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We present formulas for the coefficients of 2-, 3-, 4-, and 5-point master integrals for one-loop massive
amplitudes. The coefficients are derived from unitarity cuts in D dimensions. The input parameters can be
read off from any unitarity-cut integrand, as assembled from tree-level expressions, after simple algebraic
manipulations. The formulas presented here are suitable for analytical as well as numerical evaluation.
Their validity is confirmed in two known cases of helicity amplitudes contributing to gg — gg and gg —
gH, where the masses of the Higgs and the fermion circulating in the loop are kept as free parameters.
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L. INTRODUCTION

With the approaching kick-off of the CERN Large
Hadron Collider, the calculation of one-loop multileg am-
plitudes has been under intense consideration [1], follow-
ing a program of improvement of established techniques
[2] and development of new methods (see [3] for an
extensive review).

The unitarity method introduced in [4,5] is designed to
compute any scattering amplitude by matching its unitarity
cuts onto the corresponding cuts of its expansion in a basis
of master integrals [6] with rational coefficients. Each of
these coefficients can be determined quantitatively from
prior knowledge of the master integrals and the singularity
structure of the amplitude.

As the master integrals form a basis for amplitudes, so
the unitarity cuts of master integrals have uniquely identi-
fiable analytic properties, and can be used as a basis for the
cuts of any amplitude. Therefore, the coefficients of the
linear combination can be extracted systematically through
the phase-space integration (instead of complete loop
integration).

Recently, unitarity-based methods for one-loop ampli-
tudes have been the subject of an intense investigation,
through different implementations of the cut-constraints
[7-25].

The holomorphic anomaly of unitarity cuts [7,26] sim-
plifies the phase-space integration dramatically: cut-
integrals can be done analytically by evaluating residues
of a complex function in spinor variables [27], reducing the
problem of so-called tensor reduction to one of algebraic
manipulation.

Accordingly, in [12,14], a systematic method was intro-
duced to evaluate any finite four-dimensional unitarity cut,
yielding compact expressions for the coefficients of the
master integrals. This method was successfully applied to
the final parts of the cut-constructible part of the six-gluon
amplitude in QCD. The same method, based on the spinor
integration of the phase space, was later extended for the
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evaluation of generalized cuts in D dimensions [15-18],
which is essential for the complete determination of any
amplitude in dimensional regularization [28-30].

In this paper, we carry out the extension to the massive
case of the analytic results presented in [19], stemming
from an original study of compact formulas for the coef-
ficients of the master integrals [17]. Following the same
logic as in [19], we now present general formulas for the
coefficients of the master integrals which can be evaluated
without performing any integration. These formulas de-
pend on input variables (indices, momenta, and associated
spinors) that are specific to the initial cut-integrand, which
is assembled from tree-level amplitudes. The value of a
given coefficient is thus obtained simply by pattern match-
ing, that is by specializing the value of the input variables
to be inserted in the general formulas. The implementation
of the general formulas into automatic tools is straightfor-
ward, as done for the current investigation with the pro-
gram S@M [31].

In this paper, since the formulas for the coefficients are
obtained via massive double cuts in D dimension, we do
not present results for the coefficients of cut-free functions
like tadpoles and bubbles with massless external momen-
tum (which can be expressed in terms of tadpoles as well).
The coefficients of such functions could be fixed either by
imposing the expected UV- behavior of the amplitude, as
described in [29], or computed with other techniques ap-
plicable in massive calculations [20-22,24,25].

The paper is organized as follows. In Sec. II, we describe
the structure of the decomposition of one-loop amplitude
in terms of master integrals. In Sec. IIl we explain the
double-cut integration with spinor variables, which leads to
the formulas of the coefficients of the master integrals,
presented in Sec. IV. In Secs. V and VI, we apply our
formulas to two examples of one-loop scattering ampli-
tudes, respectively gH — gg and gg — gg, where the
Higgs mass and the mass of the internal fermion (in both
cases) are kept as free parameters. In Sec. VII, we present
both analytical and numerical methods to obtain, finally,
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FIG. 1.

the explicit coefficients of the dimensionally shifted master
integrals. In Appendix A, we record the translation be-
tween our basis of integrals and the ones used in the
literature for the examples discussed in Secs. V and VI.
In Appendix B, we present a proof of the decomposition
into the dimensionally shifted basis, with rational coeffi-
cients independent of €. In other words, we prove that the
coefficients given by our algebraic expressions will be
polynomial in our extra-dimensional variable u. As a by-

|
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Decomposition of a one-loop amplitude in D dimensions in terms of master integrals.

product, we have produced equivalent and simpler alge-
braic functions for the evaluation of coefficients.

II. DECOMPOSITION IN TERMS OF MASTER
INTEGRALS

We define the n-point scalar function with nonuniform
masses as follows:'

1

In(Ml: M2’ my, ..., mn—Z) = j.(z,n_)ét—Ze (p2

Giele, Kunszt, and Melnikov [25] have given the decom-
position of any one-loop amplitude in D dimensions in
terms of master integrals, represented pictorially in Fig. 1.

Here, with reference to [25]: (i) we have absorbed the
residual D-dependence of the coefficients in the definition
of the master integrals; (ii) for ease of notation, we have
given as understood the sums on the partition of the
n-points of the amplitude in the number of points corre-
sponding to each master integral. Thus, the coefficients e,
d, c, b, a in Fig. 1 are independent of D.

If, on both sides of the equation in Fig. 1, we apply the
standard decomposition of the D = 4 — 2€ dimensional
loop variable L, in a four-dimensional component ¢, and
its (—2e€)-dimensional orthogonal complement .,

L=41+pu, (2.2)
then the integration measure becomes
f d* €L = f d*pu f a*e, (2.3)

"For ease of presentation, we are omitting the prefactor
i(—1)"*1(47r)P/2 (which was included, for example, in [29]).

- M)((p - K)?

2.1

~MOIT=A(p — Py — )’

|
namely the composition of a four-dimensional integration

and an integration over a (—2€)-dimensional masslike
parameter. By taking the w-integral to be understood, the
four-dimensional integration on both sides of the equation
in Fig. 1 can be represented as in Fig. 2, where d,(u?),
c,(u?), and b, (u?) are polynomials of degree n in u?, as
discussed in Appendix B,

d(p?) = dO +dPp? + VWP, 24
ci(p?) =9+ @p? (2.5)
by(p?) = b0 + p? y? (2.6)

whereas 7(u?) is nonpolynomial in x> and corresponds to
the coefficients of the reduction of the pentagon to boxes,
which occurs in D = 4.

The polynomial structure of d,,(u?), ¢, (u?), and b, (u?)
is responsible for the dimensionally shifted integrals ap-
pearing in Fig. 1, because the w-integration can be per-
formed trivially by absorbing the extra powers of w? into
the integration measure, according to [29]:
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FIG. 2. Decomposition of a one-loop amplitude in 4 dimensions in terms of master integrals.
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FIG. 3. Double cut of a one-loop amplitude in 4 dimensions in terms of the double-cut of master integrals.

[ by

=—e(l—e22—¢€):-(r—1—edm’
2r— 26
X QmP 2 f(Mz) (2.7

The presence of 7(u?) in the coefficient of the four-
dimensional box is a unique signature of the pentagon.
We conclude that the reconstruction of the four-
dimensional kernel of any one-loop amplitude, given in
Fig. 2, contains all the information for the complete recon-
struction of the amplitude in D dimensions, given in Fig. 1.

In the following pages, we present the general formulas
of the coefficients of the box, I, “) , triangle, 1 (4), and bubble,
154), obtained from the double cut of the equation in Fig. 2,
and represented in Fig. 3. Since the formulas for the
coefficients are obtained via double cuts, we do not present
the results for the coefficients of cut-free functions like
tadpoles and bubbles with massless external momentum
(which can be expressed in terms of tadpoles as well).
Their coefficients could be fixed either by imposing the
expected UV- behavior of the amplitude, as described in
[29], or computed with alternative techniques [20-—
22,24,25].

III. THE DOUBLE-CUT PHASE-SPACE
INTEGRATION

In this section, we review the D-dimensional unitarity
method [15,18] as applied in cases with arbitrary masses
[17]. Our goal is to describe the structure of the cut
integrand, from which we will directly read off the coef-
ficients from the formulas in the following section. The
formulas will be the massive analogs of the ones in [19].

Recall the phase-space integration of a standard (double)
cut in D =4 —2¢e dimensions. We use the usual
decomposition of the D-dimensional loop variable L, in a

four-dimensional component {7, and a transverse
(—2€)-dimensional remnant .,
L=40+ p. (3.1

The integration measure becomes

[d4—25L: fd—ZEM[d4g
- U [y [

namely the composition of a four-dimensional integration
and an integration over a (—2€)-dimensional masslike
parameter. In order to write the four-dimensional part in
terms of spinor variables associated to massless momen-
tum, we proceed with the following change of variables:

2 =0, (3.3)

(3.2)

¢ =1¢+zK,

where € is a massless momentum and K is the momentum
across the cut, fixed by the kinematics. Accordingly, the
four-dimensional integral measure becomes

f d*l = j dzd* €5+ (€*)(2¢ - K). (3.4)

The Lorentz-invariant phase space (LIPS) of a double cut
in the K2-channel is defined by the presence of two
S-functions imposing the cut conditions:

f &2 = f P 2L — MYS(L — K) — MD).
3.5)

Here M| and M, are the masses of the cut lines. By using
the decomposition of the loop variable in Eq. (2.2), the
four-dimensional integral can be separated, so that

S [y [t

[d4 2ep = )

where the four-dimensional LIPS is
/ = [ dTS(F — M2— u2)3(F — K)2 — M3 — ).

(3.7

(3.6)

The change of variables in Eq. (3.3), and the z-integration
(trivialized by the presence of &’s), yield the four-
dimensional LIPS to appear as
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fd“qs = [d4€5+(€2)5((1 —272)K?—2¢-K
+ M3 — M3), (3.8)

where

_ (K + M} — M3) — VALK, My, My] — 4K

<

2K? '
(3.9)
with
A[K, M, My] = (K?)? + (M?)? + (M3)? — 2K>M3}
— 2K*M3 — 2M3M3. (3.10)

We remark that the value of z in Eq. (3.9) is frozen to be the
proper root (K > 0) of the quadratic argument of 8(z(1 —
2)K* + z(M} — M3) — M} — u?), coming from &({* —
M% - /LZ). For later convenience, one can redefine the
w’-integral measure as

—1— A[K’ erMZ:l € 1 —1—
2 2\—1—€e — 1—e
fd,u (u?) ( e ) ,[0 duu ,

where the relation between u and u? is given by

4K2M2
A[K, M, M,]’

u

2 (MA[K: Ml: MZ]
4K?

). (3.11)

We observe that the domain of u, i.e., u € [0, 1], follows
from the kinematical constraints, as discussed in [17].
Finally, after the above rearrangement, the
D-dimensional Lorentz-invariant phase space of a double
cut in the K2-channel can be written in a suitable form,

1
fd4_2f® = x(e K, MI,MZ)/ du u_l_ffd“(b,
0
(3.12)

where

x(e K, M\, M,) = (4r)¢ (A[K, M, M,]

gl ) e

and where d*¢ was given in Eq. (3.8). By using the
definition of u given in Eq. (3.11), we can write

Z:a—ﬂx/l—u

5 (3.14)
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VALK, M|, M,]

., B= 7 . (3.15)

Notice that when M| = M, = 0 we have « = B8 = 1, thus
reproducing the massless case. A useful relation between z
and u is the following:

2 _ 2
(1-22)+ % = BJ1 —u (3.16)

This relation will be used in Appendix B to prove that the
coefficients given in this paper are polynomials in u, or
equivalently w?. As discussed in the previous section, this
feature is essential for the straightforward reconstruction of
dimensionally shifted master integrals.

The main feature of a double-cut LIPS parametrized as
in Egs. (3.8) and (3.12), is that the kernel of the integration
is represented by the four-dimensional integral. In fact, the
u-integration (or equivalently, the w?-integration), is sim-
ply responsible for the rise of shifted-dimension master
integrals. Thus, our interest in the extraction of the coef-
ficients of the master integrals from a four-dimensional
massive double cut, see Fig. 3, translates in focusing the
discussion only on the [d*¢.

The D-dimensional double cut of any one-loop ampli-
tude is, in general form,

[d4_2E(I)A}fee X A%ee

1
= x(e K, Ml,Mz)/;) du u_1_€/d4¢AtLree X Alee,

(3.17)

where A*¢ and A are the two tree-level amplitudes on
the left and right side of the cut. As discussed above, the
kernel of the integration is represented by the four-
dimensional part,

[ d* AT X Alee, (3.18)

We proceed from the formula (3.8) by introducing spinor
variables according to [26],

f dHS((2) = f (edoyede] [ rdt (3.19)

and performing the integral over ¢ trivially, with the second
delta function. The general expression of the double-cut
integral will then be

025031-4
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[ AT X Alie = / 405+ ()5((1 — 20K — 20 - K + M? — M)

- /d4€5+(€2)5((1 — 2K~ 20 K + M2 — M)
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[Ka,1ilb;]
J
n
1@ = K)? = m? = )
1

[Ka;l€ + 2K1b;]

J
[f](Ki2 + M? —m? —2( + zK) - K;)

— f (edeyede] [ 1di5((1 — 22K + Ke|K|C] + M2 — M2)

ﬂ(z<a |K1b;] + «£IP;|€])

]'[(K2 + M2 —m? —2zK - K; + €|K;|€])°

Here we have used 2 = M7 + u?. Notice that (al€lb] =
—2€ - P, with P = |a)[b].

After using the remaining delta function to perform the
integral over ¢, we have

B M% _ M% (KZ)n+1
f <€d€>[€d€]<(1 2) + L ) T
l'l”*"(«’?lR €]
AR 62D
where
2 2P, - K
R, ((1 —27) + MiKzM )P,. 2P K) 2 'k,
(3.23)
M2 _ M2
Q)= _<(1 —2) Z)Kj
K; + M7 —m; — 22K - K;
+ e K. (3.24)

The vectors P i» Rjs Qj do not depend on the loop variables,
but rather only on the external kinematics, and especially
on the momentum across the cut, K. Applying (3.21) to the
master integrals, we find the following results.

(1) Bubble: k=0,n+k=0.

Mi - M3\ _(K?)
K? )<€|K|€]2
(3.25)

/ <€d€>[€d€]<(1 — 2+

(3.20)
[
(2) Triangle: k = 1,n + k= 0.
M2
f <€d€>[€d€]((1 o+ M - )
1
- 3.26
X KT (:20)
3) Box: k=2,n+ k=0.
2
f <€d€)[€d€]((1 —2)+ L M )
2 1
(K) (3.27)

RGIAGGEAG

These formulas are the extension to the massive case of
the corresponding ones given in [19]. We notice that the
presence of the masses enters only the definitions of P;, R
and Q;. Therefore the spinor integration performed in the
massless case [19] is valid as well in this case.

The expression of the cut-integrand in Eq. (3.21), with
its indices, n and k, and its vectors P}, R;, and Q; is the key
to constructing the coefficients. In the next section we
present general formulas for the coefficients of the master
integrals (boxes, triangles, and bubbles), which depend on
exactly these input parameters. Accordingly, given a spe-
cific amplitude (or integral), one can obtain its decompo-
sition in terms of master integrals without any integration.
Every coefficient is obtained from the general formulas
simply by substituting the input parameters characterizing
the specific amplitude. These parameters are obtained by
pattern-matching onto the reference form in Eq. (3.21).

IV. FORMULAS FOR THE COEFFICIENTS OF
MASTER INTEGRALS

The coefficients of master integrals are obtained by the
procedure described in the previous section, which is a
straightforward generalization of the massless case [19].
We list the results in this section. In fact, the expressions

025031-5
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K K. K. Ks

FIG. 5. Double cut of a triangle integral.

K- K,

FIG. 4. Double cuts of box integrals. 1

take the same form as in the massless case; the mass K
dependence enters directly through the definitions (3.23)
and (3.24), and through these formulas into the definitions !
(4.2) and (4.4).
FIG. 6. Double cut of a bubble integral.
A. Box coefficient
The formula for the coefficient of either of the box

functions with external kinematics as shown in Fig. 4 is
|

ClQ, 0, Kl=

(K2)2+n ( nk+{l<Psr 1 |Rj|Psr,2]

APy = P} “.1)
2 <Psr1|K|Psr2]n+2 nt lt#:l]<Psr,1|Qt|Psr,2] : g

where

0.
4.2)

—20. -0, + A, —20,- 0, — A

= (2 . 2 _ 4 2 2’ P — + < s r sr) i P _ + ( s r sr)
sr ( Qs Qr) Qs r sr,1 Qs 2Q% Qr sr,2 Qs 2Q%
B. Triangle coefficient

The formula for the coefficient of the triangle function with external kinematics as shown in Fig. 5 is

(K2)1+n 1 1 dn+l l-[k+n<Psl TPs,ZlR'Qslps,l - TPs,Z)
C[erK]z +1 ' n+1 n+1( ] +{Ps,1 HPs,Z}) ’
2 (VAS)H (n + 1)'<Ps,1Ps,2> dr = l[:#s‘<P_Sl TPS,ZthQslPs,l - TPs,2> =0
4.3)
where
—20, - K + /A 20, K — A,
A, =20, - K)? — 402%K?, P, = + ( g S)K, P, = + ( s “)K. 4.4
K ( Qs ) Qs 5,1 Qs 2K2 5,2 Qs 1K2 4.4)
Note that the triangle coefficient is present only when n = —1.
C. Bubble coefficient
The formula for the coefficient of the bubble function with the external momentum K, shown in Fig. 6, is
n (_ ])q d7 k n
_ (r2)\1+n (0) (r;a— ql) (ra q2)
C[K] - (K ) qZOT W(Bn,n*q(s) + Z Z Bnn a B ( ))) ‘\:0’ (45)

where
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N
" ni[nlaKIn] (c+ DT (En) T (€10, (K + sm)l6) ™"y
(rb l)( ) = (_1)b+1 d_b< 1 <Pr,1 - TPr,2|77|Pr,1]tH
b!\’Arb+l<Pn1Pr’2>b dTb (l + 1) <Pr1 - TPerKlprl]t+l
<Pr,1 - TPr,Zlanlpr,l 7-Pr2>b nn+k<Pr1 TPr,2|Rj(K + S77)|Pr,1 - 7-Pr,2> ) (4 7)
<Pr,l - TPr,2|T]K|Pr,1 - TPr,2>n+ l-[p lp:#r<Pr1 TPr,ZlQp(K + Sn)IPr,l - TPr,2> :O’ ’
(rb2)( ) = (_1)b+l d_h( 1 <Pr,2 - TPr,ll'r]lPr,Z]t+1
b!\/Arb+l<Pr,1Pr’2>b dTb (t + 1) <Pr2 - TPrllKlprZ]t+1
<Pr,2 - TPr,llanlprZ TPrl>h nn+k<Pr2 TPr,]le(K + S77)|Pr,2 - TPr,l) ) (4 8)
<Pr,2 - TPr,lanlpr,Z TP’rl>nJr l-lp 1p;&r<Pr2 7-Pr,llQp(I< + S77)|Pr,2 - TPr,l> =0’ ’

where A,, P,,, P,, are given by (4.4), and 7, 7 are
arbitrary, generically chosen null vectors. Note that the
bubble coefficient exists only when n = 0.

V. EXAMPLE I: 5;,-CHANNEL CUT OF
A(1%,27,3%, H)

In this section as well as the next, we check our formulas
by reconstructing some helicity amplitudes contributing to
gH — gg and gg — gg at next-to-leading order (NLO) in
QCD, both known in the literature [29,32]. We present our
calculations in detail.
|

. 2
A(1+: 2+» 3+) H)|57Charmel == : -

|
Our first example is the sj,-channel cut of

A(1%,2%,3% H). This amplitude was first computed in
[32]. Here, to facilitate comparison, we follow the setup
of [30], where the amplitude was rederived using unitarity
cuts. At one loop, every Feynman diagram has a massive
quark circulating in the loop. The quark mass is denoted by
m.

The s-channel cut of A(1", 2%, 3%, H) admits a decom-
position in terms of cuts of master integrals as shown in
Fig. 7. Its expression, given in Eq. (4.20) of [30], reads

I\g“)[4(m2 + u?) — 5]

(477.)2—5

(s - m?)
2st

where s = s15, t = §53, u = m% — s —t. One can thus
read the following values for the coefficients:

}1’” = —co%(4(m2 + u?) — ), (5.2)
Cl2B3IH] = _Co%@( 2+ u?) —s), (5.3)
ClipBH = %(4(77! +u?)—s), (54

FIG. 7. Double cut in the s;,-channel for A(1

2 (12)(23%3 1)

Am I ) > ) N
= G : + Cli2i3|m) J>< ez

st { (t—u)

2t(s — m%)

IPT4(m? + p2) = 5] — %14[4(1412 + u?) - S]}, .1y
C[12|3H] =0 (55)
with
i m? st
“T Tame v aneaen O

A. The reconstruction of the coefficients

We now show how to reconstruct the coefficients given
above with our formulas from Sec. IV. We follow the

+ Cl2i3H)

2%, 3% H).

025031-7



RUTH BRITTO, BO FENG, AND PIERPAOLO MASTROLIA

definition of the integrand given by [30]. By sewing the
tree-level  amplitude ~ A§*°(—L;, 17,2%, —L,) and
AYee(—L, 3%, H, —L,) given in Eqgs. (4.1-4.2) of [30],
and using the Dirac equation for massive fermion, it is
shown that the four-dimensional integrand of the s-cut,
C,, can be written as’:

N
Cp= 001D2 + C02D224’ (5.7
where
c _ mK2s23
01 v(K? — m3){(12)23)(3 1)’ 58
m[12] '

Cop = =

02 au(12)
Nl = m[4(m2 + /.Lz) - Slz], (59)

N2 = 8m(m2 + ,uz)(€1 . 6;— + k4 : 6;—)
(1141€¢,1413]

, 5.10
+2m 0 (5.10)
Dy = (€, — ky)* — u* — m?, sl

D4 = (61 + k4)2 - /.Lz - mz.

We need to classify the contribution of Ny and N, to each
coefficient. Observe that N; is independent of the loop
momentum variable, so we consider it as a single term,

Ny = ml4(m* + p?) = s515], (5.12)
while N, is treated as three separate terms,
N2 = N2‘1 + N2‘2 + N2y3, (513)
where
(11213]
Ny, = 8m(m? + u?)(k, - €¥) = 8m(m? + u? ,
2,1 ( ) (ky - €3) ( M)\/i<l3)
(5.14)
Nyp = 8m(m? + u?)(€; - €7)
(11€,13]
= —8m(m®> + p?)—=—- (5.15)
VX13)’
(1141€,1413]
. 5.16
= Vam g (5.16)

*Note that here we use “twistor” sign convention for the
antiholomorphic spinor product, which is the opposite of the
“QCD” convention followed by [30] [xy]Rozowsky = —[xy]BFM,

PHYSICAL REVIEW D 78, 025031 (2008)

By pattern-matching onto the reference form in Eq. (3.21),
each integrand can be characterized by the parameters
given in the following table.

integrand || n |k|P, = |P1)[P1]

Ni/Dy |11 —
Ny1/(D2Dy) | —2|2 - (5.17)
Naso/(DaDyg)||—1(2| 1) [3]
No3/(DaDy)|[—1|2| ka3] (1|ks

These data are the input values that we need in evaluating
the formulas of the coefficients of the master integrals.

From this table we draw the following conclusions.
Since N;/D, has k =1 and n = —1, it contributes only
to a triangle coefficient; whereas N, ;(i = 1, 2, 3), having
n = —1, contributes to both box and triangle coefficients.
There are no bubble contributions at all. Thus we have
already reproduced the absence of bubbles, Eq. (5.5), with-
out any calculation.

To apply our formulas, we need to identify the defini-
tions of K, K;, and K,. By inspection of D, and D,, along
with the fact of working in the s-channel cut, we choose the
following consistent definitions:

K= kl + k2, Kl = kl’ K2 = _k4. (518)

Since there is a single massive quark circulating in the
loop, we have

Ml =M2=mj=m, (519)
and
1= VT —uyf1 — 4
7= 2, (5.20)

2
From (5.18), we use the definition (3.24) to construct

0, = —(1 = 2k, — zk, (5.21)

2
0, = (1 —22)ky + ((1 - z)% - z)K. (5.22)

Using (4.4), we also set up the following quantities useful
for triangle coefficients:

Ay = (1 —22%(K?? (5.23)
Py = (1 =22k, P, =—(1—22)k, (524
Ay = (1 = 222(K? — m%)?, (5.25)

Py = —(1 — 22)ks,

my
P2’2 = _(1 - 2Z)Fk3 + (1 - 2Z)<1 - —
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B. The box coefficient c}™

The box coefficient cj™ takes contributions from Ny 1, Nyp, Nps:

8m(m? + u?) 2m
el = o 8m(m? + uky - €5 C[Q), 0r, KI®V — )y —=—2C101, 0, KI?? + ¢y~ C[ O}, 0o, K],
4 0.28m( w)ky - €5 C[Qy, 0), K] 0,2 A1 3) [0, 02, K] 02773 [0, 0n, K]
(5.27)
where C[Q,, O,, K], defined in Eq. (4.1), is
(K2)2+n ?:?<Psr,1|Rj|Psr,2]
1o, 0. k1= —( - Pyt = Pura}). (5.28)
2 <Psr,1|K|P5r,2]n+2 n$:1,1¢r,s<Psr,1|Qt|Psr,2] ! 2
I
(i) oy, 0, K]V (ii) C[Qy, Q», K1*? and C[Q;, Q, K]*?

This term, corresponding to n = —2 is trivial, since ClQ1, 05, K]?? and C[Q,, @, K]*? both corre-
k =2 and N, has no dependence on the loop vari- spond to n = —1, k = 2. They differ only in the
able, definition of P;. Therefore we can compute them in
[0, 0 KI2D = 1. (5.29) parallel, and specialize later to the corresponding

P,. With n = —1, k = 2, the expression is
|

(K?) ({Pa1,1|R|P3; 2] )
[0, 0, K] = : 2 4 {Py, o P
[Ql Q2 ] ) (<P21,1 |K|P21,2] { 21,1 2],2}
— (- 22)K_z((11)21,1|1"1|le,2:| <P21,2|P1|P21,1]) +2(=2K - P))
2 \(Py11|K|Py1 2] (P21l K[Py ]

— (- ZZ)KZ<<P21,1|P1|P21,2]<P21,2|K|P21,1] + (P12l P 1| P21 KP21 1 K| Py 0]
2

+ z(—2K - Py).
(Py111KIP1 2 KPay1 2| K| Py 1] ) :

(5.30)

For |P,) = |1), |P;] = |3], (so that, for any S, one has 2P, - S = —(1|S|3]), one obtains

2 P 20 Py
clo,, 0, K]?? = —(1 — ZZ)%(— (Zl(l _222)) 523(503 + KKZ mH)<1|2|3])<(Zl(1 _QZZ))

+(1213] = <”§'3]. (5.31)

For |Py) = K,413], |Py] = K4l1), (so that, 2P, - § = —(1|kySky|3]), one gets

K? <<P21,1|P1|P21,2]<P21,2|K|P21,1] + <P21,2|P1|P21,1]<P21,1|K|P21,2])

-1
s523(s03 + K> — mi,))

o, 05, KI*Y = =(1 = 22)

2 (P11 |K|Psy s P2y 5| K| Py 1]
112]3
+a-akpy = -2 (532)
(iii) The result for c}™”
The total coefficient of our box is
eI = co8m(m? + ks - €F — ¢ 8m(m? + p2) (<1|2|3]> L ﬁm(_mz <1|2|3])
4 0,2 4 3 0,2 \/§<1 3> 2 0,2 <1 3> H 2

m2K2s

=—— "B [4m®+ u?) —mi] (5.33)

T 20(12)23)3 1)
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Multiplying by —i/(47)>¢€, to account for the difference in the definitions of master integrals, we confirm the result of
[30].

C. The triangle coefficient c[y335)

The coefficient cfyjp347 gets contributions from Ny, N, 5, and N, 3:

8m(m* + u?) V2m
c = ¢ 1N C[Q,, K]V — ¢gp —=——-C[0}, K]I®? + ¢ clo,, k1?9, 5.34
[123a] = €01 N1CLQ), K] 027 513 [0, K] 02773y [0, K] (5.34)
where the general triangle coefficient, given in Eq. (4.3), reads
(KZ)H_” 1 1 dn+1 l-lk+n<Ps1 TPs,ZlR'Qslps,l - TPS,2>

C[Qs’ K] = 1 ' n+1 n+1 ( y + {Ps,l HPs,2})
2 (\/A_S)n+ (n + 1)~<Ps,1ps,2> dr t= 1[¢3<Psl TPS,ZthQslps,l - TP5,2> =0
(5.35)

(i) C[oy, K]V
We have already observed that the N, term is trivial.
Here is how that shows up in our formulas.
Read C[Q,, K]fors = landk = 1,n = —1,and no

The one-mass triangle (1|2|3H) corresponds to the
value s = 1,

1 /2|P;|1 1|P]2
R;. ClO., K] = ——(<2|41| ], 1' 41|2]). (5.38)
The term inside the parentheses degenerates to 1. (214/1] (11412]
C[Ql, K](l) — %(1 + I)IT:O =1 (5.36) For |P1> = |1>, |P1] = |3], one gets
1<1[2|3
o, k1% = - 14121s]. (5.39)

(i) C[Q,, K]*? and C[Q,, K]*Y 2 s
As we said already, N,, and N,; differ in the For |P,) = K13, |P,] = K.|1), one obtains
definition of P;. Therefore we start by manipulating
the general formula, and only at the very end we clo, K129 = — l<<2|4|3]<1|4|1]

specialize each contribution using the correspond- 2 (214]1]
g Py. . . (11413K11412]
Since n = —1, k = 2, there is no derivative at all, so + W

we can set 7 = 0 from the beginning:

2
1 (P 1IR O,lPy 1) = (1213])(1 — ), (5.40)
ClO,K|= = 2
[QS ] 2( t= 1t:/:5<PSl|Q Qsva1> ( S23)
<P32|R1Q5|Ps2>
J J . (5.37) (iii) The result for c(ipj3m
nf—mts(Ps,z|Qth|Ps,2>) The total coefficient of triangle (1]2|3H) is
mK?sy; m[12] 8m(m?> + u?) [ (1]2|3]
- _ 4 2 2y _ —
Cliial3H) (K2 — m%)(12)(23)(3 1>m[ (m* + 4 = 512 V2u(12)  V2(13) ( 2533 )
m[12] 2m m2
\/—v(12> <13>< 1213 ]< 23)
_ Ky + K~ mpy) [4(m? + p?) — m3) (5.41)

 2u(K? — mp){12)23)3 1)

Multiplying by i/(47)>"€, to account for the difference in the definitions of master integrals, we again confirm the

result of [30].
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D. The coefficient c[15/3
The coefficient cfj34) gets contributions from N, , and
N, 3, therefore it can be written as
8m(m? + u?)
c =—Ccpp——=————
[1213|H] 02 J13)

2m
+ CO,Z @

ClQ,, K1*?

C[Q,, K]*?. (5.42)

(i) C[Q, K1*? and C[Q, K]*Y
The two-mass triangle (12|3|H) corresponds to the
value s = 2, and its coefficient can be obtained from

Eq. (4.3),
_1/GIP K  [BIKP,13)
cle. k1= 5( Bl BhRBE] ) (543)
By using |Py) = [1), |P,] = |3], one gets
2
22 — (1 _"Mu (11213]
[0y K] (1 K2) o (A

By using |P;) = ¥4|3], |P,] = K.|1), one obtains

4 1((314I3)(1]4K]3)

L0, K1®Y —5( @R

_W)
[311]2]3]

m—i) 2 A2BI (5 45

=(1- .
( K2 mH 2323

(ii) The result of c[pj31m7
The total coefficient of triangle (12|3|H) is
8m(m? + /.Lz)( m%{) (11213]

o, o TR

02 V2(13) K?) 25
Zm(l m%i) , (1123]

- — |m
K2 H 2S23

CliapiE] = T

B mZ(KZ _ m2) 3
- 21;<12><23><3Hl>[4(m2 ) =]

(5.46)

+ Cl23)4)1)

PHYSICAL REVIEW D 78, 025031 (2008)

Multiplying by i/(4)*>" €, to account for the differ-
ence in the definitions of master integrals, we again
confirm the result of [30].

VI. EXAMPLE II: 5,;-CHANNEL CUT OF
A(17,27,3%,47)

Our second example features a nonvanishing bubble
coefficient. We study the 7-channel cut of the gluon ampli-
tude A(17,27,3%,4"), with a massive quark circulating in
the loop. (As usual, t = $,3.)

The t-channel cut of A(17,27,37, 4%) admits a decom-
position in terms of cuts of master integrals as shown in
Fig. 8, and its expression was given in Eq. (5.33) of [29].
After converting that expression into our basis of
D-dimensional master integrals, as done in Appendix A,
it reads

Agermion(l—, 27, 3+, 4+)

t—cut

_ (1234F (glz[l] b2 ne 4 w2 - 20w + )
3 3t s

st
2t
2L @] o + %) (6.1)
s t—cut
One reads the following values for the coefficients:
2t
= o S 0+ ) =)o 42 (6
3411 = 0, (6.3)
i) = 0, (6.4)
2 4 2
Cra3j41] = Co(g + i(mz + u?) - ;(mz + M2)> (6.5)
with
12)*[347F
co = # (6.6)
S

A. The reconstruction of the coefficients

We now apply our formulas of Sec. IV to construct the
coefficients given above. We follow the definition of the
integrand given by [29]. By sewing the tree-level ampli-
tude Af(—L,,27,3%,L,) and AJ*(—L, 47, 17,L))

+ Cl1234]

+ Cp23)41)

FIG. 8. Double cut in the sy;-channel for A(17,27,3%,4%).

025031-11



RUTH BRITTO, BO FENG, AND PIERPAOLO MASTROLIA

given in Eq. (2.3) of [29], and using the Dirac equation for a
massive fermion, it is shown that the four-dimensional
integrand of the t-cut, C,3, can be written as’:

2N, + N,
= T T A 6.7
Cas D.D, (6.7)
with
1
Ny = (116, 1412l¢, 131, (6.8)
§23
1
N, = —s—<1 2)[34K11€,14)21¢€,13], (6.9)
23
Dy =t + k) —p®—m?, (6.10)
Dy = (6, = kp)* — p? —m’. 6.11)

By pattern matching onto the reference form in
Eq. (3.21), each integrand is characterized by the parame-
ters given in the following table.

integrand n|k ‘P1>[P1‘ ‘P2>[P2| ‘P3>[P3| |P4>[P4|
Ni/(D1Dy)|2\2| [1)[4] | 12)[3] | [1)[4] | [2)[3]
No/(D1D2)||012| [)[4] | [2)[3] | - -
(6.12)
We define
K= k2 + k3, K1 = _kl’ K2 = kz, (613)
P, =Py = A Ay P, =P, = M)A, (6.14)

Moreover, since we have a quark of mass m circulating in
the loop, we take

Then, by applying (3.9), we find
mZ + 2
1—g="0R (6.16)

K2
|

PHYSICAL REVIEW D 78, 025031 (2008)

For the N; term, n = 2. For the N, term, n = 0. Both terms
give boxes, triangles and bubbles.
From the definitions (3.23) and (3.24), we have

0, = (1 — 2k + zky, 0, = —(1 = 2)ky — zks,
(6.17)
Rl - R3 == _(1 - 22)/\1/{4,
- (6.18)
R2 = R4 - _(1 - 2Z))l2/\3.
Further, the quantities defined in (4.2) and (4.4), become

AIZ = (1 - 22)4312(1(2 + S12) - (1 - 2Z)2K2S12, (619)

Ay = (1= 22%(K?), (6.20)
Py = —(1 —22)ky, P, =(1—-29k, (621)
Ay = (1 = 22%(K?)?, (6.22)
Pyy = (1 = 22)ks;, Py, = —(1 =22k, (6.23)

B. The box coefficient c}™

The box coefficient ¢{™ receives contributions from both
N and N,, and can be correspondingly decomposed as

2
" =~ e Clon 02 K1V
+ %C[Ql, 0,, K]?. (6.24)

We discuss the computation of C[Q;, Q,, K]V and
C[Q,, Q5, K]? in detail, starting from the expression given
in Eq. (4.1).

(i) C[Q;, @ K]V
For the N, term, with n = 2, the expression is given
by

C[Ql’ QZ) K](]) = 2

(K2)* (<P21,1 IR P21 2 P{Pay 1R Poy o I
(P11 |K|Pyp o]

<P21,2|R1|P21,1]2<P21,2|R2|P21,1]2). (6.25)

(Py12|K|Pyy 1 1

For analytic simplification, the following trace identity is helpful.

(P\IRIP,X(P,ISIP,] = Tr(l

P P 8) = (PIRPS)

Recall that here we use twistor sign convention for the antiholomorphic spinor product, which is the opposite of the QCD

convention followed by [29] [xy]Bern-Morgan — [y JBFM,
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In terms of vectors,
tr_(Vl V2V3V4) = %((2‘/1 * V2)(2V3 : V4) + (2V1 ‘ V4)(2V2 : V3) - (2V1 ‘ V3)(2V2 : V4) —4ie Vi“Vz”Vgi)

uvop

The coefficient can then be expressed in terms of traces, and evaluated as follows:

(K2 ((tr_ (P 2K Pay | R)_2(Py ,KPyy 1 Ry))? + (tr_(Pay | K Py 2R )tr_*(Py 1K P2y 2R,))?)
2(tr_(Py;,1 K Py 2K))*

C[Q], QQ; K](l) =

_ (K2)*22(1 - 2’[34(12)°

2 (6.26)
ST2
(i) C[Q), 0 K1?
For the N, term with n = 0O the expression is given by
(K*)? ((P21,1 IR P21 . KPPy 1Ry 3y ]
Clo,, 0, K]? = ( : : : 224+ {Py = P ) 6.27
(01, 0», K] 2 (Py1[KIPy o P {Py11 212} (6.27)
Combining the two terms over a common denominator, we have
@ _ (K2 (tr-(Py1 oK Py i RO (P1,K P11 Ry) + tr-(Pyy 1 KPR (P, 1 K Py 5R))
ClO1, 0y, K]¥ = 2
2(tr_ (P, K P31 2K))
K?)?z(1 — )[34K12
_ (K21 = 2)[34K12) 625
S12
(iii) The result of ¢™
We add our two contributions together and replace z using (6.16). The total box coefficient is thus
0 2 (K)'22(1 - 2)*[341K12)° <1 2)[34] (K*)*z(1 — 2)[34K12)
g =—_— - g (6.29)
(K?) ST2 K S12

24+ w?)[34112)? 2(m?* + u?

_ (m® + pu?)[34]X12) (1_ (m ,u))' (6:30)
S12 S12

C. The triangle coefficients c[341) and c[33)41]

Both terms exhibit the symmetry of the amplitude, so our two triangles are not independent.
The triangle coefficients cpy3141] and c[yj3141] receive contributions from both Ny and N, and they can be correspondingly
decomposed as

2 12)[34

sk = ~ ez Qv KW + %C[Ql, K12, 6.31)
2 12)[34

B = T g2y ClQ,, K]V + wC[Q@ K]®. (6.32)

We discuss in parallel, first the contribution due to N, to both coefficients, namely C[Q;, K] and C[Q,, K]V, and later
the one due to N, namely C[Q;, K]? and C[Q,, K]®, where the triangle coefficient was given in Eq. (4.3).

i) ClQy, K1V and C[Q, K]V
Since the N; term with n = 2, the triangle coefficient expression is given by
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PHYSICAL REVIEW D 78, 025031 (2008)

(K23 1 1 & (Tl=4 = 71R;0114 — 71)  [T)— (1 — 74|R; Q11 — 74)
1o, K1V = 3 73( )
2 (JA)?P3K41Y dr\ 4 - 710,014 = 71) (1= 714{0,0,|1 — 74) =0
_(1-2) 1 & ([4|Q1|4>2<4 - 71,20[31Q114 — 717 | 74[41Q,14)(1 — 74,2310, |1 — T4>2)
-2 3i4nar 4 —7110,0,14 — 71) (1= 74[0,0,|1 — 14) =0
(1 =22)(1 = 22(K?)? & ((4— 71,2)2[3|Q,|4 — 71>2)
N 12(41) F( @=7110,0114 = 71) /|,
_ =27k & (((42) — (12)*((1 — 2)[3 1] + 7z[34])° _
B 12 F( —(1 = 2)(4I3]1] + 7534 + 72z(1[3]4] ) o (635
A similar calculation shows that
(K%)? 1 1 a3 43— 12IR;0,I3 — 72) 42— 13|R; 0,2 — 73)
Cl0,, K1V = — (- ! : . =0,
[0z K17 =73 (ﬁgyaazfdé( = rioob-a " G-roen- ).
(6.34)
which can also be seen by the symmetry of the amplitude and the cut.
(i) C[Q,, K]? and C[Q,, K]?
For the N, term with n = 0, the expression is simpler as
(1—22)(1 — 2)K?> d (4 — 1123|014 — 1) 71 — 74 2)[3|Q,|1 — 74)
K1® = — -
clon £ 2 (hQ4—ﬂ@¢m4—ﬂ> <l—ﬂ@ﬁml—ﬂ>>rw
(1 -22)(1 — K> d (((42) — 7(12))([31Q,14) — 7[310,I1))
— - =0. 6.35
2 T o= | B (-3
A similar calculation shows
(1—22) d ((3—121)[410513 — 2)[310,13) | 722 — 73 N[4| Q0,12 — 73)[3]0,I3)
Cl[0,, K1? = — =0,
0: k1" =552 L (G g - v G )|
(6.36)

which can also be seen by symmetry.
(iii) The results of c[y3141] and cpaj3141]
Every term vanishes separately, so

3] = 0, a1 = 0. (6.37)

The vanishing results for triangle coefficients is not
obvious from the beginning. We suspect that there
should be a more directly physical argument to see
this point.

D. The bubble coefficient c[y3)41

The bubble coefficient c[34;] receives contributions
from both N, and N,, and can be correspondingly decom-
posed as

2

(12)[34]
Cl23l41] = — WC[K]U) + TC[K]Q). (6.38)

ds?

W e (CD1 A () -~ plra—ql) (ra—q:2)
CIKYY = () 3 (B0 + > 5B - B (s)))| -
r=1a=q =

q=0

There is one subtlety regarding the calculation of the
bubble coefficient. The formulas involve an arbitrarily
chosen, generic auxiliary null vector 7. If 5 coincides
with one of the K;, we need to use a modified formula,
given in Appendix B.3.1 of [19]. In this example, we
illustrate both options. First, we show the result with a
generic choice of 7; second, we use the formulas for the
case 7 = K;. Both are suitable for numerical evaluation,
while the special choice of 1 may simplify the analytic
expression. We will find that the two results agree with
each other, as well as with [29].

1. Generic reference momentum 1

Let us start with the formulas for generic 7, given in
Eq. (4.5). There are two terms we need to calculate.
(i Clk]V
For the first term, with N; in the numerator, and n =
2, the coefficient is

(6.39)
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where

, (6.40)

_ 4 1 2n - Ky [Tj— i CCIR;(K + sm)I€) |
dr’ (2['»7|f71<|77]2 (3 — (K> (U’ T2 (£1Q,(K + sn)l€) '“*"“””7"7])

BV (s) =

(_1)a7q+1 de ( 1 <Pr,1 - TPr,Zlnlpr,l]37a
(@ — @) \WA NP, P,y AT I\B — a) (P,; — TP,,|K|P, P~
<Pr,1 - TPr,Zlanlpr,l - TPr,2>a7q n§:1<Pr,1 - 7-Pr,2|Rj(I< + S”I)|Pr,1 - TPr,2>)

<Pr,l - 7-Pr,Zl’r]I(lpr,l - TPr,2>3 nizl,pqtr(Pr,l - 7-Pr,2|Qp(I( + 577)|Pr,1 - TPr,Z) 1':0,
(6.41)
B(r;u*q;Z)(s) — (_1)a7q+l de ( 1 <Pr,2 - TPr,l |77|Pr,2]37a
22a (a — q)!\/A,a_qH(P,,lP,,z)“_q dr*"91\(3 — a) (P,, — 7P, |K|P,,*"“
<Pr,2 - TPr,llanlpr,Z - TPr,l>a_q n§:1<Pr,2 - 7-Pr,lle(I< + Sﬂ)|Pr,2 - 7-Pr,l>)
<Pr,2 - TPr,lanlpr,Z - 7-Pr,1>3 nizl,p:;tr(PrJ - TPr,llQp(K + Sn)“’r,z - TPr,1> 7':0.
(6.42)
After making some substitutions, and considering the summation ranges of a and ¢, we get
B (s) =0, (6.43)
B(l;a*q;Z)( ) (_1)a—q+l de 1 ( 1 <1 - T4|77|1]3_a
—a §) = — a— —a
> (a — q)!WA T (4 1)e—a dm79I\(3 — a) (1 — 74|K[1P
y (1 — 74|Qn|1 — 74y~ —74|R,(K + sm)|1 — m4)*(1 — 74|R,(K + sn)|1 — 7'4)2)
(1 — 4|nK|1 — 7431 — 74|Q,(K + sm)|1 — 14) —0
(6.44)
B(Z;a*qzl)(s) _ (_l)a_q+1 a1 ( 1 (3 - 72|77|3]3_a
22a (a — q)WA,* 7T (32)e—a d7*I\(3 — a) (3 — 2|K|3] ¢
y 3 = 72102713 — 72)79(3 — 72|R{(K + s7)|3 — 72)*(3|R,(K + s7)|3 — 7'2>2> (6.45)
(3 — 72|nKI3 — 72)*(3 — 72|01 (K + sm)I3 — 72) —
B I (s) =0, (6.46)
(i) CIK]?
For the second term N, with n = 0, the expression is much simpler:
0 c 0:1 102
K1 — KZ(BEM))(s) + S (B (s) — BYS >(s))) ; 6.47)
r=1 $=
where
B0 — o) — (<2n K) <e|R1K|e><e|R2K|€>) _ 1 [nlKR|nImlKRolm] _ 1 [n4][n3]
00 K> (e ILo €O KIO) Lio—ikim  K* [0lKQiIn]nlKQ,In] K [n1n2]
(6.48)
0 1 4|nl4] 4|R,K|4)4|R,K|4 1 4142
BUIG = gy = — L G AIRKIWARKW 1 [94]42) ©49)

VA, @IKl4] @InKI4@0,Kl4) K> [n1]43)’
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BIdP (s = 0) = 0. (6.50)

oo o) L Gl GRKBGIRKI) _ 1 [73142] .
00 =00 =" =Gk GInKTRGI0,K13) K [n2]12] (6D
BEdP (s = 0) = 0. (6.52)

(iii) Results:
We have used the numerical routines of S@M [31] to show that while each single term B entering Eq. (6.39) is
n-dependent, their combination is indeed independent of the choice of 7. The choice n = k; is found to be
convenient. (Note that k3 is not proportional to either of K|, K,.) Therefore we set n = k3, and we obtain the
following analytic result:

(K*)*
6[122(4 3)?

2 {(1 3)[13](K?)? (

L B 5(K2)4
Cli2134] = (K22 | [12(43) )

1
3~ #0=3 ) = sopay

> zZ(1—2z2)+

KA 13113) /(1 2 1 (12)[34] [43]

+ = —Sz(1 — ) K13 132+<——3 1 - )K2 13 13)}+7—

i (6320~ 9)a 3R R + (5 - 30 -9 k30| + S

12)?[34F
= %(—4(m2 + w?)s + 6(m* + u?)t — 2st). (6.53)
s
We have used the relations K> = £, (13)[13] = —s — ¢.
2. Special choice of 7

Alternatively, we discuss the calculation of the bubble coefficient by using the special choice of n = K; = —k; from the

beginning. With this choice, we need to use formulas for the B which are slightly different from the ones used in the
previous section. They are given in Appendix B.3.1 of [19].
Our convention for the spinors is

[n) = 1), In] = —I1]. (6.54)
CIK], = (K»)'*" Z e ﬂ(ﬂfﬂl_q(s) + ﬁ i(zz%’;":f“(s) — Bﬁ’;?_‘;ﬂz)(s))) (6.55)
q=0 q' ds? , r=2a=q ’ ' s=0
drt! 1 [9laKIn]™"~t  ITEHER(K + sm)l€)

B(s) = == ( 11 e ||€>~|1<—w7|n]) (6.56)

dr (1—=2z)—sz @+ 1)n+1){n) l_[p:2<€|Qp(K + s1)|€) —

Since k = 2, we can directly set r = 2:

nt (1 _ 22) — 5z (1 _ 2Z)a+1(K2)a+l+2a!<3 2>a dr (l + 1) <€ 1>n+1—l—a[1 4]n+2<4 €>n+2 |€>:|3>7T|2>’
(6.57)

f IO N— (-1 o (U1 @GP TLNARK + sm)l0)
" (1 —22) = sz (1 = 22" H(K?)*T " 2al(32)* dr\(t + 1) (L1 7[14] 24 02 lO=12)-713)
(6.58)
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Now we proceed to evaluate.

(i) C[K]®
For the N, term with n = 0, the evaluation is simple.
In particular, there are no derivatives in s, so we can
set s = 0 directly.

CIK]? = KX(BY(s) + B (s)

PHYSICAL REVIEW D 78, 025031 (2008)

so the total contribution comes to

[43]

C[K]? = [

(6.61)

(i) CTK]V
For the N, term with n = 2, the calculation is a bit
more involved.

_ Bg(,)o,ﬁ(s))lszo. (6.59) 2 (_1y0 gn
Choosing 7 = 3, we have CIKIY = (k2)° q:OT dsq( (20% q( s)
1
Banls =0 = [y -3 @80 370)
3(2;0;1)(S _0)— L [13][42] (6.60) 5=0
0,0 K2 [12P (6.62)
(2 > 2)(S =0)=0 | For the various terms, we have
0) o 1 d73 (1 —22)%(1 + s5)?
Byay8) = (3 — q)3!(34)[12] dT3< (1 —=27) — sz
(1 = P2(K2(1 + 5) — 7(K? + s[31]13)))?
((1 +5)(1 —22)K* + 7((zs + 2z — s — DK? — s(1 — 22)[3113)) + 72s(1 — 2)[3 1K1 3)))
(6.63)
B Za~ail)(5) = (1 + )1 — 21)3*’”‘1 (=D 132 13P a1
22—a (1 _ 22) _ (K2)4—q(a _ q)y dr4 4
<((1 _ Z)[l 2] + ’TZ[I 3])11 ‘1(<l 3> - ’T<1 2>)3 q(K2 + S[3 1](1 3> - ST[3 1]<1 2>)2) (6 64)
(3 — a)[1417((43) — 7(42))* '

The term B%a__aq;z)(s) vanishes after taking the derivatives with respect to s. The reason is the following. Notice that

(1 + 5)2(1 — 27)37at4

(_1)a7q<3 2)2[1 2]t+1 de4

BEa=a:2) oy —
"" ) (1—2z2) — sz

(C1Oa11* 931K + sml€)?

(KZ)u—q+t+2(a _ q)y<3 2>u—q dre—4

7.2
((t +1) (e~ Trarafl 4]2<4€>4)

(6.65)

10)=12)—r13)

We can see that the 7-derivative vanishes unless a — ¢ = 2, in which case we get

Bl s) =

(1+ 521 —27) G212+ 7 1
(1 —22) — sz (KH)*(3 2>2(

(- Z)2<2|3|1]2s2[3|1|2>2)_ (6.66)

(t+1) QU3 7[14]%42)*

However, the condition a — ¢ = 2 implies a = 2, ¢ = 0. Therefore we can set s = 0, and the expression vanishes:

BZX2(s) = 0. (6.67)
Now we collect the results of (6.63), (6.64), and (6.67). We take 7} = k. Define
13K1
c = L1313 (6.68)

Let us begin with the terms with g = O:

025031-17
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(0) _ _ _ K2(1 - 2Z)2
B =0 =35
B3 (s = 0) = Ci(=(1 — 2213137, (0.69)

BEW(s = 0) = € (=41 — 222[131X1 3> + G — %z + 32)K[13K13)),
BE(s = 0) = C1((=3 + 62 — 322)(K2)? — (1 — 22)X(1 3)[1 31 + (6 — 18z + 12z2)K*[13](13)).

For g = 1:
_dgoy| —- 0= 22 [31)13) — (1 — 29)K?
as LT 2 12P (1-22) ’
d oo 7
GBI == 2p03PaaR + (<14 1232 K3 3]) (6.70)
%Bg?g)“)(s) = C;((4 — 10z + 623)(K»)? + 2(1 — 22)7[1 311 3)> + (—10 + 30z — 21z22)K?[1313)),
s=0
For g = 2:
L4 po 1 _(—
5 ml = G 2B 13 (1 - 9K, o
%;7@WU| = Cy((—1+2z — 2)(K?? — (1 — 2221 3Y2[1 3] + (4 — 14z + 1222)KX(1 3)[13).

All together, we get the following result for the N; term:

(13)[13](k?)? 5(K%)* (K*)*
CLK]" = [12]%43)? (2 — 4l - )) 3[121(43) dl=2)+ o[122(43)2
2
+ %((g - %z(l - z))(l 3137 + (% —3z(1 — z))K2<1 3)[1 3]). (6.72)

(iii) The result of cpp34)
Final bubble coefficient:

2 [ARBUKD 1, 5(k2)* B (K>)*
iz = (K2)2{ [127(43) (2 42l )) sr2pasr ) qapaar
K13113)y (1 2 1 (12)[34] [43]
+ @W2E ((g - gz(l - z))<1 3N[132 + (5 —3z(1 — z)>K2(1 3)[1 3])} K [12]
_ <1 25))>§£?24]2 (_4(m2 + Mz)s + 6(m2 + Mz)l — 2Sl), (6.73)

where we used the definitions K2 = ¢, (13)[13] = —s — 1.

E. Comparison with the literature

The t-channel cut of A(17,27, 3%, 4*) admits a decomposition in terms of cuts of master integrals as shown in Fig. 8. Its
expression was given in Eq. (5.33) of [29], and reads

Afermion (1= 2= 3% A4F)|_ o = —2AF(17,27, 37, 41| _ o — 5= ATty — L(D))]—cu (6.74)

1
@mp<

with
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1 1 —6_ 1 t
Ascalar 17’ 27, 3+’ 4+ — <_I(173)’D*6 2e —+ _J(I’S) —_ —K ) 6.75
4 ( ) t—cut (477)2_6 4 t 2 s 2 s * t—cut ( )
and
12)* 12)*[3 47T
ape— A2 apBap 6.76)
(12)(23)34X41) K*s»
where we neglected the cut-free term, I, and 7,(0). In standard notation we have s = sy, f = $y3, U = —s — 1 = ;3.
Now we translate the expression of [29] into our canonical basis, using the identities of Appendix A.
Afermion(1= 2= 3% 4%) = —2A%lr(17,27,3%,47) - s Ay (t], — (1)) (6.77)
t—cut f—cut (477) f—cut
1 2 —6— 2 2t
= - ee = (LAD672€ L 2 TR+ 1y — 1 t) 6.78
(477)2*6 4 (t 2 P 2 P 4 4 2() et ( )
2(t 1 2 2 2t
= _Z'Agee<; (glgFM[l] + 511 _ g[?FM[m2 + Mz]) + B2 4 2] — Z BIM[(2 4 2)?]
S S
B 4 2] — ngMm) (6.79)
t—cut
12)%[347F (2 4 2 2t
= (12)7[34] (_ BEM[ 1]+  [BPM[ 12 4 2] — S [BFM[2 4 12 + 5 BRM[(p2 4 1u2)2] — ¢1BPM[ 2 + M2]>
st 3 3t K s i—cut
(6.80)
|
We have reproduced every one of these coefficients, up to (1) Generate the values P, (k=0,...,d—1),
an overall minus sign in the amplitude.
s P Py = Paluy), (7.3)
VIL. FROM POLYNOMIALS IN z TO FINAL by evaluating P,(u) at particular points:
COEFFICIENTS .
u, = e 2mik/d, (7.4)

As proven in Appendix B, the coefficients of 2-, 3-, and
4-point functions in four dimensions are polynomials in u
(or equivalently u?), of known degree d: for boxes, d =
[(n + 2)/2]; for triangles, d = [(n + 1)/2]; for bubbles,
d = [n/2]; where [x] denotes the greatest integer less
than or equal to x. Using this fact, we can generally
represent any coefficient of the master integral as

d
Pyu) = cu". (7.1)
r=0

The coefficients c, are in one-to-one correspondence to the
coefficients of the shifted-dimension master integrals (see
Sec. II).

To compute the ¢, analytically, one can proceed with the
standard differentiations with respect to u, at u = 0:

1 d
= P,(u)

C, = ——— .
k! du” u=0

(7.2)
When the differentiations are time consuming, or the ana-
Iytic expression is not needed, one can switch to the
following numerical procedure, and extract the ¢, algebrai-
cally, by projections.

(2) Using the orthogonality relations for plane waves,
one can obtain the coefficient ¢, simply by the
following formula:

1< .
e =7 D Py, (1.5)
k=0
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APPENDIX A: CHANGE OF BASIS

To compare our results to the literature, we need to
convert the master integrals used in [29,30] to our canoni-
cal (4 — 2¢)-dimensional basis, (2.1). For clarity, we now
denote the basis used in this paper by IBFM, while the other
integrals in this appendix are defined according to [29,30].
The first point is then that
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I, = i(—1)"(4m)>~€IBPM, (A1)

We use the identities from Appendix A.4 of [29] to perform
the conversion.

Jo = Llm? + p?] = i@m)> < IB™Mm? + u2],  (A2)
L(r) = i(4m)*~<I5™[1], (A3)
e 12
151,3),D 6—2 — 812(1‘) + gll _ §J§1,3)
Lt 1
— 4y (61§W[1]+§11
2 BEM[, 2 2

—§12 [m* + u?]), (A4)

I = I m? + p?] = i@m)> e B™Mm? + u?l,
(AS)

Ko = Ll0n? + w?P) = idm =13 [on? + w2))
(A6)

APPENDIX B: THE u-DEPENDENCE OF THE
COEFFICIENTS

Here we analyze the u-dependence of the integral co-
efficients given by our formulas. First, we prove that they
are polynomials in u#. Then, we present some alternate
formulas where this polynomial dependence is more ex-
plicit. This material is a straightforward generalization of
the analysis in the massless case [33], so we omit many of
the details here.

To begin, we rewrite our vectors R;, Q; from (3.23) and
(3.24) in the following way:

M2 _M2
R, = —<(1 —2z7) + 711(2 Z)pj + BK,
(B1)
pj= (Pj —?K)’
(P K) M2 — M3
B =-— JK2 <1+ ‘K2 2), (B2)
M? — M3

(K2)1+n 1
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0= (% -~ x) B
2 2 _ 2
o= KK M- M3 K MG m
J K2 KZ K2 :
(BS)
Notice that
pj-K=0, q;-K=0. (B6)
Using (3.16), we have
Rj(u) = _B(\/]—:—M—)Pj + BK,
(B7)

Qi(u) = —B(H1—u)q; + aK.

This is the same expression as in the massless case, except
for the factor 8. The point is that now all u-dependence is
in the factor /1 — u, just as in the massless case. In fact,
we should now consider the factor 8+/1 — u as our basic
quantity. The proof that the integral coefficients are poly-
nomials in u# was performed by considering the (demon-
strably finite) series expansion in /1 — u, and showing that
the odd powers drop out. Therefore, the same arguments
now carry over to the series expansion in B+/1 — u.

1. Triangle coefficients

Let us begin with triangle coefficients. The null vectors
P, ; exhibit a simple dependence on u. Specifically,

Pyi(u) = =BT —uP, ;

2
- ’_qs
P‘]pi =ds * ( K )K’

which is manifestly independent of u. In defining the
spinor components of P ;, we can place the u-dependent
factor inside the antiholomorphic spinor, i.e.,

where

(B8)

|Ps,i> = |qu,i>’ |Psi] = _B(Vl - u)quJ,i]' (B9)

Then, for the triangle coefficients, we have

1 dn+l

C[QS’ K] =

2 (=BT = u)t (442K (n+ DXP, P, )" drt!

> ( n?i?<qu\,l - Tqu,Z|Rj(u)Qs(u)|qu\.,l - Tqu,2>
nf:1,l¢s<qu\,l - Tqu\,Zth(u)Qs(u)lqu‘,l - Tqu,2>

Further, we make use of some identities,

(B10)

+{Py1 < Pq.y,Z})

7=0
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(€10,()0,(w)l€) = <€|(Q,(u) - Qs(u))Qs(u)lf’) - —ﬁﬂ(ﬂ(qt - —qs)Qs(u)|€><€|R (W0, W]6)
— VT d(p. - f—:qs)QSw)w)

along with the definitions

. a;
qg:=\49: — —4s )
aS

Our final form for the triangle coefficient is

(B11)

TPs,2|]~)st(u)|Ps,l -

1o K]_l( KZ) !
KT Tag) G Py T ae

dn+l ( nk+n<Psl

TP ‘2>
S+ {P,, Ps,2})

= 1[¢S<Psl TPs,Zléth(u)lps,l - TPs,Z) =0
(B12)
f
Here, the u-dependence is concentrated entirely within the /1 — u, in the following formulas:
vector Q,(u), since we have made sure to choose the spinor
components wisely in (B9), so that the holomorphic spin- — (K2)1+n 1 a < (0)
ors are u-independent. K] = (K Z q! ds1 Bun=q(s)
. k n
2. Bubble coefficients + Z Z ( fB,([f ~g: 1) (s) - B&’,fiﬁ” (s))) ’
We follow the same procedure as with triangles, and r=1a—g 5=0
make use of the same definitions (B8) and (B9). The (B13)
u-dependence can be concentrated within the vectors
R;(u) and Q,(u), Q,(u), along with the explicit factor of ~ where
|
B0 = & ( 1 @K TEEKOR (K — sm)l6) ) -
5) = ~ )
" dr" \n![nl7KInl" (r + DK €y 1= (10, (u)(K = smI€) | jo—ik—raln]
B0 (g) = (=D " ( 1 (P, — 7PlnlP, ]!
" bI(— BT — u)t I —4gZKE(P, | P, )b + 1 dT°\(t + 1) (P, — TP 1|K|P, I
<Pr,1 - TPr,2|Qr(u)7]|Pr1 7-Pr2>b l-ln+k<Pr1 TPr,2|Rj(u)(K - S77)|Pr,1 - TPr,Z) ) (BlS)
<Pr,1 - TPr,Zanlpr,l - TPr,2>n+ nl;yzl’p;&r<Pr,l - TPr,ZlQp(u)(K - STI)|Pr,1 - TPr,2> :0’
(r;b;2) _ (_1)b+l 1 <Pr,2 - TPr,1|77|Pq,,2]IH
B, (s) = bt 1 b 1
b(—BVT — w1 =42KY" (P, P,,)b AT\t + 1) (Pry = 7P, [K|P, ]
<Pr,2 - TPr,llQr(u)nlprZ 7-Pr1>b nn+k<Pr2 TPr,lle(u)(K - S77)|Pr,2 - 7-Pr,1> ) (B16)
<Pr,2 - TPr,lanlprJ TPr1>n+ l_lp 1p;&r<Pr2 TPr,llQp(u)(K - 377)|Pr,2 - 7-Pr,1>

3. Box and pentagon coefficients

Although the formula (4.1) for box and pentagon coef-
ficients looks simple, the u-dependence now gets compli-
cated. We consider the separate cases k = 2, k = 3, and
k= 4.

a. The case k = 2

In this case, there is only one box, and no pentagons. The
box coefficient is given by

(K?)>*n <n”+2<P(Q](u) 0:):1 IR (WIPg,0, 0,2 ()]
2 (P (0,10, WIKIP(g, ), 0,2 ]

+{P0,).0,w):1 () = P (Qj<z¢>,Qf<u>>;2(u)})- (B17)

Given the vectors Q;, Q;, K that select a particular box,

it is useful to construct a vector g, (414, K)

to all three, and independent of u:

that is orthogonal
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(qngpk) _ 1

(0™ = 5 €unpealafKE (BIS)
— 1 v P ré
_FG”””EKi KJK . (Blg)

As in the massless case, the u-dependence can be concen-
trated in a single factor, 99/ (u). If all input quantities are
set to their values with u = 0, except for adjusting the
definition of R (u) as follows:

(419, K)
Ps %qq]

—(a(‘i"’qf)(u) - 1)
( K
(qu A ))2

Ry(u) = Ry(u) =

X (—Bg ™) + Ry(u=0),  (B20)

Jﬁz(l 0 + 4K [a;a;(29;°q,)—a? qﬁa %]

(2qi°q;* —447q
=

4K [a;a;(2;°q;)— az - q?]
(29i°q,)*—442q
then the value of the box coefficient remains the same.
In summary, the box coefficient for k = 2 is given by

al%9)(y) =

(B21)

(KX T3P R (W) P ]
ClK; K lies = ( T
2 (Pjiy|KIP;;]
+{Pj1 =P ji;z})r (B22)
where
~ » _q(q, .q;.K) ( ©
Ryw) ==y (@) = D(=Bgg""™)
(q0"")
+ R, (u=0) (B23)

(KoK K,:P,)

= BY Py
(K} + M} — m})e(P,,

(9i,9,9:3P5)
s
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and

Pji;a = P(Q‘/-,Q[);a(u = 0) (B24)

In evaluating (B23), it is useful to observe the following:

€(py. g, 95, K) _ €(P, K, K, K)

(‘Zi’qj’K)) _
N K? N K?

(ps : qO

(B25)

This formula (B22) looks the same as in the massless case;
the difference is the appearance of 8 in (B23), both ex-
plicitly and through the definition (B21) of a4-%)).

b. The case k = 3

Here there is a pentagon, as well as three boxes. The
differences from the massless case are all based in the
definitions of R;(u), Q;(u): there is always a factor of 8
accompanying +/1 — u, and mass parameters enter into the
definitions (B2) and (BS) of B;, «;

When we make these adjustments, we find that the
pentagon coefficient takes the same form as in the massless
case,

n+3

g, 0, 01= Ky ] """ (B26)
s=1

but the definition of B" 44"

ters:

now includes mass parame-

K, K, K,) + (K; + M7 — m})e(K;, P, K, K))

K’e(K, K, K, K,)

(K2 + M} - MY)e(K,,

K; P, K,) + (K? + M} — m)e(K,;, K

K*e(K;,

» K, Py)
. (B27)
K, K K)

The expression (B27) is symmetric in K;, K;, K, K(recall that M, is the mass associated with K in this context).

The box coefficients are given by

n+3 P R P
C[Qv Qj]k 3= n < /lll (u)l 112]

(K2;2+n (

<Pji;1|K|Pji;2]n+2<Pji;lIQt(u)lpji;Z]

l—[ glararaip) Pt KIPjia] P o
=1 (Pjial Q)| P;;5] "

P ji;2}>-

(B28)

The derivation of (B28) involved the result from the case k = 2. All mass dependence is already included in the definitions
(B21) and (B23), along with the similarly defined vector Q,(u):
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(9i,9;,K)

R w) = %(“(% D) = 1)(=Bgg" ") + Ry(u = 0), (B29)
qo

(9i-9,,K)

0,w) =290 (glwa)(u) — 1)(—Bg""") + 0,(u = 0). (B30)

(q(q, 4 K))z

c. The case k = 4

In the derivation of the formulas, we introduce the following functions:

(K? + M} — m)e(K, K, K, K,) + (K} + M} — m?)e(K;, K, K, K))
K*e(K, K, K, K,)
(K2 + M} —m)e(K, K, K, K,) + (K} + M} —m}e(K,,K;, K, K) €K, K; KK,
Kze(Kir K/r K} K[) E(Kl', Kj’ K, Kl) ’

K, K KK,
yyir kKt

(B31)

The numerator of y&K KKK is symmetric in K;, K, K, K;; the denominator breaks this symmetry by singling out K.

We find the following results:
The pentagon coefficients are given by

n+k (q, 4,9:3Ps)

Cl0:, Q) @ = (K3 — =2 (B32)

w=Lw#ijt YW

The box coefficients are given by

C[Q Q ] _ (KZ)QJNI{ nk+n<Pﬂ llR (u)lpjl 2]
PR WP KT T s (P |0 (w) P
‘ [ gq"qj'q"px) (Pji1|KI|P;;5]
-3 | L b Py = Pra) (B33)
=10 [TF KKK KD (P10 ()|Pis ] " "
AL b=1, w00 YW b ! Jh
Again, all the u-dependence is concentrated in R(u) and Q(u). The definitions of Pjias R,(u), 0,(u), Biqi’qj’q”p‘), and
(KKK KD are given in (B24), (B29), (B30), (B27), and (B31), respectively.
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