˆ
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⎛ +−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
⎟
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⎝
⎛ +⎟

⎠
⎞
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⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛⎥

⎦

⎤
⎢
⎣

⎡
−=∆

  (4-15) 

Further substituting in (4-15) for fLĤ  and Ẑ  from (4-11) and (4-14), and choosing 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ⊥

mmm UUW  we have 
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( ) ( )
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Since all of the matrices in the bracket are diagonal we have: 

( ) T
m

NNNN
m

NN
mmm VIIIVI

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++Σ+ΣΣ−=∆

−
××

−
×

1
2

1
22     (4-17) 

Therefore to compute ∆ , we only need mV  and mΣ , which are computed from eigen-

decomposition of the NN ×  matrix ( ) ( ) ( ) ( )fTffTf HLRHLLHLH 1ˆˆ −= , i.e. 

( ) ( ) T
mmm

fTf VVHLRHL 21 Σ=−         (4-18) 

while the matrix in the bracket of (4-17) is diagonal and its nonzero elements can be computed 

by solving N  scalar equations. 

In the forecast step, consider the forecast window [ ]tTt ,− .  Since the dynamic model error is 

assumed to be zero, we need to repopulate the variance in the null-space of the analysis error 

covariance after each update step, following the approach in chapters 2 and 3.  The square-root 

of the forecast error covariance, ( )tLf  is computed as follows: 

( ) ( )
tTt

N
tTttTt

f DFtL ,,, −−− ⎥
⎦

⎤
⎢
⎣

⎡
Ξ=         (4-19) 

where tTtD ,−  is an NN ×  matrix equivalent of the ( )nNN +×  matrix 



 149

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−Ξ−Ξ−Ξ= −−−− TtrTtOTtOTtLD TTN

tTt
TN

tTt
aTN

tTttTt ,,,,
~   (4-20) 

such that T
tTttTt

T
tTttTt DDDD ,,,,

~~
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tTtF ,−  is the state transition matrix over the forecast trajectory ( ) ( ) ⎥
⎦
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and each term on the right hand side, 
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(or propagator) evaluated at ( )τq , the best estimate of the state, which is the forecast except just 

after an update, when it is the analysis. 

( )N
tTt ,−Ξ  is a basis for the rank reduction subspace.  In the LFKF, columns of ( )N

tTt ,−Ξ  are the N  

leading Schur vectors of tTtF ,−  and we have  

( ) ( ) ( )NN
tTt

N
tTttTtF ΓΞ=Ξ −−− ,,,         (4-23) 
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where ( )NΓ  is an NN ×  upper-quasi-triangular matrix whose diagonal 11×  or 22×  blocks 

correspond to the N  leading eigenvalues or eigen-pairs of tTtF ,− . 

In SVKF, columns of ( )N
tTt ,−Ξ  are the N  leading right Singular vectors of tTtF ,−  and we have  

( ) ( ) ( )NN
tTt

N
tTttTt UF Σ=Ξ −−− ,,,         (4-24) 

where ( )NΣ  is an NN ×  diagonal matrix with its diagonal elements being the N  leading 

Singular values of tTtF ,− , and ( )N
tTtU ,−  is the Nn×  matrix of the corresponding N  leading left 

Singular vectors. 

4.4 Quasi-geostrophic ocean model 

The wind-driven quasi-geostrophic ocean circulation with various boundary conditions, wind 

stress patterns, or viscosity parameterizations, has been previously studied by many investigators 

(Holland, 1978; McCalpin and Haidvogel, 1996; Meacham and Berloff, 1997; Berloff and 

Meacham, 1998; Meacham, 2000; Mahadevan et al., 2001; Primeau, 2002).  In this section, we 

briefly review the model and its parameters for chaotic dynamics, following the work in BM and 

ZM. 

The model has a single layer  with a constant thickness of )m(500=H  that rests on top of a 

motionless and infinitely deep bottom layer, and is forces  at the surface by the wind  stress.    

The model configuration is an idealized  rectangular basin with zonal width of 2048 (Km) and 

meridional width of 4096 (Km), with no-slip boundaries.  The zonal width of the basin 
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)Km(2048=L  is used to define the dimensionless spatial coordinates x and y such that 

10 << x  and 20 << y .  The domain is discretized into a uniform grid of 129×257 with square 

mesh elements with resolution of 16 (Km). 

The state variable is the potential vorticity q  over the whole domain.  The evolution of q  is 

coupled with the stream function ψ  and is written in non-dimensional form as follows: 

( ) ( )y
x

qJ
t
q

MI ωψδψψδ +∇=
∂
∂

++
∂
∂ 432 ,       (4-25) 

( )ψλ22 −∇=q          (4-26) 
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I  are respectively, the 

dimensionless Munk and Inertial boundary layer scales.  The model uses the  β plane 

approximation with )(sec 10 -14
0

−=f  the planetary vorticity for a mid-latitude basin  

 and )sm(102 1111 −−−×=β  its latitudinal gradient.   

The model exhibits a rich variety of dynamical regimes as the uniform eddy viscosity υ  is 

changed, and becomes chaotic when )s(m100 12 −=υ .  
DL

L
=λ  is the non-dimensional inverse of 

the internal (Rossby) deformation radius DL , which is chosen to be 48 (Km) for the chaotic 

regime  corresponding to an ocean circulation rich in meso-scale, strongly non-linear eddies. 

The vertical Ekman velocity Ew  is written ( )yWwE ω= , where W  is its dimensional scale and 
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( )yω  is a non-dimensional function describing its spatial pattern.  By choosing 
fL

W
0

0

ρ
τ

=  with 

)smKg(05.0 21
0

−−=τ  and )mKg(1000 3
0

−=ρ , and ( ) ( )yy πω sin−= , the wind forcing 

corresponds to applying a shear stress of ( )yπ
π
ττ cos0−= , uniform in x  and sinusoidal in y . 

t  is the non-dimensional model time and its unit corresponds to about 0.9 days.  The vorticity 

equation (4-25) is spatially discretized by a second order finite difference scheme and advanced 

in time using a second order Runge-Kutta method with a time step of 0.1 (about 2 hours).  The 

Jacobian ( )qJ ,ψ  is discretized following Arakawa (1966).  The stream function is computed by 

inverting the elliptic relation (4-26) following the method in Mahadevan et al. (2001). 

The domain is spun up from rest for 2500-4500 days.  The wind stress during the spin-up is 

slightly perturbed by adding a small noise that is just enough to break the symmetry of the flow.  

Beyond the spin-up and in all of the experiments, the wind stress is steady and symmetric as 

explained earlier. 

4.5 Experiments setup and results 

The performance of any reduced rank filter depends on the ability of the projection subspace in 

resolving the correct uncertainty of the forecast with respect to the truth.  In both SVKF and 

LFKF, it is assumed that the analysis error at the beginning of the forecast trajectory is small 

such that the forecast and the true trajectories are close enough.  This would guarantee that the 

computed dominant directions of uncertainty capture a significant portion of the forecast error.  
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Otherwise, if the analysis error is so large that this fundamental assumption is violated, the 

computed uncertainty structures at the time of update are wrong, leading to further departure of 

the analysis estimate from the truth until the forecast skill is completely lost.  To have a good 

analysis estimate at the beginning of the first forecast period, we start the filter with the analysis 

step. 

The choice of the observation operator is another important factor in  the performance of the 

filter.  Regardless of the rank of the filter, the ability of the update step to produce a good 

estimate depends on the quality and relevance of the observations.  We leave an  in-depth 

analysis of the observability of the chaotic system to future work.  It suffices our purpose to 

choose an observation vector that has good spatial distribution over the states that are most 

variable. 

In the ocean system under investigation, the patter of the wind stress combined with the Coriolis 

effect leads to formation of turbulent high energy    from the western boundary to about the 

center of the basin.  This can be seen in Figure  4-1, where we have depicted the relative 

variability of the potential vorticity over the model domain, based on the standard deviation of a 

sample of the state vectors drawn from a long integration of the model.  Due to the   distribution 

of the most variable states in the western part of the domain, it is natural to expect that the filter 

will perform well only if enough observations are made in this area.  We have conducted 

experiments with three different observation networks of sizes 235, 119 and 30, as shown in 

Figure  4-1, Figure  4-5, and Figure  4-8, respectively. 

The quality and time interval between observations is constrained by the capability of the 
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observation devices.   As in BM< and ZM for the chaotic regime, we assume that observations 

are collected at every 10 units of model time (9 days).  The observation noise is assumed to be 

stationary and uncorrelated in space, with a standard deviation that is equal to 10% of the natural 

variability of each observed state.  The initial estimate which undergoes the  starting update step 

is assumed to be an arbitrary state on the attractor, and its error covariance is computed based on 

a large sample of states over the whole attractor.   

As we discussed in chapters 2 and 3, identifying all of the growing/unstable directions over the 

forecast period is important for successful filtering in chaotic applications, while neglecting any 

of these directions will adversely impact the performance of the filter.  In order to estimate the 

number of growing directions, we analyzed the singular-value structure of the TLM of the 

system over 9 days (i.e. the forecast horizon in the experiments).  All of the singular values that 

are greater than one indicate growing directions and need to be retained in the filter.  Since the 

number of growing directions varies in different parts of the attractor, we conducted our analysis 

over 500 different TLMs.  Figure  4-2 depicts the spectrum of the first 140 singular values of 

these TLMs.  The number of growing directions in our sample varies between 45 and 75, thus 

any successful filter cannot have a rank which is smaller than 75.   

To measure the performance of the filters, we compute the root mean square error (RMSE) time-

series of the estimated state with respect to the truth: 

( ) ( ) ( )
2

1,, tqtq
n

tNqRMSE t−=        (4-26) 
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where ( )tq  is the best estimate of the filter, which can be the analysis or the forecast estimate.  

We have implemented LFKF and SVKF with various ranks of the projection subspace on a 

single truth over 1600 units of model time (about 4 years). 

Figure  4-3 and Figure  4-4 respectively show the RMSE of LFKF and SVKF with various ranks 

when 235 states as shown in Figure  4-1 were observed.  To see the improvement as the result of 

filtering, we have also shown an Openloop RMSE time-series computed by propagation of the 

initial condition without assimilating any observations.  It can be seen that the performance of 

the filter improves as the rank of the filter is increased.  In particular, when the rank of the filter 

is 100 or more, both the LFKF and SVKF are able to reduce the estimation error to the levels 

below the observation noise.  The SVKF seems to be more sensitive to the missing growing 

directions than the LFKF.  SVKF with too  small a rank completely looses track of the truth, 

following by further error in the growing directions.  In contrary, the LFKF seem to be more 

robust if the rank of the filter is not sufficient. 

In the second set of experiments, we reduce the number of observations to 119 states as shown in 

Figure  4-5.  When the filters were initialized arbitrarily, neither SVKF not LFKF could reduce 

the estimation error (results not shown ).  This could be due to the missing growing/unstable 

directions or the lack of observability.  To isolate the effect of subspace accuracy from the 

observability issue, we initialized the filters with an initial state that was close to the truth.  

Figure  4-6 and Figure  4-7 show the RMSE time series of the LFKF and the SVKF, respectively.  

Both of the filters are able to maintain the quality of the estimate when the filters have rank of 

100 or more, meaning that the 119 observations   are sufficient to track the truth as long as the 
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rank of the filter is larger than the number of growing/unstable directions.  The LFKF again 

seems to be more robust when some of the unstable directions are temporarily missed.  In 

contrast, the SVKF needs to include all of the growing directions.   

It should be mentioned that these results are based on a single true trajectory.  It is quite possible 

that for another truth, the SVKF would work as well as the LFKF with a small rank.  What these 

results suggest is that the LFKF is more robust than the SVKF. 

We also conducted a third set of experiments, with 30 observations as shown in Figure  4-8, 

following the work of BM and ZM.  30 observation sites were sufficient for the EnKF to 

converge. We initialized the filters with a good initial condition so that the computed 

growing/unstable directions are accurate.  The RMSE time series of the LFKF and the SVKF are 

shown in Figure  4-9 and Figure  4-10, respectively.  Regardless of the rank of the filter, neither 

the LFKF nor the SVKF could maintain the quality of the estimation error.  However, we saw 

that when 119 states were observed the filters of ranks 100 or more could retain the estimation 

error.  Therefore, the reason for the poor performance of the filters is that 30 observations are not 

enough  for SVKF and LFKF to track the truth.  A further possibility for this divergence is that 

the distribution of the observation sites may not capture all the most unstable modes, and that an 

optimal array design for the chaotic and turbulent region of the circulation is needed. 

4.6 Conclusions 

In this paper, a chaotic wind-driven quasi-geostrophic ocean circulation model was used to 

investigate the implementation issues of the SVKF and the LFKF in a more realistic geophysical 
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system.  Following the previous work of BM and ZM, it was assumed that the dynamic model 

error was zero.  A new formulation of the analysis step was provided that was mostly suitable 

when the size of the observation vector is larger than the rank of the filter. 

Experiments were conducted with various observation networks.  When the observation network 

was large enough and had good spatial distribution over the more turbulent areas, both the SVKF 

and the LFKF had remarkable performance, as long as the rank of the filters were larger than the 

number of growing/unstable directions.  The performances of the filters were lost with smaller 

ranks, amid more robustness of LFKF.  This is in agreement with expected pattern based on the 

preliminary experiments on the Lorenz 95 system in chapters 2 and 3. 

When only 30 states were observed, neither of the filters could produce acceptable estimates, 

regardless of the rank of the filter.  With an intermediate observation size of 119, the SVKF and 

the LFKF could produce good estimates only if they were initialized by good estimates so that 

the computed growing/unstable directions were accurate. 

These results are based on experiments over a single true trajectory.  For other true trajectories, 

we expect similar pattern of performance improvement; i.e. very small estimation error when the 

rank of the filter is larger than the number of growing/unstable directions (75 based on the 

spectrums in Figure  4-2). 

The observability of the system is a major issue.  Our results show that a poor observation 

network will lead to poor performance of the filters which otherwise would produce excellent 

estimates.  It may be possible to track other true trajectories with fewer observations, but our 

results show that such results will not be robust and reliable.  Our results can serve as a starting 
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point for a more thorough investigation of observability in such chaotic systems. 
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4.8 Figures 

Figure  4-1: Network of 235 observed states. Background is the relative variability of the 
potential vorticity over the model domain. 
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Figure  4-2: Singular Value spectrum of 500 randomly selected Tangent Linear Models.  
Each linear model s computed over 10 units of model time. 
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Figure  4-3: RMSE of LFKF with various ranks, quasi-geostrophic ocean model with 235 
observations. 
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Figure  4-4: RMSE of SVKF with various ranks, quasi-geostrophic ocean model with 235 
observations. 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

years

R
M

S
E

SVKF, numObs=235

 

 
OpenLoop
rank= 50
rank= 70
rank=100
rank=150

 



 166

 

Figure  4-5: Network of 119 observed states. Background is the relative variability of the 
potential vorticity over the model domain. 
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Figure  4-6: RMSE of LFKF with various ranks, quasi-geostrophic ocean model with 119 
observations. 
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Figure  4-7: RMSE of SVKF with various ranks, quasi-geostrophic ocean model with 119 
observations. 
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Figure  4-8: Network of 119 observed states. Background is the relative variability of the 
potential vorticity over the model domain. 
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Figure  4-9: RMSE of LFKF with various ranks, quasi-geostrophic ocean model with 30 
observations. 
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Figure  4-10: RMSE of SVKF with various ranks, quasi-geostrophic ocean model with 30 
observations. 
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5 Concluding Remarks 

This thesis addresses the problem of filtering in chaotic and large geophysical systems.  In 

chaotic systems, uncertainties experience growth or instability only along a subset of directions.  

This is promising for geophysical applications with enormous state size, because the order of the 

problem may be remarkably reduced by solving it on the subspace of these important directions 

for an approximate suboptimal solution.  In filtering, the best estimate of the state (analysis) is 

found recursively by correcting the prediction of the model (forecast) as the measurements of the 

system (observations) become available.  If the filter uses a linear Kalman-based update, the 

extent of the correction to the forecast is mainly controlled by the error covariance of the 

forecast.  Therefore, a reduced rank filter can be successful if only if the important information in 

the forecast error covariance is conserved.  In this work, two different methods were introduced 

to reduce the rank of the forecast error covariance without compromising any important 

information about the forecast uncertainty. 

In Chapter 2, the problem was approached from the perspective of growth potential of the 

uncertainty over the forecast window.  Under the assumption that the dynamics of the error can 

be approximated by a linear model, the growing directions were identifies as the leading singular 

vectors (SVs) of the corresponding state transition matrix, and computed via iterative 

integrations of the linear forward and adjoint models of the system.  The Singular Vector Kalman 

Filter (SVKF) was formulated in a square root form by projecting the forecast error covariance 

on the subspace of these SVs.  Experiments with a chaotic Lorenz 95 system with additive 

dynamic model error showed that once all of the growing SVs were resolved, SVKF performed 
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very close to the Optimal linear filter, defined as an Ensemble Kalman Filter (EnKF) with a very 

large ensemble size. 

In chapter 3, the problem was approached from the perspective of stability of the error dynamics 

over the forecast window.  Under the assumption of linearity of the error propagation, the 

unstable directions of error dynamics were identified as the unstable eigenvectors of the state 

transition matrix.  It was shown that the subspace of these unstable directions was spanned by the 

leading Floquet vectors (FVs) of an auxiliary periodic system that was built over the trajectory of 

the forecast.  The FVs were computed via iterations of the nonlinear forward model and used for 

the basis of the projection subspace in the Local Floquet Kalman Filter (LFKF), formulated in a 

square root form parallel to the SVKF.  The LFKF, unlike SVKF did not require the adjoint of 

the system.  LFKF was tested on the chaotic Lorenz 95 system.  The results showed that LFKF 

performed better than EnKF but it was slightly inferior to SVKF.  However, when the rank of the 

filter was greater than the number of growing or unstable directions, both the LFKF and the 

SVKF performed almost the same as the Optimal.  Since computation of FVs does not require 

any linear model or its adjoint, LFKF is more suitable than SVKF in applications where the 

adjoint model is not available or is difficult to build. 

Since the additive dynamic model error may lead to complications in chaotic geophysical 

systems such as the atmosphere, it is common in these applications to assume that there is no 

dynamic model error, also known as the perfect model scenario.  Elimination of the dynamic 

model error has important consequences in ensemble filtering algorithms that are very popular in 

nonlinear systems.  In particular, it is commonly observed that when dynamic model error is 
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zero, ensemble members loose their independence, leading to underestimation of the forecast 

uncertainty.  Current techniques to resolve this problem are ad hoc and involve enforcing the 

forecast error covariance to have a predefined structure.  Consequently, the important time-

dependent uncertainty information that is essential for performance of the filter may be lost.   

Both the SVKF and the LFKF were examined when dynamic model error was zero.  It was 

shown that both of the filters could potentially loose the uncertainty information along the 

directions that had been previously unimportant but suddenly needed to be considered in the 

reduced rank filter, a situation common in chaotic systems.  Since resolving the uncertainty along 

these newly important directions is essential for performance of the filter, the algorithms had to 

be slightly modified to allow proper characterization of the forecast uncertainty.  After this 

provision, both of the filters were tested on the chaotic Lorenz 95 system without dynamic model 

error.  Results show that both of the filters perform near optimal when their rank is large enough 

to capture all of the important directions.  However, when the rank of the filters were too small, 

their performance deteriorated more drastically than the experiments with the additive noise, 

because presence of dynamic model error could partially compensate for underestimation of 

forecast uncertainty along the discarded directions that are still important but are not essential, 

i.e. have small growth or instability factor. 

If a system is self-adjoint in the sense that its linear and adjoint models are the same, its SVs and 

FVs are the same.  However, this is not true in most of the chaotic systems, meaning that the 

SVKF and the LFKF use different subspaces to project the forecast error covariance.  To resolve 

this conflict, it was shown that once all of the growing SVs were included, all of the unstable 
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FVs were guaranteed to be stabilized by the SVKF, confirming the excellent performance of 

both of the filters.   

The computational cost of the filters we re also measured and normalized by a single nonlinear 

integration of the model, under the assumption that each iteration with the linear forward and 

adjoint models was as expensive as an iteration with the nonlinear model.  The experiments 

showed that 5 iterations were enough to compute the SVs and FVs with a good precision.  

Analysis of the trade-off between the performance and the computational cost showed that 

SVKF is the superior algorithm, while LFKF is a suitable substitute in applications where the 

adjoint model is not available or does not converge. 

In Chapter 4, SVKF and LFKF were implemented in an idealized chaotic wind-driven quasi-

geostrophic ocean circulation system with over 30,000 variables.  We introduced an alterative 

formulation of the covariance update step when dynamic model error is zero, particularly 

suitable when a large vector of observations were to be assimilated such as in remote sensing 

applications.  The experiments showed that both of the filters were able to produce excellent 

estimates when the observation operator was selected properly, even if they were initialized at a 

completely random initial estimate. 

We briefly discussed the observability issue.  Our results show that a poor choice of observed 

states would lead to complete loss of performance of a filtering algorithm.  This emphasizes the 

role of the observation operator and calls for in-depth analysis of the observability issue in 

chaotic dynamics.  
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6 Appendices 

6.1 Appendix A: Effect of dynamic model error in chaotic 

systems 

Under the hyperbolicity of the attractor, dynamics can be decomposed into directions which 

experience either contraction or growth.  However, when the intersection of stable and unstable 

manifolds is tangent to the attractor, it is called the homoclinic tangency (HT) and the attractor is 

not hyperbolic anymore (Jaeger and Kantz, 1997).  HTs are the point on the attractor with 

strongest nonlinearity, where linearization-based algorithms fail.  HTs are uniquely determined 

as the pre-images or images of the primary homoclinic tangency (PHT), which is the HT that is 

closest to the boundary of the basin of attraction (Kraut and Grebogi, 2004). 

HTs are also extremely important in analysis of the structural stability of chaotic systems in 

response to perturbations.  In particular, consider the unperturbed trajectory of an initial 

condition inside the basin of attraction that quickly falls on the attractor.  Trajectory of the very 

same initial condition with perturbations may get far from the attractor and even leave the basin 

of attraction.  This effect is called explosion of the chaotic trajectory and is more likely to happen 

in the vicinity of HTs (Jaeger and Kantz, 1997, Schroer et al., 1998, Robert et al., 2000).  This 

has important implications in data assimilation in chaotic systems.  In geophysical applications, 

occurrence of these structural instabilities due to perturbations is also known as gravity wave 
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excitation by unbalanced dynamics (Daley, 1991; Fillion, 2002; Neef et al., 2006). 

Although the HTs are harder to find in large and highly dissipative chaotic systems such as the 

Lorenz 95 that we have used in our experiments, their impact can be illustrated on small chaotic 

systems such as Henon map (Henon, 1976), whose dynamics is written as: 

 t
t

tt

t

t

x
ybxa

y
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1

1        (A1) 

where ( )tt yx ,  are the state variables, ( )ba,  are the parameters, and tω  is a perturbation vector.  

Figure  6-1 shows the attractor and its basin of attraction in absence of perturbations, i.e. 0=tω .  

A0 is an ensemble of 1000 replicates that are generated randomly within the basin of attraction 

around a point on the attractor.  Without perturbations, all of these replicates converge to the 

attractor within a few time-steps, as labeled by A1, A2, ....  However, if randomly generated 

Gaussian perturbations are added to the state at each step, trajectories that start from the same 

initial conditions follow completely different trajectories.  In our simple experiment, 18 

ensemble members (%1.8 of the replicates) escaped the basin of attraction within 10 time-steps, 

when they were subject to perturbations with standard deviation of 0.01 (about 0.002 of the 

attractor size).  Additionally, as expected the escaping ensemble members concentrated in the 

neighborhood of the PHT and its pre-images. 

In the data assimilation algorithms, there are three places, where perturbations are added to the 

state, namely initialization of the ensemble members, dynamic model error in the propagation 

step, and observation noise in the analysis step.  Avoiding the instabilities in the initialization 
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time is the easiest of the three and there are various methods to ensure that ensemble members 

are on the attractor or in its basin of attraction.  However, avoiding instabilities due to dynamic 

model error or in the analysis step is more complicated.  A few methods are developed for 

preventing these unbalanced dynamics and structural instabilities, amid an active research on this 

topic (Gauthier and Thépaut, 2001, Wee and Kuo, 2004). 

6.2 Appendix B: Iterative method for computing singular 

vectors 

Detailed procedure for computing the leading singular vectors of TttF +,  defined in (2-7) is 

discussed in this appendix.  Following the notation in (2-8), and noting that the adjoint of the real 

TttF +,  is its transpose, we have: 

T
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T
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which is the eigen-decomposition of the Hermitian matrix Ttt
T

Ttt FF ++ ,, .  Therefore, the leading 
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singular vectors of TttF +,  in N
TttV +,  are the same as the leading eigenvectors of Ttt

T
Ttt FF ++ ,,  and 

may be computed by an iterative Lanczos algorithm. 

In the Lanczos method, the N  leading eigenvectors of Ttt
T

Ttt FF ++ ,,  are computed by iterating (B-

3) and (B-4): 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
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k
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k
Ttt VV ,,

~Schmidt Gram        (B-3) 
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initialized by ( )0
, TttV +  whose columns are N  arbitrary but mutually independent perturbations, 

( )0
,

i
Tttv +  for Ni ,,1L= .  The iteration in k  continue until the column space of ( )k

TttV +,   converge 

to an invariance N  dimensional subspace (Saad, 1992).  In practice, (B-4) is done in two steps.  

First, ( )k
TttV +,  is multiplied by TttF +,  

( ) ( )k
TttTtt

k
Ttt VFU +++ = ,,,

~         (B-5) 

Then the resulting ( )k
TttU +,

~  is multiplied by T
TttF +, : 

( ) ( )k
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T
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k
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+
+ = ,,

1
,

~~         (B-6) 

When the fastest growing directions of a nonlinear system are needed and the linearity 
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assumption is valid, (B-5) can be conducted by propagating individual ( )ki
Tttv +, ’s using the 

nonlinear model as follows: 

( ) ( ) ( ) ( ) NiTttxfTtvtxfu ki
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where ( )ki
Tttu +,

~ ’s are columns of ( )k
TttU +,

~ .  Similarly, (B-6) can be done using the adjoint model 

along the forecast trajectory over [ ]Ttt +, .  This is very similar to the method for computing SVs 

at the European Center for Medium-range Weather Forecasts, without using the Hessian of the 

variational cost function .  After the convergence, columns of ( )k
TttU +,

~  and ( )k
TttV +,  are along the 

needed leading singular vectors in N
TttU +,  and N

TttV +, , respectively.  Additionally, magnitude of 

( )ki
Tttu +,

~ ’s are the corresponding singular values, which are diagonal elements of N
Ttt +Σ , . 

6.3 Appendix C: Verification of the Kalman gain 

computed via the recursion in Section 2.3 

In this appendix, it is shown that the Kalman gain computed in (2-30) is equivalent to (2-19).  If 

we denote 

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦
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⎡
+++Ψ−+=+Θ TtQTtHTtTtQTt     (C-1) 
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therefore ( ) ( ) ( )TtTtHTt +Θ+=+Ξ , and (2-30) can be rewritten as 
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To prove that (2-30) is equivalent to (2-19), we only need to show that ( )TtLa +  in (2-20) is 
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equivalent to ( ) ( )
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Therefore, 
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If ( )TtLf +
~  in (2-25) is a valid computation of (2-18), we can use (2-17) and it follows that 
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Therefore, we are left to show that ( )TtLf +
~  in (2-25) is a valid computation of (2-18). 

( )tΦ  in (2-24) is computed at the previous cycle using (2-32), which after (C-1) can be written as 

( ) ( ) ( )TtVTt TN
TtTt +Θ=+Φ ++ 2,        (B6) 
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Using (C-6) and substituting for ( )tΦ  in (2-24) we have: 
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which combined with (2-25) is equivalent to (2-18).  This completes the proof. 

6.4 Appendix D: Verification of the square root analysis 

scheme 

In this appendix, it is shown that computing the analysis error covariance by its square root  

( )tLa  in (2-20)-(2-22) is equivalent to the more conventional formulation in (2-14).  We drop the 

time notation for convenience. 

First, rewrite (2-14) as follows: 
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Using (2-22) we have: 
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for any Ω  that is full-rank mm × .   

We choose 
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Now we substitute (D-3) in the term in the brackets in (D-1): 
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Thus (D-1) can be written in square root form as 
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All we need to show is that (D-5) is equivalent to (2-20) with (2-21).  It is easy to see that ( )tΨ  

in (2-21) is equivalent to 

( ) ( ) ( ) Ω=+=+=Ψ
−−− TTffTTTTffTTff HLLZRZZHLLRZZHLL

11
 (D-6) 

Substituting (D-6) in (2-20) gives (D-5). 
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6.5 Appendix E: Proof of the theorem on stability of the 

singular vector Kalman filter 

This appendix poses a theorem on projection of the unstable eigenvectors of a given matrix on a 

subspace that is spanned by its leading left (final) singular vectors.  This theorem means that the 

gain matrix in an SVD-based low rank filter will use an approximate covariance matrix that has 

projection on all of the unstable modes of the system and hence stabilizes the system. 

Theorem: Given a square matrix with p  unstable eigenvalues, no unstable right eigenvectors are 

orthogonal to the subspace that is spanned by its p leading left (final) singular vectors. 

Proof:  Let A  be a square matrix of size n  with p  unstable eigenvalues.  Denote the ordered 

singular value decomposition (SVD) of A  by: 

TVUA ⋅Σ⋅=           (E-1) 

where ( )ndiag σσ ,,1 L=Σ  with nσσ ≥≥L1  are the singular values of A  in decreasing order, 

and ⎥
⎦

⎤
⎢
⎣

⎡
= LL iuU  and ⎥

⎦

⎤
⎢
⎣

⎡
= LL ivV  are two orthogonal nn×  matrices with respectively, 

left and right singular vectors of A  as their columns.  Additionally, let the ordered eigen-

decomposition of A  be as follows: 

1−Λ= WWA           (E-2) 
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where ( )ndiag λλ ,,1 L=Λ  with npp λλλλ ≥≥≥≥≥≥ + LL 11 1  are the eigenvalues of A  in 

decreasing order, and their corresponding right eigenvectors, iw  are the columns of W .   

(E-1) can be rewritten as follows: 
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Where pA :1  and npA :1+  are respectively, the SVD-based nn×  reduced rank approximation of A 

and its compliment.  We need to show that none of kw ’s for pk ,,1 L=  is orthogonal to iu  for 

pi ,,1 L= . 

Consider kw  with 1≥kλ .  If kw  is not orthogonal to all iv ’s, for pi ,,1 L= , it will have some 

projection on iu  for pi ,,1 L= , and hence is not orthogonal to all iu ‘s for pi ,,1 L= . 

We need to show that if kw  is orthogonal to all iv ’s, for pi ,,1 L= , then it cannot be orthogonal 

to all iu ‘s for pi ,,1 L= . 

If kw  is orthogonal to all iv ’s, for pi ,,1 L= , then ( )npk vvw ,,subspace 1 L+∈  and 0:1 =kp wA .  

Therefore, 

kkkkpknpknp wwAwAwAwA λ==+= ++ :1:1:1      (E-4) 
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meaning that kλ  is an eigenvalue of npA :1+ .  Since magnitude of any eigenvalue of a given 

matrix is bounded from above and below by its largest and smallest singular values, respectively, 

it follows that: 

pjjppk ,,1for  ,       ˆ1 1 L=≤≤≤< + λσσλ      (E-5) 

where jλ̂  is an eigenvalue of pA :1 .  Therefore, pA :1  itself has p  unstable modes.  If kw  is also 

orthogonal to all iu ‘s for pi ,,1 L= , then A  has to have 1+p  unstable modes that contradicts 

our assumption.  This completes the proof. 

6.6 Appendix F: Review of the Floquet theorem 

In this section, a brief review of the Floquet theorem is presented.  The complete proof can be 

found in Yakubovich and Starzhinskii (1975). 

6.6.1 Definitions 

Consider the following linear differential equation: 

( ) ( ) ( )szssz δδ Φ=&          (F-1) 

where ( )szδ  is a column vector of length n and ( )sΦ  is the nn×  matrix function.  We assume 

( )sΦ  is piecewise continuous and integrable.  In that case (F-1) has a continuous solution that is 
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unique.  Without loss of generality, we can write (F-1) in temporally discreet from as: 

( ) ( ) ( )szsAsz δδ =+1          (F-2) 

Let ( )sz jδ ( )mj ,,1 L=  be m  arbitrary solutions to (F-1) with m  initial conditions ( )0jzδ .  

Then the mn ×  matrix ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
= szszsZ mδδδ L1  solves the following matrix differential 

equation: 

( ) ( ) ( )sZsAsZ δδ =+1         (F-3) 

with initial condition ( )0Zδ .  

If mn =  and ( ) nIZ =0δ , ( )sZδ  is called the matrizant of the system (henceforth denoted as 

( )sΩ ).  From Lioville-Jacobi formula, 

( ) ( ) ( ) ( )∏∏
−

=

−

=
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡Ω=Ω

1

0

1

0

det det 0detdet
ss

AAs
ττ

ττ .     (F-4) 

Therefore, ( )sΩ  will remain invertible as long as ( )sA  is full-rank.  In that case, columns of the 

matrizant matrix will remain linearly independent and can be used as a basis for any solutions to 

(F-3).  In particular, any mn ×  solution ( )sZ1δ  to (F-3) with initial condition ( )01Zδ  may be 

expressed as: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )0             

001211             

2211             

11             

11

1

1
111

1
11

1
1

11

Zs

Zssss

sZssss

sZss

sZsAsZ

δ

δ

δ

δ

δδ

Ω=

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ⎥

⎦

⎤
⎢
⎣

⎡
−Ω−Ω⎥

⎦

⎤
⎢
⎣

⎡
−ΩΩ=

−⎥
⎦

⎤
⎢
⎣

⎡
−Ω−Ω⎥

⎦

⎤
⎢
⎣

⎡
−ΩΩ=

−⎥
⎦

⎤
⎢
⎣

⎡
−ΩΩ=

−−=

−−−

−−

−

L

  (F-5) 

If elements of ( )sA  are T -periodic functions such that ( ) ( )sATsA =+ , 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

Ω=+Ω
+Ω=+Ω+=++Ω

ssAs
TssATsTsATs

1
1

     (F-6) 

Thus, both sides of (F-6) solve (F-2) with the initial condition ( ) nI=Ω 0 .  Hence, from 

uniqueness of the solution to (F-2), (F-6) holds: 

( ) ( ) ( )TsTs ΩΩ=+Ω          (F-7) 

The reverse is also true, i.e. from (F-7), it follows that (F-2) is periodic: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )sA

sTTs

TsTsTsA

=

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ⎥⎦

⎤
⎢⎣
⎡ Ω+Ω=

+Ω++Ω=+

−−

−

11

1

1

1

     (F-8) 

Therefore, the matrizant of (F-3) satisfies (F-6), if and only if ( ) ( )sATsA =+ . 

If ( )sA  is T-periodic, ( )TΩ , the matrizant matrix evaluated at Ts = , is called the monodromy 
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matrix of (F-2) and its eigenvalues are referred to as the multipliers of the system.  The set of all 

of the multipliers is called the spectrum of the system.  In the remainder of this appendix, we 

focus on T -periodic case of (F-2). 

6.6.2 Floquet-Lyapunov Theorem 

Let nnB ×  denote the T -th root of ( )TΩ , defined as ( ) }{TBT =Ω , where }{TB  means that B  is 

raised to the power T  (not to be confused by “transpose”).  Therefore, B  is a constant matrix. 

Define ( ) ( ) 1}{ −
Ω= sBssQ .  It follows that ( )sQ  is T -periodic: 

( ) ( )

( ) ( )

( ) ( ) ( )

( )
( )sQ

Bs

BTTs

BBTs

BTsTsQ

s

s

Ts

Ts

=
Ω=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω⎥⎦

⎤
⎢⎣
⎡ ΩΩ=

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ ΩΩ=

+Ω=+

−

−−

−

−+

1}{

1}{1

1
}{}{

1}{

      (F-9) 

Therefore, ( )sΩ  at any time s  can be written in the particular form: 

( ) ( ) }{sBsQs =Ω          (F-10) 

where ( )sQ  is a T -periodic nn ×  non-singular matrix and ( ) nIQ =0 . 

Conversely, if ( )sΩ  is defined by (F-10) with a T -periodic ( )sQ  and a constant B , 
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( ) ( )

( )

( )
( ) ( )Ts
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BTsQTs
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TBsB

TBsB

ΩΩ=
Ω=

⎥
⎦

⎤
⎢
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⎡
=

+=+Ω +

             
             

             

}{

}{}{

}{

        (F-11) 

Thus, any ( )sΩ  of the form in (F-10), solves (F-6) and is matrizant of some equation with the 

form of (F-2) with T -periodic ( )sA . 

This proves a special case of the Floquet-Lyapunov Theorem: 

Theorem: ( )sΩ  is the matrizant of (F-2) if and only if ( )sΩ  is of the form of (F-10), where ( )tQ  

is a T -periodic nn ×  non-singular continuous matrix function with integrable piecewise-

continuous derivative and such that ( ) nIQ =0 , and B  is a constant nn ×  matrix. 

The above theorem can be rephrased so as to refer to any arbitrary full-rank fundamental matrix 

( )sZ1δ  of (F-3) ( ) ( )( )00det,0, 11 ≠≠= ZIZmn n δδ .  We have: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
}{

1
1

11

1
}{

11

000

0

0

s

s

ZBZZsQ

ZBsQ

ZssZ
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⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡=

=

Ω=

− δδδ

δ

δδ

     (F-12) 

Thus,  

( ) ( ) }{
111

sBsQsZ =δ          (F-13) 
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where 

( ) ( ) ( ) ( )
( ) ( )00

0

1
1

11

111

ZBZB

ZsQTsQsQ

δδ

δ
−=

=+=
       (F-14) 

So the above theorem is true for any fundamental matrix ( )sZ1δ .  Elaborating on (F-12), for a set 

of vectors as columns of ( )01Zδ , we have: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )0

0

0

1

1
}{

1
}{

1

ZTsQ

ZBsQ

ZBsQsZ

T
s

T
s

T

s

δ

δ

δδ

Ω=

=

=

         (F-15) 

In particular, at kTs = , 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )0

00

0

1

1

11

ZT

ZTQ

ZTkTQkTZ

k

k

k

δ

δ

δδ

Ω=

Ω=

Ω=

       (F-16) 

Therefore, propagation of any arbitrary set of vectors, ( )01Zδ , in the system of (F-2) will be 

according to (F-16) and all we need to know is ( )TΩ , the monodromy matrix. 
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6.8 Figures 

 
 
Figure  6-1: Henon attractor (cyan) and its basin of attraction (white), with parameters 

( ) ( )3.0,4.1, =ba .  Ensemble members without dynamic model error (black) 
remain on the attractor.  Same initial ensemble members follow different 
trajectories with dynamic model error; some leave the basin of attraction 
within 10 time steps (red), while the rest still converge (blue). 
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