

Charm and Bottom Production Measurements at the LHC

Moriond QCD 2008

12 March 2008

La Thuile

Wolfgang Walkowiak

on behalf of the ATLAS and CMS collaborations

walkowiak@hep.physik.uni-siegen.de

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Large Hadron Collider

- E_{CM} = 14 TeV (pp)
 - L = 10³⁴ cm⁻²s⁻¹ (design) ~ 100 fb⁻¹/year 40 MHz pp bunch crossing rate
- L = 10^{33} cm⁻²s⁻¹ ("low" luminosity) ~ 10 fb⁻¹/year

$$L = 10^{31} - 10^{32} \text{ cm}^{-2}\text{s}^{-1}$$

("early" running)

Completion expected for 2008!

Beauty Production at LHC

Beauty and Charm Production at LHC

Questions:

- How many bb at 14 TeV?
 - Inclusive b production with μ, b-jet, μ-in-b-jet, etc.
 - Measure $\sigma_{_{bb}}$, d σ /d $p_{_T}$, d σ /d η
- From where?
 - Correlated bb production with
 - J/ ψ + μ , μ + μ , μ +b-jet, etc.
 - Measure do/d(\Delta\phi) to separate three primary production mechanisms

- How many prompt quarkonia at 14 TeV?
 - Measure $\sigma_{J/\psi}$, σ_{Y} , d σ/dp_{T} , d $\sigma/d\eta$
- Which quarkonia production model?
 - Measure polarization of J/ψ and $\rm Y$
 - Measure J/ψ and Y supression in heavy ion collisions

Trigger Strategies for B-physics ATLAS

12.5

15

 $p_{T}(\mu), \bar{GeV/c}$

Level 1

- single μ (p_T > 6, 8, 10, 20 GeV)
- di-μ (p₁ > 6 GeV, p₂ > 4 GeV)
- Level 2: (starting from LVL1 Rol)
 - $D_s \rightarrow \phi \pi$ (hadronic final states)
 - $J/\psi \rightarrow e^+e^-$, K* γ , $\phi \gamma$ (e/ γ final states)
 - $J/\psi \rightarrow \mu^+\mu^- (\mu^+\mu^- \text{ final states })$

Event Filter (full detector information)

- Level 1
 - single μ (p_τ > 14 GeV)
 - di-μ (p_τ > 3 GeV)

HLT

- inclusive b, c trigger with b-tagging
- partial reconstruction of exclusive B decays

7.5

10

2

10

10

1

5

Strategy 1: $b\overline{b} \rightarrow J/\psi(\mu^+\mu^-) X$

- Di-muon J/ ψ trigger ($p_T(\mu_1) > 6 \text{ GeV}, p_T(\mu_2) > 4 \text{ GeV}$)
- Detached J/ψ vertex
- $\epsilon_{b\bar{b}\rightarrow J/\psi X} \sim 60\%$ r_{prompt J/\eta} ~ 100\%}

leading μ impact parameter cut [mm]

Inclusive b Cross Section (low p_{τ})

Strategy 2: µ + b-jet based

- Single-muon & jet Rol trigger $(p_{\tau}(\mu) > 6 \text{ GeV}), \epsilon_{h}^{trig} = 13.5\%$
- b-jet weight tagging and jet- μ assignment ($\Delta R < 0.5$), $\varepsilon_{h}^{rec} = 85\%$

$$\Delta R = \operatorname{sqrt}(\Delta \phi^2 + \Delta \eta^2)$$

signal

0.5

b-fraction: 23 ± 2 % $(b \rightarrow \mu \& b \rightarrow c \rightarrow \mu)$

1.5

- background: 77 ± 4 % $(c \rightarrow \mu \& \pi, K \rightarrow \mu)$
- Agrees well with MC input

Template fit

muons from b background muons

- "data" template fit

2

2.5

3

3.5

p_r^{rel} [GeV]

~ 15 pb⁻

Estimated time for O(1%) measurement (statistical error only)

		specific luminosity [cm ⁻² s ⁻¹]				
	channel	$\mathscr{L} = 10^{31}$	$\mathscr{L} = 10^{32}$	$\mathscr{L} = 10^{33}$		
1	$b\bar{b} \rightarrow J/\psi(\mu 6\mu 4) + X$ with 2 μ LVL1	1 year (PS 1)	1 month (PS 1)	1 month (PS 10)		
2	$b\bar{b} \rightarrow \mu(6) + b - \text{jet} + X$	1 month (PS 10)	1 month (PS 100)	1 month (PS 1000)		

[Trigger pre-scale factors (PS) applied.]

- Typically one month of data
- Systematical error ~ 9 % (with 300 pb⁻¹)

- Reference channel
- Di- μ J/ ψ trigger, $\varepsilon_{J/\psi}^{trig} \sim 82\%$
- J/ ψ : (p_T($\mu_{1,2}$) > 6 GeV, 3 GeV) displaced vertex λ > 100 μ m $\epsilon_{J/\psi}^{rec} = 55.8\%$
- B⁺: J/ψ + 1 track (p_T > 1.5 GeV, large impact parameter) displaced vertex λ > 100 μm mass in ±120 GeV around m_{B⁺}
- $\epsilon^{\text{total}} = 29.8 \pm 0.84 \%$ $\sigma(\text{m}_{\text{B}^+}) = 42.2 \pm 1.3 \text{ MeV}$

With 13.2 pb⁻¹:

- ~ 2100 signal events
- cross section to ~ 3 %
- mass resolution ~ 3 %
- signal lifetime to ~2 %

Inclusive b-jet Cross Section

Trigger:

[CMS Note 2006/120]

- L1: "single muon" p_T^μ > 14 GeV, |η| < 2.1 ε = 18 %
- HLT: "muon + b-jet" p_T^μ > 19 GeV, E_T^{jet} > 50 GeV, |η| < 2.4 ε = 60 %
- Offline selection:
 - b-tagged jet

 E_T^{jet} > 50 GeV, |η| < 2.4
 ε = 65 % (barrel), 55 % (endcap)
 - muon associated to b-tagged jet
 ε = 75 %
 ε^{tot} ~ 5 %

16 mio. bb events/10 fb⁻¹

Inclusive b-jet Cross Section

Inclusive b-jet Cross Section

- B-hadron
 p_T > 50 GeV
 |η| < 2.4
- p_T reach up to
 1.5 TeV

- Dominant systematics:
 - Uncertainties in jet energy scale
 - Uncertainties in fragmentation modelling

Heavy Quarkonia – Motivation

 J/ψ cross section at 1.8 TeV requires Color Octett Model contributions.

 Polarization in Y → µ⁺µ⁻ is not described by Color Octett Model.

 Color Singulet (CSM) and Color Octett Model (COM) predictions from M. Kramer, Prog. Part. Nucl. Phys 47 (2001) 141.

Heavy Quarkonia – Cross Section

- Di-μ trigger, ε^{trig} = 83.7 % (p_T(μ_{1,2}) > 6 GeV, 4 GeV)
- μ tracks from prim. vertex
- Pseudo-proper time < 0.2 ps</p>
- Mass windows: $m_{J/\psi}^{PDG} \pm 300 \text{ MeV}$ $m_{Y}^{PDG} \pm 1 \text{ GeV}$
- 150 000 J/ψ, 25 000 Y
 per 10 pb⁻¹
- S/B = 60 (J/ψ), 10 (Y)
- Combined for 10 pb⁻¹: dσ/dp_T ~ 1 % level (J/ψ) 5 % level (Y)

Second method:

- Single µ-trigger (10 GeV)
- Track in cone $\Delta R_{\mu-\text{track}} < 3$
- μ and track from prim. vertex
- 160 000 J/ψ, 20 000 Y per 10 pb⁻¹
 S/B = 1.2 (J/ψ), 0.05 (Y)

- Different acceptances for di-µ and µ+track samples
- May use combination

and 0.2 (Y) with 10 pb^{-1} in p_T up to 20 GeV and beyond

Offline Monitoring with Heavy Quarkonia

Mass shifts in $m_{_{J\!I\!I}}$ (J/ ψ or Y)

- vs. p_τ : μ p_τ scale, energy loss corrections
- vs. η and φ: material effects in simulation, magnetic field uniformity
- vs. 1/p_T(μ⁺)-1/p_T(μ⁻) : detector misalignment

- Quarkonia decays provide low p_T data for monitoring
- Complementary to Z boson decays (higher p_τ)
- Quarkonia will also be used for online monitoring (trigger, detector calibration).

Wolfgang Walkowiak, University of Siegen

- MC: ~ 200 000 $B_s \rightarrow J/\psi \phi \text{ with}$ $J/\psi \rightarrow \mu^+\mu^- \text{ and } \phi \rightarrow K^+K^-$
- LVL1: p_T(μ_{1,2}) > 3 GeV,
 ε_μ^{L1} = 36.9%
- Reconstruction: $\mu^+\mu^-$ pair within 2.95 < m_µ < 3.25 GeV $\epsilon_{J/\psi}^{rec} = 27.4\%$
- $\epsilon_{J/\psi}^{L1+rec} = 10.1\%$
- HLT: specialized HLT trigger under development

σ(m_{J/ψ}) = 34 MeV

- ATLAS and CMS will measure beauty and onia production cross sections at low p_T (via muonic decays or p_T^{rel}) and for higher p_T (using b-tagging methods):
 - σ, dσ/dp_T, dσ/dη
 - early data will already provide sufficient statistics
- ATLAS and CMS plan J/ψ and Y polarization measurements
- Onia properties may be used for offline-monitoring of detector performance (e.g. mass distributions, asymmetries in µ track curvature)
- CMS studied measurement of J/ψ and Y production in heavy ion collisions (not shown here)
- New tests of QCD are coming with LHC!

Backup slides

A Toroidal Lhc ApparatuS (ATLAS)

Compact Muon Solenoid (CMS)

- Different phase space
 → complementary measurements

ATLAS/CMS

- |η| < 2.5 / 2.4 (tracker/muon detector acceptance)
- muon trigger
 p_T(μ) > 4 GeV
- jet trigger with b recognition
- LHCb
 - forward spectrometer
 1.9 < |η| < 4.9
 - p_T(μ) > 2 GeV

ATLAS Strategy for B-Physics

- Focus on discovery potential for new physics:
 - Rare b-decays (multi- μ -, γ -decay channels): B_d \rightarrow K* γ , B_d \rightarrow K* μ , B_{d,s} \rightarrow μ , B_s \rightarrow ϕ μ , B_s \rightarrow γ μ , ...
 - CP violation parameters, predicted to be small in SM: e.g. $B_s \rightarrow J/\psi \phi (B_s \rightarrow J/\psi \eta) [\Phi_s, \Delta \Gamma_s, ...]$
- Focus on topics unaccessible at B-factories:
 - B_s, baryon and double heavy flavor hadrons

 $B_{s} \rightarrow D_{s} \pi/a_{1}, B_{s} \rightarrow J/\psi \phi (\eta), \Lambda_{b} \rightarrow \Lambda^{0} J/\psi, B_{c} \rightarrow J/\psi \pi$

 $[\mathsf{m}_{\mathsf{s}}, \Gamma_{\mathsf{s}}, \Delta\mathsf{m}_{\mathsf{s}}; \mathsf{a}_{\mathsf{b}}, \mathsf{P}_{\mathsf{b}}; \mathsf{m}_{\mathsf{c}}, \ldots]$

- Concentrate on channels accessible at 10³⁴ cm⁻² s⁻¹: Di-µ-trigger based decays (low rate)
- Early measurements:
 - B-production cross-section measurement

10% (5% for CMS) of total trigger resources dedicated to B-physics
 → fast, efficient and selective trigger needed!

ATLAS B-Physics Trigger Strategies

Flexible B trigger strategies:

- Luminosity up to a few times 10³³ cm⁻²s⁻¹:
 - μ (p_T > 6 GeV) + μ (p_T > 5 GeV) $B_s \rightarrow J/\psi \phi, B_d \rightarrow K^{*0}\mu\mu, B \rightarrow \mu\mu$
 - μ (p_T > 6 GeV) + e/γ (E_T > 6 GeV) $B_d \rightarrow K^{*0}\gamma, B_s \rightarrow \phi\gamma, B \rightarrow \mu\mu\gamma$
 - μ (p_T > 6 GeV) + Jet (E_T > 10 GeV) $B_s \rightarrow D_s \pi/a_1$
- Nominal luminosity 10³⁴ cm⁻²s⁻¹:
 - 2μ : μ ($p_T > 6 \text{ GeV}$) + μ ($p_T > 5 \text{ GeV}$) $B \rightarrow \mu\mu$
- Low luminosity (end of spill) < 10³³ cm⁻²s⁻¹:
 - single μ (p_T > 6 8 GeV) (+ further selections in HLT)
- ~ 10⁸ events/year for specific exclusive B-decay modes to permanent storage

Preliminary!

Strategy 1: bb $\rightarrow J/\psi(\mu^+\mu^-) X$

• cut on ΔR

Strategy 2: µ + b-jet based

 Impact parameter significance

Strategy 2: μ + jet based

 Estimated rates for μ + jet trigger for L = 10³³ cm⁻²s⁻¹ (for bb → μ⁺ + b-jet X)

For 10 pb⁻¹

Sample	p_T , GeV	9-12	12 - 13	13 - 15	15 - 17	17 - 21	> 21
	α	0.156	-0.006	0.004	-0.003	-0.039	0.019
$L/w \alpha = 0$		±0.166	± 0.032	±0.029	± 0.037	± 0.038	± 0.057
J/ψ , $\alpha_{gen} = 0$	σ , nb	87.45	9.85	11.02	5.29	4.15	2.52
		±4.35	±0.09	±0.09	±0.05	±0.04	±0.04
	α	1.268	0.998	1.008	0.9964	0.9320	1.0217
$L/w \alpha = \pm 1$		±0.290	±0.049	±0.044	± 0.054	± 0.056	± 0.088
J/ψ , $\alpha_{gen} = \pm 1$	σ , nb	117.96	13.14	14.71	7.06	5.52	3.36
		±6.51	±0.12	±0.12	±0.07	±0.05	±0.05
	α	-0.978	-1.003	-1.000	-1.001	-1.007	-0.996
$I/w \alpha = 1$		±0.027	± 0.010	± 0.010	± 0.013	± 0.014	± 0.018
J/ψ , $\alpha_{\text{gen}} = -1$	σ , nb	56.74	6.58	7.34	3.53	2.78	1.68
		±2.58	±0.06	±0.06	±0.04	±0.03	±0.02
	α	-0.42	-0.38	-0.20	0.08	-0.15	0.47
$r \alpha = 0$		±0.17	±0.22	±0.20	±0.22	±0.18	±0.22
$1, \alpha_{gen} = 0$	σ , nb	2.523	0.444	0.584	0.330	0.329	0.284
		± 0.127	± 0.027	±0.029	± 0.016	± 0.015	± 0.012

- $\chi_{c} \to J/\psi(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})\,\gamma$
- Combine J/ ψ with soft γ
 - cos α(J/ψ,γ) > 0.97
 - ΔM = m_{µµγ} − m_{µµ}
 ∈ [200, 700 MeV]
- $\epsilon^{\text{rec}} = 4 \%$
- σ(ΔM) = 35 45 MeV
- Observable at 10 pb⁻¹
- $\chi_{\rm b} \to {\rm Y}(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})\,\gamma$
- γ much softer
- ε^{rec} = 0.03 %
- Need ~ 1 fb⁻¹ to observe

- $\chi_{\rm b} \to J/\psi(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})\,J/\psi(\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})$
- ε^{total} ~ 0.8 %
- Expect ~ 100 events for 10 fb⁻¹ (lower bound) and S/B ~ 10 – 20 %

- With 1 pb⁻¹:
 - 15 000 J/ $\psi \rightarrow \mu^+\mu^-$ and 2 500 Y $\rightarrow \mu^+\mu^-$ with $\mu 6\mu 4$ trigger
 - 10 000 J/ $\psi \rightarrow \mu^+\mu^-$ and 2 000 Y $\rightarrow \mu^+\mu^-$ with μ 10 trigger
 - 7 000 J/ $\psi \rightarrow \mu^{+}\mu^{-}$ from b-decays
 - Use to study detector alignment, acceptance and trigger studies, tracking and muon system performances
 - Try to reconstruct $\chi_c \rightarrow J/\psi(\mu^+\mu^-)\gamma$
- With 100 pb⁻¹:
 - several million J/ $\psi \rightarrow \mu^+ \mu^-$ and > 500 000 $Y \rightarrow \mu^+ \mu^-$
 - p_T spectra up to 100 GeV
 - $\chi_b \to Y(\mu^+\mu^-) \gamma$ may become observable

$Di-\mu$ method:

- Pseudo proper-time cut (< 0.2 ps)</p>
- 6 pb⁻¹

pseudo-proper time = $(L_{xy} M_{J/\psi})/(p_{T,J/\psi} c)$

Wolfgang Walkowiak, University of Siegen

Heavy Quarkonia – Cross Section

Second method:

- Single μ-trigger (10 GeV)
- Track in cone $\Delta R_{\mu-\text{track}} < 3$
- 160 000 J/ψ, 20 000 Y per 10 pb⁻¹
- S/B = 1.2 (J/ψ), 0.05 (Y)

Motivation

[CMS Note 2006/089]

- QCD: Quark deconfinement at $T_c \sim 180 \text{ MeV}$ → Quark Gluon Plasma QGP (?)
- QGP could screen color binding potential
 - \rightarrow measurable suppression of quarkonia yields
 - [T. Matsui and H. Satz, Phys. Lett. B178, 416]
 - \rightarrow out of range for RHIC (Pb-Pb at E_{CM} = 200 GeV)?

[F. Karsch, D. Kharzeev, H.Satz, Phys. Lett B636, 75]

- Other quarkonia (e.g. Y)?
- LHC heavy ion running ~ 1 month/year (~ 0.5 nb⁻¹)
 - ²⁰⁸Pb-²⁰⁸Pb at E_{CM} = 5.5 TeV
 - L ~ 4 x 10²⁶ cm⁻² s⁻¹

Quarkonia in HI – Event Simulation

- $\sigma(J/\psi, Y, ...) \leq \sigma_{inel} \Rightarrow$ Fast Monte Carlo
- Signal: J/ψ , ψ' , Y, Y', Y'' $\rightarrow \mu^+\mu^-$
- Backgrounds:

[CMS Note 2006/089]

$B_{\mu\mu}\;\sigma_{prod}\;(\mu { m b})$						
J/ψ	ψ'	Υ	Υ'	Υ''		
48930	879	304	78.8	44.4		

- μ from π^{\pm} , K[±] for dN[±]/dη|_{η=0} = 2500 (low), 5000 (high)
- μ from open c and b production

Simulation of detector response

- μ trigger efficiency tables
- di- μ efficiency depending on background type, p_{τ} and η
- smearing according to mass resolutions for ψ and Y
- $|\eta| < 2.4$ for both μ tracks
- integrated acceptance:
 1.3 % (J/ψ), 26 % (Y)

Quarkonia in HI – Yields and Systematics

 Event yields and S/B for 0.5 nb⁻¹ (one month Pb-Pb)

[CMS Note 2006/089]

	S/B	$\mathrm{N}(J/\psi$)
$\mathrm{d}N^{\pm}/\mathrm{d}\eta$ =5000	0.6	140 000
$\mathrm{d}N^{\pm}/\mathrm{d}\eta$ =2500	1.2	180 000

	S/B	$N(\Upsilon)$	$N(\Upsilon')$	$N(\Upsilon'')$
$\mathrm{d}N^{\pm}/\mathrm{d}\eta$ =5000	0.07	20000	5900	3500
$\mathrm{d}N^{\pm}/\mathrm{d}\eta$ =2500	0.12	25000	7300	4400

Systematic error contributions:

- limited statistics of "fast" MC (weighting method)
 ~ 20 % (J/ψ), ~ 25 % (Y)
- To be studied:
 - "fast" vs. full MC comparison
 - limitations in detector description
 - impact parameter dependence

Quarkonia in HI – Detector Response

μ-pair tracking efficiency

