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We investigate the Hagedorn transitions of string networks with Y-junctions as may occur, for example,

with ðp; qÞ cosmic superstrings. In a simplified model with three different types of string, the partition

function reduces to three generalized coupled XY models. We calculate the phase diagram and show that,

as the system is heated, the lightest strings first undergo the Hagedorn transition despite the junctions.

There is then a second, higher, critical temperature above which infinite strings of all tensions, and

junctions, exist. Conversely, on cooling to low temperatures, only the lightest strings remain, but they

collapse into small loops.
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I. INTRODUCTION

The statistical mechanics of string networks has been the
object of numerous studies because of the importance of
strings or stringlike entities across all energy scales.

In general, either because of the large number of con-
figurational microstates or because of the large number of
excited quantum states that such a network possesses, the
networks undergo transitions in which, as temperatures
rise, strings proliferate. In the language of configurational
states such a transition is termed a Feynman-Shockley
transition, after Feynman’s description of the �-transition
of 4He in terms of vortex production [1]. From the view-
point of counting excited states it is called a Hagedorn
transition [2]. (Henceforth we follow the common usage of
Hagedorn transition to apply to both cases, which are
similar in structure in many ways.)

Specifically, in QCD, the sudden proliferation of color
flux tubes (the original dual hadronic strings) explains
quark deconfinement as temperature rises (see, for ex-
ample, [3–5]). In cosmology at the grand unified theory
scale, where cosmic strings arise in all reasonable super-
symmetric models incorporating electroweak unification
[6], the statistical mechanics of cosmic string networks
has been investigated in order to understand their proper-
ties at formation and their late time scaling solutions,
crucial for determining their cosmological consequences
[7,8]. For fundamental strings there has been substantial
work on exploring the effects of such transitions on the
extremely early universe [9–13].

More recently, attention has turned again to fundamental
string networks, following new developments in super-
string theory. Indeed, a network of cosmic superstrings is

expected to form when a brane and antibrane annihilate at
the end of string-motivated brane inflation models. The
network contains fundamental F-strings, Dirichlet D-
strings, and ðp; qÞ-strings which are bound states of p F-
strings and q D-strings [14–17], meeting at Y-junctions (or
vertices). The presence of Y-junctions, as well as the
spectrum of tensions of the strings, is a key characteristic
of such networks and leads to more complicated dynamics.
Much work has been done to determine how ðp; qÞ-like
string networks evolve, both by analytic methods and
numerical simulations, with particular regard to scaling
solutions, their effect on the CMB, as well as other ob-
servable consequences [18–30].
Other than being stable against breakup, such strings

differ from earlier superstrings in that, due to the warping
of space-time, their tensions are not of the Planck scale but
many orders of magnitude smaller. As a result any
Hagedorn transitions may even arise later than the reheat-
ing of the universe, and hence be of direct relevance for
astrophysics. A necessary first step in seeing whether this is
the case is to determine the phase diagram for the
Hagedorn transitions of a network with more than one
type of string, and this is the goal of the present paper.
Our approach is to attempt to map the thermodynamics

of string networks with junctions into the thermodynamics
of a set of interacting dual fields, whereby the Hagedorn
transitions of the strings become conventional transitions
of the fields, a situation with which we are familiar. One
can imagine several ways to attempt this. We adopt the
simplest, generalizing the methods for describing quark
deconfinement mentioned above (with its flux-tube Y-
junctions) to something more like ðp; qÞ-strings.
Hence we investigate the equilibrium statistical mechan-

ics of cosmic superstring networks using methods moti-
vated by [3–5]. However, it is important to note that there is
at least one major difference between cosmic superstrings
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and QCD fluxlines: with multiple tensions (from different
string types), we expect cosmic superstring networks to
show multiple Hagedorn transitions.

In subsequent sections we derive and analyze the phase
structure of a three-string model with junctions. This is a
reduced model of realistic cosmic superstrings, for which
ðp; qÞ 2 Z� Z form a doubly infinite family. Since string
tension (or energy/unit length) increases with p, q, all but
low values will be suppressed at high temperature. We
therefore adopt the simplest nontrivial scheme, taking the
two lightest strings and their bound state (and antistrings),
all which have different tensions ��, � ¼ ð1; 2; 3Þ. For
example, depending on parameters, these could be the
(1,0), (0,1), and (1,1) strings. We show that as the system
is heated, the lightest tension strings first undergo the
Hagedorn transition, despite the presence of Y-junctions.
Conversely, at low temperatures, only the lightest strings
remain, before they disappear into loops. Our results are
summarized in Fig. 1.

These conclusions may have important consequences
for ðp; qÞ string networks in that, if only the lightest strings
remain after a nonadiabatic quench, no significant rôle
would be played by the junctions whose properties have
been studied so extensively. The dynamics would then be
that of a single-string type with no junctions (though there
may be loops containing strings of different types; as

explained below, our analysis is limited to infinite strings).
This is not an idle proposition in that, although our analysis
in this paper assumes adiabatic behavior, we have learned
elsewhere that universality classes of equilibrium systems
at their adiabatic transitions can become universality
classes of nonequilibrium systems at fast quenches [31]:
these points will be the content of a separate paper. Other
works [18,22,25,29] based on studying the dynamics of
string networks with junctions also suggest that at late
times only the lightest strings may remain.
The paper is set up as follows. In Sec. II we first review

some relevant aspects of string statistical mechanics in the
simplest case: one type of string and no junctions. In
particular, the duality between strings and fields is dis-
cussed. In Sec. III we still consider only strings of a single
tension and type, but now these are allowed to meet at a
junction. This section paves the way for Sec. IV in which
we consider the general case of strings of three different
tensions �� and types, meeting at junctions.
As explained in Sec. III there is significant complexity

involved in adding junctions when discussing string statis-
tical mechanics, and hence this section is central to the
development of the paper. Furthermore, technically, junc-
tions can be introduced in different ways, and as a result we
are forced to discuss in detail two specific models (‘‘bo-
sonic’’ and ‘‘fermionic’’) to do so. While bosonic models
are closer to the physical system we eventually wish to
describe (and discussed in Sec. II when there are no
junctions) only fermionic models can be generalized to
the three-string case of Sec. IV. At the end of Sec. III we
compare these two models, and conclude that they both
essentially agree in their phase structure. This justifies the
use of fermionic models in Sec. IV where the analysis
resulting in the conclusions drawn in Fig. 1 is straightfor-
ward. Finally, we also show, following ideas from QCD,
that the string system with junctions can be rewritten as a
generalized spin model (XY model).

II. UNDERSTANDING THE HAGEDORN
TRANSITION

In this section we discuss the nature of the Hagedorn
transition for strings of a single type, with tension �, and
no Y-junctions.
As mentioned in the introduction, we proceed by using

the duality between string configurations and fields to write
the partition function for the string network as that of an
effective field theory [32]. As a result, the Hagedorn tran-
sition can be mapped onto a transition of the effective field.
Furthermore, provided the right questions are asked, one
can work with the canonical rather than the microcanonical
ensemble.
Consider a classical static picture of noninteracting

strings in D-spatial dimensions. These are taken to lie on
a hypercubic lattice of spacing a, and the energy E of the
strings only depends on the total string length L through

FIG. 1 (color online). Different critical temperatures for our
simplified model of cosmic superstrings (with tensions �1 <
�2 <�3) with Y-junctions. The lower Hagedorn temperature T1

is determined by �1 whereas the higher Hagedorn temperature
T� is determined by all the �� (� ¼ 1, 2,3). nv denotes the
density of vertices (or Y-junctions) joining infinite strings at
temperature T.
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E ¼ �L. Near the critical temperature, correlations are
large and the details of the lattice structure should be
unimportant. We also assume that the network can be
thought of as a set of random walks. Now recall the duality
between (nonoriented) Brownian paths inD spatial dimen-
sions and a scalar field ’ of mass m, as exemplified by the
identity

h’ðxÞ’ð0Þi ¼
Z 1

0
d�e��m2

Z xð�Þ¼x

xð0Þ¼0
Dx

� exp

�
�

Z �

0
d�0

1

4

�
dx

d�0

�
2
�
:

This identity can be used to construct an effective action
(or, more accurately, a free energy) for the string partition
function Z at temperature T ¼ ��1 in terms of ’ as [32]

Z ¼
Z

D’ exp

�
�
Z

dxD
�
a2

4D
ðr’Þ2 þ 1

2
M2’2

��
; (1)

where the mass term is

M2 ¼ �a�

�
1� T

TH

�
:

The Hagedorn transition temperature, TH ¼ ��1
H , is the

solution to

Jð�Þ � e���a ¼ 1

2D
: (2)

The normalization of ’ has been chosen here so thatM2 is
dimensionless. (Note that one would have recovered the
same temperature TH for a gas of strings by counting
single-loop configurations on the lattice [3,8]).

It is important to observe that below the Hagedorn
transition T < TH, ’ is a massive free field with M2

positive. For T > TH, with M2 < 0, it describes a tachyon.
Here fluctuations are large and for this reason the canonical
ensemble is often dropped in favor of the microcanonical
ensemble [10]. However, in the conventional picture of
spontaneous symmetry breaking we are familiar with the
way in which tachyons describe instabilities (in field
space); they are understood as corresponding to an inap-
propriate choice of ground state, the true ground states
appearing naturally once backreaction is taken into
account.

For example, the inclusion of a repulsive point-
interaction modifies the free energy to [32]

S ¼
Z

dxD
�
a2

4D
ðr’Þ2 þ 1

2
M2’2 þ �’4

�
; (3)

thus permitting h’i to remain finite for T > TH. For our
ðp; qÞ networks, the system has more complicated interac-
tions than such a simple local repulsion. In particular, were
the strings allowed to interact at Y-junctions, we would
expect them to induce additional cubic �’3 terms—as we

shall see in a different context below. However, the general
implications are much the same.
The vanishing of the order parameter h’i at T � TH can

be understood in the following way. Examination of the
partition function shows that the total string density is
proportional to h’2i, whereas h’i2 measures the density
in infinite string (i.e. string that crosses space) [32,33]. It is
the vanishing of infinite string that characterizes the
Hagedorn transition, and not the vanishing of string.
Although large loops are energetically unfavourable,

some loops will always exist below the transition (in an
adiabatic limit). Superficially, free energies like (3) look
like those of high-temperature quantum field theories on
dimensional compactification. Either from calculating the
thermal propagator for excitations at the relevant ground
state or by counting microstates of a loop gas we get the
same result that, in the vicinity of the transition, the loop
distribution is dominated by the smallest possible loops
(the ultraviolet limit) [33].

III. MEAN FIELD TRANSITIONS; XY MODELS

As discussed in Sec. II, we anticipate that Y-junctions
will induce cubic interaction terms in the dual field theory.
However, we do not know how to introduce them in the
exact framework of Sec. II, even when the junctions are
between strings of the same type and tension �—the setup
considered in the present section.
In this section we discuss a mean field procedure which

allows junctions to be incorporated, and which shows how
such cubic interaction terms arise. As in Sec. II, one can
then construct an analogue effective potential, Vð’Þ, for a
field ’, whose vanishing describes the transition.
Unfortunately, it is not possible to extend this construction
to the full effective action, and as a result it is not possible
to identify the field fluctuations that describe finite loops:
our analysis is restricted to infinite string and the transi-
tions triggered by its creation. Nonetheless, knowing that
loops are there enables us to complete the picture, quali-
tatively. It is the mean field procedure presented in this
section which will be generalized to the three-string model
in Sec. IV.
Again we work in D spatial dimensions, on a periodic

hyper-cubic lattice of N sites and lattice size a ¼ 1. Let i
label a lattice site, and � ¼ 1; . . . ; D the (positive) unit
vectors in D-dimensional space. There is now a technical
complication, related to how we allow the strings to popu-
late the lattice. Although there is an energetic penalty in
having more than one string on a link, in the first instance
we do not wish to restrict the number to unity. To do so
could imply an effective repulsion between strings that is a
lattice artefact, and which might induce misleading terms
in the effective potential for the analogue field ’. Without
this restriction the models are termed ‘‘bosonic’’.
Models in which at most one string (of any type) can lie

on a link are termed ‘‘fermionic’’. In practice we shall find,
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when we come to mimicking ðp; qÞ strings, that only a
fermionic model can accommodate junctions of three-
string types.

An important result of this section is that our concern
about fermionic models is largely unjustified (though we
feel it is necessary, for reasons of clarity, to discuss it in
detail): both bosonic and fermionic models essentially
agree for the small ’ values that are relevant for transi-
tions, and for which the mean field approximation is more
reliable. Further, both of these models rewrites the string
system as a generalized XY model, permitting us to think
of the Hagedorn transition as one of spin ordering. This
suggests ways of going beyond the mean field approxima-
tion, although we shall not do so here.

A. Bosonic models

With conventional lattice notation, let nþi;� (n�i;�) be the
number ð0; 1; 2; . . .Þ of strings (antistrings) on the link
between the lattice points i and iþ�.

For strings with no junctions, the Hamiltonian

H ¼ XN
i¼1

�
X
�

ðnþi;� þ n�i;�Þ (4)

gives the requisite energy E ¼ �L to a network of total
length L.

Now, depending on the string network wewish to model,
there is more than one way to proceed. We discuss the
mean field potential in each case, making links with
Secs. II and IV.

1. Massless junctions

First we allow the strings to have Nv-fold massless
junctions i.e. no extra cost in energy. (We are primarily
concerned with Nv ¼ 3.) Since the junctions considered
are massless they do not appear in the Hamiltonian, which
is still given by (4).

Rather, the existence of junctions imposes constraints on
the nþi;� (n�i;�). Junctions or antijunctions are permitted on

site i provided the flux into that site is an integer multiple of
Nv:

�i �
X
�

½ðnþi;� � nþi��;�Þ � ðn�i;� � n�i��;�Þ�

¼ 0 mod Nv; (5)

a constraint which can be implemented through

��¼0 mod Nv
¼ 1

Nv

XNv

ki¼1

ei��i where �i ¼ 2	ki
Nv

:

Using this representation in the canonical partition func-
tion

Z ¼ X
n�i;�

e
���

P
i;�

ðnþi;�þn�i;�Þ
�Y

i

��i¼0 mod Nv

�

enables us to write Z as

Z ¼ Y
i

1

Nv

X
ki

�X
nþi;�

e
�P

i;�
½��nþi;�þið�iþ���iÞnþi;��

�

�
�X
n�i;�

e
�P

i;�
½��n�i;��ið�iþ���iÞn�i;��

�
;

where the different signs in front of the lattice variables �i
in the two terms in round brackets reflect the signs in (5).
The summations can be performed, to obtain

Z ¼
�
1

Nv

�
NX

ki

e
�P

i;�
lnð1þJð�Þ2�2Jð�Þ cosð�i��i��ÞÞ;

where Jð�Þ ¼ e��� as in (2). That is, the Hamiltonian of
the network is, up to a constant,

�H ¼ X
i;�

ln½1þ Jð�Þ2 � 2Jð�Þ cosð�i � �i��Þ�: (6)

It is not possible to evaluate Z exactly. Hence we resort
to the mean field approximation scheme (see for example
[1]), which consists of introducing a trial Hamiltonian H0

in which each variable of the system is decoupled from the
other but depends on an external constant source ’. An
obvious choice here is

H0ð’Þ ¼ �’

�

X
i

cos�i: (7)

On writing

H ¼ H0ð’Þ þ ½H �H0ð’Þ�;
then

Z ¼ X
config

e��H0ð’Þe��½H�H0ð’Þ�

¼ Z0ð’Þhe��½H�H0ð’Þ�i0�Z0ð’Þe��hH�H0ð’Þi0 ;

where the zero subscript denotes ’-dependent averaging
with regard to H0ð’Þ. As a result the free energy F ¼
�T lnZ satisfies

Fð’Þ � NVð’Þ � F0ð’Þ þ hHi0 � hH0ð’Þi0; (8)

where Vð’Þ is the mean field effective potential (and F0 ¼
�T lnZ0). Our aim is then to minimize V in order to find
’min, which determines the density of infinite string (see
below). As in common practice, we assume that the upper
bound of (8) is well saturated as far as transitions are
concerned.
We now carry out the calculation explicitly in the case of

Y-junctions for which Nv ¼ 3. Then
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Z0ð’Þ ¼
�
1

3

�X3
k¼1

e’ cosð2	k=3Þ
��

N ¼ ~I0ð’ÞN;

where

~I 0 ¼ 1
3ðe’ þ 2e�’=2Þ:

Now use the results that

hlnð1þp2 � 2pcos�Þi ¼�2
X1
m¼1

pm

m
hcosm�i; ðjpj< 1Þ

(9)

for all measures, and that

hcosm�i0 ¼
~Imð’Þ
~I0ð’Þ

(10)

for the case in point, where

~I mð’Þ ¼ 1

3

X
k

e’ cosð2	k=3Þ cosð2	mk=3Þ

¼ 1

3
ðe’ þ 2e�’=2 cosð2	m=3ÞÞ

is a discrete version of the Bessel function. Hence, using
(8) we obtain

�Vð’Þ ¼ � lnð~I0ð’ÞÞ þ ’

�~I1ð’Þ
~I0ð’Þ

�

� 2D
X1
m¼1

Jð�Þm
m

�~Imð’Þ
~I0ð’Þ

�
2
: (11)

The periodicity (modulo 3) of the ~Imð’Þ enables us to
perform the summation explicitly, to give (up to
’-independent terms)

�Vð’Þ ¼ � lnðe’ þ 2e�’=2Þ þ ’

�
e’ � e�’=2

e’ þ 2e�’=2

�

� 2DGð�Þ
�
e’ � e�’=2

e’ þ 2e�’=2

�
2
; (12)

where

G ¼ 1

3
ln

�
1þ J þ J2

ð1� JÞ2
�
¼ J þ 1

2
J2 þ . . .

for small Jð�Þ. As commented above, in (12) and also in
the remainder of this paper, we will always drop field-
independent terms when writing down the mean field
effective potentials.

Notice that, because the sum over m in (11) just repro-
duces the first term with a modified coefficient, Vð’Þ of
(12) can be shown to be exactly the mean field potential
arising from the Hamiltonian

Hdisc
XY ¼ �Gð�Þ

�

X
i;�

si 	 siþ�; (13)

i.e. the Hamiltonian for a system of unit spins in the plane
with nearest neighbor interactions in which their relative
angles are constrained to multiples of 2	=Nv (here Nv ¼
3); a discrete XY model. The mean field trial Hamiltonian
H0 in this case is H0ð’Þ ¼ � ’

�n:
P

isi for an arbitrary unit

vector n in which the spins are decoupled; in other words,
an external magnetic field proportional to ’.
In order to understand the phase structure of the model

(either as a spin system or as a gas of strings with junc-
tions), consider first the series expansion of Vð’Þ;

�Vð’Þ ¼ 1
2m

2’2 þ 1
3�’3 þ 1

4�’
4 þ . . . ; (14)

up to constant terms, where

m2 ¼ 1
2ð1� 2DGÞ; � ¼ 1

4ð1� 3DGÞ;
� ¼ � 3

16ð1� 2DGÞ: (15)

Observe that the field becomes massless at the temperature
for which 2DGð�Þ ¼ 1, which is in good agreement with
the Hagedorn temperature of the free dual theory of (1)
since Gð�Þ ’ Jð�Þ for J ¼ 1=2D 
 1. Furthermore, as
anticipated, the Y-junctions have induced a cubic term in
the potential. In addition they have also induced a quartic
interaction, vanishing when the field becomes massless,
that is repulsive when the field becomes tachyonic.
As a result of the cubic term, the potential in Eq. (12) can

be shown to have a weak first-order phase transition. The
critical temperature, however, cannot be obtained from
(15) as it occurs at values of ’ ’ 1. Numerically, however,
one finds that 2GcritðD ¼ 3Þ ’ 0:31 and 2GcritðD ¼ 4Þ ’
0:23. We shall not consider the first-order transition further,
since it is not reliably robust against rapid quenches which
is what we ultimately have in mind.

2. Massive junctions

Alternatively one might want to model string networks
with massive junctions—that is, to introduce junctions
with an energy cost v. (These can model massive mono-
poles, which may be formed at the vertex in different
symmetry breaking schemes [34]. Similarly massive
monopoles or ‘‘beads’’ can exist in cosmic superstring
networks [35].) We can then recover massless vertices by
taking v ! 0. Furthermore this construction allows one to
calculate the average density of vertices at temperature T,
by simply differentiating Z with respect to v. This will be
discussed in Sec. IV.
To add massive vertices, we allocate a vertex number

p�
i ¼ ð0; 1; 2 . . .Þ to each lattice site, constrained by

�i �
X
�

½ðnþi;� � nþi��;�Þ � ðn�i;� � n�i��;�Þ�

þ 3ðpþ
i � p�

i Þ ¼ 0 (16)

for Y-junctions, while the Hamiltonian acquires an extra
term
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HI ¼
XN
i¼1

vðpþ
i þ p�

i Þ: (17)

Performing the sums over the n�i;� and the p�
i leads to a

Hamiltonian

�H ¼ �X
i;�

ln½1þ J2ð�Þ � 2Jð�Þ cosð�iþ� � �iÞ�

�X
i

ln½1þ K2ð�Þ � 2Kð�Þ cos3�i�; (18)

where the �i are now continuous variables, the Lagrange
multipliers that arise from imposing the constraints

��i;0 ¼
1

2	

Z 2	

0
d�ie

i�i�i : (19)

Also we have defined

Kð�Þ ¼ e��v; (20)

analogously to J in (2). Then, carrying out the same mean
field treatment as above yields

�VðKÞð’Þ ¼ � lnðI0ð’ÞÞ þ ’

�
I1ð’Þ
I0ð’Þ

�

� 2D
X1
m¼1

Jð�Þm
m

�
Imð’Þ
I0ð’Þ

�
2

� 2
X1
m¼1

Kð�Þm
m

�
I3mð’Þ
I0ð’Þ

�
; (21)

where the Im are (continuous) Bessel functions.
For nonzero K cubic terms arise from the I3 Bessel

function, to give rise to a potential of the form (14), with
coefficients

m2 ¼ 1

2
ð1� 2DJÞ; � ¼ �K

8
;

� ¼ � 3

16

�
1� 8DJ

3
þDJ2

3

�
:

(22)

As expected, we have a tachyonic instability at J ¼ 1=2D
and a cubic term in the potential.

The slightly different behavior of (22) and (15) is to be
expected, since we are implementing the boundary con-
ditions that count vertices differently in the two cases: in
other words, they correspond to different implementations
of the mean field approach. However, since the mean field
result is, strictly, an upper bound, we could, if we wished,
only retain that solution that is numerically lower. In
practice, this is not necessary since there is close numerical
agreement at relevant temperatures. Massless junctions
correspond to taking K ¼ 1 for which � ¼ �1=8, the
value arising in (15) when 2DG ¼ 1. Further, a numerical
study of (21) shows that the transition tends to become first
order as K ! 1, in agreement with the discussion of (15).

3. No junctions

For continuous ‘‘bosonic’’ string with no junctions both
approaches give identical results. In the first case, we
eliminate junctions by taking Nv ! 1, whereby the dis-
crete Bessel functions are replaced by their continuous
counterparts. In the second, taking v ! 1 (K ¼ 0) just
recreates the same series.

In each case, on expanding Vð0Þð’Þ for small ’ we
recover the second-order transition at the Hagedorn tem-
perature TH of Sec. II [see Eq. (2)] when 2DJð�Þ ¼ 1, and
when the ’ field becomes tachyonic. However, it can be

seen that Vð0Þ of (21) becomes unbounded below as T !
1. This is not quite the behavior of (1), for which the
potential is unbounded below for all T > TH, showing the
limitations of the mean field approach for very large j’j.
Nonetheless, this simple example shows how the introduc-
tion of vertices induces interaction terms in the effective
potential to stabilize the ground states.

B. Fermionic models

We now consider the most simple ‘‘fermionic’’ models.
It is these which can straightforwardly be extended to the
general three-string-type model of Sec. IV. We will also
address the concern raised at the beginning of this section:
that the ‘‘fermionic’’ model might add an effective repul-
sion between strings, which could induce misleading terms
in the effective potential. We will show that this is not the
case.
Thus, we now restrict the number of strings on each link

to ni;� 2 f0;�1g. That is, the link from site i to iþ�

contains either a single-string, a single antistring, or no
string at all.

1. No junctions

With no junctions, the Hamiltonian is

H ¼ XN
i¼1

XD
�¼1

�n2i;�; (23)

subject to the constraint

�i �
X
�

½ni;� � ni��;�� ¼ 0: (24)

Performing the sums over the ni;� leads to a Hamiltonian

�H ¼ �X
i;�

ln½1þ 2Jð�Þ cosð�iþ� � �iÞ�; (25)

where the �i are again the Lagrange multipliers that arise
from imposing the constraints

��i;0 ¼
1

2	

Z 2	

0
d�ie

i�i�i : (26)
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Defining �J by

J ¼ �J

1þ �J2
; (27)

whereby Jð�Þ � �Jð�Þ when J 
 1, a similar calculation
to that above (see also Sec. IV) shows that the mean field
potential is, for �J < 1,

�Vð0Þ
F ð’Þ ¼ � lnI0ð’Þ þ ’

�
I1ð’Þ
I0ð’Þ

�

þ 2D
X1
m¼1

ð� �Jð�ÞÞm
m

�
Imð’Þ
I0ð’Þ

�
2
: (28)

The ’ field now becomes massless at 2D �Jð�Þ ¼ 1, with a
second-order transition. With J � �J this is slightly dis-
placed from that of the bosonic strings but, at the qualita-
tive level at which we are working, can be said to agree.
Note that both potentials (28) and (21) show a Z2 symme-
try under ’ ! �’ that is broken above TH, and restored
below TH, contrary to the usual pattern of symmetry break-
ing, but as in Sec. II.

On comparing (28) with (21) we see that they differ in
that the former has alternating signs in the Bessel function
expansion, whereas the latter does not. Because higher
terms in the series in powers of �Jð�Þ become significant
only at increasingly large’, the artificial repulsion induced
by the ‘‘fermionic’’ assumption (that is, of no more than
one string per link) is a large-’ effect in the mean field
approximation, and hence where the approximation is at its
least reliable. However, since the transitions are deter-
mined by small ’, we can use either. This is an important
result of this section.

In fact, for J small, both approximate the mean field
potential of the XY model, with spin-spin Hamiltonian

HXY ¼ � 1

�

X
i;�

2J cosð�iþ� � �iÞ ¼ � 2J

�

X
i;�

si 	 siþ�:

(29)

This follows from expanding (25), for which

�VXYð’Þ ¼ � lnI0ð’Þ þ ’

�
I1ð’Þ
I0ð’Þ

�
� 2DJð�Þ

�
I1ð’Þ
I0ð’Þ

�
2
;

(30)

showing a second-order transition at 2DJð�Þ ¼ 1. Rather
than just perform a series expansion in ’ as in (15), more
generally we see that extrema of VXYð’Þ satisfy

�’� 4DJð�Þuð �’Þ ¼ 0; (31)

where uð’Þ ¼ I1ð’Þ=I0ð’Þ.
�’ ¼ 0 is always a solution to (31). For 2DJð�Þ> 1

there is a further pair of solutions, � �’, �’> 0, which are
the minima. We note, for future use, when we need to count
extrema, that (31) behaves like the cubic equation obtained
from just retaining terms up to Oð’4Þ in the expansion of

the potential in the existence of three roots. The inclusion
of higher terms in the series in �J does not seem to affect this
empirically and it is not necessary to go beyond the XY
model, now and hereafter.
When the XY model is a good approximation we could,

in principle, use known results about it without resorting to
the mean field approximation. In practice, we know of no
work on the generalized XY models appropriate to the
three-string models (with or without junctions) and stay
with the mean field approximation.
To give a meaning to �’ we note that the average density

of (infinite) strings is proportional to �’2, as anticipated,
given by


 ¼ 1

N

�X
�

n2i;�

�
¼ �Jð�Þ�@VXY

@J
¼ �’2

8DJð�Þ : (32)

2. Massive junctions

We end this section by including Y-junctions in the
fermionic model (still of a single-string type). Given that
the occupation numbers are limited to 0, �1, there is no
analogue of the mod 3 description for massless vertices
discussed in the bosonic case [see Eq. (5)]. We therefore
consider massive vertices, and furthermore take them to be
noncoincident. There is thus now a single vertex number
pi ¼ f0;�1g constrained by

�i �
X
�

½ni;� � ni��;�� þ 3pi ¼ 0 (33)

with the Hamiltonian acquiring an additional term

HI ¼
X
i

vp2
i : (34)

On defining �K by

K ¼ �K

1þ �K2
; (35)

the mean field potential is, for ( �J, �K < 1),

�VðKÞ
F ð’Þ ¼ �Vð0Þ

F ð’Þ þ 2
X1
m¼1

ð� �Kð�ÞÞm
m

�
I3mð’Þ
I0ð’Þ

�
2
:

(36)

[This follows from the generalization of (9), used earlier in
(28) that, up to a constant,

hlnð1þ 2K cos�Þi ¼ �2
X1
m¼1

ð� �KÞm
m

hcosm�i (37)

for all measures and �K < 1, together with the specific
result

hcosm�i0 �
R

d�
2	 e

’ cos� cosm�R
d�
2	 e

’ cos�
¼ Imð’Þ

I0ð’Þ
for our choice of H0.] We note that unfortunately, for a
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simple cubic lattice, the requirement that �K < 1, necessary
for convergence of the series in (37), imposes K < 1=2.
Hence the mean field approximation is not valid for light
vertices in the fermionic case [as opposed to the bosonic
one in (21)]. We consider this constraint to be an artefact of
the lattice fermionic approximation.

Despite that, note that the mean field potential (36) leads
to an XY model in the presence of an external source [3,5]
in which we retain only the first term in the power series in
�K in (36) [or the first term in the series in K in (21)]. As a
result, there is always a second-order transition, as in the
bosonic case.

Finally we also note that the density of string (32) is
unchanged by the inclusion of junctions.

C. Summary of Sec. III

In summary, in this section we have seen how the
inclusion of Y-junctions in a model of a single-string
type can provide the backreaction necessary to prevent
tachyonic instability at the Hagedorn temperature.
Further, provided we restrict ourselves just to infinite
string, whose density is the order parameter, we can go
beyond the Hagedorn temperature, still with the canonical
ensemble.

We have also discussed two models, bosonic and fermi-
onic, and shown that the concern raised about fermionic
models at the beginning of this section is unjustified: both
models essentially agree for the small ’ values that are
relevant for transitions, and for which the mean field
approximation is more reliable.

We have also shown how the value �’ of the field at the
minimum of the effective potential is related to the density
of infinite strings in the system. As we discuss in Sec. IV, it
is equally apparent that the density of vertices is also
determined by �’ and obtained by differentiating the parti-
tion function with respect to v.

With this behind us, we now consider the case of three
different string types with Y-junctions, as a model for
ðp; qÞ strings. We note that, oddly, the analysis of QCD
confinement of [3–5], that we have called upon in this
paper, was performed in the context of a single-string
model, not permitting ‘‘ color.’’ Although this was not
our intention, a more realistic description of QCD is given
by the model that follows, in the limit of equal tensions, in
which our three-string types correspond to colored flux
tubes.

IV. THREE STRINGS, FERMIONIC MODEL

The basics of our model are the following.
As stated in the introduction, we model the ðp; qÞ string

network by a network of three different types of funda-
mental strings, labeled by � ¼ 1, 2, 3 as red, green, and
blue, say. Generally the strings also have different tensions
��. The strings do not interact with each other (nor with
themselves), except at a Y-junction (or vertex) which is

defined to be a point at which three strings of different
colors meet.
Following Eq. (14), our expectation is that the èffective

potential will take the generic form

�Vð’1; ’2; ’3Þ ¼
X
�

�
1

2
m2

�’
2
� þ 1

4
��’

4
�

�

þ�’1’2’3 þ . . . ; (38)

the cubic term reflecting the junction connecting the three
different string types. Potentials of the type (38), with
temperature-dependent coefficients, have been studied in
other contexts e.g. transformations of vortex types in su-
perfluid 3He [36].
We know that (38) is valid if Y-junctions are excluded,

when � ¼ 0. In this case, from the single-string models

m2
� / ð1� 2DJ�ð�ÞÞ; (39)

with J� ¼ e����. In the following discussion we suppose
that

�1 � �2 � �3 () J1 � J2 � J3: (40)

The critical Jcrit� ¼ 1=ð2DÞ define three critical inverse
temperatures �� ¼ T�1

� with

�3 <�2 <�1 (41)

in the vicinity of which m2
� / ð1� T=T�Þ. That is, with no

interactions we expect three sequential Hagedorn transi-
tions as, on cooling, the heavier strings disappear from the
picture, leaving the lightest until last before it disappears in
turn, leaving just small loops.
Our aim is to understand the effect that Y-junctions have

on this picture.
In practice, we are not able to recreate (38) in a bosonic

model with colored Y-junctions, with arbitrary numbers of
strings on each link. [The reason is that we are unable to
write down a generalized form of the constraint (5) in the
3-string case.] We therefore restrict ourselves to a fermi-
onic model, in which there is at most one string of each
type on a link. As discussed in the previous section, we
expect that the effective repulsion this implies can be
ignored at small field values. As in the case of the single-
string type, in order to be able to use mean field theory we
are obliged to give the vertex a nonzero mass v. (This may
well be realistic in certain cosmic superstring models [35].)
As before, we assume that the energy of the different

strings is proportional to their length LðE� ¼ ��LÞ. The
different strings are described, respectively, by the varia-
bles n�i;�, which all take values in f0;�1g. There are also

vertices, described by the variable pi 2 f0;�1g, joining
strings of 3 different types. The Hamiltonian of the system
takes the same form as for the single-string case,

H ¼ X
i

�X
�

X
�

��ðn�i;�Þ2 þ vp2
i

�
: (42)
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We now need to impose the constraint that a junction is
where three different color strings meet: this is done by

��
i ¼ X

�

ðn�i;� � n�i��;�Þ þ pi ¼ 0; 8�: (43)

Although summing over � would essentially recreate the
constraints (33), Eq. (43) is more specific. In particular,
(43) does not forbid different string types from lying on top
of each other.

As in the previous section, the constraints are imposed in
the standard way through Lagrange multipliers, which is
equivalent to writing the Kroneker delta as

���
i ;0

¼ 1

2	

Z 2	

0
d��i e

i��
i �

�
i (44)

(no � summation) for each ��. Hence the partition func-
tion is

Zð�;v;��Þ¼
Z Y

i;�

d��i
2	

X
ni;�

e
�P

i;�

P
�
½���ðn�i;�Þ2þin�i;�ð��iþ����i Þ�

�X
pi

e�
P

i
½�vp2

iþipi

P
�
��i � (45)

which, on carrying out the summations gives

Zð�; v;��Þ ¼
Z Y

i;�

d��i
2	

Y
�

½1þ 2J� cosð��iþ� � ��i Þ�

�
�
1þ 2K cos

�X
�

��i

��
: (46)

This corresponds to the Hamiltonian

�H ¼ �X
i;�;�

ln½1þ 2J� cosð��iþ� � ��i Þ�

�X
i

ln

�
1þ 2K cos

�X
�

��i

��

� X
i;�;�

2J� cosð��iþ� � ��i Þ þ
X
i

2K cos

�X
�

��i

�
(47)

for small J� and K.
The mean field treatment therefore contains three varia-

tional parameters ’�. Following the same steps as in
Sec. III, the trial partition functions which decouple differ-
ent lattice sites are

Z�
0 ð�Þ ¼

Z Y
i

d��i
2	

e

P
i

’� cos��i ¼ ½I0ð’�Þ�N; (48)

while the mean field effective potential is

�Vð’�Þ ¼
X
�

�
� lnI0ð’�Þ þ ’�

�
I1ð’�Þ
I0ð’�Þ

�

þ 2D
X1
m¼1

ð� �J�Þm
m

�
Imð’�Þ
I0ð’�Þ

�
2
�

þ 2
X1
m¼1

ð� �KÞm
m

�
Imð’1Þ
I0ð’1Þ

Imð’2Þ
I0ð’2Þ

Imð’3Þ
I0ð’3Þ

�
; (49)

where each �J� is defined as in (27), and �K is given in (35).
As discussed in Sec. III, it is sufficient for our purposes

to approximate �Vð’�Þ by the first term in the series of
(49),

�VXYð’�Þ ¼
X
�

�
� lnI0ð’�Þ þ ’�

�
I1ð’�Þ
I0ð’�Þ

�

� 2DJ�

�
I1ð’�Þ
I0ð’�Þ

�
2
�

� 2K

�
I1ð’1Þ
I0ð’1Þ

I1ð’2Þ
I0ð’2Þ

I1ð’3Þ
I0ð’3Þ

�
: (50)

This corresponds to making the small J, K approximation
in (47) (and this approximation will be made in the re-
mainder of this paper). That is, the model (46) is a gener-
alized XY model, consisting of three spinlike variables
defined on each lattice site i, making angles ��i with
respect to some fixed axis, interacting amongst themselves
through the K-dependent term.
We have achieved our goal in that, if we expand

VXYð’�Þ of (50) [or, indeed the full Vð’�Þ of (49)] in
powers of ’� we recover the generic potential (38) as the
first few terms in the series.
However, we can say more. As in our earlier examples,

attaching a nominal energy to each vertex allows us to
calculate the density of vertices. Specifically, the density of
vertices on infinite strings is

nv ¼ 1

N

�X
i

p2
i

�
¼ �K�

@VXY

@K

/
�
I1ð �’1Þ
I0ð �’1Þ

I1ð �’2Þ
I0ð �’2Þ

I1ð �’3Þ
I0ð �’3Þ

�
/ �’1 �’2 �’3 (51)

at the minimum ð �’1; �’2; �’3Þ of VXYð’�Þ. The small loops
corresponding to the field fluctuations that are invisible to
our mean field analysis contain vertices not counted in
(51).
As in Sec. III, we now look for the extrema of the

potential in order to determine the density of infinite string
and the density of vertices. As expected from Sec. III, a full
numerical analysis (that we have performed) without the
XY approximation does not alter our qualitative conclu-
sions and barely changes our quantitative results.
As we noted earlier, in the main works on QCD ([3,4])

all flux strings were taken to be of a single kind, leading to
a very different potential, in which I1ð’1ÞI1ð’2ÞI1ð’3Þ is
replaced by I3ð’Þ for example. In particular, as we shall see
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later for (49), with equal tensions there is no first-order
transition when there are three-string types.

A. K ¼ 0: no vertices and three independent spins

We have already anticipated the results for this simple
case, but it is helpful to see them in greater detail. For K ¼
0 the XY model reduces to three independent, uncoupled,
XY models with Z2 � Z2 � Z2 symmetry under ’� !
�’�. The extremal points are when

@VXY

@ �’�

¼ 0 , �’�

4DJ�
� uð �’�Þ ¼ 0; (52)

where uð’Þ ¼ I1ð’Þ=I0ð’Þ as before. One possible
solution is always �’� ¼ 0, the only real solution if
2DJ�ð�Þ< 1.

If 2DJ�ð�Þ> 1 then there are two further real solutions,
denoted � �’�, where we take �’� > 0. The 33 ¼ 27 pos-
sible extrema ’ ¼ ð �’1; �’2; �’3Þ then break down into a
nondegenerate ’ ¼ ð0; 0; 0Þ, three doubly degenerate so-
lutions, exemplified by ’ ¼ ð� �’1; 0; 0Þ, three fourfold
degenerate solutions, exemplified by ð� �’1;� �’2; 0Þ,
and an eightfold degenerate solution ð� �’1;� �’2;� �’3Þ.
It is sufficient to restrict ourselves to the positive sector
’� � 0.

To determine which of these are maxima, which minima,
and which saddle points we need to calculate the eigenval-
ues of the HessianM�� ¼ @2VXY=@’�@’� at the extrema.

An extremum is a minimum if all are positive, and a
maximum if all are negative. Otherwise one is dealing
with saddle points.

With K ¼ 0, the only nonzero entries are on the diago-
nal with (no summation)

M�� ¼ u0ð �’�Þ½1� 4DJ�ð�Þu0ð �’�Þ�: (53)

For the case in hand the answer is very simple and very
obvious.

(1) �>�1ð>�2; �3Þ. In this range the global mini-
mum occurs at ~’ ¼ ð0; 0; 0Þ.

(2) �2 <�<�1. Now ð �’1; 0; 0Þ is the global mini-
mum. [(0, 0, 0) is now a saddle point.]

(3) �3 <�<�2. In this range it is easy to see that
ð �’1; �’2; 0Þ is the global minimum.

(4) �<�3. Here it is equally straightforward to see
that ð �’1; �’2; �’3Þ is the global minimum, (0, 0, 0) is a
maximum, and all other points are saddle points.

As expected, as the temperature is increased infinite
strings of the lightest tension first are nucleated at � ¼
�1; then those of the next lightest tension at � ¼ �2; and
finally the heaviest strings when � ¼ �3. When one de-
creases the temperature from a very high one, the opposite
happens.

B. K � 0: vertices and three coupled spins

Let us now consider the effect of Y-junctions in the
generalized XY model of (50). For unequal �� the sym-

metry of VXY is now explicitly broken from Z2 � Z2 � Z2

to D2 ¼ Z2 � Z2, generated by

P1: ’1 ! ’1; ’2 ! �’2; ’3 ! �’3

P2: ’1 ! �’1; ’2 ! ’2; ’3 ! �’3

P3: ’1 ! �’1; ’2 ! �’2; ’3 ! ’3:

If any tensions are equal the symmetry is correspondingly
increased. Imposing @VXY=@’� ¼ 0 gives (no summation)

u0ð �’�Þ½ �’� � 4DJ�ð�Þuð �’�Þ � 2Kð�Þuð �’�Þuð �’�Þ� ¼ 0;

(54)

where � ¼ ð�þ 1Þ mod 3, � ¼ ð�þ 2Þ mod 3. There
are obvious solutions to these coupled equations: (0, 0, 0)
for all �; ð �’1; 0; 0Þ with ’1 ¼ �’1 (the standard solution
provided 2DJ1 > 1). The important point though is that it
is not possible to have a solution with only, say �’1 ¼ 0,
and the other two nonzero. One can see this from (54),
where setting �’1 ¼ 0 would require that one of the other
two ’’s must vanish.
At the extrema the Hessian has the same diagonal ele-

ments as in (53), but off-diagonal elements

M�� ¼ �2Kð�Þu0ð �’�Þu0ð �’�Þuð �’�Þ: (55)

We now evaluate these at the different extrema identified
above and discuss the consequences.
Case 1.— �’� ¼ 0, 8�.
This reduces to the free-string case above, as here the

off-diagonal terms of M also vanish. We have a global
minimum for �> �1 as all the eigenvalues are positive.
Otherwise, when�3 <�<�1 we have a saddle point, and
for �<�3 a global maximum.
Thus, as the temperature increases (or� decreases) the 1

direction will ‘‘roll’’ first.
Case 2.— �’2 ¼ �’3 ¼ 0 but �’1 � 0.
Now, notice that the temperatures �1, �2, and �3, as

defined for free strings, are in principle relevant only when
�’� ¼ 0 since then the off-diagonal terms of M vanish.
When nonzero �’� enter, we have to worry about the off-
diagonal terms, and find the new eigenvalues. This in turn
will introduce new critical (K-dependent) temperatures.
As before, �’1 is the solution of the standard equation

provided 2D �J1 > 1 or �<�1.
When � ¼ �2 the smallest eigenvalue is negative,

showing that ð �’1; 0; 0Þ is not a local minimum. There is
an intermediate temperature ��, the solution to

ð1� 2DJ2ð��ÞÞð1� 2DJ3ð��ÞÞ ¼ K2ð��Þu2ð �’1Þ (56)

that denotes the transition from local minimum to saddle
point. That is, strings of type 2 and 3 are nucleated at the
same time.
To summarize: for �>�1 there is a global minimum at

�’� ¼ 0. For �2 <�� <�<�1 the global minimum is at
ð �’1; 0; 0Þ.
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Case 3.— �’1, �’2, �’3 all nonzero.
For �<��, type 2 and 3 strings are nucleated since one

cannot have only one vanishing �’�. Hence we expect to
have nonzero �’� for all�. However, there is nothing at this
stage to preclude the possibility of even further transitions,
of first and second order.

Discussion.—We can get some help from elementary
Morse theory, applied to the whole �’� space and not just
the positive sector [36]. Empirically, for the purpose of
counting extrema, Eqs. (54) also behave just like the cubic
equations that would follow from taking only the leading
terms (38). According to this, when we have 27 extrema,
no more than 14 can be minima. The cases of all �’� ¼ 0 or
one �’� nonzero may produce 7ð7 ¼ 1þ 3� 2Þ real ex-
trema and therefore 20 may correspond to extrema with no
�’� vanishing. From D2, each is fourfold degenerate, im-
plying that there may exist five (5 ¼ 20=4) different least
symmetric extrema, of which no more than three can be
local minima. This still allows for either first- or second-
order Hagedorn transitions as � is reduced below �� (or
temperature increased).

Now consider the case when two string types have
(approximately) the same tension, and the other is mark-
edly different, e.g. one string is very light, and the others
heavy. The cases of all �’� ¼ 0 or one �’� nonzero still may
produce 7ð7 ¼ 1þ 2þ 4Þ real extrema. However, each
extremum with no �’� vanishing is now approximately
eightfold symmetric. As a result we do not expect more
than two of them, of which only one can be a local
minimum. This means that there cannot be any further
transitions as� is reduced below��. Although a first-order
transition cannot be precluded, empirically we have only
found second-order transitions even for�� taking different
values. The situation is summarized schematically in
Fig. 2.

From the above discussion, it follows trivially that, for
equal ��, (with 12-fold degeneracy for all ’� nonzero)
there is just one second-order transition. This is relevant to
an idealized version of QCD. However, as it stands the
analysis above is restricted to closed or infinite string. The
addition of quarks to string ends changes the picture again.
Further, since flux tubes are not fundamental in any sense,
the ‘‘Hagedorn’’ transition in QCD has a different status,
with no ambiguity about increasing the temperature be-
yond it.

Density of vertices.—Finally we end this section with a
comment on the density of vertices in the different phases.
From (51), and since Imð0Þ ¼ 0 for m � 1 it follows that,
on differentiating Vð’�Þ with respect to K,

nv ¼ 0 (57)

when any �’� ¼ 0. Thus, we only have a nonzero density of
vertices on infinite strings for �<��, i.e. at temperatures
high enough for infinite strings of all types to be present.
This is shown in Fig. 1.

V. CONCLUSIONS

The main idea of this paper has been very simple: that
we can describe the thermodynamics of a network of
strings of three different types (and tensions) by an effec-
tive three-field theory whose potential Vð’1; ’2; ’3Þ takes
the form

�V ¼ X
�

�
1

2
m2

�’
2
� þ 1

4
��’

4
�

�
þ�’1’2’3 þ . . . (58)

The interaction coefficient � reflects the presence of Y-
junctions at which one string of each type meet. The
coefficients are temperature dependent, with m2

� /
ð1� T=T�Þ in the vicinity of its zero. If � were zero, the
T� would be Hagedorn temperatures for the individual
string types. As a result, the discrete symmetries of V are
broken at high temperature, restored at low temperature, in
a reversal of the usual pattern.
Our main results, summarized in Figs. 1 and 2, essen-

tially follow from the form of (58) alone, supplemented by
an understanding of the order parameters, that they char-
acterize infinite string, and not loops. In consequence, in a
network of strings of different tensions it is the lightest
strings whose infinite strings survive last after Hagedorn
transitions, and even those disappear in turn, to leave a

FIG. 2 (color online). Schematic representation of the trajec-
tory of ’ in field space. The arrow indicates the trajectory as a
function of decreasing temperature.
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collection of small loops. This is despite the presence of
junctions between strings of different types. That is, the
only rôle that the junctions play is in these small loops of
string whose presence is the only memory of the initial
proliferation of strings of all types.

The burden of this paper has been to provide a model in
which we can see how the potential (58) is realized, almost
as proof of principle. This has turned out to be a nontrivial
task and the model at hand, an extension of similar models
used in QCD in a much more restricted situation, has its
faults. As well as picking a path through the fermionic
lattice artefacts, as in the calculations for QCD strings, our
strings are also assumed to be noninteracting and static.
Furthermore, we are often pushed to consider the model in
a limit of parameter space where approximations are not
always well controlled (just as in [3–5]). Our one string
bosonic model demonstrated how, for a single field, �’3

terms arise naturally. However, being unable to generalize
the bosonic model to three-string types, we have also had
to introduce massive vertices in the three-string model as
an artefact of the lattice mean field approximation.
Naturally, any specific model will give more information
than just the leading terms of V of (58). In our case the
model is a generalized XY model, in which transitions are
seen in the language of spin ordering and which, in prin-
ciple, permit better than the mean field approximation.

As suggested above, our analysis points to the final stage
of the transitions as being that of a single-string type,
collapsing into loops, which was the original case to be
studied, primarily in the context of Nambu-Goto strings. In
that case, the full statistical mechanics has been studied in
detail, and can be generalized to nonstatic strings. The
result, however, is the same. Indeed, rather than consider
random walks in space, one can consider simultaneous
independent random walks on the Kibble-Turok spheres
for left- and right-moving modes respectively [12]. The
microstate density at the transition is the square of that for
simple random walks, but integrating over center-of-mass
coordinates reduces the state density to that of (appropri-
ately defined) single static random walks.
Another way to make this adiabatic picture dynamical is

to attempt to determine the time scales of the string net-
work transitions from the time scales of the effective field
theory, using the Kibble scenario [31]. This relies on little
more than causal bounds, and the analysis is under way.
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