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Abstract

The microstrip silicon tracker of the CMS experiment will operate in a 4 T magnetic field in the harsh
radiation environment of the Large Hadron Collider. The drift motion of the charge carriers will be
therefore affected by the Lorentz force due to the high magnetic field. Furthermore, radiation damage
will change in time the properties of this drift. In this note a method to measure the Lorentz angle from
reconstructed tracks is presented and results obtained on Magnet Test and Cosmic Challenge data are
compared to the values expected from a model, developed by the authors, which takes into account
all the relevant parameters during the tracker lifetime (e.g. temperature and depletion voltage of the
detectors).
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1 Introduction
The Lorentz angleΘL, by which charge carriers in a silicon sensor are deflected ina magnetic field B transverse
to the drift direction, is given by

tan ΘL = µHB = rHµB , (1)

where, the Hall mobilityµH is the drift mobility in a magnetic field. This is related to the mobility without
magnetic fieldµ by the Hall factorrH , which has a value of≈ 0.7 for holes and≈ 1.15 for electrons [1]. For the
CMS microstrip silicon tracker only the drift of the holes isimportant, since they are the charge carriers collected
on the sensor strips [2]. Because of the Lorentz force, the 4Tmagnetic field inside CMS causes a significant shift
of the holes during their motion. Thus a correction must be applied to the reconstructed hit positions. Any error
in the assumed Lorentz angle would result in an apparent misalignment of the silicon sensors. In particular, the
effect of the high irradiation doses in the Large Hadron Collider environment will change the drift properties in the
silicon and may affect the Lorentz angle too.

In the summer of 2006, the CMS collaboration took advantage of the magnet commissioning tests and of the par-
tial installation of some of the subdetectors in the above ground hall to do the Magnet Test and Cosmic Challenge
(MTCC) [3]. At the MTCC, a fraction of all subdetectors (withthe exception of the pixel systems) was oper-
ated with an up-to 4 T magnetic field delivered by the superconducting solenoid and read out with a downscaled
final-design global data acquisition system (DAQ). Cosmic muon triggering was provided by the Level-1 trigger
electronics of the muon detectors.

Despite the fact that the MTCC tracker setup represented only about 1% of the final system, most of the selected
hardware and software components were prototypes of the final versions. The MTCC, therefore, offered the unique
opportunity of testing the performance of the tracker in thepresence of the 4 T magnetic field and the Lorentz angle
is among the most interesting parameters to have been measured.

The note is organized as follows. In the first part an estimateof the Lorentz angle in silicon detectors is obtained
from a model for the drift of the holes. Then the measurement of the Lorentz angle on MTCC data is presented
and results are compared to the expectations.

2 Prediction of Lorentz angle at MTCC
For the calculation of the hole deviation from its normal motion due to the Lorentz force, the reference frame
shown in fig.1 is defined for the two kinds of detector used for the measurement, i.e. the sensors placed in the
Tracker Inner Barrel (TIB) layers, with an active thicknessequal to290 µm, and the others placed in the Tracker
Outer Barrel (TOB) layers, with an active thickness of500 µm [4]. Thex coordinate of the hole path endpoints
at the junction side of the detector, expressed not in terms of strips but as the actual distance (micron) from the
origin of the reference frame, is then calculated. Assuminga track incident on the origin of the reference frame
and forming an angleθt with respect to thez axis (see fig.1), thex coordinate of the path endpoint at the junction

Figure 1: Model for the hole∆x displacement due to the Lorentz force. The holes are freed bya traversing
particle incident with an angleθt with respect to the detector normal. On the top right the adopted conventions on
the incidence angle signs are also shown.
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(a) (b)

Figure 2:Cluster formation in presence of a magnetic field, with the approximations adopted for the model. Tracks
incident with a generic angle (a) and with an angle equal to the Lorentz angle (b) are considered. The cluster is
represented by the rectangle.

side for a hole formed at depthz (≤ 0) is given by:

∆x(z, θt) = z · tan θt + δx(z) , (2)

wherez · tan θt is the horizontal projection of the track andδx(z) is the endpoint displacement due to the Lorentz
force

δx(z) = −z · tan ΘL . (3)

With the conventions on the axis and magnetic field sign adopted in fig.1, a negative sign fortan ΘL and for the
hole displacementδx(z) is expected. Thus the centroid of the cluster generated by the track is displaced by

δxcluster =
t

2
· tan ΘL , (4)

with respect to the position in the absence of magnetic field,wheret (positive) is the thickness of the sensor. If the
displacement is measured, the Lorentz angle can be calculated as

tanΘL ≡
2δxcluster

t
. (5)

Measuring the displacement is however difficult as the expected value is order of few tenths of microns. Alterna-
tively the Lorentz angle can be obtained from the cluster width versusθt, the track incidence angle in the plane
orthogonal to the strips. In the absence of a magnetic field the hole drift follows the electric field lines, which are
normal to the strips. Hence tracks orthogonal to the detector achieve a minimum cluster width. If the track inci-
dence angle increases, the cluster size increases accordingly. On the contrary, in the presence of a magnetic field,
the drift direction is no longer along the electric field lines, as shown in fig.2. Therefore the minimal cluster size
is found for particles traversing the detectors with the same inclination as the drift lines. Since the angle between
electric field and drift direction is by definition the Lorentz angle, the measurement of the track incident angle for
which minimum cluster size is achieved provides a direct measurement of the Lorentz angle itself. With reference
to eq.(2), the Lorentz angle isΘL such that

∆x(z, ΘL) = 0 . (6)

In silicon detectors, however, the electric field changes linearly with the depthz, due to the spatial charge present
in the depleted region, and for highly segmented detectors it is given by [1]:

E(z) =
Vbias−Vdepl

t +
2Vdepl

t2 (t + z) for Vbias ≥ Vdepl ,

E(z) = 2Vbias

w2 (w + z) for Vbias < Vdepl ,
(7)

wherez (≤ 0 in the adopted reference frame) is the depth inside the sensor, t is the detector thickness,Vbias is the
bias voltage,Vdepl is the depletion voltage andw is the thickness of the depleted region in the case of not fully
depleted detectors. In fig.3 the shape of the electric field inside a generic TIB(TOB) module is shown, together with
the corresponding hole mobility, for the specific working conditions of the detectors used for the measurement (as
will be shown in the following). Since the hole mobility depends on the electric field, the Lorentz angle, as defined
by eq.(1), is not constant in the silicon bulk and the measurements as obtained from eq.(5) and eq.(6) may yield
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Figure 3:Electric field (left) and hole mobility (right) inside a generic TIB(TOB) detector withVbias > Vdepl.

different results. Though the most interesting result is related to the offset, as it is important to apply a correction
for it when reconstructing an hit, the Lorentz angle is more easily obtained from the relation among the track angle
and the cluster width, as already pointed out. For the present study, a numerical calculation developed to estimate
the expected Lorentz angle, as obtained with both methods, in a wide range of detector operating conditions, is
used.

The parametrization of the hole mobility used for the calculation is taken from [1]:

µ(E) =
µlow

(1 + (µlowE
vsat

)β)1/β
, (8)

whereµlow is the hole mobility for low electric fields,vsat is the saturation drift velocity andβ is a fit parameter.
The following values forµlow, vsat andβ are used for the holes [1]:

µlow = 470.5(cm2/Vs)
(

T
300K

)−2.5
,

β = 1.213
(

T
300K

)0.17
,

vsat = 8.37 × 106(cm/s)
(

T
300K

)0.52
.

(9)

Since TIB and TOB modules have different thicknesses, modules which have the same depletion voltage and the
same bias voltage applied obviously have different electric field inside and hole mobility too. The effect of the
magnetic field on the mobility is expressed by the Hall factorrH , assumed 0.7 for holes at room temperature [1].
The endpoint displacement along thex coordinate for a hole created at depthz is given by:

|δx(z)| = rHB

∫ 0

z

µ(z′)dz′ , (10)

whereB is the intensity of the magnetic field,µ(z) is the mobility and the sign ofδx(z) is negative, as stated
before.

The model assumes an uniform energy loss to calculate the centroid of the cluster formed by the holes generated
by the passage of the particle. To this purpose the detector is divided inn slices, each with a thickness equal to
t/n and∆x(z, θt), as defined in eq.(2), is calculated for each slice. Thus the cluster position for a particle incident
with an angleθt is obtained from the centroid of the charge as

xcluster(θt, xtrack) =
1

t

∫ 0

−t

∆x(z, θt)dz + xtrack , (11)
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Figure 4:Estimate of the tangent of the Lorentz angle (p0) provided for the model, for TIB (left) and TOB (right)
modules, at the MTCC working conditions.

wherextrack is the coordinate of the track intersection with the strip plane. The cluster size is obtained from
the absolute value of the difference between the maximum andminimumx coordinate of the hole path endpoints
(xmax − xmin). In case of a not fully depleted detector the calculation islimited to the depleted region.

As shown in fig.3, the hole mobility is nearly linear for the working conditions of the detectors used for the
measurement, both for TIB and TOB modules. Derivingδx from eq.(10), however, allows one to consider a
wide range of depletion voltages versus bias voltages, including cases where the detector is not fully depleted, a
condition that can arise, for example, as a consequence of radiation damage.

In the model the carrier diffusion and the capacitive interstrip couplings are neglected. Actually both these effects
contribute to the enlargement of the cluster size, but nevertheless, in first approximation, they do not change the
position of the centroid of the collected charge, nor the track incidence angle corresponding to the minimum cluster
width.

The model is used to calculate cluster position and sizes forvarious conditions of the magnetic field and detec-
tor parameters (i.e. depletion voltage, bias voltage and temperature) for tracks whose incidence angle spreads
uniformly between−30◦ and+30◦.

In the case of model results, the search for the minimum can bedone numerically. In real data, however, the
average cluster width can be estimated with some statistical precision only for a range of track incidence angles,
i.e. only a binned distribution can be obtained. To find the minimum therefore a fit to this distribution is necessary.
The same procedure is followed on the data obtained from the model. The results are plotted as cluster size versus
the tangent of the incidence angle. An example of this type ofplot is given in fig.4 where it is evident that the
minimum cluster size is achieved for a value of the incidenceangle which is not zero anymore. Thus a fit on the
histograms is performed using the following function:

p1 · | tan θt − p0| + p2 , (12)

where the parameterp0 represents the tangent of the Lorentz angle defined previously. A comparison with results
obtained from a numerical search of the minimum of∆x showed no difference with the result of the fit using (12).

Using this model it is thus possible to estimate the Lorentz angle for the specific working conditions of the detectors
at the moment of data taking during the MTCC. Moreover it is possible to estimate the a priori uncertainties which
depend on the precision with which the detector parameters were known (detector temperature, depletion voltage,
bias voltage and the intensity of the magnetic field in the tracker region).

Due to the low statistics available, it is not possible to consider each module separately, but aggregate data for each
layer must be considered. Therefore the estimation of the Lorentz angle and its a priori uncertainty is obtained
using values of temperature (T ), depletion voltage (Vdepl) and bias voltage (Vbias) consistent with all the modules
used during data taking:

T = (298 ± 15)K ,
Vdepl = (150 ± 100)V ,
Vbias = (200 ± 5)V .

(13)

The value ofVdepl is the average of the depletion voltages of the modules, as measured before assembly. A few
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Table 1:Estimate of the a priori uncertainties ontan ΘL, obtained by the model for TIB and TOB modules.

∆(tan ΘL) ∆(tan ΘL)
TIB TOB

T = (298 ± 15)K +0.008
−0.011

+0.011
−0.012

Vdepl = (150 ± 100)V +0.002
−0.0004

+0.001
−0.0001

Vbias = (200 ± 5)V ±0.0005 ±0.0003

B = (3.80 ± 0.05)T ±0.0012 ±0.0013

modules hadVdepl > Vbias during the measurement and thus were not completely depleted. On the other hand
Vbias could not be increased more because some modules went in breakdown for bias voltages higher than 200 V.
The modules used for MTCC in fact were not the ones which will be used for the final tracker, but pre-series
modules of worse quality. Also the temperature of the modules varied considerably among the layers and among
modules belonging to the same layer. A rough estimate of the temperature was given by the temperature of the
cooling system liquid.

The value of the magnetic field in the detector region was [5]:

B = (3.80 ± 0.05)T , (14)

where the error includes the uncertainty on the solenoid current, on the calibration and the uncertainty due to the
dependence of the field intensity on the radial distance fromthe interaction point (the field dependence on theZ
coordinate of the global reference frame was negligible because of the limited space occupied by the detectors
along this direction).

The expected TIB(TOB) Lorentz angles, relative to the working conditions described above, are respectively:

TIB: tanΘL = −0.1014 ⇒ ΘL ≃ −5.8◦ ,

TOB: tanΘL = −0.1126 ⇒ ΘL ≃ −6.4◦ ,
(15)

as shown in fig.4.

The a priori uncertainty is evaluated by performing the fit described above both for TIB and TOB modules, varying
the values of temperature, depletion voltage, bias voltageand magnetic field within the uncertainties quoted in (13)
and (14). Tab.1 summarizes the results. The most relevant contribution to the a priori uncertainty is given by the
knowledge of the module temperature.

Thus the predicted Lorentz angle for the two kinds of detector used at the MTCC is

(tan ΘL)TIB
MTCC = −0.101 +0.008

−0.011

⇒ (ΘL)TIB
MTCC = −5.8◦ +0.5◦

−0.6◦ ,

(tan ΘL)TOB
MTCC = −0.113 +0.011

−0.012

⇒ (ΘL)TOB
MTCC = −6.4◦ ±0.6◦ .

(16)

These values of Lorentz angle, if considered constant alongthe module thickness, would correspond to a displace-
ment on the cluster centroid of approximately15 µm for TIB and27 µm for TOB modules, which is comparable
to the intrinsic resolution of the microstrip detectors. The difference with respect to the calculation of the centroid
of the charge is only 2-3µm, therefore it can be neglected for all practical purposes.

3 Lorentz angle measurement using cosmic muons
3.1 Data Sample

The Lorentz angle was measured using the data samples acquired at the MTCC in the period of August 23-29/2006,
when the tracker was placed at the “Point 5” facility (P5) at CERN. Nearly 120 runs were acquired with the global
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Figure 5:Layout of the tracker MTCC setup: (a) 3D view (thez axis and the radial coordinate of the global CMS
reference frame are shown); (b)xy view of the barrel part. The instrumented parts are a fraction of layer 2 and
layer 3 of TIB, two rods in layer 1 and in layer 5 of TOB, two petals in disk 9 of TEC.

trigger provided by the muon chambers, with magnetic fields of 0T, 3.8T and 4T [3]. Nevertheless the 4T runs
were not used for the measurement, because of the low statistics available for this particular value of the magnetic
field. Moreover among the 0T and 3.8T runs acquired, were selected the ones that did not present any problem in
the DAQ and for which a stable value of the magnetic field was reported.

The tracker setup for the MTCC is shown in Fig. 5. The active area of the MTCC tracker detector consists
of 0.75 m2 of silicon sensors. These were arranged in three basic structural units corresponding to the major
subsystems of the CMS tracker: the Tracker Inner Barrel (TIB), the Tracker Outer Barrel (TOB) and the Tracker
Endcap (TEC).

The TIB structure consisted of two mechanical prototype shells corresponding to layers 2 (L2) and 3 (L3) of the
entire TIB: layer 2 contained 15 double-sided modules and layer 3 contained 45 single-sided modules. Four TOB
sub-structures (“rods”) were mounted in locations corresponding to layers 1 and 5 of the final TOB. The L1 rods
each contained six single-sided modules with a strip pitch of 183 µm, and the L5 rods contained six single-sided
modules with a strip pitch of 122µm. Two TEC sub-structures (“petals”), each holding 17 silicon strip modules
distributed in rings 4-7, equipping a custom-made disk, corresponding to disk 9 of the TEC, completed the MTCC
tracker setup.

Since the angular acceptance of the muon chambers was much larger than the tracker volume, among all the
triggered cosmic muons only very few yielded a signal in the tracker modules. For this reason an event filter was
applied which selected those events with a muon also in the tracker barrel layers. The algorithm is based upon the
presence of clusters in at least three out of the four different TIB and TOB layers. The fraction of filtered events
with this algorithm was less than10−3. Unfortunately, because of the specific MTCC tracker layout, triggered
muons could not cross simultaneously both TEC modules and either TIB or TOB layers. Therefore for TEC
studies another event filter was required. However this factis not relevant for the Lorentz angle measurement,
since the magnetic field lines are nearly parallel to the electric field lines inside the TEC modules, and thus the
charge carriers inside them are not affected by Lorentz deviation. Thus for this study events with tracks in the
TEC modules are not considered. Due to the presence of some noisy modules in TOB layers, an additional filter
is also applied that rejects reconstructed tracks which have a hit in the TOB layers with a charge of less than 80
ADC counts (the most probable value of the hit charge in TOB modules is about 160 ADC counts). The use of this
additional filter improves the quality of the reconstructedtracks.

For this measurement, tracks reconstructed with two different algorithms were used, named “Cosmic Track Finder”
(CTF) and “Road Search” (RS) algorithms [6]. Moreover the track reconstruction was performed using two dif-
ferent sets of alignment constants, both of them obtained byusing a track-based alignment algorithm named “Hit
and Impact Point” (HIP) [6]. The first set of alignment constants was obtained using survey information (i.e.
measurements of the center points and orientations of the sensors) as starting point for the alignment procedure,
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Table 2: Analyzed data samples forB = 0 T and B = 3.8 T. Number of tracks reconstructed using Cosmic
Track Finder (CTF) and Road Search (RS) algorithm and the twoalignment settings available. The clusterization
thresholds used are:tSeed = 4, tChannel = 3 andtCluster = 5.

Magnetic field #Events #Filtered events
B=0.0 T 10 197 963 6 096
B=3.8 T 12 638 378 3 406

Magnetic field #Reco. tracks - CTF #Reco. tracks - CTF
al. with survey al. without survey

B=0.0 T 5 299 5 295
B=3.8 T 2 989 3 104

Magnetic field #Reco. tracks - RS #Reco. tracks - RS
al. with survey al. without survey

B=0.0 T 4 522 4 513
B=3.8 T 2 085 2 080

while the second one did not use this information. Thus the former will be named “alignment with survey” in the
following, while the latter “alignment without survey”. These two different settings of alignment constants were
used to check the contribution to the error on the measurement due to the alignment itself.

In Tab.2 the total number of events acquired in the selected runs and the number of filtered events are reported.
The standard clusterization thresholds are used [7], i.e. 4noise sigma’s for the seed (tSeed), 3 for the nearby strips
(tChannel) and 5 for the total cluster charge (tCluster). The number of tracks reconstructed using the two available
tracking algorithms and the two settings of alignment constants is also shown. The fluctuation of the number of
reconstructed tracks (see CTF tracks at B = 3.8T) is probablydue to fake tracks. The lower quality of the modules
used for MTCC in fact yields many noisy hits with the standardthresholds of the clusterizer. This fact, together
with other reasons that will be explained in sec.3.3, suggests an increase of the clusterization thresholds as will be
described in the following.

3.2 Measurement method

The Lorentz angle measurement with the data is performed using the same procedure defined when introducing
the model, i.e. the angle for which a minimum cluster size is found. For a non zero magnetic field the average
cluster size in strips for tracks incident with an angleθt with respect to the detector normal is given by:

average cluster size =
t

p
· p1 · |tan θt − p0| + p2 , (17)

wheret is the detector thickness,p is the pitch,p0 is the tangent of the Lorentz angle andp1, p2 are coefficients
expressing the carrier diffusion and the electronic cross-talk between nearby channels. Profile plots of cluster size
versus the tangent of the track incident angle are made for each layer and the Lorentz angle measurement is derived
from the fit with the function shown in eq.(17).

Due to the fact that the Lorentz angle measurement is performed on the aggregate data coming from all the modules
assembled on each layer, a correction which takes into account the different orientation of the modules is necessary.
In fact some modules had the y axis of the local reference frame parallel to the magnetic field while the others anti-
parallel. This engenders two different signs ofΘL. Following the adopted reference frame (fig.1), ifŷ · B > 0
the sign ofΘL is negative, positive otherwise. Moreover only the component of the cluster centroid displacement
orthogonal to the module strips is measurable by the detector. Therefore the measurable displacement of the cluster
centroid in the stereo detectors is less than the one observed in the mono detectors for the same angle of incidence,
because of their 100 mrad inclination with respect to the mono detectors. Consequently a smaller Lorentz angle is
measured in the stereo detectors, as shown in fig.6. With reference to the figure:

∆xm =
∆xs

cosα
, (18)

whereα is the angle between the y axis and the magnetic field (assumedparallel to the strips of the mono detector)
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andcosα is given by

cosα =
ŷ ·B

‖ B ‖
. (19)

Therefore, to correct the effect due to the inclination of the stereo module strips, the measured values oftan θt are
multiplied by1/ cosα. This correction is also applied to mono detectors, for which cosα = ±1. The expected
sign ofΘL thus is always negative.

3.3 Preliminary measurements

First of all it was verified that in the histograms obtained for null magnetic field the minimum cluster size was
at tan θt = 0 as expected. Unfortunately, while clear minima for TIB layer 2 and TIB layer 3 histograms were
obtained, both for CTF and RS tracks and for the two alignmentsets used, a clear minimum for TOB histograms
was never obtained. In fact the data showed a rather flat central region, corresponding to a cluster size roughly
equal to 2 strips. As an example in fig.7 the results obtained for tracks reconstructed with RS algorithm using the
alignment with survey are shown.

To understand this anomaly the measurement on another data sample was performed, acquired with null magnetic
field when the tracker was in an other CERN facility, named “building 186” (186bd), for the first commission-
ing procedures. This data sample in fact was taken with a different configuration of the front-end readout chip
(APV [8]) parameters and with a different geometrical configuration of the trigger, which was not provided in this
case by the muon chambers but by three plastic scintillatorsplaced above and under the tracker layers [6]. The
results of 186bd data analysis, obtained using RS tracks andthe alignment with survey, are shown in fig.8.

Comparing the histograms obtained with P5 and 186bd data, itis evident in the latter the minimum value of the
cluster size smaller than the one seen in the P5 histograms, and in particular the presence of clear minima is evident
in the TOB histograms too. Since the anomalies in the TOB histograms for P5 data were present for all tracking
algorithms and alignment settings used, they can be ascribed to changed APV parameters and trigger configurations
from 186bd to P5 data acquisitions. As a matter of fact, the influence of capacitive coupling between nearby strips
depends on the APV settings, while the orientation of the detectors used for trigger increases the charge released
in the TIB(TOB) modules by the traversing particles. Indeed, using at P5 the muon chambers for the trigger, the
acquired tracks had, for geometrical reasons, an incidenceangle in the plane parallel to the strips much larger than
that of the tracks acquired with the scintillators as trigger. Both effects contribute to the increase in the cluster
width for P5 data, shown in fig.9, causing the flat central region in P5 TOB histograms.

Having attributed the absence of clear minima in the P5 TOB histograms to the factors described above, the mea-
surements were repeated raising the thresholds of the clusterizer. In fact, by increasing these thresholds, strips

(a) (b)

Figure 6:Schematic representation of the Lorentz deviation in mono and stereo detectors; (a) junction side view:
α is the angle between the stereo strips and the magnetic field (supposed parallel to the mono strips); (b) xz-mono
and xz-stereo plane view: dashed lines represent the projection of the drift direction in the xz module plane, while
the arrows represent the projection of the tracks which minimizes the cluster size.
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Table 3: Analyzed data samples forB = 0 T and B = 3.8 T. Number of tracks reconstructed using Cosmic
Track Finder (CTF) and Road Search (RS) algorithm and the twoalignment settings available with the new set of
clusterization thresholds:tSeed = 6, tChannel = 5 andtCluster = 7.

Magnetic field #Events #Filtered events
B=0.0 T 10 197 963 5 888
B=3.8 T 12 638 378 3 304

Magnetic field #Reco. tracks - CTF #Reco. tracks - CTF
al. with survey al. without survey

B=0.0 T 5 272 5 269
B=3.8 T 3 011 3 008

Magnetic field #Reco. tracks - RS #Reco. tracks - RS
al. with survey al. without survey

B=0.0 T 4 463 4 456
B=3.8 T 2 069 2 064

with very low signals are removed and the cluster width thus becomes more sensitive to the track inclination. The
measurement was performed using different configurations of the clusterizer thresholds, always maintaining the
conditiontChannel < tSeed < tCluster. Finally the configuration for which the clearest minima were obtained with-
out having an excessive decrease in the number of reconstructed clusters was chosen. This threshold configuration
was:tSeed = 6, tChannel = 5 andtCluster = 7. In Tab.3 the number of filtered events using these new clusterization
thresholds and the number of reconstructed tracks are shown. The histograms obtained for each layer with the new
clusterization thresholds are shown in fig.10, 11, 12 and 13.The 0T and 3.8T histograms are compared for each
tracking algorithm and alignment settings used. Comparingin particular fig.7 and fig.12 it is evident the effect of
changing the cluster thresholds, with the presence of clearer minima. In order to verify the stability of the fits, the
ends of the fit range were varied by±0.02, i.e. by a quantity larger than the most significant error obtained on the
fit parameters. In the worst case minima which differed from the ones provided by the fits by a quantity of the
order of∼ 0.002 were obtained, i.e. lower than the statistical error.
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Figure 7:Measurement of the cluster size minimization angle for 0T tracks acquired at P5. The measurements for
TIB layers (upper plots) and TOB layers (lower plots) are shown. Road Search algorithm and alignment settings
with survey information were used.
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Figure 8:Measurement of the cluster size minimization angle for 0T tracks acquired at 186bd. The measurements
for TIB layers (upper plots) and TOB layers (lower plots) areshown. Road Search algorithm and alignment
settings with survey information were used.
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Figure 9:Cluster size distributions normalized to the number of entries, for 186bd data (black solid line) and P5
data (red dashed line). The measurements for TIB layers (upper plots) and TOB layers (lower plots) are shown.

3.4 Measurement results and uncertainties

To provide a correct estimate of the Lorentz angle, the valueof p0 obtained at 0 Tesla was subtracted to the one
obtained at 3.8 Tesla, since a residual misalignment of the detectors can shift the measured value oftan ΘL.

The correct estimate of the tangent of the Lorentz angle is then given by:

tan ΘL = (p0)3.8T − (p0)0T , (20)
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Figure 10:Cluster size versus the tangent of the track incidence angle, at 0 T (left) and 3.8 T (right). The(p0)
parameter represents the tangent for which minimum clustersize is achieved. The measurement was performed on
P5 data with clusterization thresholds:tSeed = 6, tChannel = 5 andtCluster = 7. CTF tracks and alignment with
survey were used.
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Figure 11:Cluster size versus the tangent of the track incidence angle, at 0 T (left) and 3.8 T (right). The(p0)
parameter represents the tangent for which minimum clustersize is achieved. The measurement was performed
on P5 data with clusterization thresholds:tSeed = 6, tChannel = 5 and tCluster = 7. CTF tracks and alignment
without survey were used.
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Figure 12:Cluster size versus the tangent of the track incidence angle, at 0 T (left) and 3.8 T (right). The(p0)
parameter represents the tangent for which minimum clustersize is achieved. The measurement was performed on
P5 data with clusterization thresholds:tSeed = 6, tChannel = 5 andtCluster = 7. RS tracks and alignment with
survey were used.
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Figure 13:Cluster size versus the tangent of the track incidence angle, at 0 T (left) and 3.8 T (right). The(p0)
parameter represents the tangent for which minimum clustersize is achieved. The measurement was performed on
P5 data with clusterization thresholds:tSeed = 6, tChannel = 5 andtCluster = 7. RS tracks and alignment without
survey were used.
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Table 4:Measured values oftan ΘL for B=3.8 T in the four different layers.

Layer Measuredtan ΘL Measuredtan ΘL

Cosmic Track Finder Road Search
TIB Layer 2 −0.102± 0.007 −0.095± 0.007
TIB Layer 3 −0.075± 0.014 −0.082± 0.017
TOB layer 1 −0.154± 0.023 −0.111± 0.036
TOB layer 5 −0.111± 0.022 −0.051± 0.033

where(p0)3.8T and(p0)0T are the values oftan θt corresponding to the minimum cluster size, obtained by the fits
performed on 3.8 T and 0 T data samples respectively. The statistical uncertainty ontan ΘL is therefore given by:

(∆ tan ΘL)stat =
√

(∆p0)23.8T + (∆p0)20T , (21)

where(∆p0)3.8T and(∆p0)0T are the statistical uncertainties provided by the fits for(p0)3.8T and(p0)0T respec-
tively. The results ontan ΘL, obtained for the four different layers using the two available tracking algorithms and
the alignment settings with survey information, are summarized in Tab.4.

As a check of the contribution to the error due to the precision of the alignment, the measurement described above
was performed also using the alignment settings without survey information. The difference between the results
obtained using the two sets of alignment constants is of the same order as statistical uncertainty (this can be seen
from the plots in fig.10 to fig.13). The alignment error is alsoof the same order as the difference between the
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Figure 14:Results of the Lorentz angle measurement in the four different layers using tracks reconstructed by the
Cosmic Track Finder algorithm (a) and Road Search algorithm(b). The black horizontal line represents the fit
performed on the two TIB(TOB) layers and the solid band is thefit uncertainty. The red horizontal line represents
the expected value together with its uncertainty (dashed band).
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Table 5:Comparison between the measured values of the tangent of theLorentz angle resulting from the fits, and
the expected value. Results are shown both for Cosmic Track Finder and Road Search algorithm.

Measuredtan ΘL χ2/n.d.f. MeasuredtanΘL χ2/n.d.f. Expected
Cosmic Track Finder CTF Road Search RS tanΘL

TIB value −0.096± 0.006 2.8/1 −0.092 ± 0.007 0.4/1 −0.101 +0.008
−0.011

TOB value −0.132± 0.016 1.8/1 −0.079 ± 0.025 1.4/1 −0.113 +0.011
−0.012

CTF and the RS final results. Thus in the absence of more precise estimation the systematic uncertainty due the
alignment has been neglected.

To compare the measured values oftan ΘL shown in Tab.4 with the ones predicted by the model, the results
obtained for TIB and TOB layers are plotted in separate graphs, since the model predicts two different values of
tanΘL for TIB and TOB modules. The results obtained with CTF and RS tracks are shown in fig.14, together
with the results of the fits and the expected value with its a priori uncertainty. Tab.5 summarizes these results.

As shown in Tab.5 both the Cosmic Track Finder and the Road Search tracks yield a result in agreement with the
expected value of the tangent of the Lorentz angle. The TOB results show a wider spread due to the relatively low
statistics respect to the TIB. Since theχ2 is lower using RS tracks the final estimate of the tangent of the Lorentz
angle is derived using these reconstructed tracks.

4 Conclusions
The Lorentz angle in the CMS silicon microstrip detectors has been measured, for a 3.8 T magnetic field, on data
collected during the Magnet Test and Cosmic Challenge. The cluster width versus the muon incidence angle was
studied for events with 3.8 T magnetic field and without, fromwhich the value of the Lorentz angle was extracted.
The result was compared with the predictions from a model forthe drift of the holes inside the silicon detector.
The measurements, for the two kinds of detector used, yielded:

(tan ΘL)TIB
meas = −0.092± 0.007 ⇒ (ΘL)TIB

meas = −5.3◦ ± 0.4◦ , (22)

(tan ΘL)TOB
meas = −0.079± 0.025 ⇒ (ΘL)TOB

meas = −4.5◦ ± 1.4◦ , (23)

in agreement with the expected value of

(tan ΘL)TIB
exp = −0.101 +0.008

−0.011 ⇒ (ΘL)TIB
exp = −5.8◦ +0.5◦

−0.6◦ ,

(tan ΘL)TOB
exp = −0.113 +0.011

−0.012 ⇒ (ΘL)TOB
exp = −6.4◦ ±0.6◦ .

(24)
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