
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Laboratory for Particle Physics

(MTM)

A FLEXIBLE SOFTWARE FRAMEWORK FOR MAGNETIC MEASUREMENTS
AT CERN: A PROTOTYPE FOR THE NEW GENERATION OF ROTATING COILS

 P. Arpaia1, L. Bottura2, V. Inglese3, G. Spiezia3

1 Department of Engineering, University of Sannio, Benevento, Italy
2 CERN, Accelerator Technology Department, Geneva, Switzerland
2 Research Centre on Software Technology (RCOST), University of Sannio, Benevento, Italy
3 Department of Engineering, University of Naples, Napoli, Italy and CERN, Accelerator Technology Department,
 Geneva, Switzerland

CERN/AT 2007-36

Presented at the IMEKO'07 Conference
20-21 September 2007, Iasi, Romania

Departmental Report

CERN, Accelerator Technology Department
CH - 1211 Geneva 23
Switzerland

A new software platform named FFMM (Flexible Framework for Magnetic Measurements) is under development
at CERN (European Organization for Nuclear Research) in cooperation with the University of Sannio. The FFMM
is aimed at facing the new test requirements arising after the production series of the Large Hadron Collider
magnets. In particular, the basic concepts of the FFMM, its architecture, and the experimental implementation of a
demonstrator are illustrated in order to show how the quality requirements of software flexibility and scalability are
met.

30 September 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/44193594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A flexible software framework for magnetic measurements at CERN:

A prototype for the new generation of rotating coils

P. Arpaia1, L. Bottura2, V. Inglese3, G. Spiezia3

1 Department of Engineering, Universityof Sannio, Corso Garibaldi 107, 82100 Benevento, Italy.
Ph : +39 0824 305804-17, Fax: +39 0824 305840, E-mail: arpaia@unisannio.it

2 CERN, Dept. AT (Accelerator Technology), Group MTM, CH 1211, Genève 23, Switzerland,
Ph : +41 22 76 76635, Fax: +41 22 76 76230, E-mail: Luca.Bottura@cern.ch

3Department of Engineering, University of Naples - Federico II, Via Claudio 21, 80125 Napoli, Italy;
CERN, Dept. AT (Accelerator Technology), Group MTM, CH 1211, Genève 23, Switzerland,

Ph : +41 22 76 76635, Fax: +41 22 76 76230, E-mail: {Vitaliano.Inglese-Giovanni.Spiezia}@cern.ch

Abstract- A new software platform named FFMM (Flexible Framework for Magnetic Measurements)
is under development at CERN (European Organization for Nuclear Research) in cooperation with the
University of Sannio. The FFMM is aimed at facing the new test requirements arising after the
production series of the Large Hadron Collider magnets. In particular, the basic concepts of the FFMM,
its architecture, and the experimental implementation of a demonstrator are illustrated in order to show
how the quality requirements of software flexibility and scalability are met.

I. Introduction

At CERN (European Organization for Nuclear Research), the design and the implementation of the
LHC (Large Hadron Collider), the biggest particle accelerator over the world, required a big effort in
all the engineering fields. The test of the LHC superconducting magnets stimulated new stricter
requirements for magnetic measurements [1]. In particular the big effort required for the test of all the
LHC magnets brought to incremental developments of the measurement software, without
concentrating on its quality namely flexibility and reusability. The present end of the test on the LHC
magnets marks a change in the requirements: a standard platform is required to put together all the
magnetic measurement applications. In addition, test engineers need to perform more specialized tests
on small-medium magnet batches. As a consequence, a flexible software framework is requested in
order to satisfy the new magnetic measurement requirements highly evolving during time.
Jan Bosch was one of the first to apply the concept of framework in the measurement field by
proposing an object-oriented project capable of satisfying a wide range of applications [2]. At
commercial level, National Instrument (NI) proposes the product NI TestStand [3] for supporting the
user in designing new test applications by integrating software modules developed in different
programming languages (C, C++, LabViewTM). However, NI TestStand does not help the user in
developing single software modules, by not assuring standard development and reusability intrinsically.
So far magnetic measurements were performed at CERN using a LabView-based application (MMP,
Magnetic Measurement Program) [4]. As said above, MMP underwent incremental developments over
several years from an initial prototyping phase to the present status of general control and acquisition
software for a multitude of devices interconnected in a magnetic measurement system. One of the main
drawbacks observed now is that this software, as any other of the same type, does not allow the user to
change easily test and analysis algorithms. Specifically, changes in the code needed to adapt MMP to
the new requirements must be performed by software specialists. A number of alternative solutions
have been examined. The first is the FESA (Front-End Software Architecture) paradigm adopted at
CERN for the LHC controls [5]. FESA has been developed to provide a suitable front-end for all the
PCs interfacing the LHC control instruments. However, the analysis of this software showed that a
strong collaboration and involvement at the lowest level of FESA would be required in order to adapt
the architecture to the abovementioned applications. Outside CERN, at Fermi National Accelerator
Laboratory, a new software system to test accelerator magnets has been developed to handle various
types of hardware, as well as to be extensible to all measurement technologies and analysis algorithms
[6]. To date, this software is still under development. Finally, other sub-nuclear research centres (Alba,
Soleil, Elettra, and ESRF) collaborate in order to develop a suitable software framework for testing
accelerator magnets [7]. This Consortium proposes TANGO, an object-oriented system to handle

2

different measurement applications.
This paper presents a Flexible Framework for Magnetic Measurements (FFMM) under development at
CERN in cooperation with the University of Sannio, with the aim of proving the feasibility of a flexible
and reusable system to face the new test requirements arising after the production series of the LHC
magnets. In the following sections, the FFMM basic ideas, the architecture, and the implementation of
a demonstrator are described.

II. Proposal

The FFMM is a software framework for magnetic measurement applications based on Object Oriented
Programming (OOP), and Aspect-Oriented Programming (AOP) [8]. In particular FFMM aims at
supporting the user in developing software maximizing quality in terms of flexibility, reusability,
maintainability, and portability, without neglecting efficiency, vital in test applications. Moreover it
satsfies the requirements for a wide range of magnetic measurement applications, as required for the
test of superconducting magnets for particle accelerators.

A. Basic Ideas
FFMM is based on the following basic ideas:
(i) a group of interfaces and abstract classes represents a white-box layer defining the high-level

structure of FFMM used to generate new parts of the framework. This allows potentiality and
flexibility of FFMM to be extended;

(ii) a group of modules, already available to the test engineer (end user), represents a black-box
layer, allowing both module reusability and use easiness to be achieved, even by test
engineers without deep knowledge of internal FFMM mechanisms;

(iii) Aspect-Oriented Programming (AOP) improves the reusability and the maintainability of
FFMM: in large projects, several concepts are transversal to many modules (cross-cutting
concerns). They are extrapolated form the native units and implemented in separated modules
(aspects), in order to improve the system modularity (maintainability enhancement);

(iv) a suitable definition of the code structure (normalization of structures and software modules)
gives rise to standard modules, representing the basic library for the realization of new
components and the extension of already existing ones;

(v) a library of reusable modules is built incrementally during the start-up of the framework up to
a “saturation” condition inside an application domain, allowing further requirements in the
same domain to be satisfied by a limited effort.

B. FFMM Architecture
On the basis of these ideas, the FFMM architecture shown in Fig. 1 was conceived. The test engineer
(end user) produces a description of the measurement application, User Script, whose semantic and
syntactic correctness is verified by the Script Checker. Then, from the User Script, the Builder

Figure 1. The FFMM architecture.

3

assembles the Measurement Program, according to the architecture of the Scheme by picking up
suitable modules from the Software Module Library. If some modules are not available in the library, a
template is provided to the user (administrator user) in order to implement them according to a suitable
predisposed structure. Once debugged and tested, the Measurement Program will be stored in the
Database in order to be reused.
According to the analysis of typical use-case tests on superconducting magnets, the generic User Script
is organized into the following phases:
• definition of the measurement components;
• specification of mechanical and electrical connections;
• definition of dynamic parameters, i.e. configurable during run-time of the Measurement Program;
• component checking;
• configuration of measurement devices;
• description of the measurement procedure;
• preliminary data analysis;
• data saving.
The architecture of the FFMM core, the Scheme, is shown in Fig. 2. The TestManager organizes the
test by knowing the Unit Under Test, the Quantity to be measured, the measurement configuration, and
the measurement procedure. TestManager has an association with the Devices (software representation
of the measurement devices). Among Devices, PC can control remotely the Virtual Devices through a
Communication Bus.
The Synchronizer and the FaultDetector are units managing critical topics in a measurement
application. The Synchronizer manages the synchronization between the equipments (measurement
devices), while the FaultDetector intercepts malfunctions and errors. The Synchronizer and the
FaultDetector can be considered cross-cutting concerns, because they are transversal to many software
modules. The synchronization policy involves all the measurement devices and all the test procedures.
The fault detection is a fundamental part of all the devices, as well as of the measurement system as a
whole. Then, the Synchronizer and the FaultDetector are, therefore, encapsulated in Aspects according
to AOP approach. The policy for managing synchronization actions and faults can be extrapolated from
the single modules and handled separately. In this way, further modifications will affect only those two
components, without any need for code changes in all the modules related to the fault detection or to
the synchronization.
The Logger class handles the storage of configuration and measurement data, as well as system
warnings and exceptions.

•

Figure 2. Architecture of the Scheme.

4

III. Experimental results

According to this architecture, a demonstrator has been implemented in order to verify the FFMM
principle feasibility: the framework has “generated” a measurement program according to
specifications, written by a test engineer who must be familiar with the main framework interfaces.
The first FFMM test was carried out for a measurement application based on rotating coils [9], one of
most accurate technique for superconducting magnet testing.
The Scheme was implemented in C++ by individuating the most suitable design patterns for the different
phases of the measurement procedure. The low-level code, directly related to the hardware
components, was structured according to the most suitable real-time pattern in order to assure
efficiency and reliability.
In the following, (i) the rotating coil technique and the demo bench, and (ii) the measurement
application description are illustrated.

A. Rotating Coil Technique and Demo Bench
In the rotating coils test technique (Fig. 3) [9], a coil turns into the magnet under test and its output
signal is proportional to the flux derivative, according to Faraday’s law. The coil signal is integrated in
the angular domain by means of the output pulses of an encoder mounted on the rotating coil shaft. A
Fourier analysis of the flux finally yields the multipoles of the magnetic field generated by the magnet
under test.
A demonstration bench was assembled with:
 a motor controller MAXON PCU 2000, accessible through RS232, for handling the DC motor

turning the coil inside a permanent magnet at a constant rotation rate;
 a Fast Digital Integrator (FDI): a CERN proprietary PXI general-purpose digitalization board,

configured for the coil signal acquisition and numerical integration [10].
 an encoder board: a CERN proprietary PXI board, for managing the encoder pulses and feeding

the trigger input of the FDI;
 a permanent magnet is used as unit under test to generate the magnetic field.

Figure 3. Rotating coil measurement principle.

Figure. 4 The prototyped demo bench.

Motor Controller

5

B. Measurement Application Description
The User Script describing the application measurement is a method of the TestManager class written
by the test engineer. An example of the script syntax is shown in Fig. 5, limited for reasons of space
only to the description of the measurement procedure. In future, a suitable user interface to simplify
such a task will be provided.
According to the abovementioned phases, the User Script is organized into the following parts:

• definition of FDI, encoder board, and motor controller by using the abstract factory design
pattern [11];

• the Synchronizer and the Logger are also instantiated;
• determination of the connection among the components and between the components and the

PC (bus connection);
• definition of the dynamic parameters, configurable at the run-time of the Measurement

Program: the test engineer defines as variables the parameters that will be inserted by the
operator. These variables are read in at run-time and are used to specify the parameters that
are not yet known by the test engineer at the moment of the preparation of the script (e.g., the
device bus address), as well as parameters that are directly related to the specific aspects of the
measurements (e.g., motor rotation speed, gain of the amplifiers in the FDI, and others);

• component check: the method CheckDevices of the FaultDetector class will be invoked by the
test engineer. The check method of the instantiated devices will be performed. The results are
logged and possible errors are printed out. This part is transparent to the test engineer;

• configuration of the measurement components: the test engineer configures the FDI, the
Encoder board, and the motor controller, by using the interface services of the corresponding
classes;

• description of the measurement procedure (Fig. 5). The test engineer has to specify the
measurement tasks to be carried out (lines 1-2, Fig.5) and the actions (i.e. motor start) and
their temporization. With this aim, the test engineer will use the interface services of the
devices as well as the interfaces of some tools, such as the Synchronizer, and the Observer
design pattern [11]. The test engineer specifies the measurement tasks and the devices that are
its observers (lines 3-4). For each observer, the test engineer specifies the event related to the
measurement task to which the observer must react (line 5), as well as the actions to be
performed in case of such an event (lines 6-7). The Synchronizer provides the services for
specifying action to be performed in parallel, by defining suitable groups (lines 8-13);

• data are saved through the services of the ReportLogger interface. This can be part of the
measurement phase (e.g. in case of binary data saving for a continuous acquisition). This choice is
requested to the test engineer. The data saving can be time consuming and is usually characterized by a
lower priority than the acquisition process, thus the ReportLogger interface provides the services to
launch the storing in a thread different from the main process by supporting multithreading operations.
Also this turns out to be transparent to the test engineer.

//MEASUREMENT PROCEDURE

 // Definition of the measurement tasks

MeasurementTask* mt1 = new MeasurementTask(fdi1) ; //line 1
 MeasurementTask* mt2 = new MeasurementTask(fdi2) ; //line 2

 //Definiton of the observers of mt1 measuremnt task: Measurement logger
 mt1->addObserver(measurementLogger); //line 3
 mt2->addObserver(measurementLogger); //line 4

// Definition of the condition which establishes if Measurement logger needs to be updated: logcondition is a
//function
measurementLogger->needUpdate(logCondition); //line 5

//Definition of the action to be performed when Measurementlogger is updated; Writedata is a function
measurementLogger->setAction(mt1,writeData); //line 6
measurementLogger->setAction(mt2,writeData); //line 7

//Definition of the group of tasks and actions to be synchronized
Synchronizer.addGroup(“gruppo”); //line 8
Synchronizer.addTask(“gruppo”,mt1); //line 9
Synchronizer.addTask(“gruppo”,mt2); //line 10
Synchronizer.addAction(“gruppo”,new Action(mc,START)); //line 11
Synchronizer.addAction(“gruppo”,new Action(mul,START)); //line 12
Synchronizer.start(“gruppo”); //line 13

Figure 5. Measurement procedure of the User Script for the rotating coil measurement application.

6

IV. Conclusions

A new Flexible Framework for Magnetic Measurement (FFMM) is under development at CERN. It is
based on Object-Oriented Programming (OOP) and Aspect-Oriented Programming (AOP). The main
target of this development is to show that the new requirements of software flexibility and reusability
that have arisen after the end of the series production of the LHC superconducting magnets can be met,
and to produce a design for complete implementation in the coming year.
The core of the platform is implemented as a demonstrator on a prototype of magnetic measurement
bench, based on rotating coil technique for the harmonic analysis of magnets. The demonstrator
verified the feasibility of the proposed key concepts and the related architecture. Preliminary results
show that the platform can be easily tailored by a test engineer to manage different magnetic
measurement applications, and thus encourage to finalize the FFMM design and implementation.
Future work will be devoted to complement and improve the present tools. Special attention will be
devoted to programming simplicity on the user side, as well as the detection of errors in the
measurement application. A large part of this work will be accomplished in the development of the
event manager. Finally, the drivers for all types of devices used for magnetic measurements, will be
integrated in the framework.

Acknowledgments
This work is supported by CERN trough the agreement K 1322 with the Department of Engineering,
University of Sannio, whose supports authors gratefully acknowledge. Authors thank F. Cennamo, L.
Walckiers, G. Di Lucca, M. L. Bernardi, and L. Deniau for their useful suggestions.

References
[1] S. Amet, L. Bottura, L. Deniau, and L. Walckiers, “The multipoles factory: an element of the LHC

control”, IEEE Trans. on Appl. Supercond., Vol. 12, pp. 1417-1421, 2002.
[2] J. Bosch, “Design of an Object-Oriented Framework for Measurement Systems” Domain-Specific

Application Frameworks, M. Fayad, D. Schmidt, R. Johnson (eds.), John Wiley, ISBN 0-471-
33280-1, 1999, pp. 177-205.

[3] http://zone.ni.com/devzone/cda/tut/p/id/3238#toc0 Designing Next-Generation Test Systems
Developers Guide.

[4] P.C. Ferreira, H. Reymond, “Sequence of tests and settings to start a magnetic measurement on
MMP 6.5.0”, Internal note, CERN 2003.

[5] A. Guerrero, J-J Gras, J-L Nougaret, M. Ludwig, M. Arruat, S. Jackson, “CERN front-end
software architecture for accelerator controls”, Proceedings of ICALEPCS2003, Gyeongiu, Korea,
2003.

[6] J. M. Nogiec, J. Di Marco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge, M. Tartaglia,
“Configurable component-based software system for magnetic field measurements”, IEEE Trans.
On Applied Superconductivity, Vol. 16, N. 2, Jun. 2006, pp. 1382-1385.

[7] http://www.tango-controls.org/.
[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. “An overview of

AspectJ”, Proc. of 15th Eur. Conf. on Object-Or. Prog (ECOOP 01), Vol. 2072 of Lecture Notes
in Computer Science, Budapest, Hungary, 2001.

[9] L. Bottura, K. N. Henrichsen, “Field Measurements”, CERN Accelerator School Proceedings,
CERN, September 2004, pp. 118-151.

[10] Erich Gamma, Richard Helm, Ralph Johnson , John Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison Wesley, October 1994.

[11] P. Arpaia, A. Masi, G. Spiezia, “A digital integrator for fast and accurate measurement of
magnetic flux by rotating coils”, IEEE Trans. on Instrum. Meas., Vol. 56, No. 2, April 2007.

