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Abstract 

The finished goods inventory management in the accessories area of a material testing company 

is complex.  There is interdependence between the demands of products and they can be sold 

both as part of systems and as individual after sales items. Besides, there is uncertainty in 

determining replenishment lead times. An optimization problem is formulated considering 

customer satisfaction, inventory holding costs and correlation between demands. To ascertain its 

validity, a discrete event simulation is executed over historical demand. Simulation also helps to 

check the solution robustness by executing the proposed inventory levels over statistically 

generated demands. The result provides the right mix of finished products which should be 

stored on the shelves. 90% reduction in lost sales and 35% in inventory value on hand have been 

projected. The results have been further implemented at the part level inventory. 
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1. Introduction 

1.1 Instron Corporation as a Research Environment 

Founded in 1946, Instron® is the recognized worldwide market leader in the materials testing 

industry, holding more than 50% of the market share. The company has various products with all 

of them sharing production lines. The products cover the following areas of testing: fatigue, 

tension, compression, flexure, hardness, impact, torsion, spring, test analysis, structural and 

custom testing. Within each of these categories, many combinations of machines and accessories 

(hereafter called systems) are possible according to the customer’s requirement.  That is, all the 

testing equipment can be customized by the customer. Thus, even the same requirement of two 

customers may not result in the same order.  

Such market behavior forces Instron to keep multiple product lines which further translate into a 

high inventory, low output factory floor. Thus, Instron serves more than a ‘job-shop’ volume but 

at the same time maintains a flexible manufacturing facility to produce highly customized 

products in minimum time. This issue is clearly visible in the accessories business of the 

electromechanical division. This area of the production line has the maximum variability and 

hence is an effective bottleneck. It is well known in the inventory management industry that 

rather than high demand, it is the variability that is the real reason behind the difficulty in 

managing service levels [1]. Thus, it is very important to make this area ready for such 

variability. This can only happen if the right mix of accessories is available at the right time, in 

the right quantities and at the right place.  

Variability is not the only concern while dealing with the inventory in the EM accessories 

business. There are other intricacies involved which make the problem more challenging. For 

example, not only can the finished goods be sold as part of a system but they can also be sold as 

individual after sales parts (hereafter called as OTC - Over The Counter products). Secondly, 

each system has to wait until all the items in it are available and only then it can be shipped. 

Thus, in the case of a system order, there is dependence of demand between these items, and they 

cannot be viewed as separate entities. 
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Figure 1.1 5800 Series System                                                    Figure 1.2 AWedge Action Grip 

The figures above show some products offered by the Electro-Mechanical business. Figure-1.1 

shows a 5800 Series System. It includes a double column machine with accessories- grips and 

computers. Orders comprising this whole package i.e. machine with accessories is called a 

system order.Figure-1.2 shows a similar grip. These grips (and other accessories) can also be 

sold separately from the whole system and such orders are the Over the Counter (OTC) orders. 

Figure 1.3 shows different accessories that can be a part of the system. 
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Figure 1.3  An Instron Two Column Machine with Accessories 

Currently, Instron holds an inventory value of $4million in the EM area with inventory control 

based on Distribution By Value (classifying products into categories A, B, C and D according to 

their cost) and ITW’s policy of having a maximum of 2 months-on-hand demand. However, 

many aspects are neglected while determining their inventory policy- such as demand variability, 

percentage of lost sales, holding costs and customer expectations. Thus, there is a certain 

opportunity to scientifically determine the inventory levels taking all the significant factors into 

account and improving the customer satisfaction by fulfilling more orders as well as minimizing 

inventory levels. 
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1.2 Background 

Generally, Instron’s finished products can be classified into two categories: systems and OTC. In 

the electromechanical division, both of these categories exist and share a common inventory. 

Due to the demand variability, the management has decided not to base the inventory control on 

predicted demand but to switch to a pull production strategy in order to allow production to 

reorder parts only when finished goods are “pulled” away from the system. The physical 

implementation of pull production is achieved through the use of Kanban2 cards for some of the 

purchased parts and components, and by not stocking some inventory items at all. However, 

Kanban is not available at the level of final finished goods level yet and has been implemented 

only 40% at the part level. Some finished goods are currently being replenished according to 

minimum level reports being generated through the internal inventory management system. This 

means that the goods are replenished only when a report is run and hence they are more prone to 

inaccuracies. Some other goods are being replenished by visually seeing on the floor if the 

quantity drops below a minimum mark, triggering a development order by the area manager. 

This method too can be inaccurate. 

No records for lost orders are kept. Thus, it becomes difficult to determine which item causes the 

order to be lost. The available data shows only the orders which were fulfilled and hence, it acts 

as a barrier in determining the optimum inventory level since the actual demand will be 

underestimated. 

The suppliers can also overlap i.e. one item can be bought from two different suppliers. This 

complicates the case further since there will be two lead times for the same product. 

Finally, the final lead time to customer is also hard to determine due to a system audit which 

takes place on certain products and takes about a day to complete. 
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Figure 1.4 Current Finished Goods Inventory Storage 

Currently, sometimes during peak demand, the factory floor gets clogged with the unfinished 

machines. Also, occasionally, when a whole order is made to wait longer, it gets cancelled, even 

if just one item was not available. 

The markets of OTC and system orders have their own special requirement. While on the system 

side, the customers are more relenting and are willing to accept larger lead times, the OTC 

market is more demanding. The customers prefer expedited delivery since they are just waiting 

for one component in their system. Hence, the OTC market is very competitive.  

The system market is usually more relaxed as Instron machines are expensive and they come as a 

capital purchase for their customers. Hence, the customers understand the large lead times for the 

machines. For a capital purchase, customers themselves need time to get the money sanctioned 

from their own organization. This too helps to mitigate the dissatisfaction due to high lead times. 
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For the same reason, Instron starts building the product as soon as it gets an order. However, it 

does not ship it until all the bills have been cleared. 

The systems market helps the OTC market by ensuring that customers buy only Instron 

accessories which are specifically designed for their machines. Easily available cheaper 

duplicates require extra adaptors and are not backed up with warranty. Despite this, customers 

want lowest possible lead times in the OTC products. 

 

1.3 Significance of the Problem 

The significance of the project for Instron and the contribution of this study to the literature in 

the field of inventory management are shown in the following paragraphs. 

1.3.1 Significance of the Project 

The number of items and parts concerning the Assembly Department is around 1000. In this 

situation, a great waste of time and money can easily be caused by overstocking. On the other 

hand Instron’s responsiveness to customer demand is identified as an important goal in order to 

maintain competitive advantage. The optimization of the control parameters is thus critical at the 

accessories area at Norwood. In order for the strategy to remain optimal in the future, the control 

parameters must be adjustable accordingly to variations in the product line and in the demand. It 

is also important that the proposed inventory strategy is easy to apply for the planners and the 

workers of the facility to properly control the stocking of so many items. The impact of 

proposing an effective inventory control strategy consists in improved production efficiency and 

better competitiveness on waiting times which is especially important for the OTC market.  

1.3.2 Significance of the Study 

This work considers the case of low-volume high-mix inventory systems where customer orders 

may require several different products (i.e., high customization between products and hence 

demand between different products is correlated) and the shipment of those items cannot be split. 

The time delay seen by the customer is the performance measure of concern and the customer 

impatience is modeled and taken into account: whenever one or more items belonging to an 
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order are backlogged, the customer is quoted a waiting time which is as long as the slowest 

item’s lead time. As the waiting time increases, a customer is less prone to make the order. A 

continuous review model is proposed using historical sales data rather than using forecasted 

demand.  

Interdependent demands frequently arise in real life multi-item inventory systems. The 

dependencies of demands for different inventory items may be implied by product options or 

kits. When the manufacturing lead times for some accessories are long or when customer order 

assembly time is small, the configuration of a proper mix of items is critical to ensure their 

availability with the desired probability and avoid order fulfillment delays. Ignoring correlation 

in the demand when present may lead to two possible consequences: stocking more than 

necessary or not being able to provide the desired service level. It is demonstrated by R. Zangh 

that this assumption leads to an overestimate of the total time delay when items are actually 

correlated[2]. 

Unfortunately most inventory models on time delay in the literature assume one-item orders. The 

resources available in the literature which consider interdependence in the inventory planning 

can be split in two main categories: 

• Studies about joint replenishment take advantage of the correlation of the demand to minimize 

the ordering or setup costs and transportation costs. Unfortunately these techniques are not useful 

when items are provided by many suppliers. As described in the Introduction, for what concerns 

the case studied here, accessories are both manufactured in-house as well as ordered from a large 

number of outsider suppliers.  

• A small number of studies describe similar problems but under different conditions. In particular 

some of them assume that parts belonging to the same order can be shipped separately to the 

customer if some item is not immediately available. Other works consider other inventory 

control models. 
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1.4 Review of Prior Instron projects 

In the past ten years three MIT graduate students have completed research internships at Instron 

working on inventory control and operations management. The theses of D. Wheeler, G. 

Caterino and H.T.Nguyen are outlined below. 

The purpose of Wheeler was to optimize the EM grip inventory by applying queuing theory, 

optimization techniques, supply chain rationalization and simulation models[3]. In particular the 

author, together with a project improvement team, achieved a thirty-percent reduction of the 

inventory for the 56 EM grips belonging to the Instron product line at that time. They 

implemented a pull production in the grip assembly job shop by setting up stock shelves for 

finished goods and components within the shop from which the parts were removed to fill the 

orders. When the level of finished goods drops below a specified quantity (the reorder quantity) 

the mechanic is signaled to replenish it. Moreover as the components to build the grips, which 

are drawn from the bins on the shelves, drop below the reorder point, the planner receives a 

signal and replenishment orders are placed. Reorder quantities and lot sizes for the finished grips 

and some components were provided by the Economic Order Quantity (EOQ) and the 

continuous review (Q,r) models. These models were applied on the most significant components 

which had been identified by applying the Distribution By Value (DBV) technique[4]. Items 

were classified as belonging to three different Classes (A, B and C). The most valuable 

components (Class A and B) were placed under the Q,r control policy, while reorder quantities 

and reorder points for items belonging to Class C were set respectively to one year’s supply and 

six months’ supply for each item. 

The second thesis objective was to improve the responsiveness and flexibility of the assembly 

process applying elements of Lean Manufacturing[5]. With the use of Kanban control in 

assembly, daily production schedules based on demand rate and decision rules to guide the work 

process, the assembly throughput times have been reduced by 40% on average in the final 

assembly operations. Changes to the physical assembly environment have been made in order to 

increase flexibility of the output. The author proposes an inventory policy to coordinate in-house 

inventory levels with manufacturing demand and improve the coordination with external 

suppliers. The policy, similarly to Wheeler’s work, is based on a (Q,r) model and DBV and is 
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tailored on a small number of finished good items (three selected product families). Its 

application on a pilot process showed a 15% reduction in the required floor space for an 

equivalent manufacturing output. 

Nguyen in his work has tried to improve the service level by implementing lean initiatives in the 

plant[6]. Root cause and Value chain analysis were carried out in the plant to find opportunities 

for improvement. A material replenishment model was proposed that would help the company 

effectively pull parts from the suppliers. Lot sizes were determined according to extended 

economic order model quantities adjusted using Lagrange multiplier to account for multiple parts 

being manufactured at the same time. For the inventory control, continuous review policy is 

proposed for the EM business so that low safety stock can be kept and probability of stock out 

can be reduced. 

In the next sections, the problem has been cleared defined qualitatively and quantitatively. 

Literature review for the work has been summarized in the next section. It highlights all the text 

that was helpful in understanding and interpreting the problem better. Next, the methodology to 

study the problem has been introduced which introduces the thought process used to develop the 

approach and then the steps that were followed, how data was collected and how it was 

interpreted. Finally, the problem was solved using the method highlighted in the above 

mentioned section and results obtained. These results after proper validation are discussed in the 

results section with some recommendations. 
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2. Problem statement 

The project goal, shared among the four group members’ theses, is the definition and 

implementation of an inventory control framework for the EM accessories stored in the Norwood 

facility. The result of this work is enabling the inventory planners of the Configuration 

Department to stock the optimal mix of accessories in order to guarantee a satisfactory service 

level to the customers and minimize the inventory cost. 

2.1 Project Objectives 

The project specifications provided by Instron are listed below: 

1) Analyze the accessory level offerings based on customer demand and sales volume. 

2) Determine finished goods inventory level for each accessory. 

3) Develop and implement an internal finished goods replenishment model based on a pull strategy. 

4) Coordinate with Supply Chain group to insure Kanban quantities support for the finished goods 

model. 

5) Identify and procure any needed tooling. 

6) Determine and implement any layout changes. 

7) Measure and monitor results. 

8) Make it visual and involve factory employees. 

9) Identify key performance indicators.  
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2.2 Designing the Optimal Inventory Policy 

In order to meet the specifications, the problem has been modeled and its critical elements have 

been identified.  

A first challenge for this project comes from the large amount of accessories to control: more 

than 800 finished goods concern the Configuration Department and include grips, fixtures, faces, 

extensometers, couplings, adaptors, computers etc.  

Some of them are assembled in the Norwood facility, while some of them are purchased parts or 

assemblies. The large number of components that constitute each finished item and the large 

number of vendors that supply Instron represent a further source of complexity for the analysis. 

In the previous theses performed at Instron, a simplification of the large amount of parts 

considered was provided by Distribution By Value (DVB) and 80/20 techniques, which are 

described in Chapter 4, allowing the authors to focus on the most significant ones in terms of 

value or profitability. Since the 80/20 analysis is a currently widely used and appreciated tool 

within the company, the team decided to adopt it to perform an analysis of the demand, 

measuring volumes and profits. 

As described in the Introduction, demand has two components: Systems and OTC. This allows 

the problem to be split in two separate analyses.  

For OTC accessories customers expect immediate shipment. Since the OTC market is more 

sensitive to competitiveness, an effective control strategy is critical to provide customers with a 

satisfactory service.  

The Systems market, instead, is characterized by longer waiting times expected by the customers 

and less external competitiveness. However all the parts of the machine must be shipped 

together, with rare exceptions, and if a part is missing the order is delayed. In fact most of the 

times customers cannot perform their tests if a part is missing, and in every case splitting the 

shipment of an order is costly and not desired by the company. In 2008 no more than 4% of the 

Systems orders got split and this percentage is meant to decrease.  



20 
 

While the OTC market can be analyzed considering individual profits and volumes for every 

item, an accurate model of the Systems demand should take into consideration the inter-

correlation among products. This suggests that the demand analysis for systems should also 

account for the importance of an accessory as purchased together with critical items. The Virtual 

Profit is an index based on combined profits developed by the team to model the inter-

dependence of the demands and it is presented in the paragraph 4.3.2.  

Since the waiting time expectations for the two markets are different, the inventory levels for the 

same items must satisfy the two demands. The problem can be thus decomposed in two analyses 

for the different markets. Once both the stocking quantities are set for both demands a risk 

pooling strategy can be implemented by aggregating those results. 

For both the markets, once the 80/20 analysis has provided a measurement of the criticality of 

the items within the product list, the proper inventory control policy for the items must be 

identified. Constraints to this project are given by the fact that the Norwood stocking capacity is 

limited and the inventory allowed by the Instron management is less than 2 MOH1 (Months on 

Hand) for every item. Thus in order to maximize the customer satisfaction and so the profit, the 

basic strategy is implementing two different control policies for two different classes of 

accessories: 

• The most critical items will be assembled or purchased to stock so that high service levels will be 

achieved. 

• The less profitable items will be assembled or purchased to order, minimizing their inventory 

costs. 

 

However the optimal division between items deserving to be stocked and items that will be made 

to order needs to be found. Another parameter to be set is the desired Type I service level, or 

percentage of customers that will be immediately served, for the first class items. Wheeler [3] 

suggests to favor the “80” items (those items that concur to the 80% of the total profit/volume or 

Correlation) and provide them with 0.95 Type I service level. Unfortunately there are two 

reasons why this is only a suboptimal solution: 

                                                 
1 Months on Hand = 12 (Average Inventory Value on Hand / COGS) 
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• The 80/20 curves usually show one or more steps in the distribution of volumes or profits, so that 

the division between most important and less important items is quite clear. This is also valid if 

the quantity measured is the Correlation. However the step does not necessarily occur at the 80% 

of the cumulative profit: its position can vary depending on the situation. Setting the threshold at 

80% would lead only to a suboptimum. 

• The 0.95 Type I service level was set accordingly to the Instron management which found it 

reasonable. However assigning a constant service level for all the make to stock parts is certainly 

not the optimal strategy. 

 

This issue can be addressed designing an optimization problem which would allow splitting the 

items in the two classes in an optimal manner, setting at the same time the service levels for the 

for the first class items. 

There are several factors that the problem must take into account. Firstly storing parts has a cost 

in terms of space, handling and cash blocking, in general referred to as holding cost, which has to 

be minimized. Moreover there are items which are more worthy to be stored than others because 

give a larger profit (on their own or being sold with other items). In order to consider the 

described issues the stock level for each item i will be determined by maximizing the expected 

total profit generated by that item. A model of the expected total profit is given by the expected 

revenue minus the expected total costs. 

The expected revenue for each product can be found by multiplying its unit cost by its expected 

sales E(Si), which are a function of the demand rate and the number of items in stock. Note that 

the past and future expressions of the demand are not available since the sales lost because of the 

waiting time quoted are not registered and forecast is not used at Instron. Historical sales are the 

only information that can be found. For the purpose of this project we assume that the expected 

demand is equal to the past sales. The effects of this assumption are mitigated by the pull 

strategy that (Q,r) represents causing the actual demand to drive the inventory control once the 

control parameters are chosen. 

Moreover, since customers are willing to wait a variable amount of time if the parts are not 

immediately available, sales are also function of the delay acceptability wi, or the percentage of 

customers that would still buy the item if it is not in stock. 
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Currently, the production lot sizes or reorder quantities are determined based on their value and 

historical demand without taking into consideration the lead times. Though suppliers have a 

negotiated contract with the company, they are usually supportive of the lot size requirements. In 

order to guarantee the selected service levels to the customers, one of the components of the 

solution consists in making sure that these quantities are enough to satisfy the demand over lead 

time with satisfactory probability. 

Finally, the raw materials control is evaluated. Based on the finished goods production, the raw 

materials inventory control has to be synchronized and the parts have to be available with high 

probability. An optimized policy is proposed in order to guarantee the necessary support to the 

finished goods replenishment model. The optimized policy requires knowing the suppliers’ 

replenishment lead times; this requires data collection and accuracy. The raw materials control is 

evaluated by comparison with the current policy. 

The resulting optimal strategy is evaluated in its costs and benefits: a simulation tool is designed 

in order to test and validate the control policy and compare it with the current situation.  

In order for the finished good inventory policy to be implemented and utilized by the Instron 

workers in the future, the control parameters must be periodically computed and adjusted. For 

this reason the analytical tools used for this work are designed for reusability and robustness, as 

well as easiness of use and compatibility with the data and tools available at Instron. The tools 

must take into consideration adjustments for new products introduced in the product line and for 

dismissed ones. In fact the introduction of a new series of accessories with a partial substitution 

of some old one has occurred this year and can occur again in the future. The implementation of 

the strategy in the Configuration Department, including the physical arrangement of the stock 

bins and the Kanban cards, and the training of the workforce are part of this work, are part of this 

work, in order to guarantee that the strategy is correctly understood and continued. 
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3. Literature Survey 

3.1 Introduction 

Since our first contact with the problem, it was clear to us that its set of features and objectives 

made it a very particular challenge. The theory we learnt from classes and from Simchi-Levi et 

al. 2000 [7] guided us to the choice of a (Q,r) policy but the standard set of assumptions used to 

determine the parameters Q and R did not fit our problem. In particular the correlation between 

the demand of the various products, the fact that many items could be sold both alone and in a 

system order, the fact that a system order cannot be shipped unless all the items are available and 

the fact that customers have different expectations on acceptable lead times for different items 

required a new approach to solve the problem. Many of these challenges are somehow 

considered in literature but often with a different objective and anyway, to our best knowledge, 

they have been never considered together. In 3.2 we briefly discuss the vast literature about the 

(Q,r) policy which constitutes the basis of our work; in 3.3 we present papers which faces the 

demand correlation issue; in 3.4 we argue about the usage of some papers regarding the 

customers’ expectation issue; in 3.5 some references about simulation are presented. 

 

3.2 The (Q,r) Policy 

In those cases in which the inventory is reviewed continuously (in opposition to periodically) a 

heuristic control policy which has been well-studied in the last several decades is the so called 

“Q,r” (sometimes also named r,Q or in other ways). The basic idea is that whenever the number 

of items held in inventory drops to or below r an amount of Q units of goods is issued to 

replenish the system.  Hadley and Whitin 1963 [8] present an exact solution to the problem when 

there is a known penalty cost assessed on each unit backordered and they provide, under some 

assumptions, two approximate iterative heuristic solutions.  

During the following decades the Q,r policy has been extensively explored in literature, many of 

the original assumptions have been relaxed and many of its properties proved.  
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In particular important convexity results are given in Zipkin 1986 [9] and Federgruen and Zheng 

1992 [10] and the existence of such results justify the research of optimum values. Also, 

interesting convexity results are proved in Wang and Li 2007 [11] for the discrete demand and 

inventory case. 

 

3.3 Correlated demand and inventory management problem 

3.3.1 Correlated demand and job-fill rate 

Demand correlation among different items and its effect on inventory policies is a key aspect of 

this work. Even though it is common in real-life multi-item inventory systems, this phenomenon 

has not received a large attention in the existing inventory literature. We were able to find some 

papers related to the problem we are facing but none of them could directly be used in this case 

either because they pose different objectives or they are firmly based on a set of assumptions 

which does not apply to Instron case. 

One of the first papers to focus on similar problems is Smith and Chambers  1980 [12]. In such 

work in fact it is introduced for the first time the concept of “job-fill” (in opposition to “part-

fill”) rate criterion in this context. The paper deals with the determination of the appropriate 

collection of parts to be carried out to repair a machine. As in our case if only one part is missing 

the order cannot be completed (the machine cannot be repaired). In that case the cost associated 

with not being able to complete a given job due to unavailable parts is related to a longer 

downtime for the machine (the repairer has to go back to the warehouse and return on site again), 

in our case it is tied to the customer unsatisfaction and the resulting risk of losing the order. Such 

problem was already known at the time as the “fly away kit problem” or the “submarine 

provisioning problem”, however these previous papers traded off shortages against part-fill rate 

instead of order-fill rate. Smith and Chambers is then an interesting article but doesn’t consider 

all the issues present in our case because the correlation is not considered as the failures of 

different part types is assumed to be independent [12]. However, other than for the “job-fill” rate 

criterion, is very useful to us also for a theorem about the importance of ranking the items before 

considering an optimization problem [12].  
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Using Smith and Chambers’ “Job-fill” rate criterion, Zhang 1999 [13] studies the expected time 

delay in multi-items inventory systems. In such paper the demand is assumed to be correlated 

across items and customer satisfaction is measured by the time delays seen by the customers. As 

a result, an exact expression for the expected total time delay is derived. Also, it is shown that 

when items are actually correlated, assuming items are independent leads to an overestimate of 

the total time delay. This however assumes that the parts can be sold separately if some of them 

are not in stock. In this sense it is shown that demand correlation is in fact an opportunity that 

should be exploited. In our case, because an order cannot be shipped unless all the parts are 

available, the demand correlation is an issue. 

 

3.3.2 Correlated demand and joint replenishment 

The point of view presented in [13] is common to many other papers that deal with correlated 

demand. In fact many papers who consider demand correlation are focused on joint 

replenishments policies such as Liu et Yuan 2000 [14], Feng  et al. 2007 [15] and Tsai et al. 2009 

[16]. In particular [14] specifically considers the can-order policy for a two-item inventory 

system  with correlated demands. Unfortunately joint replenishment doesn’t specifically help 

with the problems that Instron want to solve in its EM department and, even though it can still be 

beneficial, its usage would add a large amount of complexity and would allow very small 

benefits, if any. In fact, as regards items manufactured outside the company Instron has a very 

large number of suppliers and buys from each of them a very small amount of different products. 

Moreover, as regards items manufactured inside the company, very small setup costs are 

involved and the assembly is mostly make-to-order. In other words in the papers which focus on 

joint replenishment the objective is reaching a balance between ordering costs, storage costs and 

stockout costs while in our case ordering costs are not significant. The same considerations about 

joint replenishments also apply to [15] and [16]. Specifically, [15] formulates the problem as a 

Markov Decision Process and focuses on joint replenishment and correlated demand, proposing 

a moving boundary based policy and comparing it to other control policies. Tsai et al. [16] 

instead propose a clustering algorithm to deal with demand correlation which is similar to a first 

possible solution, later abandoned, that we considered to solve our problem. Such paper claims 

that it is difficult to define the demand correlation between items, especially when the number of 
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items increases and for this reason a clustering algorithm is proposed. Such algorithm is used to 

find an optimal clustering result which is used to determine the parameters of a can-order policy 

in presence of joint replenishment. The result is then tested through simulation and sensitivity 

analysis, two steps that are fundamental also in our approach.  

 

3.3.3 Previous work with different assumptions 

As said the literature which deals with correlated demand is relatively small and a good part of it 

is focused on joint replenishment which is not useful in our case. However, some papers are 

closely related in their intent to our work, although not directly applicable due to different 

assumptions. Hausman et al. 1998 [17] has very similar problem statement to our as it is said that 

the objective is to “configure a proper combination of component item inventories so that 

availability of component items is ensured at pre-specified levels to avoid order fulfillment 

delays”. Unfortunately this paper considers a periodic review order-up-to policy and so is not 

compatible with continuous replenishment. Anyway the paper contains some very interest ideas 

and some theorems and lemmas which can be considered also in our case. Very close to our 

objective is also Wang et Hu 2008 [18] which studies the application of a (Q,r) policy with 

budget constraints and optional components. The budget constraints, at least in the way they are 

formulated in [18], are not of primary concern in our case but the approach proposed is still very 

interesting. Unfortunately two of their assumptions are not verified in our case: it is not true that 

the payment is due at the time an order is placed (but this problem could be overcome) and most 

importantly it is not true that the customer will purchase a system without optional components 

when the optional components are out of stock. Optional components are in fact, in the majority 

of cases, necessary to use the Instron machine and no one would buy a machine without them.   

 

3.4 Customer defection 

In this work, the effect of customer impatience (or defection) on the inventory performance is 

studied. Two main contributions on this field are used as references:  Gershwin et al. 2009 [19] 

and Veatch [20]. The main reason why this work investigates the customer impatience is that the 

number of orders filled (in literature Type II Service level) depends on how many customers 
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would wait for a product if it were not in stock. In particular, the number of filled orders is the 

sum of the number of orders filled immediately plus the number of orders completed because the 

customers decided to wait and not to cancel the order once they were quoted a lead time. 

In [19], a manufacturing firm that builds a product to stock in order to meet a random demand is 

studied. If a product is not in stock and orders cannot be met, customers are quoted a lead time 

that is proportional to the backlog, based on the production time. In order to represent the 

customers’ response to waiting, a defection function - the fraction of customers who choose not 

to order as a function of the quoted lead time - is introduced. The defection function is then used 

to obtain the optimal production policy, which results in a hedging point form. One family of 

defection functions is studied, a sigmoid function of the form: 

                                ���� �
�

���	�
���
        (3.1) 

This expression for the defection function is then used to model the system behavior, and will 

also be used in this work. However, an additional important conclusion is that numerical results 

suggest that there is limited sensitivity to the exact shape of B(x). Furthermore, the precision of 

the defection function is limited by the intrinsic approximate nature of what it models, i.e. the 

customer impatience. 

In [20] the same production model, in which the customer is quoted a lead time depending on 

production time and backlog, is presented as a “nuanced model” of customer behavior, compared 

to the two extreme models of complete backordering and lost sales, where all the customers 

either wait or not. One particular production model is considered: a continuous one-part-type, 

single machine model with Markov modulated demand and deterministic production is 

considered. Using this particular model, the impact of customer impatience is shown to be 

captured by one quantity, the mean sojourn time in the backlog states. As in [19], the optimal 

quantity has hedging point form. 

Based on the particular model considered, Veatch shows that the effect of customer impatience 

can be captured by the only mean sojourn time in backlog, and this simplifies the problem of 

obtaining an optimal production policy. Given that the effect of customer impatience is captured 
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by the above mentioned quantity, in fact, other simpler customer behavior models can be used, 

and still the optimal policy is reached. 

This thesis analyzes a different model: only some of the products are produced in the factory 

floor, while most of them are ordered from suppliers. Moreover, the replenishment lead time is 

random and constraints on the reorder quantities have to be considered. Thus, the assumptions 

made in [19] and [20] are not valid any more, and the optimization problem is different. 

Moreover, the two papers do not present any attempt to shape the defection function in the actual 

industrial application. However, the analyzed work gave some useful insight into the modeling 

of customer impatience. The suggested sigmoid form is used in this work, and the limited 

sensitivity to the exact shape of the function is considered. Finally, this thesis considers the use 

of company-wide surveys in order to shape the defection function to the needed precision level. 

 

3.5 Simulation 

Simulation has been used as a validation tool in this work. Monte Carlo is one of the simulation 

techniques used to validate our results. The principle behind Monte Carlo simulation is that the 

behavior of a statistic in random samples can be accessed by the empirical process of drawing 

lots of random samples and observing the behavior [21]. However, care has been taken while 

generating customer demand. Truncated normal distribution is used to generate demand since it 

should not go negative in the cases when the coefficient of variation is high [22]. Coakley and 

Carpenter 1983 [23] have used Monte Carlo simulation to predict final system behavior when it 

cannot be directly predicted from the inventory models. They validate the model before running 

the simulation using constant values and matching them with theoretical results. Finally, they use 

the simulation results to analyze different conditions such as relaxing theoretical constraints and 

getting the inventory levels.  

Jung et al. 2004 [24] have presented a method to determine safety stock levels, which further 

effect the customer satisfaction levels (service levels), using a computational framework for 

planning scheduling applications in realistic supply chains. They use simulations to optimize 

their results when faced with improving customer satisfaction, holding costs and production 
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constraints. Inside the computation for optimization, repeated simulation of the supply chain 

takes place over the planning horizon, each with given Monte Carlo demand samples. Then, 

within each of these simulations, a series of planning and scheduling optimization problems are 

solved.  

Grange [25] in his paper pays particular focus to demand distributions of slow moving items. He 

finds out the misidentifying demand distributions can have a detrimental effect on the fill rate 

leading to high and lower rates depending on over and under estimation of right tails. He also 

adds that multi-SKU inventory compensates misidentification by reallocating investment relative 

to the costs and expected demands of all the SKUs. We have thus, taken particular care in 

finding out the demand distribution in our case, as highlight in the methods section.  

 

3.6 Conclusion 

The problem this work deals with is a particular one and a solution tailored for this case cannot 

be found in literature. Not many authors focused on demand correlation in multi-items inventory 

systems and many of them consider a rather different set of assumptions thus being allowed to 

see it as an opportunity to be exploited using joint replenishment. A few papers which consider a 

similar problem statement are still not applicable to our case because they differ in some 

fundamental assumption such as periodic inventory review and optional nature of accessories. 

Also as regards the customer impatience issue the papers analyzed do not provide a univocal 

methodology to be used in our practical case but they contain very interesting ideas and results. 

Simulation was also found to be frequently used both as tool to find a solution and as tool to 

validate the result found with another method.  

In conclusion our problem requires a new solution in order to deal with all its features but the 

existing literature constitutes a fundamental basis to our work with its ideas, theorems, 

reasonings and methods. 
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4. Methods 

4.1 Choosing the right methods 

The goals of this project are described in detail in chapters 1 and 2. One sentence summarizes 

them effectively: “having the right mix of products on the shelves at the right time”. As 

mentioned before, this involves searching an optimal inventory control and production policy by 

considering all the products together, especially taking into account the system orders, thus the 

correlation among items’ demands. 

The significant number of items involved and the differences in their supply chains added high 

levels of complexity to the project. Not only do we want to have the correct “mix” on the shelf, 

but the implementation of the derived policies will differ depending on the product’s type and 

supply chain. Furthermore, using one’s own judgment on each SKU would not provide the 

company with a repeatable strategy. For these reasons, general and parametric methods always 

have to be used. 

In addition to the optimal policies, important results of the project come from the analysis phase 

(demand analysis, correlation analysis, customer defection, 80/20). The produced documents, 

indeed, are important in providing the manufacturing, sales and marketing departments with 

sources of data which allow effective strategic planning. As an example, knowing which 

products are often sold together in the last two years, could suggest marketing already 

customized systems (composed of the products often sold together); if this operation is 

successful, the company could focus its investment in the inventory for a limited number of 

products, holding less risk associated with other products. Moreover the results of the analysis 

performed by the team and provided to the company find an application in the identification of 

products to discontinue because of their scarce profitability and importance within the product 

list. 

What is more, in each sub-issue addressed by this thesis, the purpose is not only identifying the 

optimum (optimal inventory control policy, optimal replenishment levels) but also proposing the 

so called “good enough” solution. As widely happens in manufacturing and operations 
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management, in fact, the application of systematically searched optimal policies holds a level of 

complexity that is not worth the investment. For instance, considering the optimal replenishment 

methods, agreeing with the suppliers on the optimal reorder quantities for a product could not be 

feasible or could involve additional investment, and using a QR policy implemented with 

Kanban cards, that are already used, would be more easily and quickly implementable than 

different policies that could guarantee a relatively small increase in expected profit. 

In conclusion, the work described in this thesis is meant to produce data analysis reports and 

suitable solutions for the inventory control policies of a significant number of products. This 

chapter describes the steps that are undertaken in building the analysis reports, in designing the 

control policies and in collecting the necessary data for the policies to be implemented. The 

methods used in each step are briefly described in the following paragraphs and then explained 

in more details in the following chapters. 

 

4.2 Main steps followed 

Figure 4.1 shows the main steps involved in the project. Every independent task is represented 

by a blue filled circle, while the developed software tools are represented by smoothed 

rectangles. The arrows indicate task scheduling requirements. As an example, let us consider the 

following tasks: comparison, individual demand analysis and correlated demand analysis. In 

order to perform the comparison task, the results from the individual and correlated demand 

analysis are necessary; thus, these two tasks need to be finished in order for the comparison task 

to be performed. The diagram is a modified version of the PERT diagram which does not show 

the duration of the tasks. 



 

As previously mentioned, the main outcome of the project consists in data analysis reports and 

recommendations for inventory control policies. The most important reports are obtained in the 

steps Individual demand analysis

steps, demand analysis of all the involved products is performed, at first simply by volume and 

profit, and then considering how they correlate to each other. Finally the results are collected in a 

Comparison report, meant to underline the im

level involves designing the control policies, while the performance of these policies are 

estimated in the step Simulations

of these two final steps is highlighted by the orange box in the diagram.

The left side of the diagram shows the steps needed in modeling the system. In order to design 

the inventory control policies, the following information is needed: lead times for each product, 

profit and correlation analysis, holding costs, space constraints and a model of the customer 

satisfaction. All this information builds the model of the system, used to find the optimal 

solutions.  
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Figure 4.1 Main Project Steps 

y mentioned, the main outcome of the project consists in data analysis reports and 

recommendations for inventory control policies. The most important reports are obtained in the 

Individual demand analysis, Correlated demand analysis and Comparison

steps, demand analysis of all the involved products is performed, at first simply by volume and 

profit, and then considering how they correlate to each other. Finally the results are collected in a 

Comparison report, meant to underline the importance of the correlation. The step 

involves designing the control policies, while the performance of these policies are 

Simulations and implemented in the step Implementation. The importance 

is highlighted by the orange box in the diagram. 

The left side of the diagram shows the steps needed in modeling the system. In order to design 

the inventory control policies, the following information is needed: lead times for each product, 

rrelation analysis, holding costs, space constraints and a model of the customer 

satisfaction. All this information builds the model of the system, used to find the optimal 

 

y mentioned, the main outcome of the project consists in data analysis reports and 

recommendations for inventory control policies. The most important reports are obtained in the 

Comparison. In these three 

steps, demand analysis of all the involved products is performed, at first simply by volume and 

profit, and then considering how they correlate to each other. Finally the results are collected in a 

portance of the correlation. The step Inventory 

involves designing the control policies, while the performance of these policies are 

. The importance 

The left side of the diagram shows the steps needed in modeling the system. In order to design 

the inventory control policies, the following information is needed: lead times for each product, 

rrelation analysis, holding costs, space constraints and a model of the customer 

satisfaction. All this information builds the model of the system, used to find the optimal 
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The remaining part of this chapter describes the goals of each task, the approach to it and the 

methods used. 

4.3 Explanation of the tasks 

4.3.1 Individual demand analysis or Pareto analysis 

This task involves analyzing the orders placed in 2008 and 2009. The list of orders, together with 

the associated quantities and prices, is used to perform a demand analysis based on both profit 

and volume. The purpose of this analysis is to find the most important products and the least 

profitable ones. The results are useful to the company in showing the updated data on volume 

and profit made by the products during the last two years. 

The Pareto principle (also called 80/20 principle) is a heuristic principle that is often applied in 

analyzing profit and volume in operations management (the Pareto analysis). Applied to profit, it 

states that about 80% of the profit of a company is made by only 20% of the products it sells. 

The products belonging to that 80%, which are the most profitable ones, are called the 80s, while 

the remaining products are the 20s. 

For the purpose of this analysis, the products are divided in six different categories: grips, 

fixtures, faces, coupling and adapters, compression anvils and anvil sets and other accessories. 

The first step of the analysis involves summing up the profits made by each product in all the 

orders and determining the total quantity shipped in each year. A report has been given to the 

supervisor, in which the most profitable items were identified through the Pareto analysis. In 

addition to this, the least profitable items were highlighted in the report: all those products which 

belong to the bottom 1% of the profit or were sold at most twice. This result is important to 

identify items eligible to be discontinued. However it does not provide a measurement of their 

criticality within the product list. The Correlation analysis, described in 4.3.1, provides a more 

accurate result. 

An expanded discussion of the Pareto analysis has been carried out in Palano, Ch-5 [26]. 
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4.3.2 Correlated demand analysis and Comparison 

As mentioned earlier, the design of the optimal policy is complex because it has to encompass a 

very high number of different accessories that are often sold together in the system orders (when 

customers buy a machine and choose a set of accessories with it). Moreover, the above 

mentioned individual demand analysis is less accurate than necessary because it does not take 

into account the system orders. 

As an example, two products X and Y can be considered. If X is an “80” item and Y is one of the 

lowest profit items, the individual demand analysis would suggest holding less inventory for item 

Y or even making it to order. By considering the system orders, however, we could find out that 

product Y is often sold together with X, and is less profitable because it is discounted or 

relatively less important. Holding lower inventory levels for item Y would then be a losing 

strategy, because it would block the orders of X and create additional profit loss. 

In this project, the correlation between different products is considered in designing the control 

policies. The goal is obtaining a profit indicator which quantifies the profit made by each product 

if in stock, or quantifies the loss realized by not having it in stock for a given period of time. A 

MATLAB function, using the IBS reports with all the orders of 2007 and 2008, calculates how 

many times each product is sold with any other item and quantifies this expected profit. 

New profit indicators were obtained considering the correlation, and a new analysis report was 

generated (step Comparison). This report shows what are the most profitable items and what are 

the ones which are still in the bottom 1% of the profit after considering the correlation. As 

mentioned in paragraph 4.3.1, this report completes the analysis of the items to be discontinued, 

together with the 80/20 report. 

An expanded discussion of the correlation analysis has been carried out in Serra [27]. 
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4.3.3 Lead time, holding costs and space constraints 

These three steps involved data collection, which is necessary to design the control policies. The 

data collection methods, including holding costs and space constraints, are further explained in 

chapter 4.4 of this thesis. 

By working with the supply chain managers and using the IBS tracking system, at first we tried 

to obtain a list of lead time values for all the products involved in the project. The term “lead 

time” was used in a more general sense, indicating replenishment lead times for purchased parts, 

manufacturing run time for manufactured or assembled parts, and collecting time for catalog 

numbers that actually are a kit of items. In general, the term, lead time, indicated the total time 

needed for a product to be again on the shelf when required. 

 

4.3.4 Customer satisfaction 

In order to maximize the expected profit, the loss for a part not being on the shelf has to be 

quantified. Let consider the case, however, in which one particular SKU is not on the shelf. The 

customer would learn that a particular product was not on the shelf and that the total waiting time 

would be n weeks. Would he still go on with the order? And what if the order request was 

actually for a system including that product? 

In general, there will always be a number of customers who will still buy a product even if the 

order cannot be fulfilled from stock and a longer waiting time is quoted. This percentage depends 

on the product and on the type of order, and is a function of the quoted waiting time. This 

function is referred to as “customer defection”. The literature background about customer 

defection is discussed in chapter 3. 

Obtaining this quantity from the data or in any rigorous way is not feasible due to the following 

reasons: 

- Lack of hard data about lost sales 

- Customers have different interests, priorities, concerns 

- Other reasons (human behavior, complex products interdependence) 
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Thus, a reasonable estimate is obtained through a survey directed to the sales people, who work 

on orders with the customers. The starting expression of the customer defection function is a 

sigmoid, as discussed from the literature, and the function is further shaped by asking general 

questions and looking for ranges of values through the survey. This function represents the 

percentage of customers still willing to wait depending on the waiting time that can be offered on 

one particular item. 

An expanded discussion of the customer defection analysis has been carried out in Palano, Ch-6 

[26]. 

4.3.5 Inventory levels 

This task involves designing the production and inventory control policies for both finished 

goods and raw materials. 

Two main types of policies are used: make to stock and make to order. The less profitable items 

will hold lower service levels or be made to order, while for the remaining products stock levels 

are determined. The choice of the MTO or MTS policy for each item is based on optimizing the 

profit, and is described in 4.3.6. 

The most suitable make to stock inventory control policy is the QR policy (or reorder quantity). 

One reason is that the inventory at Instron has always been managed through two quantities: the 

so called minimum quantity, corresponding to the safety stock, and the reorder quantity. Even if 

these quantities were obtained with rules of thumb, they are used to set a safety stock level and 

reordering when the levels go below the minimum quantities. Moreover, an increasing number of 

parts are being managed by Kanban cards, which is an automatic inventory replenishment 

method. When the inventory level reaches a minimum quantity, the corresponding card is put on 

a board and it will automatically trigger the order of a predetermined release quantity from the 

suppliers. This system is easily updatable once the new optimal values for Q (reorder quantity) 

and R (reorder point) are derived. 

The reorder quantities are determined in such a way that they cover the demand over lead time 

with a probability of 99.87%, still satisfying eventual constraints on the lot sizes. The optimal 

reorder points, on the other hand, are calculated from the lead times, the average demand, the 
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values of Q and the desired service levels. While lead times and average demand are obtained in 

the data collection phase, the service levels represent our degrees of freedom in designing the 

policy. For the finished goods inventory, these levels were chosen by optimizing the profit, as 

described in 4.3.6. The raw materials inventory control, instead, is designed in such a way that 

the service levels are always high, in order to support the finished goods production. 

An expanded discussion of the raw material inventory control has been carried out in Palano, 

Ch7 [26]. 

4.3.6 Optimization 

The available degrees of freedom in designing the FG inventory control policy are given by the 

service level corresponding to each item (Type I service level, defined as the percentage of time 

the inventory for a certain item will not be empty, thus being able to meet demand) and whether 

each product will be made to stock or made to order (MTS or MTO). 

These choices are determined by solving an optimization problem. The goal function is the total 

expected profit, defined as total expected profit coming from sales minus the inventory holding 

costs. The total expected profit coming from sales is calculated considering the correlation 

between products in the same orders (as described in 4.3.2), while the inventory annual holding 

costs per item are multiplied by the expected inventory levels in the QR policy. 

The result of the optimization tool, implemented in Matlab, is a list of optimal service levels for 

all the items. If the optimal service level for a particular product is lower than a certain limit than 

the final suggestion for it will be a make to order policy. 

An expanded discussion of the finished goods policies optimization has been carried out in 

Facelli, Ch5 [28]. 

4.3.7 Simulation 

An important step in studying the optimal control policies is the simulation phase. It allows us to 

test the designed strategy in order to check its feasibility and to estimate its performance 

measures (actual service level obtained, months on hand of average inventory). 
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The simulation tools are used both as design aid and as final performance measurement that 

helps in selling the proposed recommendations. The simulations are implemented in two 

different ways: at first simulating random demand with a discrete probability distribution with 

the actual mean and standard deviation (plus intra-quarter growing average), then by using the 

actual historical data. The former tests the policy for robustness with a more general background; 

the latter shows a comparison between the results of the proposed policy and the current one. 

The simulation has been discussed in detail from ch-5 onwards. 

4.4 Data collection methods and IBS 

Most of the tasks undertaken in modeling the system involved hard data collection from the 

databases of the company. Referring to the diagram in picture 1, these tasks are: 

- Individual demand analysis; 

- Correlated demand analysis; 

- Lead times determination; 

- Holding costs / Space constraints; 

- Customer satisfaction; 

- Historical data simulation tool; 

- Update with new products. 

The holding costs are obtained from the operations manager and head of manufacturing and 

through some financial research on cost of capital; the space constraints are estimated talking to 

the managers and exploring the factory floor. The information about the new products (new item 

numbers, discontinued items, updated demand forecast) was obtained from to the engineers in 

charge of the corresponding projects. 

The model of customer satisfaction is firstly defined based upon literature and suggestions from 

the operations management. Then, the model is shaped and refined through a company-wise 

survey, filled by the sales department and the field engineers, who are the ones involved in the 

customer satisfaction aspect of sales. 
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All the remaining tasks involve collecting data from Instron’s databases: 

- previous years’ sales 

- product types 

- inventory locations 

- costs and prices 

- replenishment lead times 

- manufacturing run times and set-up times 

- current reorder points and quantities 

The necessary information is collected through IBS. IBS is an Instron database management 

system that tracks all the information associated with orders and products. For each order placed 

by customers, IBS contains order number, dates, quoted lead times, standard costs, gross price, 

discounts and a number of other entries. For each product, IBS contains item number, bill of 

materials, information about suppliers and planners, current inventory levels and limited 

inventory level history, lead time and a number of other entries. 

IBS is used in all the departments in the company. The sales people, when dealing with 

customers, use IBS to get the expected lead times, to check what is available in stock, to check 

prices and costs and to handle orders. The employees working in the factory floor update it when 

parts arrive from suppliers, when products are shipped, when changes are made to the orders, 

when WIP inventory is used and a part is assembled and in several other cases. Moreover, all the 

other employees often use IBS to get required information for analysis purposes or to update it. 

In order to collect the needed data, reports are automatically generated by IBS. IBS can be 

queried with a list of items or orders, and the required information is written on Excel 

spreadsheets. The result is that every analysis or manipulation which starts from the generated 

spreadsheets can be easily repeated and updated by using the same type of queries. 
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4.5 MATLAB implementation and reusability 

4.5.1 The need for a tool 

The goal of the project at Instron is not only to provide a numerical solution to the problem of 

which control policy and which parameters should be used. Also, a fundamental goal is to 

provide a long term solution framework, so that, year after year and quarter after quarter, a new 

numerical solution can be computed and used. In fact one has to consider that every product has 

a certain life cycle and that the demand for each of them changes over time. Therefore, it is clear 

that the “determination of the right mix” is not something that can be determined once. On the 

contrary, a regular update of the safety stocks levels and inventory control policies parameters is 

necessary. 

For this reason, since the beginning of the project the research team focused on creating a tool 

that could be used in the research and that then Instron could use in the future to make the 

calculations and update the policies regularly. 

4.5.2 Reusability 

The way we see the solution framework is depicted in Table 1. On a periodic basis (the choice of 

the frequency is discussed briefly in the next paragraph) Instron personnel will update the 

inventory levels. In order to do this, they will export all the relevant past sales data from IBS (the 

ERP software they are currently using) to an Excel file using a template that we built in IBS. 

Then, in a similar way, a list containing the lead times, the lot sizes and other information 

regarding the items will be extracted from IBS. Finally these XLS files will be put into the same 

folder as our software tool (an EXE file) and by just running it a solution will be computed.  

The output will be composed of three files. The first one is an Excel file containing the 

information that should be used for the Kanban cards, that is to say the reorder quantities and the 

reorder point that has just been determined. The second file is a Correlation report that is to say 

a description of the items that were most often sold together which is useful for Instron personnel 

to understand the demand and what drove the suggested inventory levels. Finally, the third 

output is an 80/20 report in which the items are divided by category and ranked by their virtual 

profit. Also this report will help to explain to the people the re-order quantities determined by the 



 

tool and it will also suggest which items can be suppr

indirectly, much profit.  

 

 

Figure 4.2

4.5.3 Frequency of stock determination

There is a trade-off in the frequency with which the inventory levels should be re
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inventory levels will theoretically perform because they will use the most recent demand 

information. On the other hand, re

staff and represents a cost that can balance the advantage of using more recent data. To 

determine the new levels in fact some data has to be gathered as described above and the 

computation has to be started. Then the resulting suggested r

with the ones currently in use. If an “R” needs to be updated, then the Kanban card currently 
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information. On the other hand, re-determining the levels involves a certain eff

staff and represents a cost that can balance the advantage of using more recent data. To 

determine the new levels in fact some data has to be gathered as described above and the 

computation has to be started. Then the resulting suggested reorder quantities has to be compared 

with the ones currently in use. If an “R” needs to be updated, then the Kanban card currently 

used for that item must be reprinted and substituted on the bin.  
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6 months seems reasonable, unless some of the determining factors (the demand or the lead times 

for example) will at some point drastically change. 

 

4.5.4 Matlab implementation, reusability and flexibility 

The tool described above is built in the Matlab environment and then compiled as an executable 

file. The choice was suggested by our familiarity with such environment and its power and 

abundance of mathematical functions. As regards the part of the code which deals with data 

crunching a C code would have probably been faster but in such a language the optimization part 

would have been harder to code and, overall, the time required to build the tool and test it would 

have been much longer. Because in our case the quickness with which the tool was to be built is 

very important while the computation time required for every run is not particularly significant 

(as seen the tool is going to be run a few times per year), the choice of Matlab seems to be the 

best one. 

Moreover, Instron owns many Matlab licenses for other reasons so such software is and will be 

available to the company without any added cost. This is an important issue because, even 

though we want to give an “easy to use” – “black box” solution, we also want to provide the 

source code that could be checked and modified in the future and while to run the exe file Matlab 

is not necessary, to modify the source code is.  
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5. Simulation Introduction 

Simulation has been used as a validation tool in this work. A simulation contains a set of 

mathematical models of one or more dynamic systems and the interactions between those 

systems and their environment [29]. Generally, when a simulation is executed, it moves through 

time and the system is solved at each time step. This monitoring of the system being modeled 

using virtual techniques is termed as simulation. Since, the system involved in our case is very 

complex, simulation is the only way to validate our results. 

 

Figure 5.1 Simulation-Real World Interaction (source: Gallien[30]) 

As shown above, simulation is a representation of the real world and has three main components: 

input, system model and the output. Input into the simulation is extracted from the real input 

data. System model is developed from the real system by making some simplification 

assumptions so that the simulation can be mathematically implemented. After running the 

simulation, outputs are obtained which can be validated from the results of the real system.  

Since simulation is a recreation of a specific activity in the universe, one should be sure that the 

virtual model created is a true representation of the system. Also, a model should be created 

which is easily implementable in a computer code but at the same time it should not be so simple 



44 
 

that it deviates from reality. Thus, it is essential to understand the problem before undertaking 

any simulation activity. Gallien recommends the following steps as a systematic approach to start 

a simulation activity [30]. These steps if followed correctly and in order will lead to beneficial 

and believable results for the factory floor. 

 

Figure 5.2 Simulation Process Flowchart 

It is essential to define the goal of the simulation before working ahead on it. Creating a correct 

simulation is a very work intensive process. Thus, it is important to start with a vision of what 

one wishes to achieve from the activity. This also helps in pointing out that area of the universe 

which needs to be recreated. After identifying the problem and goal the simulation should 

achieve, the developer can model the system. It is vital to debug it by carrying out validation 

tests and some sensitivity analysis, before running the simulation for real data. If errors are 

found, the system needs to be remodeled. After building enough confidence about the simulation, 

experiments can be performed and results analyzed. In all the above steps, it is essential to keep 
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on getting customer feedback. This helps in making sure that a correct representation of the real 

system is being recreated. 

5.1 Simulation in a Manufacturing Industry 

5.1.1 Challenges in mathematical modeling  

Uncertainties in the product demand and supply chain increase the likelihood of reduction in 

profits. Variable demand can be met by storing excess inventory, but high inventory holding 

costs will be incurred. Likewise, if low inventory is kept, more customers will be lost. Thus, to 

hedge against these uncertainties safety stocks and effective supplier contracts are established.  

However, establishing these stock levels and policies is not an easy task. There are many reasons 

which attribute to this problem: Firstly, in the real world, the number of variables involved is 

very high. This makes the problem very difficult to solve by incumbent mathematical formulas 

since assumptions are made to simplify the calculations which only provide approximate 

solutions. Secondly, most of these variables cannot be determined easily and do not follow any 

exact distribution. Such as, product demand depends on market conditions, which itself is 

dependent on many other variables. Also, sometimes demand of one product is dependent on 

other products. Similarly, lead times can vary due to supplier or transportation errors or even 

natural calamities. Thirdly, most supply chains are multiple products sharing multiple 

manufacturing plants. Thus, it is not easy to represent such variables mathematically since 

traditional inventory models do not accommodate such detailing. Thus, it is very unlikely to get 

deterministic mathematical solutions and hence practical alternatives are used. 

5.1.2 Simulation as an Inventory management tool 

Manufacturing and material handling systems are extremely complex and difficult to understand. 

Intricacies such as queuing, down time and random consumer behavior cannot be modeled 

completely using other methods such as spread sheets and linear programming [31]. Simulation, 

on the other hand, is a tool which can recreate complex systems with very high detail. Also, any 

manufacturing initiative has high capital costs and organizations need to be completely sure 

before implementing any new proposal. 
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Monte Carlo is one of the simulation techniques used to validate our results. The principle 

behind Monte Carlo simulation is that the behavior of a statistic in random samples can be 

accessed by the empirical process of drawing lots of random samples and observing the behavior 

[32]. However, care has been taken while generating customer demand. Distributions used to 

generate demand must be always positive since it should not go negative in the cases when the 

coefficient of variation is high [33]. 

5.2 Problem Description and Goal 

As discussed in the problem description and methods section the factory floor has been modeled 

into an optimization problem to include the effects of lead time, customer satisfaction, capacity 

constraints and inventory holding costs. However, solving this is not easy since much of the 

above data is either inaccurate or unavailable. It is not possible to reach a confident solution by 

just solving the optimization problem alone and hence simulation is used as a validation tool to 

confirm if the solutions obtained from the optimization do create a positive impact i.e. low 

inventory and better customer satisfaction. Thus, a discrete variable dynamic simulation is 

developed. Broadly, the goal of the simulation is to validate the results from the optimization and 

perform a robustness analysis on the final results. 

The simulation recreates the orders executed by the manufacturing floor using the proposed 

inventory management policy. Thus, in order to model the manufacturing floor, its critical 

elements need to be identified. Since all of the departments on the floor work in coordination, the 

interconnections must be highlighted beforehand. This helps to better understand the constraints 

of the configuration department. 

5.2.1 Material Flow 

The flow of the product on the factory floor is shown in Figure 5.3 which is further explained 

below: 

Receiving Area 

In this area, all parts are received from the suppliers by the department leader and his helpers. 

They receive the parts from the suppliers and count everything. If the count matches with the 



47 
 

quantity mentioned, the parts are entered into the IBS system (internal inventory management 

software). The system then generates receiving tickets, which are pasted on the carton containing 

those parts. After a day of collection, items are dispatched once a day to their respective 

departments. 

 

Figure 5.3 Flow of material on the factory floor 

Stock Room 

Stock room is the heart of the supply chain. All the inventory flows through it, except a few 

emergency items, which are taken directly to the required department. The stock room facility 

keeps the entire inventory at one place so that the factory floor does not get clustered. The OTC 

accessories are stored here. 

Frame Assembly 

In this area the different equipment are assembled on the base tray and fully assembled machines 

are given as output. However, the assembly line is not rigid. Two models are made in one 

assembly line: double column machines and single column machines. There is another assembly 

line which is dedicated to the floor models, since they have a very high lead time. The assembled 

machines are then marked as “Ready for configuration” and kept at the end of the assembly line 
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Configuration Area  

This area deals with customizing the machines according to the wishes of each customer. The 

assembled machine from the frame assembly area is kept on a cart and brought to this area. 

Then, all the accessories requested by the customer are gathered and checked off from the list 

accompanying the machine. There are various accessories which can be requested by the 

customers such as extensometers, special softwares, grips, extra load cells and grip faces. All 

these items are either made in the configuration area – in the grip cell – or imported from the 

stock room in boxes named by the management as tote boxes. 

System Audit 

System audit means carrying out a complete assembly of all the accessories on the machine to 

see that they fit completely. This is carried out on 30% of the assembled machines randomly 

selected by the IBS system. Moreover all machines going to countries where Instron does not 

have customer support centers are audited. 

Shipping  

The shipping department packages the machines and the accessories so they can be carried by 

the freight carriers. The shipping department also functions as a final check-post for the 

machines. If the full payment has not been made, the machine is put on a credit hold and barred 

from leaving the facility. 

5.2.2 Information Flow and Order Processing 

In the flow diagram shown in figure 5.4, the information flow is represented in the color blue and 

the material flow in the color black. 
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Figure 5.4 Material and Information flow 

 

The diagram shows how a sales order inputted in the system by a sales representative flows 

through the factory floor. The operation planner receives these orders and determines the due 

date according to the availability of the inventory items, other order commitments during that 

period and capacity constraints. The sales representative then conveys this information back to 

the customer who accepts or rejects the proposal. The information is then sent to the leader of the 

frame assembly area. He disburses the information to the different departments, so that they can 

be ready with their respective parts. Then, finally, operation planner keeps a watch if the 

products are shipped by the due date. 



 

Figure 5.5 Customer Satisfaction: Customer’s Willingness to wait

The acceptance or rejection of lead times by the customer has been modeled by

Palano[26]. Customer satisfaction over lead time can be approximated to fit a sigmoid function 

shown above. As we can see that customer’s willingness to accept longer lead times is greater for 

systems order as compared to OTC items. If the customer accepts the proposal, 99% times he 

receives the orders when promised. Sometimes, the orders get delayed du

manufacturing department or the customer’s inability to mobilize financial resources to pay for 

this capital purchase. In any case, Instron keeps contact with the customer throughout the order 

and till the delivery phase and revises d
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Customer Satisfaction: Customer’s Willingness to wait

The acceptance or rejection of lead times by the customer has been modeled by

6]. Customer satisfaction over lead time can be approximated to fit a sigmoid function 

n above. As we can see that customer’s willingness to accept longer lead times is greater for 

systems order as compared to OTC items. If the customer accepts the proposal, 99% times he 

receives the orders when promised. Sometimes, the orders get delayed due to the fault of the 

manufacturing department or the customer’s inability to mobilize financial resources to pay for 

this capital purchase. In any case, Instron keeps contact with the customer throughout the order 

and till the delivery phase and revises delivery dates if found wanting.  

 

Customer Satisfaction: Customer’s Willingness to wait 

The acceptance or rejection of lead times by the customer has been modeled by Diego 

6]. Customer satisfaction over lead time can be approximated to fit a sigmoid function 

n above. As we can see that customer’s willingness to accept longer lead times is greater for 

systems order as compared to OTC items. If the customer accepts the proposal, 99% times he 

e to the fault of the 

manufacturing department or the customer’s inability to mobilize financial resources to pay for 

this capital purchase. In any case, Instron keeps contact with the customer throughout the order 
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6.  Simulation Model 

As explained in the previous chapter, the manufacturing floor is very complex. It is very 

essential to model the system such that the goals of the simulation are met with minimum 

complexity; the goal being to check the result of the optimization, implement it over some 

generated demand and find out the change in profits. Thus, in the simulation, a demand had to be 

created which would run through the proposed inventory policy over a period of time. Results 

which predict the performance of the inventory policy were obtained in the end. These results 

were then compared with the incumbent inventory management policy and, if required, fed back 

to the optimization to obtain better results as shown in figure 6.1 

 

Figure 6.1 Simulation-Optimization Interface 

Thus, various iterations were carried out between the optimization and simulation before a final 

result was achieved. Also, since, all digital simulations are long and complex computer codes, it 
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is also essential to validate the simulation before using its solutions. Side by side, it is also a 

good habit to monitor the various validation parameters to get more depth on the results.  

Effectively simulation can be broken down into the following big components: 

a.) Demand Modeling 

b.) Inventory Management 

c.) Order Execution 

d.) Outputs 

e.) Validation 

f.) Monitoring 

Each of these components has been dealt with separately keeping the goal in mind and integrated 

into one final model.  
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Figure 6.2 Simulation Structure 

Two kinds of demand generators can be used- either statistically generated orders or historical 

orders. Historical demand needs to be cleaned (“Skim Historical Demand”) before using it since 

it may contain some orders not required for the analysis. Demand modeling (Demand generator) 

creates demand and feeds it to the Order execution module (“Execute Order”). Order execution 

gets the inventory levels to operate on from the inventory management module (“Inventory 

Generator”) and the inventory levels keep on changing as orders keep on getting placed during 

the simulation. Finally, after the simulation is over, the outputs are obtained which can be studied 

in depth to find out where potential improvements can be made and then, fed back into the 

optimization. 
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6.1 Demand Model 

To execute the simulation, orders need to be created. By running orders with the inventory on 

hand, we can find out if the inventory levels are enough to support that demand. Thus, order 

generation is a critical phase of the simulation. As discussed in the previous sections, two kinds 

of orders can be placed- systems and Over The Counter (for spare parts ordering). These orders 

have different customer constraints as far as lead times demanded by customers are concerned 

[26]. There are also shipping constraints on the systems orders. All items in the order must be 

available before the order can be shipped. However, this constraint is not valid on the OTC 

orders.  

Generally, demands for systems and OTC orders can be generated through two sources - 

1. Historical Demand Modeling 

2. Statistical Demand Modeling 

Historical demand modeling recreates the electromechanical product orders placed with the 

company in the previous years (2007 and 2008). Statistical demand simulation generates random 

orders using a Poisson distribution keeping the correlation between different parts into 

consideration. Both these simulations can help in validating the proposed inventory levels.  

Since, we can generate two types of demands; we can run two types of simulations on the same 

inventory policy and see results on both. The two types of demand modeling are explained in 

more detail below- 

6.1.1 Historical Demand Model 

Instron has demand for systems and OTC orders. They make profit not only by the products sold 

but also by selling features such as color, special configurations. In order to compare if the 

proposed policy is better than the current policy a simulation over the historical orders is 

essential. By executing the historical orders over the proposed and current inventory policies we 

can get a comparison of inventory holding costs and the losses made. This tool will thus be 

crucial in convincing the management if the proposed policy is better. 
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An historical order has the following information associated with it- 

 

Figure 6.3 Information associated with a Historical Order 

 

• An order number is assigned to it  

• Each order has a code which tells if is it an OTC or a systems order 

• Each order has the item-numbers sold in it ,their quantities and the profit that they make 

• Each order has a order date- date on which the order was placed 

This format of orders needs to be converted into a convenient format which can be easily applied 

in the simulation. A method was devised to convert this order data into a structured database 

which can be implemented in the simulation. This database is explained in detail in section 6.2 
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6.1.2 Statistical Demand Model 

Historical Simulation can be used only once to find if the proposed policy is better than the 

current one. This is because only one set of data is available. Also, future demand will not be the 

same as the historical demand. Thus, the proposed inventory policy should be robust to future 

demands which might be more or less than the historical demand. Hence, a statistical demand is 

created which generates “artificial” orders [27]. The policies are then tested over this demand to 

see if they can bear the new distribution of orders. Many demands can be generated using this 

method and the performance of the proposed and current inventory models can be tested. 

Since correlation between the demands of different items is an important factor for system 

orders, we need to include it while generating the artificial orders. We know the probability of 

each item being sold with a specific system from the correlation analysis. We can use this 

probability to assign an item to an order. These orders themselves have been seen to follow a 

Poisson distribution in the historical orders. Thus, they can be spread over time using this 

distribution. The figure below shows the distribution of the aggregate systems demand and the 

fitting of Poisson distribution over them. 

 

Figure 6.4 Aggregate Demand of Frame Orders (systems) (Serra [27]) 
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The statistical OTC orders can be directly determined from the demand of each item as an OTC 

product and approximately distributed according to their historical distribution. The system and 

the OTC orders can then be combined to represent a statistical demand generator. 

6.1.3 Demand Database 

After creating orders from the demand modeling functions, we need to store them in a format 

which is easy to access using the simulation. Thus, a database is created which stores the orders 

in an easily retrievable format. A Matlab code is prepared to prepare this database. The code 

extracts the relevant quantities in the order and stores them in separate variables: 

• N -contains the order numbers sorted according to when they were placed.  

• D- contains the date on which the corresponding order from N was placed 

• I- contains the item numbers of all the items that were sold with the corresponding order from N 

• Q- contains the quantity each item is sold corresponding to I  

• Profit- contains the profit each item makes corresponding to items in I 

• T- indicates the type of order: system or OTC 

Thus, the 5th element of N will give the number of the fifth order placed. 5th element of D will 

give the date on which this order was placed. 5th element of I will give all the items which were 

there in this order. 5th element of Q and Profit will give the quantity of each item and profits in 

this order. Finally, the 5th element of T indicates the type of this order- OTC or system. 

6.2 Order Execution and Inventory Management 

After the demand database is ready, the inventory level for each item should be provided and the 

policy under which it will be replenished. Inventory replenishment and reorder levels are 

obtained from the optimization module developed by Facelli [28]. This is the optimum policy 

considering a certain holding cost. However, since the profit used in the function is the virtual 

profit, a direct holding cost cannot be used in the optimization problem: 
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max:  
���� � ���� � 
�����  (Decomposed Optimization-optimizing for each item) (6.1) 

or more accurately, 

max:  
��� � ∑ ���� � 
������    (Global Optimization-optimizing the whole factory) (6.2) 

where,        Pi = profit for item i 

                  βi = service level 

                 Vi = virtual profit of item i 

                E[Ii]= expected inventory of item i 

                 H= holding cost 

 

To solve this issue, various holding costs are assumed and the optimization function solved 

giving different amount of inventory held by the manufacturing floor. The solution from the 

optimization i.e. the proposed inventory policy is then implemented into the simulation. The 

simulation presents results if the proposed inventory policy gives better results than the current 

policy. The simulations also helps to check if the proposed policy if feasible under capacity 

constraints. Thus, if it is ascertained that the proposed policy is not good enough, a new 

optimization solution is generated and simulated. Hence, various iterations of the optimization 

and simulation take place to reach the final level. 
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Figure 6.5 Inventory Management and Order Execution Flowchart 

Fig. 6.5 shows order execution involves running through orders placed on each day. That is, we 

start the simulation from day-1 and check if any order was placed on day-1. If an order was 

placed we execute the order according to its type (system or OTC). The loop keeps on running 

until all the orders placed in the day are executed. Also, inventory management is done daily to 

make sure current inventory levels satisfy the incoming demand. 
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Figure 6.6 Order Execution Detailed Flowchart 

If an order was placed, it is checked whether it is a system order or an OTC order. In a system 

order, it is checked if all the items in the order are available. If any of items is not available, it is 

checked according to the customer satisfaction graphs if the customer will accept a longer lead 

time for the order. If the customer is willing to accept the lead time, the order is executed. 

Otherwise, the order is lost.  

In an OTC order the same procedure is followed as the system order. However, since, the OTC 

orders can be fulfilled partially, only those items are sold which are in stock and whose lead 

times the customer is willing to accept.  
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The factory floor follows the Kanban system of inventory management. Kanban is a visual 

replenishment method using the QR policy.  

 

Figure 6.7 A typical QR Policy 

In the QR model, a refill order is triggered as soon as a reorder level is reached (usually 

designated as R). After the lead time to procure that part is finished, the part is received and the 

current inventory is increased by the ordered amount (referred to as Q or the replenishment 

quantity). This quantity Q can be determined by Economic order quantity model or by supplier 

constraints. However, care must be taken to make sure that this amount at least covers the 

demand over the replenishment lead time. This is because if the replenishment quantity is not 

enough to make the inventory level to jump above the reorder level, the average inventory 

decreases leading to loss of orders. 

Inventory is managed by the simulation by checking the inventory level everyday and 

replenishing it using a lead time counter (p). p is a variable assigned individually to every item 

number. It counts the number of days past from the day when the reorder level is reached to the 

time the inventory gets replenished.  
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Figure 6.8 Lead Time Counter for Replenishment 

For example, in the figure shown above, the counter is at zero on day 1 and on day 2. As soon as 

the inventory level drops to the reorder level 8, on day 3, the counter starts to increase by 1 

everyday. On the 9th day when p becomes equal to the lead time to procure the part, the 

inventory increases by the replenishment quantity Q.  

 

6.3 Customer Satisfaction (Random Number Generation) 

In the case when an order cannot be fulfilled since one or more item is not available, we use the 

customer satisfaction data find out if the customer will be willing to accept a longer lead time. A 

random number is generated from a uniform distribution and is checked to be less than the 

probability of customer’s acceptance from the customer satisfaction graphs. For example, say, 

for a particular order 3 items are unavailable. The lead time quoted to the customer is the highest 

of the lead time of all these 3 items not available in the order. Now, corresponding to this quoted 

lead time, there will be a probability that a customer will accept the lead time. A random number 

is generated for this purpose. If the random number is less than the probability from the customer 

satisfaction graphs, the order gets placed. Else, the order is lost. 
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rand() function from Matlab is used to generate the random number. Rand is based on the 

sequence of integers defined by the recursive formula- 

���� � ����������� �� ! �� / ��                                                                                          (6.3) 

This method is known as Linear Congruential Generation. This number generation has a period 

of (a-1) since after (a-1) times the numbers will start to get repeated. Also, these numbers get 

uniformly distributed. With faster computational capabilities, ‘a’ is kept a high value-231 

6.4 Simulation Output 

Outputs are essential in this simulation since they give feedback into the optimization problem. 

Optimization function should know how the previous policy ferried and hence accordingly a new 

optimization problem can be formulated. Thus, some key performance indicators for the 

inventory policy are: 

1. Number of orders lost (service level) 

Number of orders lost gives the service level the policy offers. Type-II service level is given by- 

$%&� � �� '��(� � )�(�* � � �
+,-.�/ 01 0/2�/3 4035

50564 0/2�/3 7468�2
                                                              (6.4) 

Service level is used extensively in industry to indicate the ability of a firm to meet the needs of 

their customer. Instron strives to obtain above 95% service level on their products and thus, 

monitoring this effect is very essential. 

2. Average inventory on hand in the simulation period 

This indicates the average dollar value of inventory on hand over the whole simulation period in 

terms of the demand of every item. It is essential to know the average inventory on hand since 

inventory holding is a cost against free cash flow. Thus, it is essential that minimal inventory is 

kept. Inventory value can be calculated by simply using the cost of items or using months on 

hand of demand. 

9:�;<= :� ���� �9>�� �
∑ ?�@�A.8035AA

∑ CA.8035AA
                                                                        (6.5) 
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where, E(I)= average inventory for every item 

µ=monthly demand for each item 

 

3. Total loss made by this policy in terms of the dollar value of orders lost 

The total loss made by a policy gives the value of lost orders. If big orders lost, the policy should 

be revised to reduce the amount of total loss. A better policy should be able to fulfill large orders 

and have least amount of losses. This is however, not an indication of customer satisfaction. The 

aim of the optimization is to minimize the expected losses. Hence, it is possible that more orders 

are lost (and hence, more customers unsatisfied) but less loss is made.  

6.5 Simulation Validation and Debugging 

Before, noting down any results, it is essential that the simulation itself is validated and 

monitored during the process. This simulation has been validated using sensitivity analysis and 

solving the problem for one item and computing the simulation by hand. Also, inventory was 

observed for these items during the period of simulation to confirm if they are replenishing as 

expected. 

Also, some monitoring of the simulation is done during every run. The orders which are lost are 

studied to see which item was the most critical component. 

Finally, all results of the simulation are processed only if enough simulations have been carried 

out and the outputs have reached a cumulative average limit. 

 

 

 

 

 



65 
 

7. Simulation Results & Assumptions 

7.1 Optimization Validation 

The simulation module helps to validate the optimization model proposed by Facelli [28]. 

Optimization provides the right mix of products with some expected loss and months on hand of 

inventory. Several of these optimized mixes were obtained for different months on hand and 

compared with the simulation results over historical demand as shown in the table below 

 Months on Hand Inventory Expected Loss ($/year) Value on Hand ($) 

 Optimization Simulation Optimization Simulation Optimization Simulation 

Mix 1 1.37 1.38 7075.62 10664 180661 170423 

Mix 2 1.2 1.193 12452.5 12478 157411 148410 

Mix 3 1.10 1.09 17452 19980 145310 136747 

Mix 4 0.99 0.98 24338 22928 131131 122924 

Table 1 Optimization validation using simulation 

Table 1 proves that the optimization model predicts the critical parameters well. All parameter 

values are close and follow similar trends. These parameters have been discussed in detail below: 

 

Figure 7.1 Comparison between MOH: Optimization and Simulation 
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From the Fig 7.1, we can see that the months on hand theoretically predicted from the 

optimization are similar to the simulation results. We also see that mix 4 has the lowest months 

on hand inventory (i.e. highest holding cost considered) and the inventory drops from mix 1 

towards 4. 

 

Figure 7.2 Comparison between expected loss: Optimization and Simulation 
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Figure 7.3 Comparison between value on hand: Optimization and Simulation 

All simulations were performed 50 times to ensure a steady state result. As we can see, the 

optimization model predictions are similar to those obtained from the simulation. However, there 
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attributed to the assumption in the simulation that instantaneous execution of orders takes place 

and items get deducted from the inventory. However, in reality, they will sit through the build 

time before getting deducted from the inventory.  

Thus, we can conclude that the optimization correctly models the floor.   
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Figure 7.4 Proposed Policy and Current Policy expected loss comparison 

As we can see, the steady state average loss of the proposed policy after 50 simulations is around 

$800 while for the current policy it is $30,000. An interesting behavior to study here is the 

consistency of maintaining expected losses. In the case of current policy, the expected loss is 

more disturbed and likely to show unexpected results. 

 

Figure 7.5 Proposed Policy and Current Policy MOH comparison 
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Fig. 7.5 and 7.6 show the cumulative average inventory based on demand (MOH) and inventory 

value on hand(VOH). The graphs are constant indicating that the simulation has stabilized and 

the resultant values are the steady state results. 

 

 

Figure 7.6 Proposed Policy and Current Policy value on hand comparison 
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Figure 7.7 Proposed Policy and Current Policy MOH comparison for every month 
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inventory levels than at high inventory levels. At MOH less than 0.4, the difference can be as 

high as $50,000 while for 1.4 MOH and beyond it approaches zero. This can be attributed to the 

characteristic of the virtual profit which makes sure that the high value system orders are not lost 

by having a correct mix of items on the shelf. 

7.4 Assumptions 

The goal of the simulation is to achieve certain objectives by recreating a real system which 

cannot be either created physically or is too capital/labor intensive to pursue at an initial design 

stage. To achieve these objectives, it is not essential to reconstruct all the characteristics of the 

system and simplifying assumptions can be made until they do not hamper the results of the 

simulation. These assumptions are highlighted below- 

• When the manufacturing planner receives an order for lead time quotation, he checks his current 

inventory, capacity constraints and the backlog of order 

In the simulation only the current inventory is checked. If items are in stock, the order is 

executed. No capacity constraints or backlog orders are considered. This is because 

implementing backlog orders is difficult and may not be required since all levels obtained from 

the optimization-simulation will be checked by the manufacturing managers for capacity 

constraints. Also, the customer satisfaction graphs have been used to determine the customer’s 

willingness to wait for the extra lead time which gives the manufacturing floor enough time to 

get the order executed. In addition, the lead times for procurement of certain critical items were 

increased so that there is extra current inventory available. 

• An order is executed if all items are available or in the case of unavailability the customer is 

willing to accept the lead time  

In the real case an order is not executed until it is built and shipped to the customer. Thus, in 

reality it is the inventory during the build process that makes the final decision on whether the 

order will be completely executed. Clearly, it is not possible to implement this in a simulation 

since some components may be built on one day and others on some other day. Such precise 

reconstruction of reality will require implementation of back orders and other manufacturing 

constraints. Executing an order at the same moment of receiving is equivalent to committing the 
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inventory for that order. This actually does not happen in reality. However, Instron looses less 

than 1% of committed orders and is ready to flex order schedules to meet the customer promised 

lead time. Hence, this assumption is a fair recreation of the real inventory. 

• At certain times, the demand is so high that the replenishment quantity is not enough and hence 

the average inventory decreases. 

This is an inventory management issue. To maintain a good QR policy, we propose that 

inventory be checked as soon as Instron receives replenishment from the supplier. If the 

replenishment quantity is below the reorder level, another replenishment should be triggered 

immediately. Failing this, orders can be lost since lower average inventory will be maintained. 

• Simulation begins from Average Inventory levels (Initial Transience Problem) 

All simulations suffer from initial transience. Initial transience is a condition in which the initial 

values of determining parameters (in this case- the current inventory) lead to unsteady initial 

simulations giving unreliable results. After many simulations have been completed and the 

simulation has been sufficiently “warmed up”, steady state values are obtained in output.  

There are two ways to deal with this problem. One way is to not consider the initial simulations 

and another way is to start with steady state inventory levels. Initial simulations cannot be 

neglected in historical simulations since the initial months have a definite weight age on final 

months on hand inventory. Also, the steady state values of inventory are easily available from 

the general QR policy. Thus, the second method has been used in this case.  
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Figure 7.8 Initial Transience Problem for MOH 
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8. Project Results and discussion 

8.1 Raw materials inventory 

As introduced in chapter 4 and further described in Palano ch-7, purpose of the project was also 

to provide a raw materials inventory control policy supporting the finished goods inventory [26]. 

The current policy is value-based: the parts are classified by financial value to the company 

(classes A, B, C and D) and the reorder quantities and levels only depend on the class. A QR 

policy with fixed service levels is proposed; the results are here summarized and discussed. 

8.1.1 Results 

In order to implement the QR policy for the raw materials inventory, some information is 

necessary. In particular, knowing the replenishment lead times negotiated with the supplier is 

fundamental. In this paragraph, the results of the QR policy are presented by comparison with 

the current value-based control policy. Firstly, the importance of the lead time is shown through 

a parametric comparison; then, the two policies are evaluated with the best current estimate of 

the lead times. 

Figure 8-1 shows the difference that could be made by having more accurate information about 

the lead times. The graph on the top shows the expected inventory value on hand, while the 

graph below shows the average service levels. For the sole purpose of showing the differences as 

the lead times vary, the graphs are based on the assumption that the lead time is the same, and 

constant, for all the parts. The blue lines represent the current value-based policy, which does not 

consider lead times or the demand variability. The red lines correspond to the QR policy, 

implemented using also the lead times and variability information. Two examples are highlighted 

with vertical lines: a lead time of 4 days and a lead time of 18 days. 



 

Figure 8.1 Service level and Inventory VOH vs. 
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An estimate of the actual supplier replenishment lead times is obtained by talking with the 

purchasing department and described in Palano ch-7.5 [26]. In this case, the lead times are 

different for each part. Table-2 shows a comparison of the results obtainable with the two 

policies based on this estimate. Moreover it provides an estimate of the savings that would be 

achieved by agreeing on shorter lead times with the suppliers. 

Method Average inventory VOH Parts service level 

ABCD - Division by value $179,731 93.2% 

QR – Knowing and using the lead times $126,299 (-30%) 97.7% 

Table-2 Comparison of raw materials inventory control policies 

 

As table-2 shows, only as a result of improving the accuracy of lead times, the QR policy would 

allow achieving high service levels at the same time cutting the costs by 30%. If, in addition, the 

purchasers obtain agreements for shorter lead times for the most valuable parts, the costs would 

further decrease. 

8.1.2 Discussion 

Based on the analysis proposed in Palano and on the results here described, the current inventory 

policy, which is value-based and does not consider lead time and demand variability, can result 

in irregular inventory distribution, lower service levels and higher inventory value on hand [26]. 

A simple QR policy is proposed, which gives better and more regular results. 

In designing and optimizing the finished goods inventory control, the assumption that all the raw 

materials are always available is made. The designed QR policy achieves service levels of about 

98% for each part. Thus, the above mentioned assumption can be still considered valid. 

However, in order to implement the QR policy, the replenishment lead times are necessary. As a 

general consideration, the lead times are necessary to make sure that the service levels are high 
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without wasting inventory. Thus, the lead times of every part should be tracked in the way 

described in section 9.1, and accurate information should be kept on the company databases. In 

addition, if the suppliers are flexible on the lead times, the Excel spreadsheets can be used in the 

decision process to determine the correct tradeoff between lead times and inventory value on 

hand. 

8.2 Finished goods inventory 

The policy proposed shows potential for a significant improvement in inventory control. Figure 

8.2 shows a comparison between the proposed policy, a simple QR policy and the values of Q 

and R currently in use. Note that the term “simple QR” refers to a QR policy with an equal safety 

factor z for all the products. The figure shows the expected lost sales, due to products 

unavailability, versus the total expected inventory held. The amount of inventory held is 

measured in months on hand (MOH) (eq. 6.5) 

 

Figure 8.2 Expected lost sales vs. Inventory MOH 
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As figure 8.2 shows, the proposed policy outperforms both the simple QR and the current policy. 

In particular, at the same level of expected loss sales given by the current policy, the proposed 

policy allows reducing the inventory from about 1.8 MOH to 0.5 MOH. From another point of 

view, with the amount of inventory currently held, the proposed policy would allow reducing the 

expected lost sales from about $120,000 per year to nearly zero.  

In addition, Figure 8.2 shows that the proposed policy outperforms the simple QR policy. As one 

might expect, the difference increases as the size of the inventory gets smaller, while it decreases 

as larger inventory is considered. As a limit case, the value of lost sales achieved by the simple 

QR with 0.15 MOH is the same that would be obtained by a complete make to order (MTO) 

policy. With the proposed policy, instead, 0.15 MOH of inventory can halve the expected loss as 

compared to an MTO policy. 

Figure 8.3 shows the expected lost sales value versus the value of the inventory on hand. As one 

can see from the graph, if a solution with 1.2 MOH is chosen (the penultimate point on the 

purple line) the inventory could be reduced from $240,000 to $157,000. 

 

 

Figure 8.3 Expected lost sales vs Inventory VOH 
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Considering the trade-off between size of inventory and expected loss sales, a good compromise 

is a solution with an expected inventory of 1.2 MOH. This allows both reducing the amount of 

inventory and the expected loss sales. Moreover, a preliminary analysis of the maximum 

inventory levels shows that, with this solution, it is unlikely that the inventory levels measured at 

the end of one month will go above 2 MOH (considering the monthly demand variability). 

Table-3 shows a comparison between the proposed solution (with 1.2 MOH) and the current 

policy. 

 

 Current Policy Proposed Policy 

Average value of Lost orders $119,391 $12,453 

Expected Inventory (MOH) 1.85 1.19 

Expected Inventory (VOH) $243,481 $157,411 

Table 3 Current Policy Vs 1.2 MOH Solution 

 

8.3 Simulation 

The aim of simulation is to validate the results of the optimization module and to test the 

robustness of the proposed policy. The simulation also helps to determine the advantage of 

considering correlation between the demands of items sold in systems as compared to neglecting 

them in the analysis as explained by Serra [27].  The simulation estimates the following 

performance measures: number of orders lost, their value, months on hand of inventory for every 

month simulated and dollar value of inventory for each simulated day. 
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8.3.1 Validation 

The optimization model provides the right mix of products that should be available on the floor. 

To validate these results, the levels were simulated 50 times over two years, 2007 and 2008, and 

then compared with the projected results from the optimization. 

Figure 8.4 shows the losses made for different optimized inventory levels as predicted from the 

optimization and the simulation, versus the inventory months on hand.  

 

Figure 8.4 Comparison between theoretical and simulated loss for different solutions of the 

proposed policy 
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8.3.2 Robustness analysis 

By running the proposed inventory levels over statistical demand, the robustness of the proposed 

policy can be tested, as described by [27]. The statistical demand is generated using the 

distribution of demand of each system and item over the previous two years. In the following 

example, the simulation is run 50 times for seven different values of shift in demand. The shift in 

demand, however, is not taken into account in calculating the proposed inventory levels. Figure 

8.5 depicts the average inventory months on hand versus the shift in demand. 

 

 

Figure 8.5 Simulated average MOH vs. demand shift 
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9. Recommendations 

9.1 Introduction 

As showed in section 8,2, the optimized control parameters result in a decrease of 35% in the 

inventory MOH. Moreover, it is estimated that extending the optimization to all the accessories 

in the Configuration Department would reduce the MOH by a similar percentage. Finally, as 

mentioned in section 8.1, the raw materials inventory policy provided would cut the parts 

inventory value on hand by 30% (or even 46% if shorter lead times are agreed with suppliers). 

This represents a substantial motivation to extensively use the software provided, which allows 

computing the replenishment parameters for all the Instron accessories both at the finished goods 

and part levels, and integrate it into the Manufacturing Department procedures. 

 

The following recommendations are made to the Instron workers in order to properly implement 

the proposed policy and allow improvements in the future: 

• Compute the inventory levels for the raw parts using the proposed tool as frequently as possible 

• Compute the inventory levels for the finished goods using the proposed tool as frequently as 

possible 

• Keep the data on IBS updated as the accuracy of the solutions depend on the quality of available 

data 

• Keep  track of the lead times for both raw parts and finished goods 

• Use the provided tool to evaluate the benefits of negotiating better lead times from the suppliers 
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9.2 Discussion 

9.2.1 Updating inventory levels 

In order to guarantee that the optimal mix of accessories is on the shelves, the inventory planners 

of the Configuration Department should periodically update the proposed inventory control 

framework using the most recent sales records available. The computation of the control 

parameters can be performed with the provided software.  

The rapid changes that can occur in the demand, in fact, dictate the need to update the 

replenishment quantities as frequently as possible. On the other hand, changing the parameters 

implies a cost in terms of time: the time required to gather the data, run the executable file and 

insert the new values in IBS. This might imply negotiating new quantities with the suppliers, 

when agreements exist. Since it is common practice at Instron to update the IBS records at the 

beginning of every quarter, there is the opportunity to combine these operations and perform the 

computation every quarter, in time for the data of last quarter to be fully available. 

A further decision to be taken by the software operator concerns the quantity of sales data to 

include in the analysis, for the statistical characterization of the demand and the computation of 

the Virtual Profit. One year is the minimum time interval that should be considered to properly 

estimate the variations. As the considered time period increases, the computation time increases 

as well. Moreover, since there is continuous variation in the product list and in the market, 

including older data in the analysis implies greater differences between the historical data and the 

current situation. 

In order to minimize the run time and achieve accurate results, the sales records of the last four 

quarters should be used. As an example, if the analysis is performed in July, the planner should 

collect the data for the third and fourth quarters of the previous year and for the first and second 

quarter of the current year. 
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9.2.2 Shift in demand 

As mentioned in Chapter 4, historical sales are used to estimate the future demand. While it is 

reasonable to assume that the relationships among products (the correlation) and the variations in 

the demands resemble the ones of the previous year, shifts in the average volumes can occur 

from one year to another. When a forecast of the shift is available, it should be entered in the 

command shell of the software, which is able to take this factor into consideration and to provide 

control parameters that fit the actual situation. 

9.2.3 Dividing the analysis 

In order for the information involved to be easily managed, the control parameters should not be 

optimized for all the items at the same time. In fact, because IBS does not currently provide all 

the quantities needed for the analysis, a manual integration of data is required. For example, the 

operator has to manually enter lead times for the items considered when not available and check 

for the accuracy of other parameters, such as unit costs and lot sizes, when unexpected results are 

detected. Moreover, the optimization of the part level replenishment quantities involves 

downloading the bill of materials for all the considered products and the complexity of this 

operation increases with their number. Therefore the items should be divided into groups sized 

so that the operator is comfortable with their management. 

The division of the analysis in groups of items allows focusing on the accuracy of the inputted 

data which is critical for the correct performance of provided software. As an example, the 

inaccuracy of the lead times data provided by IBS can lead to store inadequate quantity of items. 

Similarly, even if the simulation would be a closer representation of the factory floor since more 

items will be simulated, the run time would become large and results difficult to interpret. 

 

9.2.4 Lead times accuracy and negotiation 

As demonstrated in section 8.1, the correct estimation of the replenishment lead times would lead 

to a saving of 30% in terms of VOH. 
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This suggests the need to improve the recording criterion for this type of data, which is currently 

based on many criteria. While for some of the items that are on Kanban and for the parts that 

come from Binghamton, another Instron facility, the values are known, for the majority of the 

items the lead time corresponds to the maximum lead time that can be tolerated from the 

supplier. As the cost and the yearly volume of one item increase, the less quantity can be stored 

for that item and the less time the company can wait for the supply to arrive. Also regarding the 

finished goods levels, lead times are missing on IBS for the parts assembled or reworked in the 

Norwood facility. For these parts, in fact, while setup time and run time are usually available, the 

time that elapses between the arrival of the order and the moment the product is ready is not 

recorded. The latter, however, is necessary for the computation of the optimal inventory levels.  

Sufficiently accurate values can be obtained by using a new recording procedure and integrating 

it into IBS. Whenever an order is placed to the supplier, the purchasing agent should register the 

date and the supplier code, assigning a unique code to this record. The same identification 

number should be used in the receiving area to register the arrival date as soon as the order gets 

to the Norwood facility. This way, by comparing the records with the same identification 

numbers, it is possible to track the lead times for all the items and suppliers so that they can be 

used in the computation of the inventory control parameters. When variability is present, the 

statistical distributions of the lead times can be evaluated. The availability of this type of data 

would potentially allow an extension of the optimization tools which consider stochastic lead 

times. 

As also showed in the raw materials control, a more drastic drop in the VOH can by achieved by 

negotiating shorter lead times with the suppliers. Whenever negotiation is possible, the supply 

chain planners should use the provided tool to evaluate the possible benefits of changing the lead 

times. In particular, they can compare the decrease in inventory value on hand with the eventual 

increase in purchasing cost. 

9.2.5 Product categories 

The category of a finished good (face, grip, fixture, etc.) is not stored by the IT system. 

However, as showed by Facelli and Palano, the customer expectations differ for items belonging 

to different categories, and this record becomes important for the optimization tool [28,26]. Right 



86 
 

now such information can be found in the product catalog and in many other sources. However, 

keeping an updatable database or excel file with all the products divided by categories would 

help to easily identify this information and decrease the time necessary to gather the data needed 

for the finished goods optimization program. 

9.2.6 Warning messages 

For what concerns the information accuracy, the operator should take advantage of the warning 

messages displayed by the programs provided when unexpected results are detected.  

The instruction to follow when such events occur and the operating procedure for the calculation 

of the inventory control parameters are presented by Serra, appendix [27]. 

9.2.7 New products and substitutions 

Whenever new products are released and their replenishment quantities have to be calculated, the 

operator should provide a table containing information about the new items. Two cases can be 

considered: 

• If the new products directly substitute one or more items in the product list, those item should be 

indicated as well as the fraction of demand of the old product that would converge into the new 

one. This allows the program to estimate the Virtual Profit and the statistical parameters of the 

new products demands based on the old sales data.  

• If the new products are added to the product list and no old item is substituted, no historical sales 

data can be used to estimate the Virtual Profit, and the control parameters should be evaluated 

based on the simple QR model, without considering the correlation among the new items and the 

rest of the product list. In this case the operator is asked to provide a forecast of the future sales. 

This data is used to estimate mean value and standard deviation of the demand, and the z-factors 

are set by default to a high value which is not necessarily the optimal one, which cannot be 

estimated without knowing the Virtual Profit, but matches the need for the company to provide a 

high service level when the new items are introduced to the market. 

 



 

9.2.8 Selecting the best solution

The final step of the computation of the control parameters involves the selection of the desired 

solution. Different solutions are provided, each one involving a different value of average MOH, 

and the operator is asked to choose one of them. A graph, similar to the one showed in figure 

is displayed in order to aid the selection. For all the different solutions, the loss of sales profits 

and the MOH are plotted in the same graph and, as described in

the smaller loss is achieved [28].

 

Figure 9.1 Picture displayed by the optimization tool for finished goods, comparing MOH and 
expected loss for different proposed solutions
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MOH, which is the maximum value allowed at Instron. At the same time a small loss from sales 

should be achieved. This curve usually shows a flat tail, where for a little increase in the 

inventory cost only a little portion of sales is redeemed. The starting point of the f

considered a satisfactory solution. 
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9.2.9 Using and adjusting the recommended quantities 

The output of this computation is a list of recommended minimum quantities and reorder 

quantities, which are the parameters used to build the Kanban cards. While the reorder quantity 

coincides with Q in the QR model, the minimum quantity is R+1. The reason for this is that the 

minimum quantity indicates the number of items contained in a bag; when the bag is opened to 

take one part the level R is reached and the order is placed.  

At this point, the operator has the chance to modify the proposed quantities if constraints are 

present. For instance, constraints on the lot sizes exist. In addition, some items have to be 

ordered or assembled in lots that are multiples of some predetermined quantity. After the 

quantities are updated according to these constraints, a sensitivity analysis for the finished goods 

should be performed in order to evaluate the increase in the costs. The quantities can be directly 

modified in the Excel spreadsheet provided as output of the optimization tool, and the updated 

values of the theoretical MOH and VOH are showed. These quantities can be compared with the 

proposed ones and the choice must be taken accordingly. 

A simulation can also be performed to observe the changes introduced by the adjusted quantities 

on the lost sales, value on hand and months on hand. 
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10. Future work 

As discussed in the Results and Discussion section, Instron has potential for improving its 

operations management. The result of this work is reducing wastes in the inventory management. 

Some topics from this research, which can be further explored, are: 

10.1 Lead time variability 

Lead time variability is critical to every inventory policy. Variation in lead time can lead to 

unexpected stock outs or surges in inventory leading to increased costs and unsatisfied 

customers.  This issue can be taken into account if the variation in lead time is known. If Instron 

Corporation keeps track of lead times as described in the recommendations section, the 

variability can be recorded and implemented inside the replenishment policy. 

10.2 Manufacturing constraints  

Manufacturing constraints are essential on a factory floor since mostly limited work force is 

available to accomplish tasks. Orders sometimes need to be rescheduled, or in the worst case 

lost, if manufacturing constraints and pending commitments are not taken into consideration 

while promising a lead time to a customer. Thus, while determining the finished goods and part 

levels, it is important to consider the manufacturing constraints since if these are not considered, 

unrealistic levels will be obtained. At the same time, the initial analysis has revealed that most of 

the manufacturing constraints are both independent and difficult to quantify. 

Currently, final finished good levels are checked and compared by the inventory planning team 

before implementing. Also, the lead times have been increased to account for manufacturing 

constraints [28]. However, the optimum method to implement this would be to consider the 

constraints inside the optimization and simulation itself. This will make the new inventory levels 

faster to implement and easily reusable. 
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10.3 Include back orders in the simulation 

As discussed in the above work, simulation has been developed on a simplified model of the 

manufacturing floor. Back orders have not been considered in the simulation and immediate 

order execution is being done. However, in reality, back orders will cause the orders to wait 

longer than required. Implementing back orders in the simulation is a complex process and needs 

the creation of a new database to keep track of them. Also, some orders are unexpectedly delayed 

due to incomplete payments, quality audits, etc. A more accurate picture can be obtained if back 

orders and manufacturing time is considered inside the simulation.  

10.4 Include part level into the simulation 

Currently the simulation tool only considers the finished goods level. The part level inventory 

has been determined directly under the condition that it has to be available with a very high 

probability whenever the finished goods need to be prepared. This, however, is an approximation 

and there is a miniscule probability that an order cannot be satisfied if a part level inventory is 

not available. Thus, it is required that a simulation be built which starts from the part level 

inventory, develops finished goods and finally executes the orders. This simulation will be a 

more accurate representation of the factory floor. 

10.5 QR policy using Poisson distributed demand 

As shown by Serra, Instron’s monthly demand for frames can be better approximated with a 

Poisson distribution [27]. The assumption of normally distributed and continuous demand fits 

well the reality if the average demand is large enough. However for many products at Instron the 

sales volume is limited and it might then be interesting to perform a similar analysis with a QR 

policy assuming Poisson distributed demand. An in depth study can provide detailed results on 

whether changing the demand distribution can lead to increased profits. 
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10.6 Category-wise Optimization 

Optimization is a complex process to run every time. It gives the service levels for each item 

such that an optimal mix is obtained. However, having different service level for every item can 

lead to confusion while undergoing policy revisions and corrections. Currently, the factory floor 

operates on dividing the products into categories based on values having very high service levels 

for each item in every category. 

 An optimization framework can be implemented which can present discrete service levels for 

such categories. The benefit of using such a method is that not only will the manufacturing 

planners will have easy control and understanding over such a system but, also that the correct 

mix of products will be available while working within the same framework. However, this 

solution would be less optimal than the solution proposed in this work and its implementation 

may still be complex. 
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