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Abstract
This document introduces basics in data preparation, feature selection and
learning basics for high-energy physics tasks. The emphasis is on feature
selection by principal component analysis, information gain and significance
measures for features. As examples for basic statistical learning algorithms,
the maximum a posteriori and maximum likelihood classifiers are shown. Fur-
thermore, a simple rule-based classification as a means for automated cut find-
ing is introduced. Finally two toolboxes for the application of statistical learn-
ing techniques are introduced.

1 Introduction
Modern methods in data analysis for High-Energy Physics (HEP) usually rely on learning algorithms
such as neural networks. The popularity of the latter has led to many out of the box solutions that are
easy to use and widely employed in the physics community (e.g. the ROOT based package TMVA [1]).
However, it is often ignored that even the most advanced algorithms strongly depend on the quality of the
input. If the input is poorly prepared, the performance will suffer as well. This lecture will present some
basic means to prepare the input and evaluate the value of a feature. When the input is well prepared
good classification results with simple classification schemes can often be achieved, some of which will
be introduced here such as Bayesian schemes and rule based classification. The advantages of using a
simple algorithm is, that the resulting functions are easy to interpret, compared with complex schemes
like neural networks or support vector machines. For example results of a rule based classification can
be used and interpreted as a normal cut based analysis. This lecture will also present overtraining and
performance evaluation as points that are common to all classification tasks. All of these are done with
a special regard to the specifics of problems that are encountered in particle physics: outliers in the data
caused by noise, training data not readily available and produced by simulations which are not always
accurate. For further reading [2] and [3] are recommended.

2 Example, nomenclature
A typical problem at the track level in particle physics where statistical learning schemes are nowadays
routinely employed consists of the classification of particles. The input to a classification algorithm
is made up of an ordered set of attributes which characterize the event that should be classified. The
terms feature and attribute may be used interchangeably. The features in particle classification problems
usually consist of measurable quantities like energy loss and particle momentum. In addition features
that incorporate prior knowledge about the process are important. This information usually follows from
constraints given by the laws of physics.

2.1 Incorporating prior knowledge
Since the processes under consideration are governed by the laws of physics there is usually a lot of
background knowledge, i.e. that the features cannot have unphysical values. Incorporating this kind of
knowledge into a classification scheme is very difficult, but often improves a classifier considerably. It
can be used to exclude noisy events. An easy way to incorporate prior knowledge is often to include
the output of existing algorithms as a feature so that only corrections have to be learned. In this way
experience already acquired can be used in a new approach, and combined with state of the art learning
algorithms.
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Fig. 1: The problem is to separate crosses and circles. For that they have to lie in a common vector space, the
feature space. Simple Layout in feature space can eliminate the need for complex classification algorithms.

2.2 Problem formulation
After the identification of the set of features S = {f1, f2, . . . fn} that contains information about the
class membership, the so called feature vector (FV) ~v = (f1, f2, . . . , fn) can be formed by ordering the
features. The FVs of the instances of the classification problem exist in the Feature Space V , a vector
space of dimension n, n being the number of features. The output of a classification algorithm is 1 or
-1 if the task is a two class problem. In that way it is a function f , that maps the feature space onto
{−1, 1}. f : V → {−1, 1}. This function defines a border in feature space. Depending on the side of the
border the instances are, the classifier assigns a class. The easiest kind of classification is of course linear
classification where the borders are straight lines. This is the case of a cut based analysis. The advantage
here is that the cuts are easy to interpret. Every algorithm that can separate two classes can readily be
used for multiple classes by building one classifier for each class. That is done by training the algorithm
on the training set. If the algorithm has several parameters which have to be tuned, additionally the so
called validation set is used, and the performance is tested on the test set (see sect 5.4).

3 Data preparation
Figure 1 illustrates, that it is desirable to process the data such that the layout in feature space (FS) is
reasonable. i.e. the topology in FS is simple. Usually it is easy to improve the separability of the data
by preprocessing, which often renders the use of a complex algorithm for classification superfluous. The
following sections describe several simple actions which should be taken as a first step.

3.1 Missing values
An instance can only be classified or used for training of a classification algorithm, if it is an element of
the feature space. Therefore missing values, that would reduce the dimensionality of the feature vector
have to be filled. An intuitive choice is to use values at the borders of the range of values. Maintaining the
view of a border in feature space that is defined by the algorithm, it is obvious that this is not necessarily
appropriate. By choosing extreme values during training the problem occurs, that an algorithm tries
to place the border such that this instance is correctly classified. Especially if the border is a smooth
function this can have many undesirable effects, in particular, since the knowledge of the unphysical
nature of the value is available beforehand. During classification an extreme value can place the feature
vector in a part of the feature space with few training examples which makes a correct classification
harder. Thus it is desirable to place FVs in densely populated part of the FS, such that the other features
can determine the class, for example by using the mean value for the missing value. This is obviously
the simplest choice. There exist more elaborate ways, e.g. estimating the value from the distribution
of the rest of the FV by the Expectation-Maximization algorithm [4] or taking the mean of the nearest
neighbors in FS where the distance is measured by the other attributes. An introduction is in [2].
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3.2 Discretization
Many well-known data classification algorithms require discrete data. This includes trees but also rule
finders and ultimately cut based analysis. Given data that take on values from a continuous range, the
question imposes itself, what the optimal way of discretization is, e.g. by trying different cuts. The
straightforward way is to choose equal steps. If the data is not distributed equally in the given range, it
is better to use a spacing such that the number of data points in each bin is similar. But since these cuts
should be used in the end to distinguish one class of data from another it is advisable to choose the cuts
in such a way that it is still possible to decide on the class membership given the discretized attribute.
Ideally that would mean, that in each bin there are instances of only one class. This might, however,
generate too many possible divisions. Common modern algorithms thus employ a strategy where the
the data is sorted, the possible cut-points are determined, the data is divided at the optimal cut-point
given a specific criterion and the discretization is halted if a stopping criterion is fulfilled. Possible cut-
points are the points between label changes, the optimality criteria can be similar to the feature selection
criteria entropy and information gain that will be talked about later in this lecture, because the choice
of discretization steps implies the choice of new features. The stopping criterion is often mdl (minimal
description length). For details on popular algorithms see: [5], [6].

3.3 Normalization
Data normalization can be achieved simply by scaling the data to a specific range, e.g. [-1,1], or fixing
variance to one and the mean to zero for each feature. Another way is to use the softmax algorithms [2]
which scales data close to its mean value almost linearly, but includes a smooth nonlinearity further away.
Data normalization simplifies the search for optimal parameters during classification. Widely different
ranges for different features can lead to numerical instabilities during computation and different weights
for different features.

3.4 Outlier removal
Outliers are a problem often encountered in physics measurements. They can be caused, for example,by
electronics noise or mislabeling. Many outliers can significantly degrade the performance of classifiers,
so treatment of those should be taken seriously. If an algorithm is used which scales the data automati-
cally, the presence of outliers can concentrate the meaningful training examples in a small range of the
allowed values. Some strategies can be found in [7], however, it should be kept in mind that outlier
treatment also depends on the problem at hand.

4 Feature selection
This section will deal with some basic aspects in feature selection. The first topic that will be introduced
is decorrelation for which the motivation is twofold.

Firstly, the assumption of statistical independence facilitates the classification task at hand. After
decorrelation it is possible to consider each feature independently. Simple Bayesian schemes in principle
even require independent features. Secondly, strongly correlated features can be combined, which leads
to a reduction of the dimensionality of the feature space. Having this dimensionality as low as possi-
ble is very important, since the volume of the feature space grows exponentially with each dimension,
which in turn means that the density of training examples reduces exponentially. Of course this makes
discrimination harder. In addition the computing time of algorithms grows strongly with the number of
dimensions. This is called the curse of dimensionality. In this part of the lecture it will be shown how
after decorrelation the variance of a feature can be used as a measure for the importance. Other measures
are the information gain and significance of a feature by χ2 which will also be introduced.

3

BASICS OF FEATURE SELECTION AND STATISTICAL LEARNING FOR HIGH-ENERGY PHYSICS

3



4.1 Decorrelation
The problem of reducing the dimensionality of the feature vector by making a minimal error is of interest
for many applications. Consequently, solutions for this problem have been developed. The most widely
known is the principal component analysis or Karhunen-Loeve-Transformation (KLT). [3] The idea of
the KLT is that for the removal of a dimension with the minimal error, it is necessary to remove the
directions in which the data has the minimal variance. If only linear transformations of the FS are
allowed, the solution is unique. An example is shown in the data distribution in Fig. 2. There the
information is mainly contained in one direction. Describing a two dimensional vector only with the
component in the direction of the maximum variance leads to the smallest expected error which can be
achieved with a linear transformation:

A feature vector is denoted by ~v = [f1, f2, ..., fn], the correlation matrix of the feature vectors
by R~v~v = E{~v~vT }. Then the unitary transformation A is constructed such that the feature vector after
application of the transformation becomes ~w = AT~v and the correlation matrix is given by R ~w~w =
E{~w ~wT } = E{AT~x~xT } = ATR~x~xA = Λ = diag{λ1, λ2, . . . , λn}. Thus the feature vectors ~w are
now uncorrelated.

Assuming that the Eigenvalues are ordered according to their size, the KLT has some desirable
features (proof given in [3]):

– A consists of Eigenvectors of R~v~v = E{~v~xT },
– it can be shown that the expected error is E{~v− ~w} =

∑n
i=m+1 λi, where the m first dimensions,

corresponding to the variances and eigenvalues of Rvv λ1 . . . λm are omitted,
– the projection onto a subspace spanned by the first m Eigenvectors is optimal,
– the sum of the eigenvalues, which are the variances in the direction of the corresponding eigenvec-

tor, can be used as a measure of the information contained in this feature,

and some undesirable:

– it is data dependent, since the covariance matrix has to be estimated from data. Also, there has to
be enough data to be able to invert the matrix,

– there exists no fast algorithm,
– it is not optimized for class separability, this is incorporated into Fishers linear discriminant [8],

which will not be discussed here.

Since the KLT is not optimized for class separability it is ad hoc problematic to identify the direc-
tion of maximal variance with the direction of maximal importance. Possibly the direction for optimal
separability is one of small variance. However, even if the full dimensionality is kept, the decorrelation
is already of importance for many tasks. For example maximum likelihood methods assume that the data
is not correlated. But the KLT is only one transformation that can make the feature space more amiable
for classification. Depending on the application, other representations may be useful. Popular examples
are the Fourier transform or the Haar transform which leads to robustness against transformations of the
data by integration over these.

4.2 Significance of an attribute for classification
The best feature for classification is obviously one that already determines the class membership of
the example. Then the information gained by knowing the correct classification equals zero, since the
outcome is already known, whereas without knowing the value of the feature the information gain was
big, since the outcome was completely uncertain. This is an extreme example, and in most of the cases
finding a feature like this is impossible but the generalization demonstrates that the better the feature
is, the more the outcome of the classification is fixed. The actual classification will not be surprising,
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Fig. 2: Principal component transformation: the data can be described in a rotated coordinate system, the dashed
axis, with fewer dimensions. One instead of two.

if the probability of a specific outcome is already 99% after the knowledge of a certain attribute. This
means that the quality of the attribute can be measured in a way by the uncertainty of the outcome after
knowing the attribute compared to the one before knowing it. To put this in a less colloquial language,
the significance of an attribute for classification can be measured by computing the information gained
from the knowledge of the value of the attribute, the so called information gain.

In information theory the information contained in the outcome of a random draw is defined as

Inf(P (v1), . . . , P (vn)) =
n∑
i=1

−P (vi)log2P (vi) (1)

if there are n possible outcomes v1, . . . , vn, each with a probability P (vn). The unit of information
is a bit. During classification a feature vector is randomly drawn and the class membership is to be
determined. Assuming there are only two different classes with equal probability (P (c1) = 1

2 , P (c2) =
1
2 ) the information contained in the outcome is thus

I(
1
2
,

1
2

) = −1
2
log2

1
2
− 1

2
log2

1
2

= 1bit (2)

This could be for example the toss of a fair coin. The information contained in the outcome is 1 bit, as
expected. If the coin is not fair, and it is known for example that the outcome will be in 99% of the cases
heads, the information contained in the outcome will be less

I(
1

100
,

99
100

) = 0.08bit (3)

and the information gain in bit of this knowledge will be 1− 0.08 = 0.92.
Figure 3 illustrates how the knowledge of one discrete attribute devides the Feature Space in

different partitions in a classification problem. Each of the partitions has a different probability for
the two classes. Before, without knowing anything, the information contained in the outcome of the
classification of one of the examples was 1 bit, assuming that there are the same number of examples
for both classes. With the prior knowledge of a feature, the partition of the feature space in which the
example that is to be classified lies is known. Depending on the distribution of classes in this partition
the classification provides significantly less information. If the partition contains only one class, the
information gained from knowing the class label in addition to the partition is even zero.

To compute the information left after knowing in which partition the example lies (by knowing
the attribute A), the information still needed to determine the classification in each partition weighted by
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Fig. 3: A discrete attribute divides the feature space into different partitions. For a significant feature the distribu-
tion in each will deviate significantly from the expected value given the distribution of feature vectors without the
knowledge of the feature.

relative number of examples in this partition can be computed:

Remainder(A) = −
∑v

i=1 pi + ni
p+ n

I

(
pi

p+ n
,
ni

p+ n

)
(4)

For a set containing p positive and n negative examples the computation of the information is straight-
forward:

IInit

(
p

p+ n
,

n

p+ n

)
=
−p
p+ n

log2
p

p+ n
− −n
p+ n

log2
n

p+ n
(5)

Thus the information gain of A is IInit −Remainder(A). Information gain is a popular measure for the
significance of an attribute for classification, the higher the value the better the attribute. Given a set of
possible attributes, meaningless attributes can be excluded by computing the information gain for each.
This value can also be used to order the attributes in the nodes of decision trees.

4.3 Determining significance by χ2

Another ansatz for the determination of the significance of an attribute is the question if the probability
distribution function (PDF) changes significantly in one of the partitions of Fig. 3. For the difference
between the expected number of positive and negative examples given the PDF can be computed with
the actual number of positive and negative examples. This is done by computing the χ2 between the null
hypothesis, the feature is irrelevant and the PDF will be unchanged, and the hypothesis that the feature
is relevant and the PDF is changed. If the impact of the attribute on the PDF is big, the χ2 will also
be big. Thus the significance of the attribute can be deduced from the χ2 that can be computed in a
straightforward way if the attribute splits the set of examples l-fold. First the expectation values for the
number of positive and negative examples in set i (p̂i, n̂i) is computed:

p̂i =
p · (pi + ni)

p+ n
, n̂i =

n · (pi + ni)
p+ n

(6)

if the attribute is irrelevant the deviation D should follow a χ2 distribution:

D =
∑v

i=1(pi − p̂i)
p̂i

+
∑v

i=1(ni − n̂i)
n̂i

(7)

The significance of the attribute then follows from the actual χ2.
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Fig. 4: Possible forms of a classifier: linear and mahalanobis distance

5 Basics in statistical learning, cost functions
This section introduces some basic classification schemes which follow from basic statistics. The prob-
lem to be solved is illustrated in Fig. 4. Given the feature space with the training examples the task is to
find the partition of the space that minimizes the classification error.

Usually the more general concept of classification cost is used. The definition of an appropriate
cost function then allows to weight different errors by their importance. In basic classification usually
the cost C is defined as the fraction of misclassified examples: C = 1

n

∑n
i=1 ‖f(vi)− 1

2classlabel(vi)‖
where f is the classification function giving the assigned classlabel 1 or−1 for the test examples v i. This
is not always appropriate for physics problems, since here the goal is often to maximize a figure of merit.
If S is taken as the signal and B the background this has for example the form S · S

S+B . More problems
with the use of basic cost function occur if the number of training examples in each class is not weighted
correctly. Therefore statistical learning toolboxes usually give the user the choice of the cost function for
example in the form of a matrix assigning a different cost for each possible confusion.

5.1 Dealing with physics data
Often, when classifying physics data, it is a problem to find appropriate training examples. Either the
examples are from simulated (MC) data, or from real data, but then the labeling is most of the time
not 100% perfect. In both cases, it is advisable to study the effects of this on the performance of the
classifier. If it performs good on the training data but gets worse if there are some training examples with
the wrong label or are a little bit shifted in feature space, one cannot expect a good performance on real
data. Most classifiers also have parameters that control the generalizing power. This is done to avoid
overtraining (see section 5.4) . For example rule based classifiers or decision trees have a pruning stage.
The algorithm should be used in a way that maximizes its ability for generalization.

5.2 Classification with Bayes theorem
The most basic, and optimal, classifier tries to maximize the probability for correct classification. It thus
chooses the class ωk according to

max
k

P (ωk|~v) (8)

This is the so called maximum a posteriori (MAP) classifier. Given evidence, it gives the probability of
each possible classification. However, to evaluate this expression the conditional probability distribution
P (ωk|~v) has to be known for each possible feature vector ~v which is usually impossible. Therefore the
formulation is recast with the help of Bayes theorem. This says it is possible to express the a posteriori
probability in terms of the probability of the values for the feature vectors given the class P (~v|ωk) and
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Fig. 5: Probability vs. feature value for two classes for a 1-dimensional problem, assuming normal distributions

the a priori probabilities for each class P (ωk) and the probability for the specific feature vector P (~v) as:

P (ωk|~v) =
P (~v|ωk)P (ωk)

P (~v)
(9)

The standard example for this theorem, given in the following, comes from medicine. Given certain
symptoms, the MAP classifier gives the probability for an illness. After the reformulation with the help
of Bayes theorem it can be seen that this depends heavily on the a priori probability for having the illness.
Given a rare illness that only occurs once in ten thousand cases, its probability can be computed after
a positive test. Given that the test is correct 98 % of the time, so for a rare illness approximately for 2
% percent of all cases it gives a positive result, the probability for the illness even after positive test is,
98% · 2% 1

10000 = 0.5%.
By using the Bayes theorem surprisingly good results can be achieved on many datasets. The

classification question is reduced to the question

P (~v|ωj)P (ωj)
P (~v)

?≥ P (~v|ωk)P (ωk)
P (~v)

(10)

For actual classification it is necessary to make certain assumptions regarding the occurring prob-
ability distributions. The natural choice for the conditional PDFs is that the features given a class are
normally distributed around the mean value for that feature given the class.

Figure 5 shows the one-dimensional case. Here the classification is done by simply evaluating
each PDF at the value of the feature and choosing the class that has the higher probability there. The
a priori probability of the classes can in principle be computed by sampling. But it is also possible to
use the assumption of equal probabilities P (ωk) for all classes and uncorrelated features, which can be
achieved by the application of the KLT, each distributed with the same variance σ, if this is reasonable
for a given problem. The resulting classifier is called Maximum Likelihood Estimator (MLE). Under the
assumption of uncorrelated entries in the feature vector, the probability P (~v) is just given by the product
of the probabilities of the entries, which have a Gaussian distribution around the mean value of the given
class ωk, µk Thus:

P (ωk) ∝ e−
(v1−µ1

k)2

σ2 · . . . · · · e−
(vn−µnk )2

σ2 = e−
‖~v−µk‖2

σ2 (11)
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Fig. 6: Euclidean and Mahalanobis distance of one point to the classes A and B. The lines of equal distance are
circles and ellipses, respectively.

⇒ P (ωk|~v)
?≥ P (ωj|~v) ⇔ ‖~v − µk‖

?≥ ‖~v − µj‖ (12)

So the classification is reduced to the computation of the euclidean distance of the feature vector to
the mean of the class. In a two dimensional feature space the lines of equal probability are circles. If
the covariance matrix is known and if it is not equal unity it is possible to use a different metric, the
mahalanobis distance. This incorporates the covariance matrix K by using

P (ωk) ∝ e−(~v−µk)K−1(~v−µk)T (13)
K = E

{
(~v − v̄)(~v − v̄)T

}
(14)

where E is the expectation value and v̄ is the mean of ~v. The distance induced by this is the so called
Mahalanobis distance DM , the distance between two points ~v, ~w in a vector space can thus be computed
by

D2
m(~v, ~w) = ((~v − ~w)K−1(~v − ~w)T (15)

and with this notation
P (ωk|~v)

?≥ P (ωj |~v)⇔ DM (~v, µk)
?≥ DM (~v, µj) (16)

As illustrated in figure 6, the lines of equal probability in a two dimensional space are now elliptic.

5.3 Rule-based classification for automated cut finding
In this section automated cut finding with the RIPPER algorithm is introduced, which was not included
in the original lecture. Many statistical learning tools also incorporate rule based classification, which
can easily translated into a cut based approach. The advantages are of course that simple rules can be
interpreted more easily, interpretation of the data is facilitated and most people have more confidence in
cuts than in black box algorithms like neural network. The RIPPER algorithm was introduced by William
W. Cohen [9]. and has been known for a long time in the machine learning community. A similar
approach is realized by decision trees which are not discussed here. In general, rule based algorithm
need discretized attributes. Thus they have to be combined with one of the strategies for discretization.
Examples were covered in section 3.2. The RIPPER algorithm builds a ruleset RS for classification. The
ruleset is initialized with the empty set in the beginning, RS = {}. The goal of the algorithm is to grow
rules by adding conditions (connected by the logical and) so each rule covers a convex space in Feature
Space. An example is positively classified if any rule matches. Thereafter comes the building stage. This
consists of repeatedly executing the following steps until a stopping criterion is reached:

– grow phase - grow one rule by greedily adding new conditions according to the highest information
gain of the attribute until the rule is perfect. I.e. it covers all positive examples and no negative.
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– prune phase - tune the rules to the training set, since they are 100% perfect. This is the problem
of overtraining (see section 5.4). It is thus necessary to prune the set. All finite sequences of
conditions are considered, if a sequence covers p positive and n negative examples, and the value
2p/(p + n) is below a certain threshold, it is pruned. This makes sure that the rules are not
customized to single examples. The threshold can be chosen according to variance in the data.

The algorithm stops if the rule lengths are too different or all positive examples are covered or the error
rate is too high. In the end, the initial ruleset is optimized. The set of rules obtained in this way can
then be easily translated in cuts. Experience shows that taking care during the discretization step is
very important, because measurements are not spread evenly over the allowed range of values and if
the discretization is too coarse in regions where they are dense and small differences matter, the best
algorithm cannot achieve a good performance.

5.4 Performance estimation
The performance of an algorithm on a training set is not necessarily a good indicator of its performance
on real data. A perfect performance often comes from a specialization on the given training data. This
leads to a loss of generality and thus most of the time to a poor performance on real data. This problem
is known as overtraining and is always an issue in machine learning and consequently all algorithms
have measures to control the generalization capability. Support Vector Machines (SVMs [10]) have a
solid theoretic background by which, in principle, the generalization ability can be computed. Other
algorithms have more ad-hoc parameters, trees and rule finders use pruning, neural networks often use
weight decay. The principle is that of Occam’s razor. This states that it is always advisable to use the
simplest theory that describes the data. Especially with little training data or with data that is uncertain,
as it is often the case with physics data, a simple model should be used. This follows also from a kind of
Bayesian reasoning: a complex theory, a theory that takes a lot of bits to describe, is more unlikely, so
more evidence is needed to support it. See for example Fig. 7. Here the training performance of a linear
function is worse, but looking at the data it seems to be the correct description, especially if expected
scattering of the data is considered. There exists an elaborate theory that connects the predictive power of
a function and the training error to the expected error, the Vapnik-Chervonenkis theory, and SVMs [11]
are build according to this principle, but to explain this would be too much detail. It is enough to
keep this problem in mind, especially in physics, and evaluate the performance in a way that includes
the generalization ability. For this an independent test set is needed, that had nothing to do with the
training of the algorithm. If the algorithm has also meta parameters, which have to be determined in an
optimal way, in principle three sets are necessary. One for training the algorithm with a specific set of
parameters, one to determine the optimal parameters, the so called validation set, and one to evaluate the
whole algorithm with the chosen parameters. Otherwise there is also the risk that parameters are tuned to
the training set. It is also advisable to incorporate a bit of scattering in the training examples to see how
the algorithm performs. To compute the expected error, it is common practice to either just split the data
3 ways or do the so called n-fold cross-validation. Here the data is split in n folds, then the training is
performed on n− 1 sets and the remaining set is used for testing. This is done n times and the expected
error is computed as the mean error. It can be shown that the higher n, the better the estimation is. The
most extreme case being the leave-one-out (loo) error, where the sets only have one element [12].

6 Tools
Getting to know existing tools is very important for two reasons. Firstly, of course, it is not necessary to
invent anything that has already been implemented and there are a lot of existing toolboxes which can
be used. The second reason is, that toolboxes provide the opportunity to try many different strategies
which enables the user to get a feeling what might work for a given problem. This is one of the most
important things that one has to do while implementing a successful strategy for solving a classification
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Fig. 7: Possibilities to fit a function with different complexities.

task. Therefore two toolboxes are presented in this section that make it possible, even for a rather
unexperienced user, to try out different algorithms for data normalization, preparation and classification,
the Weka toolbox [13] and the Toolkit for Multivariate Analysis (TMVA: [1]). The Weka tool has the
advantage of implementing almost every popular algorithm and combining this in a unified graphical user
interface, providing a workplace where different algorithms can be combined and tested. In particular,
all algorithms presented so far are implemented, so that it is possible to try them right away. On the other
hand TMVA developed using the ROOT software, is particularly aimed at analyzing particle physics
data. For example it allows the definition of the signal significance S2/(S + B) as the figure of merit
to be optimized and is fully integrated in the ROOT environment. As of this writting, TMVA is still
under heavy development but stable and usable. It is part of ROOT, but since its development cycles
are currently faster, it should be downloaded separately. Easy to use graphical user interfaces allow to
choose optimal working points, inspect the data and compare the performance of different classifiers. It
contains a scripting as well as a C++ interface. There is also a complete users guide available.
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