Higgs Searches at the LHC

Trevor Vickey

University of Wisconsin, Madison On behalf of the ATLAS and CMS Collaborations

March 11, 2008

XLIIIrd Rencontres de Moriond QCD

The primary objective of the LHC

Elucidate the mechanism responsible for electroweak symmetry breaking

All experimental data to date favors a light Higgs

- SM: $M_{H} = 87^{+36}_{-27} \text{ GeV}; M_{H} < 160 \text{ GeV} @ 95\% \text{ CL}$
- LEP Direct Limit: M_H > 114.4 GeV @ 95% CL

Higgs production at the LHC

SM Higgs discovery final states

At low mass $(M_H < 2M_z)$

- Dominant decay through bb; enormous QCD background, suppressed in ttH
- $H \rightarrow \tau \tau$ accessible through Vector Boson Fusion (VBF)
- $H \rightarrow WW^{(*)}$ accessible through gluon-gluon fusion and VBF
- $H \rightarrow \gamma \gamma$ has a low BR (decays through top and W loops); but due to excellent γ /jet separation and γ resolution is still very significant
- $H \rightarrow ZZ^* \rightarrow 4I$ also accessible

For higher masses

• $H \rightarrow WW$ and $H \rightarrow ZZ \rightarrow 4I$ final-states

Trevor Vickey / Moriond 2008

The ATLAS and CMS Experiments Designed to search for the Higgs over a wide mass range

Hermetic calorimetry

• Exceptional measurement of missing transverse energy, jets to high eta

Exceptional particle identification

- Muons Efficiency ~90% Jet Rejection ~10⁵
- Electrons Efficiency ~80% Jet Rejection ~10⁵
- Photons Efficiency ~80% Jet Rejection ~10³
- b-Jet ID Efficiency ~60% Light Jet Rejection ~10²
- Tau ID Efficiency ~50% Jet Rejection ~10²

Electron, muon and photon energy and momentum resolution of ~2-3%

Trevor Vickey / Moriond 2008

Strategy and Start-up

Anticipating the start of the LHC

- Summer 2008
- Few ~100 pb⁻¹ by the year's end
- Parts of both ATLAS and CMS have already taken cosmic ray data

Understand the detectors...

- Diagnose hot or dead channels
- Tally up dead material
- Tracking detector alignment
- Tune the detector simulations to better match ATLAS and CMS

...do Standard Model measurements

- Examine our standard candles
- Demonstrate the ability to measure Ws, Zs and tops (b-jet identification)

...then search for the Higgs

LHC The first five years?

2008	~100 pb ⁻¹	10 ³¹ – 10 ³² cm ⁻² s ⁻¹
2009	~1 fb ⁻¹	10 ³² cm ⁻² s ⁻¹
2010	~10 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2011	~30 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2012	~100 fb ⁻¹	2 x 10 ³⁴ cm ⁻² s ⁻¹

1 pb⁻¹ = 3 days at 10³¹ cm⁻² s⁻¹

$H \rightarrow ZZ^{(*)} \rightarrow 4 I$

The "Golden Mode"

- Very clean signal (looking for final states with 4e, 4μ, 2e2μ)
- Excellent mass resolution (1.5 2 GeV for M_H = 130 GeV)
- Powerful analysis in a wide mass range

Experimental issues:

- Zbb and tt rejection (leptons non-isolated, with activity around the leptons in the calorimeter and tracker; high impact parameter significance)
- $qq \rightarrow ZZ$ known at NLO; $gg \rightarrow ZZ$ is added as 30% of LO $qq \rightarrow ZZ$ (no generator, yet)

Final state produced through W, top and bottom loops

 $H \rightarrow \gamma \gamma$

Powerful for low masses

- Significance of 6 8σ with 30 fb⁻¹
- Excellent mass resolution (~1.5 2 GeV)

Experimental issues

- **Electromagnetic calorimeter calibration**
- Requires excellent γ /jet separation
- **Conversion recovery**

Recent developments

- Split events into categories (by jet multiplicity, energy ratios and η region)
- Inclusive, 1 and 2-jet analyses; combine to increase significance
- Use of fits and a Likelihood Ratio for discovery, systematics

H + 2 Jets

Diphoton background now calculated at NLO

Agrees with the data from the Tevatron

Backgrounds can be taken from the sidebands...

 $H \rightarrow \gamma \gamma$

subtraction

Inclusive Analysis

$H \to WW \to 2l2\upsilon$

Unlike other channels, full mass reconstruction is not possible

- Essentially a counting experiment
- Accurate background estimate is critical

Most significant ~160 GeV

• BR(H→WW) > 95%

Dominant backgrounds

- ttbar (suppressed with a jet veto)
- WW (exploit spin correlations)

Forward Jet Tagging and the Central Jet Veto We can get the upper-hand in the VBF channels **Forward Jet Tagging Tagging Jets** D. Rainwater, D. Zeppenfeld, et al. Arbitrary units 0.07 0.03 0.05 Higgs signal, m_H= 160 GeV parton level $\eta_{j1} \cdot \eta_{j2} < 0$ after jet reconstruction karound, after jet reconstruction W/Z $|\Delta \eta_{ii}| > 3.5 - 4$ H^0 $m_{ii} > 500 - 700 \,\,{ m GeV}$ W/Z. 0.02 **Central Jet Veto** 0.01 • V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990) Veto events with extra jets in the central region S. Asai et al., ATL-PHYS-2003-005 Arbitrary units 0 Higgs signal, m_= 160 GeV parton level after jet reconstruction tt background, after et reconstruction 0.04 ATLAS 0.02 Tagging Jet **Tagging Jet** 0 2 Q Δn Higgs decay products

Trevor Vickey / Moriond 2008

10

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

A very significant channel for low masses

- Important for studying the coupling of Higgs to leptons
- Three final states lepton-lepton, lepton-hadron, hadron-hadron
- Triggers for the fully hadronic mode are under investigation

Mass reconstruction via the collinear approximation

- Approximation breaks down when the two taus are back-to-back
- Mass resolution limited by missing transverse energy (~8 10 GeV)

Experimental issues:

- Tau tagging (Likelihood, Neural Net methods)
- Z+jets background (especially for low masses)
- tt rejection (b-jet ID and veto for lepton-lepton)

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

Data-driven control samples are being explored for many backgrounds

- The relative contributions from different jet multiplicities are not known
- Unknowns related to critical analysis cut-specific variables exist

evts / 5 GeV

$\mathsf{VBF}\:\mathsf{H}\to\mathsf{WW}\to\mathsf{l}\upsilon\mathsf{q}\mathsf{q}$

One of the best channels for intermediate and high Higgs masses

A VBF analysis reaping the benefits of the CJV and Tagging Jets selection

Event Selection

- VBF tagging jets selection
- Central Jet Veto
- Isolated lepton
- 4 jets
- Large missing transverse energy

Mass reconstruction possible

- Backgrounds: ttbar, W+jets, WW+jets
- Exploring data-driven approaches for obtaining background shapes

SM Higgs Discovery Potential

Luminosity for discovery or exclusion

- ~few 100 pb⁻¹, some exclusion @ 95% CL
- + ~1 fb⁻¹, 5\sigma discovery if $M_{\rm H}$ ~160 170 GeV
- ~10 fb⁻¹, discovery over a broad mass range

MSSM Higgs at the LHC

Minimal Supersymmetric extension to the SM: (A, H, h, H[±])

- As one example here, consider A / H / h ightarrowµµ
- Not visible in the SM
- Enhanced in the MSSM by ~tan² β ; excellent mass resolution as opposed to $\tau\tau$

Trevor Vickey / Moriond 2008

17

Conclusions

If it is there, ATLAS and CMS are in a good position to find the Higgs...

- Unless it is discovered first at the Tevatron
- For a SM Higgs ATLAS and CMS need ~1 30 fb⁻¹
- How long will it take to get that much integrated luminosity from the LHC?
- How quickly will we understand the detectors?

Post-discovery questions that would need be answered...

- Is it the simple Standard Model Higgs?
- Does it have the expected couplings to various particle types?
- Are there more Higgs particles (à la Supersymmetry)
- Higgs discovery also raises the "hierarchy" problem

ATLAS and CMS are on track to try and answer these questions.

Trevor Vickey / Moriond 2008

Backup Slides

Trevor Vickey / Moriond 2008

The ATLAS Experiment

The CMS Experiment

Trevor Vickey / Moriond 2008

MSSM Higgs at the LHC

Summary of CMS reach in M_A tan β

MSSM Higgs with ATLAS

Trevor Vic

The ATLAS Experiment

Trigger and Data Acquisition System:

• Level-1 is hardware, Level-2 confined to "Regions of Interest", Event Filter has the ability to access the entire event

ATLAS Data-taking Chain

First test of end-to-end data-taking chain took place in September 2007

Trevor Vickey / Moriond 2008

The Large Hadron Collider

Housed in the former LEP tunnel

- Dipole field at 7 TeV is 8.33 T
- ~350 MJ per beam!
- Ultimately ~2800 bunches
- Vacuum 10⁻¹³ atm (~6500 m³ pumped)
- 1232 Dipoles (operate at 1.9 K)
- 858 Quadrupoles
- Typical store lasts ~10 hours
- Can also be used for ion running (Pb)
- Final price tag estimated at 4G EUR

LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator ISOLDE: Isotope Separator OnLine DEvice PSB: Proton Synchrotron Booster PS: Proton Synchrotron LINAC: LINear ACcelerator LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso

Trevor Vickey / Moriond 2008

Expected LHC Event Rates

Process	Events / s	Events in 10 fb ⁻¹
W→ev	15	10 ⁸
Z→ee	1.5	10 ⁷
ttbar	1	10 ⁹
bbbar	10 ⁶	10 ¹² -10 ¹³
H (m=130)	0.02	10 ⁵

ATLAS with LHC at $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Decay modes	TAUOLA-CLEO
$ au ightarrow e u_e \ u_ au,$	17.8 %
$ au ightarrow \mu u_{\mu} u_{ au}$	17.4 %
$\tau \rightarrow h^{\pm} neutr. v_{\tau}$	49.5 %
$ au ightarrow \pi^{\pm} u_{ au}$	11.1 %
$ au ightarrow \pi^0 \pi^\pm u_ au$	25.4 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$ au \to K^{\pm} neutr. v_{ au}$	1.56 %
$\tau \to h^{\pm} h^{\pm} h^{\pm} neutr. v_{\tau}$	14.57 %
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %
$ au ightarrow K_S^0 X^{\pm} u_{ au}$	0.90 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{ au}$	0.10 %
other modes with K	1.30 %
others	0.03 %

$VBF \; H \to \tau\tau$

Note: All cross-sections are shown in fb

S. Asai et al., ATL-PHYS-2003-005

0.10 %	signal (fb)	background (fb)			
1.30 %	VV gg	$t\overline{t} + jets$	WW + jets	$\gamma^*/Z + jets$	Total
0.03 %			EW QCD	EW QCD	
Lepton acceptance	5.55	2014.	18.2 669.8	11.6 2150.	4864.
+ Forward Tagging	1.31	42.0	9.50 0.38	2.20 27.5	81.6
$+ P_T^{miss}$	0.85	29.2	7.38 0.21	1.21 12.4	50.4
+ Jet mass	0.76	20.9	7.36 0.11	1.17 9.38	38.9
+ Jet veto	0.55	2.70	5.74 0.05	1.11 4.56	14.2
+ Angular cuts	0.40	0.74	1.20 0.04	0.57 3.39	5.94
+ Tau reconstruction	0.37	0.12	0.28 0.001	0.49 2.84	3.73
+ Mass window	0.27 0.01	0.03	0.02 0.0	0.04 0.15	0.24
$H \to \tau \tau \to e \mu$	0.27 0.01	0.03	0.02 0.0	0.04 0.15	0.24
$H \to \tau \tau \to ee$	0.13 0.01	0.01	0.01 0.0	0.02 0.07	0.11
$H \to \tau \tau \to \mu \mu$	0.14 0.01	0.01	0.01 0.0	0.02 0.07	0.11

CMSSM

Constrained MSSM

- O. Buchmueller et al., <u>arXiv:0707.3447v2</u> [hep-ph]
- CMSSM: M_h = 110 (+8)(-10) ± 3 (theo.) GeV
- Includes CDM, flavor physics and a_µ experimental data

CMSSM parameter	Preferred value
M_0	$(85^{+40}_{-25}) \text{ GeV}/c^2$
$M_{1/2}$	$(280^{+140}_{-30}) \text{ GeV}/c^2$
A_0	$(-360^{+300}_{-140}) \text{ GeV}/c^2$
$\tan\beta$	10^{+9}_{-4}
$\operatorname{sgn}(\mu)$	+1 (fixed)

Values of the CMSSM parameters at the globally preferred χ^2 minimum, and corresponding 1sigma errors. The lower limit of Eq. 2 is included.

Figure 2. Mass spectrum of super-symmetric particles at the globally preferred χ^2 minimum. Particles with mass difference smaller than 5 GeV/ c^2 have been grouped together.

Central Jet Veto and Pile-up

Figure 7: (a) Central Jet Veto performance in the presence of varying levels of pileup for signal and background samples. (b) Performance of the *b*-jet tagging as a function of the forward jet p_T in the events, where the $t\bar{t}$ processes is analyzed.

Impact Parameter

Displaced vertices present in Zb<u>b</u> and t<u>t</u>

Impact Parameter Significance $\equiv d_0/\sigma_{d_0}$

Transverse impact parameter resolution ∼15 µm for P_T = 20 GeV Transverse primary vertex spread ∼15 µm, taken into account

Isolation + Impact Parameter Criteria

O(10²) Rejection for Zb<u>b</u> O(10³) Rejection for t<u>t</u> for signal efficiency O(80%) Effect of pile-up on signal significance ≤5%

Higgs Properties: Mass

Mass

Favoured mass of SM Higgs 113.5 < mH < 212 GeV

In this range m_{H} can be measured to 0.1% using $\gamma\gamma$ and 4ℓ channels

Energy scale can be calibrated to 0.1% using $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$

Higgs Properties: Width

precise measurement of width qq->qqh. h->2γ,WW^(*), 2τ together with gg->WW^(*) allows indirect measurement of Higgs width

observation of other Higgs channels : Wh with h->bb, h-> $\gamma\gamma$ tth with h-> $\gamma\gamma$, WW qqh, with h-> $\mu\mu$ (?) self couplings; h->hh (?) $\Delta \Gamma_{\rm H} / \Gamma_{\rm H}$ $(\mathbb{R}H \rightarrow 77 \rightarrow 4)$ -1 10 direct measurement ATLAS, 300 fb⁻¹ -2 10 200 400600 800 $m_{\rm H}$ (GeV)

Higgs Properties: Cross-sections

10% of σ in intermediate mass region comes from WW fusion Identified by requiring forward tagging jets and no additional central jets

Errors Statistical: 5 - 20% $\gamma\gamma$ and 4ℓ well understood Modes involving fwd jets more difficult to estimate

Corrected σ compared with perturbative QCD calculations Known to NLO for all and NNLO for gg→H processes

Higgs Properties: Couplings and BRs

Use various Higgs production and decay modes In ratios luminosity uncertainty largely cancels Assuming 300 fb-1

$\frac{\sigma.B(t\bar{t}H + WH \to \gamma\gamma)}{\sigma.B(t\bar{t}H + WH \to b\bar{b})} =$	$\Rightarrow \frac{BR(H \to \gamma \gamma)}{BR(H \to b\overline{b})}$
$\frac{\sigma . B(H \to \gamma \gamma)}{\sigma . B(H \to ZZ^{*})} \Rightarrow$	$\frac{BR (H \to \gamma \gamma)}{BR (H \to ZZ^*)}$
$\frac{\sigma.B(t\bar{t}H \rightarrow \gamma\gamma / b\bar{b})}{\sigma.B(WH \rightarrow \gamma\gamma / b\bar{b})}$	$\Rightarrow \frac{g_{Ht\bar{t}}^2}{g_{HWW}^2}$
$\frac{\sigma.B(H \to WW^{*}/W)}{\sigma.B(H \to ZZ^{*}/Z)} \Rightarrow$	$\frac{g_{HWW}^2}{g_{HZZ}^2}$

Higgs Properties: Branching Ratios

BR cannot be measured directly at the LHC But possible to infer ratios of couplings from measured rates

Measure	Error	M _H range
$\frac{B(H \to \gamma \gamma)}{B(H \to b\overline{b})}$	30%	80–120
$\frac{B(H\to\gamma\gamma)}{B(H\to ZZ^*)}$	15%	125–155
$\frac{\sigma(t\bar{t}H)}{\sigma(WH)}$	25%	80–130
$\frac{B(H \to WW^{(*)})}{B(H \to ZZ^{(*)})}$	30%	160–180

Higgs Properties: CP

Azimutal angle ϕ between decay planes in the rest frame of Higgs $F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$

Polar angle θ between lepton and the Z momentum in Z rest frame $G(\theta) = L \sin^2(\theta) + T(1 + \cos^2(\theta)), R = (L-T)/(L+T)$

$$\begin{split} \mathsf{M}_{Z^{\star}} \text{ distribution for } \mathsf{M}_{\mathsf{H}} < 2 \ \mathsf{M}_{Z}, \ \mathsf{d}\Gamma_{\mathsf{H}}/\mathsf{d}\mathsf{M}_{Z^{\star}}^2 &\sim \beta^{\mathsf{n}} \text{ near threshold (n=1 in SM)} \\ \beta^2 &= [1 - (\mathsf{M}_{Z} + \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] [1 - (\mathsf{M}_{Z} - \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] \end{split}$$

Resent ATLAS fast simulation study on sensitivity to $F(\phi)$ and $G(\theta)$ for exclusion of 0^- , 1^+ , 1^- for $M_H > 2M_Z$: SN-ATLAS-2003-025