
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Laboratory for Particle Physics

(MTM)

FAULT SELF-DEFECTION OF AUTOMATIC TESTING SYSTEMS
BY MEANS OF ASPECT-ORIENTED PROGRAMMING

P. Arpaia1, M.L. Bernardi2, G. Di Lucca2, V. Inglese3, G. Spiezia3

1 Department of Engineering, University of Sannio, Benevento, Italy.
2 Research Centre on Software Technology (RCOST), University of Sannio, Benevento, Italy
3 Department of Electrical Engineering, University of Naples, Federico II, Via Claudio, Napoli, Italy and CERN,
 Accelerator Technology Department, Geneva, Switzerland

CERN/AT 2007-35

Presented at the IMEKO'07 Conference
20-21 September 2007, Iasi, Romania

Departmental Report

CERN, Accelerator Technology Department
CH - 1211 Geneva 23
Switzerland

An Aspect Oriented approach to implement fault detection in automatic measurement systems is proposed. Faults
are handled by means of “aspects”, a specific software unit to better modularize issues transversal to many
modules (“crosscutting concerns”). In this way, maintainability and reusability of a measurement software are
improved: indeed, once a modification of the fault detection policy occurs, only the related aspects have to be
modified. As an experimental case study, this technique has been applied to the fault self-detection of a flexible
framework for magnetic measurements, developed at the European Organization for Nuclear Research (CERN).

30 September 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44193593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fault self-detection of automatic testing systems
by means of Aspect Oriented programming

Pasquale Arpaia1, Mario Luca Bernardi2, Giuseppe Di Lucca2,

Vitaliano Inglese3, Giovanni Spiezia3

1Department of Engineering, University of Sannio, Corso Garibaldi 107, 82100 Benevento, Italy.
Ph : +39 0824 305804-17, Fax: +39 0824 305840, E-mail: arpaia@unisannio.it

2Research Centre on Software Technology (RCOST), University of Sannio, via Traiano 1, 82100 Benevento, Italy.
Ph : +39 0824 305533, Fax: +39 0824 50552, E-mail: dilucca/mlbernar@unisannio.it

3 Department of Electrical Engineering, University of Naples, Federico II, Via Claudio, Napoli, Italy; CERN, Dept. AT
(Accelerator Technology), Group MTM, CH 1211, Genève 23, Switzerland, E-mail: Giovanni.Spiezia@cern.ch.

Abstract - An Aspect Oriented approach to implement fault detection in automatic measurement
systems is proposed. Faults are handled by means of “aspects”, a specific software unit to better
modularize issues transversal to many modules (“crosscutting concerns”). In this way, maintainability
and reusability of a measurement software are improved: indeed, once a modification of the fault
detection policy occurs, only the related aspects have to be modified. As an experimental case study,
this technique has been applied to the fault self-detection of a flexible framework for magnetic
measurements, developed at the European Organization for Nuclear Research (CERN).

I. Introduction

Nowadays, test automation is a must for assuring product quality and reliability both in industry and in
research worlds. Intelligent measurement systems are used deeply in critical measurement tests
involving several instruments. In particular, one of main peculiarities is the their capability of assuring
a proper termination to the test process. With this aim, the automatic system has to know the state of
each its own parts. Thus, a fault self-detection is a key peculiarity to provide adequate reactions to
anomalous working. Devices always provide information about their status, and, if a failure or an
abnormal working occurs, the fault event is notified. The controller of an automatic system must know
the exceptions of each device to communicate the fault to the external world and perform adequate
actions to eliminate or reduce the fault effect. Software implementation of fault detection is a well
known strategy for dealing with failures caused by both hardware and software faults. Compared to
hardware implementation, it has the advantage of being more flexible and cost effective. Indeed, today,
it is a widely used technique, and emerging application areas for cost-effective dependable systems will
further increase its importance. Thus, the software implementation of a fault detector is a crucial issue
in an automatic platform, and the way it is implemented may affect the overall system quality, in
particular maintainability and reusability.
Today, the development of an automatic system, with reference to its software parts, is usually made
exploiting development techniques such as Object Oriented [1]-[2], component-based [3]-[4], and
agent-based ones [5]. These techniques aim to organize the software system in modules each
responsible of specified responsibilities/functionalities. Anyway, crosscutting concerns can negatively
affect the quality of even well modularized systems implemented by these techniques [6]. Crosscutting
concerns are related to issues that are transversal to many modules, such as the fault detection in an
intelligent measurement system. This causes the duplication of parts of very similar code in several
different modules, by negatively affecting the maintainability and reusability.
In this paper, Aspect Oriented Programming (AOP) is proposed to implement fault self-detection to
overcome such drawbacks. The cross-cutting concerns related to the fault self-detection of a large
measurement software system are separated and handled better by encapsulating them into aspects. In
this way, the system maintainability and reusability is improved. As an experimental case study, a first
application of AOP in designing and implementing a fault self-detection sub-system to be used in the
Flexible Framework for Magnetic Measurements (FFMM), to be develop at the European Organization
for Nuclear Research (CERN), is presented. The following of the paper is structured as follows: section
2 provides some basic concepts of AOP; section 3 describes the overall architecture of the AOP fault
detector; section 4 give some snapshots about the implementation of the fault detector in the FFMM
project; and some conclusive remarks are provided in section 4.

1

II. AOP background

Aspect-Oriented Programming (AOP) [7] is an extension of the object-oriented paradigm that provides
new constructs to improve the separation of concerns and support their crosscutting. AOP defines a
kind of program unit, the aspect, for specifying concerns separately, and rules for weaving them to
produce the overall system to be run. Like a class of objects, an aspect introduces a new user-defined
type into the system’s type hierarchy, with its own methods, fields and static relationships to other
types.
Usually, an AOP system can be seen as composed by two parts: one consisting of traditional
modularization units (e.g. classes, functions) and referred as the base system or core concern, the other
one consisting of aspects, encapsulating the crosscutting concerns involved in the system, and usually
referred as the secondary concerns.
The features AOP provides for implementing crosscutting concerns in aspects can be classified in:
• dynamic crosscutting features: implementation of crosscutting concerns by modifying the runtime
behavior of a program;
• static crosscutting features: modification of the static and structural properties of the system.
Dynamic crosscutting is implemented by using pointcuts and advices. An advice is a code fragment
that will be executed in specified points within the program execution. The points in the dynamic
control flow at which the advice code is executed are called join-points. A pointcut defines the events
(such as method call or execution, field get and set, exception handling and softening) triggering the
execution of the associated advices; a pointcut is an expression pattern that, during execution, is
matched for join points of interest. Every advice is associated to a pointcut that defines the join-point(s)
at which it must be applied. Advice code can be executed either before, after or around the intercepted
join-point. A join point shadow is the static counterpart, in the code, of a join point; equivalently, a
join-point is a particular execution of a join-point shadow. Aspects and base program are composed
statically by a weaving process.
The weaver is the component of an AOP programming language environment (such as AspectJ [8])
responsible to perform the weaving process. The weaver inserts instructions at join point shadows to
execute the advice to apply at the corresponding join points. The weaver may need to add runtime
checks to the code inserted at a join point shadow in order to perform parameters binding and other
requested computations. These code fragments are known as dynamic residues. If a dynamic residue
specifically tests the applicability of advice at a given join point, it is called an advice guard.
The static crosscutting features of AOP implement crosscutting concerns by modifying the static
structure of the system. An aspect can introduce new members (i.e. fields, methods, and constructors)
to a class, or interface; change or add parents for any class or interface; extend a class from the subtype
of the original superclass or implement a new interface. These features are called intertype
declarations.
Figure 1 reports an example of a very simple AOP program (an AO version of the ‘Hello World’
program), just to exemplify how an AOP program works. The programming language used is AspectJ.
In Fig. 1, the code of the class HelloWorld and the aspect GreetingsAspect are reported. The
aspect defines a pointcut and two advices. The callTellMessage()captures calls to all public static
methods with names that start with tell. In the example, the pointcut captures the calls to
tell(...) and tellPerson(...) methods in the HelloWorld class taking any arguments.

// HelloWorld.java
public class HelloWorld {

 public static void tell(String
message) {
 System.out.println(message);
 }

 public static void tellPerson(String
message, String name) {
 System.out.println(name + ", " +
message);
 }
}

// GreetingsAspect.java
public aspect GreetingsAspect {
 pointcut callTellMessage() :
call(public static void
HelloWorld.tell*(..));

 before() : callTellMessage() {
 System.out.println("Good
morning!");
 }

 after() : callSayMessage() {
 System.out.println("Bye Bye!");
 }
}

Figure 1. - A simple AO program.

2

The two advices, one before and one after, associated to the callTellMessage() pointcut will
cause, respectively, the printing of the "Good morning!" and "Bye Bye!" text strings just before
and after each message printed by the tell() and tellPerson() methods, respectively.

III. The architecture of the AOP fault self-detector

The proposed AOP-based architecture for fault self-detection in measurement systems is based on:

• a fault detection subsystem, designed for:
− monitoring the ‘health’ state of the measurement system's component devices;
− catching software faults such as stack overflow, live-lock, deadlock, and application-

defined faults as they occur.
• a fault notification subsystem, responsible for

− constantly receiving the sequence of faults occurring from all the system components;
− storing the diagnostic history and providing means to other components or to external

humans to access it and adequately react to faulty events.
In the architecture, several kinds of classes of faults relevant in automatic measurement systems are
identified: faults in virtual device, faults in the measurement environment, faults in software
components.
The analysis of several state-of-the-art measurement systems highlighted that fault detection is usually
scattered all over different hierarchies, mainly with reference to devices hierarchy. This means that
concrete virtual devices classes contains code for fault detection resulting in code duplication that will
be difficult to comprehend and maintain.
The proposed architecture is based on the FaultDetector aspect hierarchy: the fault detection logic
is just encapsulated in the aspects belonging to this hierarchy. In this way we avoid the duplication of
the code related to the fault detection in the several modules implementing the virtual devices.
Moreover, this provides a very flexible mean for dynamically and obliviously associating the system
components that act as fault sources to the components that need to be aware of and to handle the fault
conditions, all that by means of a fault notification aspect mapping layer.
In Fig. 2, an excerpt of the proposed FaultDetector, hierarchy defined in the FFMM project, is
depicted, by highlighting only the static relationships among VirtualDevice classes and FaultDetector
aspects, for the sake of the clarity and brevity.

3

The FaultDetector is responsible for defining high-level pointcuts capturing relevant operations
affecting the state of devices. In the measurement system, the VirtualDevice hierarchy models and
organizes all the physical devices involved in the measurement process. The VirtualDevice class
declare an abstract interface to handle a generic device status. Calls to such methods are captured by
the FaultDetector aspect and associated to advice, by means of concrete sub-aspects, specifying the
logic needed to detect if and where a device notified an internal fault. Each FaultDetector sub-
aspect, associated to main devices categories, define inside itself the mapping logic towards concrete
devices classes belonging to the same family.
The coarseness of the mapping among aspects and concrete devices allows a very flexible reuse of the
fault detection logic for devices that are similar each other, still allowing to be encapsulated it in few
modules (instead of being spread all over the device classes, as in the case of traditional coding).
In Fig. 3, the aspect mapping layer of the fault notification is shown. The services to associate
dynamically the handlers to the fault sources in the measurement system are provided.
The sub-aspect of the FaultHandler aspect takes care of involving concrete classes (like the
TestManger responsible of performing the test session) in order to make them “aware” of faults that
happens in the system.
This solution allows fault handling logic to be reused in the super-aspects and does not force concrete
classes in the system to implement fault handling code. Any component in the system can react to
specific faults that occur anywhere in the system and perform the needed actions to handle the fault.
Moreover, since concrete classes (TestManager or any other components interested in monitoring
faults) are oblivious of being faults handlers, the monitoring relationships can be changed by simply
acting on aspect mapping. Commonalities among different fault handling logics can be factored out in
the aspects while multiple observations of different kinds of faults can be easily accomplished defining
several mapping aspects for a single concrete class.

IV. Implementing the AOP fault self-detector in the FFMM at CERN

The Flexible Framework for Magnetic Measurement (FFMM) is a platform under development at
CERN in cooperation with the University of Sannio. FFMM is aimed at collecting in a systematic way
different measurement applications for testing superconducting magnets by specifying the following

MeasurementDev ice

DigitalIntegrators

FDI PDI

Actuator

Motor

MeasurementDev iceFaults
<<aspect>>

ActuatorFaults
<<aspect>>

<<intercepted>>

<<intercepted>><<intercepted>>

<<intercepted>>

<<intercepted>>

Abstract
Pointcuts
capturing VirtualDev ices
reads/writes on status
operations

FaultDetector

<<pointcut>> checkDeviceStatus()

<<aspect>>

VirtualDev ice

setDeviceStatus()
getDeviceStatus()

TestManager

nn<<intercepted>>

Concrete dev ice classes sets
status data each
time an operation has been
executed on a dev ice.

Concrete aspects maps
pointcuts capturing status
reads and writes to dev ice's
specif ic adv ices

<<intercepted>>

Figure 2. - The hierarchy of the proposed FaultDetector.

FaultDetector

<<pointcut>> checkDev iceStatus()

<<aspect>>

FaultNotifier FaultHandler
<<aspect>>

**

FDI Motor PDI PXI TestManager

TestManagerFaultHandler
<<aspect>>

Faults are captured by
FaultDetector Aspect
hierarchy and forwarded
to interested client...

This aspect implements
the concrete mapping logic
between abstract FaultHandlers
and concrete classes involved
dinamically in an oblivious way.

Figure 3 - Aspect mapping layer of the fault notification.

4

items: (i) device under test, (ii) quantity to be measured, (iii) measurement instruments, (iv)
measurement circuit configuration, (v) measurement algorithm, and (vi) data analysis.
An AOP fault detector implementation is under development to handle the exception events in the
rotating coil-based measurement, managed by FFMM, used to measure the magnet field parameters.
The rotating coil working principle is simple: a coil turns into the magnet under test and its output
signal is proportional to the flux derivative, according to Faraday’s law. The coil signal is integrated in
the angular domain by means of the output pulses of an encoder mounted on the rotating coil shaft. A
Fourier analysis of the flux finally yields the multipoles of the magnetic field generated by the magnet
under test. A workstation is used to remotely control the motor movement, the magnet power supply,
the coil signal acquisition and integration, and the current measurement. This is a typical application
which involves many different devices. Each instrument has its own state and its error messages.
Pointcuts in FaultDetector has been defined in order to capture faulty conditions for both devices
involved in the SSW measurement process and communications on system bus. Using this approach it
is possible to handle uniformly different kinds of faults produced from different components. The
proposed architecture allows a high level of flexibility letting to do very complex and flexible run-time
binding among fault sources and fault handlers while keeping the fault detection code well modularized
in fault detection hierarchy. In Fig. 4, a graphical interface of the fault detection is represented. In the
FaultDetector panel, the status of each considered device can be checked.
Another main advantage of such technique is the maintainability and the reusability of the code. Indeed
for each new device added to the framework, the related fault detection code is added to the fault
detection hierarchy. Since all fault detection code is well modularized in few sub-aspects,
commonalities among different fault detection logic is well structured and factored out.
As a consequence the FaultDetector design, with respect to ‘traditional’ OOP version, exhibits a much
more centralized design reducing code duplication and greatly increasing the possibility of code reuse.

V. Conclusions

A fault self-detector based on Aspect-Oriented Programming for automatic measurement systems was
presented. Such a technique allows the software quality to be improved with respect to the Object-
Oriented approach, by adding specific encapsulation of crosscutting concerns. In this way, AOP allows
the reusability and the maintainability of a measurement system to be enhanced. This turns out to be
vital especially in software measurement frameworks, conceived specifically for developing programs
for automatic measurement systems with low effort, time, and cost.
The proposed approach is experimented to develop a fault self-detector in the FFMM project under
development at CERN. In particular, the improvements allowed by AOP are being verified on a
measurement application based on rotating coil technique aimed at measuring parameters of
superconducting magnets.

Figure 4. - Graphical interface of fault detector for rotating coil demo.

5

Acknowledgments

This work is supported by CERN trough the agreement K 1322 with the Department of Engineering,
University of Sannio, whose supports authors gratefully acknowledge. Authors thank F. Cennamo, L.
Walckiers, L. Bottura, M. L. Bernardi, L. Deniau, and G. Golluccio for their useful suggestions.

References

[1] J. Bosch, “Design of an Object-Oriented Framework for Measurement Systems” Domain-Specific Application

Frameworks, M. Fayad, D. Schmidt, R. Johnson (eds.), John Wiley, ISBN 0-471-33280-1, 1999, pp. 177-205.
[2] S. Wang, K. G. Shin, “Constructing reconfigurable software for machine control systems”, IEEE Trans. on

Robotics and Automation, Vol. 18, N. 4, pp. 474-486, Aug. 2002.
[3] J. M. Nogiec, J. DiMarco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge, M. Tartaglia, “A configurable

component-based software system for magnetic field measurements”, IEEE Trans. on Applied
Superconductivity, Vol. 16, N. 2, pp. 1382-1385, Jun 2006.

[4] J. E. Beck, J. M. Reagin, T. E. Sweeney, R. L. Anderson, T. D. Garner, “Applying a component-based
software architecture to robotic workcell applications”, IEEE Trans. on Robotics and Automation, Vol. 16, N.
3 pp. 207-217, Jun. 2000.

[5] N.R. Jennings, “Agent-based computing: promises and perils”, Proc. of the fifth International Joint
Conference on Artificial Intelligence (IJCAI), pp. 1429-1436, 1999.

[6] C. Pfister, C. Szyperski, “Why objects are not enough”, Proc. First International Component Users
Conference (CUC), Jul. 1996.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.M. Loingtier, J. Irwin, “Aspect-
Oriented Programming”, in Proc. of the 11th European Conf. on Object-Oriented Programming (ECOOP),
Vol. 1241, pp. 220-242, Springer-Verlag, 1997.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. “An Overview of AspectJ”,
in Proceedings of the 15th European Conf. on Object-Oriented Programming (ECOOP), Vol. 2072 of
Lecture Notes in Computer Science, Budapest, Hungary, 2001.

6

