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Abstract

The electron–positron collider ILC in its baseline version should reach a
center–of–mass energy of 500 GeV, five times higher than the SLC, the first
and only linear collider built at SLAC, and 2.5 times higher than LEP. The
luminosity of ILC, a measure for event rate a collider can deliver, is about
1000 times higher than that of LEP at 200 GeV. Both, energy and lumi-
nosity are prerequisites for new discoveries. In a second phase, by adding
more cooling and radiofrequency power the energy range of the ILC could
be extended to about 1 TeV without increasing the length of the machine.
In addition, with some modifications, the ILC could be operated with high
luminosity at lower energies, between 90 and 200 GeV center–of–mass energy.

The knowledge of the electromagnetic interaction between a beam and
the surrounding vacuum chamber is necessary in order to optimize the accel-
erator performance in terms of stored current. Many instability phenomena
may occur in the machine because of the fields produced by the beam and
acting back on itself. Basically, these fields, wake–fields, produce an extra
voltage, affecting the longitudinal dynamics, and a transverse kick which de-
flects the beam.
In this thesis we present the results of theoretical and experimental investi-
gations to demonstrate the possibility of using the dipolar wake fields of the
superconducting accelerating to measure the beam transverse position.
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After an introduction to the ILC project and to the TESLA technology,
of superconducting RF cavities, we will approach the problem from an an-
alytical point of view in chapter 2. The expression of the wake fields in a
cylindrical cavity will be investigated and the electromagnetic field modes
derived from Maxwell’s equations in an original way. Graphical solutions of
a Matlab program simulating the fields due to a particle passing through a
pill-box cavity along a generic path will be shown.

The interaction of the beam with higher order modes (HOM) in the
TESLA cavities has been studied in the past at the TESLA Test Facility
(TTF) in order to determine whether the modes with the highest loss fac-
tor are sufficiently damped. Starting from the results obtained before 2003,
HOM signals has been better observed and examined in order to use dipole
modes to find the electric center of each cavity in the first TTF accelerating
module. The results presented in chapter 3 will show that by monitoring
the HOM signal amplitude for two polarizations of a dipole mode, one can
measure electrical center of the modes with a resolution of 50 µm. Moreover,
a misalignment of the first TTF module with respect to the gun axis has
been predicted using cavity dipole modes.

Alternatives to this method are described in the last chapter. A time
domain HOM data acquisition setup has been conceived at SLAC and fabri-
cated with the additional help of DESY and CEA. The beam has been moved
by pairs of correctors for each transverse plane by using a system capable
of monitoring simultaneously one dipole mode from all 40 cavities at TTF.
HOM signals have been used for beam position monitoring and alignment,
and cavity relative misalignments in the cold modules has been measured.
The results of this study, prove the benefit and the usefulness of using dipole
modes as beam position monitor and to provide a cross–check of the mechan-
ical measurements.
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Chapter 1

Introduction

1.1 General introduction and motivation

Accelerators are of fundamental importance in building our picture of nature
at the level of its smallest constituents. Accelerators have provided the ex-
perimental evidence that supports the Standard Model presently accepted as
the basis of our understanding of particle physics.
According to the Standard Model, matter is composed of few elementary
particles, leptons and quarks. The interactions among these are mediated
by force-carrying particles. The electromagnetic force is unified at high en-
ergies with the weak force into the electroweak interaction. Nevertheless,
some prediction of this model remain to be proved. It is hoped that future
particle accelerators will provide the tool to answer some of these questions.
Among these is the so-called Higgs mechanism that could explain the ob-
served masses of the W± and Z0 intermediate vector bosons, as well as those
of the elementary fermions. Based on the successful unification of the electric
and magnetic forces, and of these with the weak interaction, it is believed
that at higher energies the electroweak force is unified with the strong force.
The favored theory implies the existence of a super-symmetric partner of
each matter and force-carrying particle.

1



2 CHAPTER 1. INTRODUCTION

So far, circular colliders were the main tool in experimental particle physics.
Currently under construction is the Large Hadron Collider (LHC) at CERN,
a proton-proton storage ring with 14 TeV center-of–mass (c.m.) energy, which
will produce collisions in 2007 in order to investigate these questions.
Circular e+e− colliders become inefficient at energies higher than that of LEP,
200 GeV c.m., due to synchrotron radiation which is emitted by charged par-
ticles traveling on a curved trajectory. The energy loss per revolution is
proportional to the fourth power of the energy divided by the rest mass
and inversely proportional to the trajectory radius. The amount of radiated
power is therefore much higher for electrons than for heavier particles.The
solution is to build linear colliders. An electron-positron linear collider with
energies up to 1 TeV c.m. is nowadays considered to be the next step for
experimental studies in particle physics. But the advantage of circular accel-
erators of using an injected beam many times at a very high collision rate is
lost. Therefore one has to use beams with many particle bunches in order to
increase the collision rate.
In addition, the beam size at the interaction point (IP) must be extremely
small, in the nanometer range, to achieve the required high interaction rate
of the particles. In order to focus the bunches to these very small spot sizes
over distances larger than the bunch length, very small emittances must be
created and transported to the IP. The main source of emittance growth are
the so called wake fields1 that are excited by charged particles in the inter-
action with their environment, typically the accelerating structures, and act
on the following particles. One can distinguish between longitudinal effects,
mainly an increase in the energy spread, from transverse ones, specifically an
increase in the transverse emittance. In fact, if the accelerator structures are
”perfectly” aligned on the beam trajectory there is no transverse emittance
growth. Thus, controlling the transverse emittance involves taking in ac-
count the alignment of the structure to minimize the transverse wake fields.

1wake fields can be decomposed in the higher order modes (HOM), resonant electro-
magnetic fields.
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Longitudinal wake fields vary approximately with the second power of the ac-
celerator frequency, while the transverse ones scale with the third power (see
section 2.4.3). For this reason, lower RF frequency accelerators are preferable
in order to preserve small emittances2, leading to a higher luminosity. For the
TESLA technology, i.e. superconducting cavities of 1.3 GHz RF frequency,
this advantage of the lower frequency combines with the higher efficiency,
due to the superconducting technology used, to give the higher luminosity.
This thesis deals with the study of the dipolar Higher Order Modes (HOM)
of TESLA cavities, and with demonstrating their use in measuring cavity
misalignment and in controlling the beam orbit inside the modules of the
TESLA Test Facility (TTF) linac.

1.2 The linear collider approach

The development of the accelerators started about eighty years ago, and has
since been advanced by many new ideas and technologies which extended the
attainable energy by a factor of around 10 every decade.
This development of accelerators has led to important applications in many

2The oscillation amplitude of the bunch tail relative to the bunch head is characterized
by the dimensionless growth parameter:

Υ = −Nr0W⊥,1L0

4kβγL
, (1.1)

where L0 is the total linac length, W⊥,1 is here the transverse wake function (for the
definition see 2.4.2) for one cavity period, r0 is the classical radius of the particle, L is
the cavity period, N the number of particles, kβ the betatron wave number and γ the
relativistic number. For short bunches, Wz,1 < 0, the parameter Υ is positive.
To preserve the beam emittance it is necessary to have |Υŷ| ¿ transverse beam size, where
ŷ is the unit transverse vector [Cha93]. This means the beam must be injected on the
linac axis with an accuracy better than a fraction of a per cent of the beam size, which is
difficult to achieve. The beam acceleration has an important stabilizing effect because, as
its energy increases, the beam becomes more rigid and less vulnerable to the wake fields.
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fields of science including solid state physics, chemistry and biology. Espe-
cially electron storage rings are used for modern research: today they may
be considered the most important spin–off of particle physics.

The most powerful accelerator concept to reach high energies is that of
colliders, in which elementary particles are made to collide head–on. Among
existing facilities, electron–positron colliders are considered as precision tools
for particle physics. Since electrons and their anti–particles, the positrons,
are elementary point–like particles, they annihilate each other in the collision.
The resulting center of mass (c.m.) energy is converted into new particles.
The properties of these new particles are measured in the detectors surround-
ing the interaction point. These features were essential for many discoveries
made with electron–positron colliders, including new quarks and leptons and
the particle mediating the strong interaction, the gluon, as well as for preci-
sion tests of the Standard Model.

Except for the Stanford Linear Collider (SLC), electron–positron collid-
ers have so far been built as storage rings. However, the only way to reach
electron energies substantially above 200 GeV c.m., achieved by LEP, is by
accelerating electrons and positrons on a straight line. Each linear acceler-
ator consists of a large series of electromagnetic radiofrequency resonators
(cavities), which generate the required electric fields to accelerate the elec-
trons and positrons.

A major challenge for all linear collider concepts is to obtain a large lumi-
nosity of electrons and positrons at the interaction point. This requires very
small spot sizes of the beams at the collision point and high beam powers. In
1997 the feasibility of the concept has been demonstrated by the successful
operation of the Stanford Linear Collider at its design luminosity and a c.m.
energy of 92 GeV.
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Over the past decades, several groups world–wide have been pursuing
different linear collider concepts. Already in 1971 a group at the Institute
of Nuclear Physics in Novosibirsk started detailed design work for a linear
collider of several hundred GeV, addressing many of the relevant problems.
Several years later, groups at CERN, at the Stanford Linear Accelerator Cen-
ter (SLAC) in California, and the Japanese National Laboratory for High
Energy Physics (KEK) in Tsukuba began work on linear collider designs. All
these concepts were based on normal–conducting copper cavities.

The TESLA approach differs from the other designs by the choice of
superconducting accelerating structures as its basic technology. As will be
shown, the TESLA linear collider based on superconducting accelerating
structures is well suited to meet the requirements needed for a large luminos-
ity, namely very small beam sizes and high beam power. The advantage of
the superconducting technology, has been acknowledged from the very begin-
ning of the research and development on linear colliders, but the technology
was considered to be more expensive than conventional technologies and not
suited for high accelerating gradients.

By a focused development program started in 1992, by the international
TESLA collaboration in co–operation with industry, a prototype superconducting
linear accelerator was built, the TESLA Test Facility (TTF), in order to
gain long term operating experience and costing knowledge. As a result
superconducting RF cavity structures capable of generating gradient over
30 MV/m, five times larger than before 1990, were developed, and a reduc-
tion of the cost per meter of accelerator by a factor of four was achieved,
leading to about 2 k=C/MV cost of accelerating cryomodules.

The development of linear accelerators for particle physics has also led
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to an ideal accelerator for a light source with completely new properties: an
X–ray Free–Electron Laser (XFEL) producing X–rays with true laser prop-
erties, as first proposed by the Stanford Linear Accelerator project LCLS,
and then by the XFEL project at DESY. The photon emission is based on
SASE: the laser light is generated when electrons travel through an ondulator
magnet structure, after having been linearly accelerated to provide electron
beams of the necessary quality. Using the TESLA Test Facility accelera-
tor, laser light was generated for the first time in the wavelength range from
180 nm to 13 nm. This was a first proof of principle that such an X–ray laser
can be built and has stimulated intense activities in the field of X–ray FELs
world–wide.

Summarizing the work of the past decade the following milestones in
accelerator technology and development have been reached:

• Superconducting cavities exceeding an accelerating gradient of 30 MV/m
are being produced by industry, thus fulfilling the needs for a 500 GeV
c.m. collider.

• Using a new surface treatment, gradients greater than 40 MV/m have
been reached in single cell cavities, giving access to energies of 1 TeV.

• The Free-Electron Laser based on SASE principle has been demon-
strated at wavelengths of 13-180 nm.

• Other technology challenging components needed for the accelerator,
like high–power, high efficiency multi–beam klystrons, and high power
input couplers have successfully been developed, built and operated at
the TESLA Test Facility.
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1.3 The ILC project

On the 20th August 2004, the International Technology Recommendation
Panel (ITRP) recommended that the International Linear Collider (ILC )
should be based on the 1.3 GHz superconducting RF technology developed
by the TESLA Collaboration. This recommendation has been endorsed by
the International Committee for Future Accelerators, ICFA. Laboratories
and research groups around the world are now committed to the ILC as their
next big project for elementary particle physics.

An electron-positron annihilation is a very well defined physical process.
This explains the key role electron-positron colliders have played in the past
for the progress of particle physics. Most of these advantages stem from the
following three unique strengths:

• A well defined initial state: this means that one knows that the inter-
action originates from an e-e+ annihilation at a precise energy. In the
case of the ILC one can in addition define the spin alignment (the po-
larization) of the initial particles, providing a powerful discrimination
on electroweak interactions which depend crucially on this alignment.

• Comparable rates for standard physics and new physics. Higgs produc-
tion for example has a rate comparable to other process with the same
final state topology.

• Very favorable environment for measurements. Backgrounds are ex-
pected to be low. Particles can be observed very close to the collision
point, allowing for excellent precision on the decay points of particles
with long lifetimes. The final states of most events can be completely
reconstructed.
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A sketch of the overall layout of the ILC linear collider is shown in figure
1.1. The electron beam is generated in a polarized laser–driven gun. Af-
ter a short section of conventional linac, the beam is accelerated to 5 GeV
in superconducting structures identical to the ones used for the main linac.
The baseline design assumes that the electrons are stored in a damping ring
of about 6 km circumference.
The positron injection system has to provide a total charge of about 5 · 1013e+

Figure 1.1: Sketch of the overall layout of ILC: 1st stage 500 GeV c.m. energy; 2nd stage
1 TeV c.m. energy.

per beam pulse, which is not realistically feasible with a conventional (elec-
tron on thick target) source. Instead, positrons are produced from γ–conversion
in a thin target, after which they are preaccelerated in conventional 200 MeV
L–band linac, followed by a 5 GeV superconducting accelerator. The photons
are generated by passing the high–energy electron beam through an undula-
tor.
The undulator–based positron source requires an electron beam energy greater
than 150 GeV for full design positron beam intensity. At center–of-mass en-
ergies below 300 GeV the luminosity is reduced due to a lower positron beam
current. If lower energy running at maximum luminosity becomes important,
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additional electron beam pulses and bypass–beamlines are foreseen to drive
the positron source independently from the (lower–energy) beam used for
physics.
Each main linear accelerator is made of roughly ten–thousand one–meter long
superconducting cavities. Group of eight cavities are installed in a common
cryostat (cryomodule); the current design is based on that used in the TTF
linac, modified to be more compact and cost–effective. The cryomodules also
contain superconducting magnets for beam focusing and steering, beam po-
sition monitors, and high-order mode absorbers [fig. 1.2].
The RF–power is generated by one 10 MW klystron powering three modules
(24 cavities).
The beam transport between the linac and the IP, the so–called beam deliv-

Figure 1.2: Sketch of the 5 m diameter ILC linac tunnel, and klystron and modulator
hall.

ery system, consists of collimation, beam diagnostics chromatic correction,
and final focus sections.

The choice of superconducting RF also allows one to use a long RF–
pulse (1 ms) allowing to accelerate a large number of bunches (2820) with
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a relatively large bunch spacing (308 ns at Ecm = 500 GeV). Three benefits
result directly from this long bunch train:

• A fast (MHz) bunch-to-bunch feedback can be used to correct the or-
bit within one beam pulse. Such a feedback system will maintain the
beams in collision at the IP, making ILC relatively insensitive to me-
chanical vibrations of focusing elements which could otherwise lead to
serious luminosity reduction.

• In the event of an emergency, a fast safety system can "turn off" the
beam within a fraction of a pulse.

• A moderate peach RF power of about 350 kW per cavity entirely con-
verted into beam energy leading to a high efficiency acceleration.

1.4 ILC Parameters for 500 GeV c.m.

The ILC design accelerating gradient at Ecm = 500 GeV is Eacc = 31.5 MV/m
and the quality factor3 Q0 = 1010. Thanks to the small dissipated power in
the cavity walls, a high average beam power ( 2×10 MW) can be acceler-
ated while keeping the electrical power consumption within acceptable limits
( 100 MW). Besides the center–of-mass energy of the colliding beams, a sec-
ond key parameter for a linear collider is the luminosity L, given by:

3The quality factor is defined as:

Q0 =
ωU

Pdissipated
,

where ω is the modes frequency, U is the stored energy in the electromagnetic field and
Pdissipated the power dissipated in the walls.
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L =
nbN

2
e frep

4πσ∗xσ∗y
(1.2)

where
nb number of bunches per pulse
Ne number of electrons (positrons) per bunch
frep pulse repetition frequency
σ∗x,y horizontal (vertical) beam size at interaction point

Introducing the average beam power Pb = EcmnbNefrep, the luminosity can
be written as:

L =
Pb

Ecm

× Ne

4πσ∗xσ∗y
×HD (1.3)

An important constraint on the choice of IP parameters is the effect of beam-
strahlung: the particles emit hard synchrotron radiation in the strong elec-
tromagnetic space-charge field of the opposing bunch. The average fractional
beam energy loss from beamstrahlung is approximately given by [Che91]:

δE ≈ 0.86
r3
eN

2
e γ

σz(σ∗x + σ∗y)2
(1.4)

where
re the classical electron radius
γ relativistic factor Ebeam/m0c

2

Beamstrahlung causes a reduction and a spread of the collision energy and
leads to background in the detector. The energy loss δE is therefore limited
typically to a few percent. By choosing a large aspect ratio R = σ∗x/σ

∗
y >> 1,

δE becomes independent of the vertical beam size and the luminosity can be
increased by making σ∗y as small as possible. Since σ∗y = 1/2 ≈

√
(εy,Nβ∗y/γ),
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this is achieved by a small vertical beta function at IP (β∗y) and a small
normalized vertical emittance (εy,N). The lower limit on β∗y is given by the
bunch length (’hourglass effect’); setting β∗y = σz, the luminosity can be
expressed as:

L ≈ 5.76 · 1020m−3/2 × Pb

Ecm

×
(

δE

εy,N

)1/2

×HD (1.5)

As a consequence, to achieve the desired high luminosity, with a limited
power and energy loss, bunches with small vertical emittances are required.

In high energy linear accelerators, the particles grouped in bunches gain
energy in accelerating structures and are transversally focused by magnetic
quadrupoles. In addition, one needs steering magnets to correct for the mis-
alignments of various components and diagnostics elements such as beam
position monitors in order to measure the properties of the beam.
The primary sources of transverse emittance dilution are the transverse wake
fields excited in the accelerating sections in the presence of misalignments,
and the dispersive errors caused by the focusing magnets. If the wake fields
are too strong, they can degrade the quality of the beam by increasing its en-
ergy spread and transverse emittance. The longitudinal and transverse wake
fields per unit length of accelerator scale approximatively as f 2 and f 3 re-
spectively (see section 2.4.3): hence the wake fields in the ILC (f = 1.3 GHz)
are considerably weaker compared to those of machines based on S–band
(f = 3 GHz) or X–band (f = 11.4 GHz) technologies.
For ILC, the low RF frequency and corresponding large irises of the accelerat-
ing structures result in much smaller wake field kicks for a given misalignment
than in higher frequency room-temperature designs. Furthermore, a given
residual magnetic dispersion generates less emittance blow–up, because the
beam energy spread is kept small along most of the accelerator.
The relatively low frequency of the ILC linac is ideally suited for accelerating
and conserving ultra-small emittance beams.
The small wake fields and low energy spread ultimately result in relatively
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relaxed alignment tolerances for the various components (focusing magnets,
beam position monitors, accelerating structures), for which modern optical
survey techniques are sufficient.
Table 1.1 lists all important ILC linac parameters relevant to beam dynam-
ics issues.

ILC collider

Accelerating gradient Eacc[MV/m] 31.5
Injection energy Ei[GeV ] 5
Bunch charge Ne[1010] 2.0
Bunch spacing ∆tb[ns] 308
Bunch length σz[µm] 300
Norm. design emittance εx, εy[10−6m] 9.6, 0.04
Norm. emittance at injection εx, εy[10−6m] 8, 0.02
Beam size at injection σx,i, σy,i[µm] 320, 16
Beam size at linac exit σx,f , σy,f [µm] 30,1
Initial uncorr. energy spread σE,i/E[%] 2.5
Off–crest RF phase ΦRF [◦] 5
Correlated energy spread δcor[10−4] 3
Total spread σE,f/E at linac exit [10−4] 6

Table 1.1: Overview of beam parameters in the main linac

1.5 Overview of the Tesla Test Facility linac

The major challenge for the TESLA collaboration was to prove the feasibility
and reliability of accelerating gradients well above 25 MV/m, i.e. high enough
for the 500 GeV linear collider. The TTF linac at DESY Hamburg was con-
structed to show that the high gradients achieved in cavity tests, could be
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maintained during the assembly into a linac test string, and then successfully
operated with auxiliary systems to accelerate an electron beam to a few hun-
dreds MeV. The basic characteristics of the TTF linac were designed to be as
consistent as possible with the parameters of the TESLA design. The original
proposal for the TTF was for a linac test string of four cryogenic modules,
each containing eight superconducting 9–cell TESLA structures. The initial
goal was 15 MV/m, which was at that time substantially higher than super-
conducting cavities operated at other accelerator laboratories. Shortly after
finishing the first design of the TTF linac, it became clear that the test linac
would be almost ideal to drive a Free Electron Laser (FEL) based on the
principle of the Self Amplified Spontaneous Emission (SASE): therefore, the
overall layout was changed e.g. introducing a two–stage bunch compression
in order to increase the peak current, and the FEL became part of the TTF
project (see Fig. 1.3).

Figure 1.3: Schematic layout of Tesla Test Facility phase 2 linac.

The TTF linac program for the accelerator modules was planned to check
many of the aspects of the operation in the linear collider:

• gradient achievable in a standard linac module;

• input coupler and Higher Order Modes (HOM) coupler performance;

• RF control of multi–cavity systems;

• Lorentz force detuning and microphonic noise effects;
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• RF conditioning of cavities and couplers;

• vacuum performance / failure recovery potential;

• cryostat design and cryogenic operation / heat load;

• dark current;

• energy and beam position feedback control;

• diagnostic;

• bunch compression;

• alignment and emittance preservation.

In its present set-up, the test facility linac consists of the following sections:

• a RF photo–injector;

• five accelerator modules;

• two bunch compressor sections;

• a collimator section;

• three undulators;

• a high energy beam analysis area / photon beam diagnostics.

The injector area includes the electron gun, focusing lenses, and beam steer-
ers. The TTF linac comprises five cryomodules, each 12.2 m in length. Each
cryomodule contains eight 9–cell cavities, a superconducting quadrupole–
steerer doublet, and a cold cavity type beam position monitor. Each ac-
celerating cavity has an input coupler for RF power, a pickup antenna to
measure the cavity field amplitude and phase, two HOM damping couplers,
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Figure 1.4: Cross section of cryo-module

Figure 1.5: TTF Cryo-module

and a frequency tuning mechanism (Figs. 1.5, 1.4).
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Recently, stimulated by the users of the FEL and the first exciting re-
sults obtained, the suggestion was made to find a compact name for the
TTF/VUV–FEL facility which is more attractive and easier to pronounce in
different languages. On April 6th, 2006, the DESY Directorate decided for
the new name: FLASH, standing for Freie–Elektronen–LASer in Hamburg,
or equivalent in other languages.

1.6 Design of the TESLA cavities

The TESLA cavities are RF structures of 9–cell niobium resonators, of 1 m
length, (fig. 1.6) cooled by superfluid Helium to 2 K and operating at L–band
frequency (1.3 GHz).

Figure 1.6: The 9–cell niobium
TESLA cavity.

Figure 1.7: Side view of 9–cell cav-
ity with the main coupler port and two
higher–order mode couplers

Each of the eight cavities of each module is incased in a titanium helium
vessel. The accelerating field is carried by the fundamental TM mode with a
frequency of 1.3 GHz, which is powered by a coaxial input coupler in a stand-
ing wave pattern (see Fig. 1.7). The cavity iris diameter is 7 cm, inversely
proportional to the RF frequency. To adjust the fundamental frequency, a
mechanical tuning system driven by a stepping motor is mounted to the ves-
sel.
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Figure 1.8: HOM couplers installed at either side of the TESLA cavities (courtesy N.
Baboi). Two types are used at the TTF cavities: (a) a demountable Saclay type and (b)
a welded DESY type.

One of the primary sources of transverse emittance dilution in the TESLA
modules are the transverse wake fields of higher frequency modes excited in
the accelerating cavities by long trains of intense bunches. These higher–
order modes must be damped to avoid multi–bunch instabilities and beam
breakup. The lower the quality factors Q (see the definition at section 2.6.2)
of the HOMs the lower the amplitude of the fields will be which are excited
by the bunch train. The quality factor of the HOMs are reduced by HOM
couplers, which are mounted on the beam pipes at both ends of each TESLA
cavity (Figs. 1.7, 1.8). To damp not only monopole and dipole but also
quadrupole modes and modes of even higher azimuthal order, the angle be-
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tween two HOM couplers of one cavity is chosen as 115◦. Another problem
might arise from ”trapped modes”, which are concentrated in the center cells
and have low field amplitudes in the end cells and therefore are badly coupled
to the HOM dampers. By an asymmetric shaping of the end cells, the field
of some of these modes is enhanced at one or both of the cavity ends.

Most losses occur at low frequencies, where the conductivity of the super-
conducting surface is several orders higher than that of normal conducting
walls. Part of this power is extracted by input– and HOM–couplers, but
high frequency fields propagate along the structure and are reflected at nor-
mal and superconducting surfaces. In order to reduce the losses at 2 K and
4 K, a special HOM absorber operates at 70 K, where the cooling efficiency
is much higher. The absorber basically consists of a pipe of absorbing ma-
terial mounted in a cavity–like shielding, and integrated into the connection
between two modules.

1.7 Thesis purpose, motivation and overview

Controlling beam alignment in the cavities is important in order to avoid
transverse kicks on the beam from the dipolar HOMs, which may lead both
to a single–bunch deformation and to beam break–up along the bunch train.
The same HOM signals can be used to monitor the offset of the beam with
respect to the cavity axis, since their amplitude is proportional to it. To
improve the alignment tolerances for the collider, and the XFEL, the beam–
based method should achieve a centering resolution significantly better than
500 µm obtained by the cavity mechanical alignments.

This thesis aims at demonstrating the potential of using the dipole signals
for measuring the cavity alignment in the cryo–modules and monitoring the
beam position in the cavities.
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The principle of measuring the beam position with respect to the electric
axis of a cavity by the detection of the beam generated dipole modes is not
new. RF beam position monitors are based on this principle.
Using dipole modes generated in the X–band accelerating structures was also
foreseen in the warm collider designs, like NLC at SLAC and JLC at KEK,
to align the structures at the micrometer level and reduce the wake fields.

The difficulty for the TESLA cavities comes from two factors:

• The mechanical tolerance for the cavity construction, and particularly
the relative position of the nine cell centers, is of the same order of
magnitude, ∼ 400 µm r.m.s., as the tolerance (Table 1.2) for the global
alignment of the cavities in the cryo-modules. Therefore the ”beam–
based alignment” (i.e. cavity misalignment observation by using the
beam trajectory as reference axis and the dipole modes as high resolu-
tion signal, with a better precision than that provided by the mechan-
ical alignment) is subject to a basic difficulty since the position of the
electric axis of the cavities, corresponding to a zero–amplitude signal
is as badly known as the position of the cavities themselves.

• The dipole mode polarization planes are also unknown, because of the
imperfections of the axial symmetry of the cavities. In comparison,
a cavity BPM for the beam position monitors based on RF cavities,
where this planes are fixed by the position of the RF antennas and
correspond usually to the horizontal and vertical planes.

The general purpose of this thesis is to show that, despite these two dif-
ficulties, the dipole modes can be used to monitor the beam position with
a resolution better than the mechanical alignment. This in turn opens the
possibility to use the beam signal to probe the alignment tolerances in the
cryomodules as well as the cryomodule alignment, by using the beam axis as
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Alignment Tolerances

Quadrupole postion σquad = 300 µm
Cavity position σcav = 300 µm
Cavity angle (pitch) σ′cav = 200 µrad
BPM position σbpm = 200 µm
BPM resolution σres = 10 µm
Cryomodule position σmodule = 200 µm

Table 1.2: Tolerances for the cavity alignment (r.m.s.) for the ILC design.

a reference.

The knowledge of the electromagnetic interaction between a beam and
the surrounding vacuum chamber is necessary in order to optimize the ac-
celerator performance in terms of stored current, emittance, luminosity, and
then, as it will be shown in this work, beam diagnostics and alignment.

In the first part of this thesis, analytical approaches to the problem will
be described. The aim is a better understanding of the response of the elec-
tromagnetic field, due to the passage of the beam inside a cavity, with wake
fields propagation. The wake field of a bunch of charged particles travers-
ing a resonant cavity is of great interest for particle accelerators and storage
rings, as it permits calculating the coupling impedance as well as the eval-
uation of the energy loss of the bunched beam. The only geometry which
permits exact analytic calculations of the wake fields is the closed cylindrical
cavity, commonly called ”pill–box”. Several different approaches to calculate
the electromagnetic modes and wake field of a bunch of particles traversing a
pill–box cavity have been published in the literature, but we want to obtain
these results by using an original method. Finally, the mode–analysis can
be generalized to arbitrary cavities, for which the wake fields is obtained in
terms of loss parameters of each of the resonant modes.
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In the second part, the alignment of the beam through the cavities has
been experimentally studied at TTF, using the HOM signals generated by
the beam in the superconducting 9–cell TESLA cavities. The method con-
sists of moving the beam in position and angle and monitoring selected dipole
mode amplitudes with a spectrum analyzer. The beam is aligned when the
signal is minimum with a resolution of the order of 50 µm.
The exact frequency values of each mode in all 40 TTF cavities have been
found using a spectrum analyzer, and first studies on the possibility to align
the beam in cavities have been made. Also first study on cavity eccentrici-
ties and modes polarizations, have been performed for the first accelerating
cryomodule, and its large misalignment with respect to the gun has been
discovered.

The third part of this thesis presents the experimental results on the
monitoring of dipole modes by using an alternative data acquisition setup.
A time–domain based waveform recorder system that captures information
from each mode has been built at SLAC with the following properties:

• possibility of monitoring dipole mode amplitude and phase;

• monitored several modes at the same time;

• stored data from several cavities at the same time.

By steering the beam through the TTF cryomodules, the HOM signals are
used to estimate the residual internal alignment errors of the cavities with a
resolution about two orders of magnitude lower than that of cavity mechan-
ical alignments.



Chapter 2

Analytical resolution model

2.1 The Accelerating gap

RF acceleration is obtained by creating a RF field inside one or more gaps
of the vacuum chamber which is supposed to be metallic. These accelerating
gaps can be obtained with two conceptually different devices:

– drift tubes

– cavity resonators

First we study the behavior of a gap (no matter how it is made). We make
the hypothesis that the electric field Ez is uniform along the axis of the gap
and depends sinusoidally on time t:

Ez = E0 cos(ωt + ϕ) . (2.1)

The phase ϕ is defined in such a way that the particle crosses the middle of
the gap (z = 0) at t = 0. The voltage gain is then (Fig. 2.1):

23
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V = E0

∫ +G/2

−G/2

cos(ωt + ϕ) dz . (2.2)

Usually, for electrons, the energy imparted in a single pass is small compared

Figure 2.1: RF gap.

with the kinetic energy of the particle. In this case we assume that the speed
of the particle does not change during the transit. Consequently z = βct and
Eq.(2.2) becomes:

V = E0

∫ +G/2

−G/2

cos

(
ωz

βc
+ ϕ

)
dz = 2E0 cos ϕ

sin ωG
2βc

ω
βc

. (2.3)

Rearranging we write:

V = E0G cos ϕ
sin ωG

2βc

ωG
2βc

= E0Gτ cos ϕ , (2.4)
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where τ is the transit–time or gap factor.
Defining the transit angle θ = ωG

βc
= 2πG

βcT
= 2π G

λp
, where λp = vT is the

distance covered by the particle during one period T of the RF field, the
transit–time factor becomes:

τ =
sin θ/2

θ/2
. (2.5)

2.2 The drift tube: the synchronous condition

Schematically we can imagine that a portion of the vacuum chamber is re-
placed by a shorter tube which is connected with the RF voltage. In Fig.2.2
G is the gap length and L is the distance between the centers of the two
gaps. If the free–space wavelength of the electric field is much larger than
the physical length L–G, then we can assume that the whole drift tube has
the same voltage. Consequently if the electric field in gap (1) is:

Ez,1 =
V0

G
cos(ωt + ϕ) (2.6)

then in the gap (2) we have:

Ez,2 = −V0

G
cos(ωt + ϕ) . (2.7)

It is then evident that the energy gained by the particle passing through gap
(1) will be doubled if and only if:

ωL

βc
= π . (2.8)
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Figure 2.2: The physical length of the drift tube is L–G, while G is the length of each
gap.

Nevertheless to find the effect of the drift tube, we proceed as in the previous
case and evaluate the integral:

V = E0

{∫ +G/2

−G/2

cos(ωt + ϕ)dz −
∫ L+G/2

L−G/2

cos(ωt + ϕ)dz

}
, (2.9)

where E0 = V0

G
in Eq. 2.6.

Using the same substitution as above, z = βct, and integrating, we obtain
the general formula:

V = E0G
sin θ/2

θ/2

[
cos ϕ− cos

(
ϕ +

ωL

βc

)]
. (2.10)

It is then confirmed that if ωL
βc

= π, then:

V = 2E0Gτ cos ϕ . (2.11)



2.3. CAVITY RESONATORS 27

If λp = βcT is the distance covered by the particle during one RF period,
then the synchronism condition (2.8) becomes:

L =
λp

2
=

βλ

2
. (2.12)

2.3 Cavity resonators

When calculating the electromagnetic fields in a completely enclosed cavity,
we have to solve the field equations within the cavity for certain boundary
conditions around its surface. A common approach is to expand the electric
and magnetic fields in terms of orthogonal eigenfunctions of the Laplacian
operator [Sla50].
These functions are solutions of the vacuum wave equations

Figure 2.3: Boundary conditions at a perfect conducting surface S with outer normal n.

(
∇2 − 1

c2

∂2

∂t2

)
E = 0 (2.13)
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(
∇2 − 1

c2

∂2

∂t2

)
B = 0 , (2.14)

satisfying the boundary conditions for a perfectly conducting cavity surface

n× E = 0 n ·B = 0 . (2.15)

Here n is the outer normal to the cavity surface S. Accordingly the electric
field E has no tangential component over S, whereas the magnetic field H

has no component parallel to n, see figure 2.3.
To solve the inhomogeneous problem of the electromagnetic field excited by
a charged current, in a standard theoretical study, we would go, from the
basis of the Maxwell equations, through the following steps (see also [Sla50]
and [Lie01]):

• define a set of orthogonal eigenfunctions for the field in a cavity,

• expand the time dependent electric and magnetic fields in a cavity in
terms of these eigenfunctions,

• use the Maxwell equations to find relations between the time dependent
expansion coefficients.

But, in the fifth paragraph of this chapter, we will still focus on an alternative
and novel resolution model.

2.4 Wake fields

The electromagnetic interaction of an intense charged particle beam with its
vacuum chamber surroundings plays an important role for the beam dynam-
ics and collective beam instabilities in an accelerator. When the geometry of
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the walls changes, the wall currents can not keep up with the bunch (middle
in Fig. 2.4). A part of the electromagnetic field generated by the charge
remains behind. When the beam tube narrows again (right), reflections of
the field may occur. This constitutes the so–called wake fields. Another
charge, following the first one, interacts with these fields, leading to a change
in this energy or an orbit deflection. Thus, wake fields, generated by a mov-
ing particle in the accelerator pipe and objects such as RF cavities, bellows,
monitors, etc., affect the motion of particles in the tail part of the beam
causing the parasitic loss, beam energy spread, and instabilities. The effect
of wake fields is usually of the same order of magnitude as the space charge
effect. While the space charge forces approach zero in the ultrarelativistic
limit, wake fields remain finite for an ultrarelativistic beam due to resistivity
of the accelerator walls and non–smoothness of the chamber. The effect of

Figure 2.4: Wake field generation when a Gaussian bunch passes a change in geometry
in the vacuum pipe. Three moments in time are shown.[By courtesy of N. Baboi]

wake fields is an increasingly important issue, since operating regimes are
continually moving towards higher current and shorter bunches. To avoid
collective beam instabilities that limit the accelerator performance, an accu-
rate numerical modeling of wake fields and their interaction with the beam
is necessary.

In this section we show how the longitudinal and transverse wake fields
can be calculated from the eigenmodes of the empty cavity. Historically a
simpler, though less rigorous method, employing energy conservation argu-
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ments was first used to do the same thing ([Mor69], [Wat58]). The more
direct method is employed here.

2.4.1 Overview on the normal mode expansion of fields

in a cavity

The electric field E(x, t) and the magnetic induction B(x, t) can be written
in terms of a vector potential A(x, t) and a scalar potential Φ(x, t) (in mks
units) as:





B = ∇×A

E = −∂A
∂t
−∇Φ

∇ · E = ρ
ε0

.

(2.16)

In the Coulomb gauge {
∇ ·A = 0

−∇2Φ = ρ
ε0

,
(2.17)

Maxwell’s equation

∇×B = µ0j +
1

c2

∂E

∂t

becomes [Ban85]:

∇2A− 1

c2

∂2A

∂t2
− 1

c2

∂∇Φ

∂t
= −µ0j , (2.18)

where the symbol ∇2 is the vector Laplacian operator, defined as:

∇2A ≡ ∇ (∇ ·A)−∇× (∇×A) . (2.19)

Note that the vector Laplacian operator, like the scalar Laplacian, is a neg-
ative self-adjoint operator.
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Let us restrict the domain of interest to be within a closed cavity with per-
fectly conducting walls. We expand the vector potential in terms of the set
aλ as:

A(x, t) =
∑

λ

qλ(t)aλ(x) (2.20)

where

∇2aλ +
ω2

λ

c2
aλ = 0 , (2.21)

with ∇ · aλ = 0, and with aλ × n̂ = 0 on the metallic surface. The aλ are
orthogonal and complete in that they can be used to compose any transverse
A satisfying the metallic boundary condition at any particular instant in
time. By a transverse field we mean here one with zero divergence every-
where. Similarly, we expand the scalar potential as:

Φ(x, t) =
∑

µ

rµ(t)φµ(x) (2.22)

where

∇2φµ +
Ω2

µ

c2
φµ = 0 , (2.23)

with φµ = 0 on the metallic surface. The φµ are orthogonal and complete
in that they can be used to compose any potential φ satisfying the metal-
lic boundary condition φ = 0 on the metallic surface at any instant in time.
The φµ are needed whenever source terms are present within the cavity. Note
that in general the complete sets of the eigenvalues for the vector Laplacian
operator and for the scalar Laplacian operator are different.
Now substituting 2.20 and 2.22 into 2.18, gives:
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∑

λ

(
q̈λ + ω2

λqλ

)
aλ +

∑
µ

ṙµ∇φµ = µ0c
2j . (2.24)

Taking the scalar product of Eq. 2.24 with aλ′ and integrating over the cavity
volume V gives:

∑

λ

{ (
q̈λ + ω2

λqλ

) ∫

V
aλ′·aλ dV

}
+

∑
µ

{
ṙµ

∫

V
aλ′·∇φµ dV

}
= µ0c

2

∫

V
j·aλ′ dV .

(2.25)

The second integral of Eq. 2.25 can be written as:

∫

V
aλ′ · ∇φµ dV =

∫

V
∇ · (φµaλ′) dV−

∫

V
φµ (∇ · aλ′) dV . (2.26)

The first integral on the right side of the above equation vanishes since φµ = 0

on the boundary (by the divergence theorem); the second term vanishes since
the Coulomb gauge is used. Thus, if we normalize the aλ as [Ban85]

ε0

2

∫

V
aλ′ · aλ dV = Uλδλλ′ , (2.27)

where δλλ′ is the Kronecker delta and Uλ is the energy density stored in the
electromagnetic field due to the mode λ and using the identity µ0ε0c

2 = 1,
we obtain [Ban83]1:

q̈λ + ω2
λqλ =

1

2Uλ

∫

V
j · aλ dV . (2.28)

Note that whenever there is no current in the cavity, the qλ vary sinusoidally
at frequencies ωλ (if they are not identically zero). In this case A can be

1c2 = 1
µ0ε0

.



2.4. WAKE FIELDS 33

written as:

A(x, t) =
∑

λ

Cλaλ (x) cos(ωλt + θλ) (2.29)

where the Cλ and θλ are constants depending on how the modes were gener-
ated. Therefore we see that the aλ are the eigenmodes of the empty cavity
and the corresponding ωλ are the resonant frequencies.
Note that, from Eq. 2.21, the frequencies ωλ scale naturally like the inverse
of the structure dimension, i.e. ωλ ∝ a−1, where a is a characteristic length
of the structure.

Similarly, beginning with Maxwell’s equation ∇ · E = ρ
ε0
, combined with

the 3rd equation in Eqs. 2.16, gives:

∇ ·
(
−∂A

∂t
−∇Φ

)
=

ρ

ε0

⇒ −∇
(
−∂A

∂t

)
−∇2Φ =

ρ

ε0

,

and then, from the Coulomb gauge and from 2.22 we get:

−∇2Φ =
ρ

ε0

⇒
∑

µ

rµ (t)
[−∇2φµ (x)

]
=

ρ

ε0

.

(2.30)

Now, recalling Eq. 2.23 we obtain:
∑

µ

rµ

Ω2
µ

c2
φµ =

ρ

ε0

; (2.31)

if we take the scalar product of 2.31 with φµ′ and integrate over the volume
V:

rµ

Ω2
µ

c2

∫

V
φµ · φµ′ dV =

ρ

ε0

. (2.32)



34 CHAPTER 2. ANALYTICAL RESOLUTION MODEL

We normalize in this way:

1

2µ0

∫

V
φµ · φµ′ dV = Tµδµµ′ , (2.33)

and substituting in 2.32 we get

rµ =
1

2Ω2
µTµ

∫

V
ρφµ dV . (2.34)

Whenever there are no charges in the cavity, all the rλ (and thus also Φ) are
zero.

Thus, given the homogeneous solutions (aλ, φµ) and the sources j, ρ, we
can solve for the qλ, rµ from Eqs. 2.28 and 2.34. These in turn allows us to
solve for E and B by way of Eqs. 2.16, 2.20 and 2.22. The electric field is
given by

E = −
∑

λ

(q̇λaλ)−
∑

µ

(rµ∇φµ) (2.35)

and the magnetic induction is

B =
∑

λ

qλ∇× aλ . (2.36)

The stored energy is given by

ε =
1

2

∫

V

(
ε0E

2 + B2/µ0

)
dV

=
∑

λ

(
q̇2
λUλ + ω2

λq
2
λUλ

)
+

∑
µ

r2
µΩ2

µTµ . (2.37)
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2.4.2 Longitudinal and transverse wake potentials

Consider a closed, empty (vacuum, no sources) cavity with perfectly con-
ducting walls. An exciting particle with charge Q traverses the cavity at
velocity v = c. We arrange our axes such that this charge enters the cavity
at z = 0 at time t = 0 and follows the z–axis. It leaves at z = L. The
longitudinal wake potential Wz (more precisely, the δ–function longitudinal
wake potential) is defined as the total voltage lost by a test charge following
at a distance s on the same path and also at v = c, divided by Q. Thus

Wz(s) = − 1

Q

∫ L

0

dz Ez(z, (z + s)/c) (2.38)

where Ez(z, t) is the z component of E on the z–axis due to the exciting
charge. Note that since a signal cannot travel faster than the speed of the
light, Wz = 0 for s < 0.
The usefulness of this definition is that Wz can be used as a Green’s function
for computing the voltage loss within an ultra-relativistic bunch of arbitrary
shape. In this case the voltage loss per unit total charge, noted Wz, is also
called the wake potential, or sometimes the bunch wake to differentiate it
from Wz. The two wakes are connected by

Wz(s) =

∫ ∞

0

ds′ I ′(s− s′)Wz(s
′) , (2.39)

where I ′(s) is the charge distribution of the bunch. Note that cI ′(s) simply
equals the current distribution I(t = s/c). Approximating the bunch as rigid
is normally valid since a high energy beam does not change its shape over the
length of a cavity. Approximating the speed as v = c is valid since the wake
fields of a cavity turn out to be independent of the energy of the bunch at
high energies. This approach differs greatly from the more difficult method
(which still needs to be done for low energy beams) of self consistently solv-
ing for the fields in the cavity and the beam motion.
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To calculate Wz we need first to find the fields in the cavity due to the ex-
citing charge. The source terms due to the exciting charge are

ρ(x, t) = Qδ(x)δ(y)δ(z − ct)

j(x, t) = ẑcρ(x, t) .
(2.40)

Eq. 2.28 becomes

q̈λ + ω2
λqλ =

Qc

2Uλ





0 t < 0

aλz(0, 0, ct) 0 < t < L/c

0 t > L/c ,

(2.41)

where aλz(x, y, z) is the z–component of aλ. Using the initial condition
q(0) = q̇(0) = 0 (no fields in the cavity before the charge enters) and by
variation of parameters, we get

qλ(t) =
Qc

2Uλωλ

∫ min(t,L/c)

0

dt′ sin ωλ(t− t′)aλz(0, 0, ct
′) . (2.42)

Similarly, substituting 2.40 into 2.34, we get:

rµ(t) =
Q

2Ω2
µTµ





0 t < 0

φµ(0, 0, ct) 0 < t < L/c

0 t > L/c

(2.43)

where the three arguments of φµ represent respectively its x, y and z depen-
dence.
With the above two equations and Eqs. 2.35–2.37 we can construct the fields
and stored energy due to the exciting charge for all time solely in terms of
the empty cavity solutions aλ, φµ, ωλ.
From Eqs. 2.37 and 2.42, we see that the energy left in the cavity after the
exciting charge has left (t > L/c) is
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ε =
∑

λ

(
q̇2
λ + ω2

λq
2
λ

)
Uλ

= Q2
∑

λ

|Vλ|2
4Uλ

, (2.44)

where

Vλ =

∫ L

0

dz exp (iωλz/c) aλz(0, 0, z) . (2.45)

Defining the loss factor kλ as:

kλ =
|Vλ|2
4Uλ

, (2.46)

the stored energy becomes simply [Ban85]:

ε = Q2
∑

λ

kλ . (2.47)

Thus kλ gives the amount of energy deposited in mode λ by the exciting
charge, hence the name loss factor.

Since the potential Vλ, for the dipole modes in a cylindrical cavity, de-
pends linearly on the offset where it is calculated, it is useful for our following
calculations, to normalize this quantity by the cavity (or iris) radius, and then
Eq. 2.46 becomes:

kλ =
|Vλ|2
4Uλa2

, (2.48)

The variables on the right side of Eq. 2.46 can have the following phys-
ical interpretation: suppose that the mode λ of the empty cavity has been
excited by whatever method; from the definition of Uλ (2.27) we see that it
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can represent the energy stored in this mode, up to a multiplicative constant.
If now a test charge traverses the cavity at v = c along the z–axis, then |Vλ|2
can be thought of as the square of the maximum voltage it can gain (with
respect to time of entrance) from this mode, up to the same multiplicative
constant. Thus, just like the eigenfrequency ωλ, kλ is a property of the empty
cavity depending on its shape. Unlike ωλ it depends also on the integration
path used for calculating Vλ.

Now, back to the calculation of the wake potential in terms of the normal
mode solutions of the cavity, it can be shown [Ban85] that the problem is
solved in three pieces (test charge enters before, at the same moment, or after
the exiting charge). Combining Eqs. 2.35 and 2.38 yields:

Wz (s) =
1

Q

[∑

λ

∫ L

0

dz q̇λ

(
z + s

c

)
aλz (0, 0, z)

+
∑

µ

∫ L

0

dz rµ

(
z + s

c

)
∂φµ

∂z
(0, 0, z)

]
, (2.49)

then substituting for qλ, rµ from Eqs. 2.42 and 2.43, and integrating, give us
our final results:

Wz(s) =





∑

λ

kλ2 cos
(ωλs

c

)
exp

(
− ωλ

2Qλ

s

c

)
s > 0

∑

λ

kλ s = 0

0 s < 0 .

(2.50)

Here Qλ is the quality factor, defined as:

Qλ =
ωλελ

Pλ

(2.51)
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with ελ is the energy stored in the λ mode, and Pλ is the power loss at the
walls.
Note that due to the symmetry introduced by taking the velocities to be c,
Wλ does not depend on the scalar potential solutions φλ, even if the test
charge enters while the exciting charge is still in the cavity (0 < s < L). For
v 6= c however, the scalar potential solutions can become important. Wλ then
becomes very complicated, and the general usefulness of the wake potential
concept is lost. Note also that, since Wλ is expressible as a sum of cosines,
its maximum value is at s = 0+.

The transverse wake potential can be determined from the longitudinal
one, by using the Panofsky–Wenzel theorem:

∇⊥Wz(r, s) = ∂sW⊥(r, s) (2.52)

For significant case of s > 0, we obtain [Pal94],[Ban85]

W⊥λ(s) =
∑

λ

2k⊥λ
c

ωλ

sin
(
ωλ

s

c

)
exp

(
− ωλ

2Qλ

s

c

)
(2.53)

where k⊥λ is the normalized transverse loss factor as defined in Eq. 2.48.

2.4.3 Scaling of wake fields effects with frequency.

Let us now restrict our interest to cylindrically symmetric structures. We will
now use polar coordinates (r, ϑ) to denote transverse position. The exciting
charge traverses at r = r′, ϑ = 0 (on the x–axis). Let the tube radius of the
structure be denoted by a. In such a structure all the modes depend on ϑ as
eimϑ, where m is an integer. The m = 0, 1, 2 modes are called respectively the
longitudinal (monopole), dipole, quadrupole modes. Therefore the m–pole
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component of the wakes can be written as a sum over all the m–pole modes
as [Ban85]:

Wz,m =

(
r′

a

)m (r

a

)m

cos (mϑ)
∑

n

2kmn(a) cos
(ωmns

c

)
, (2.54)

for s > 0, where kmn is the loss factor defined before (2.46); while for m 6= 0,
from the Panofsky–Wenzel theorem (2.52):

W⊥,m = m

(
r′

a

)m (r

a

)m−1 (
r̂ cos (mϑ)− ϑ̂ sin (mϑ)

) ∑
n

2kmn(a)

ωmna/c
sin

(ωmns

c

)
.

(2.55)

For m = 0, W⊥,m = 0. In the above equations kmn(a) is the loss factor
calculated at r = a.

To get the total wake field we need to sum over all the multiple con-
tribution. Normally bunches remain near the axis and (r/a), (r′/a) can be
considered small. Then the longitudinal wake field is dominated by the lon-
gitudinal modes (m = 0) whereas the transverse wake field is dominated by
the dipole modes (m = 1). Thus normally we can approximate the wakes as:

Wz '
∑

n

2k0n(a) cos
(ω0ns

c

)
s > 0 (2.56)

W⊥ '
(

r′

a

)
x̂

∑
n

2k1n(a)

(ω1na/c)
sin

(ω1ns

c

)
s > 0 . (2.57)

Note that the longitudinal wake is approximately independent of the trans-
verse position of both the exciting charge and the test charge. The transverse
wake depends on the exciting charge as the first power of its offset. The
transverse wake is in the x–direction and is independent of the test charge’s
transverse position.
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From its definition, see Eq. 2.46, it follows that the the loss factor kmn(a)

scales like the inverse of the length, i.e. like ωmn, while the loss factor per
meter, of course, scales as ω2

mn.
Now, using the Taylor series, one can show that:

Wz ≈ ω0n ·
(

1− ω2
0ns2

c2

)
ω0n ∼ c/a , k0n ≈ ω0n [Mon85]

⇒ Wz ≈ ω0n (2.58)

⇒ Wz

g
≈ ω0n2

λ
≈ ω2

0n ,

where g = λ/2 the tube length and λ is the wave–length. Hence the longi-
tudinal wake fields per unit length scale approximatively as f 2. As for he
transverse potential, at short distances:

W⊥ ≈ k1n

ω1n

· c

a

(ω1ns

c

)
ω0n ∼ c/a [Mon85], k1n ≈ ω1n ≈ 1/a

⇒ W⊥
g

≈ 2ω2
1n

λ
≈ ω3

1n , (2.59)

the transverse wake fields per unit of length scale approximatively as f 3.

2.5 Fields in a pill–box cavity: alternative method

2.5.1 Calculation of the vector potential A

As saw in the section 2.4.1, one needs to solve:





4A− 1
c2

∂2
t A = 0

∇ ·A = 0

A |∂V ×n = 0

(2.60)
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In a pill–box cavity like the one in Fig. (2.5), A(r, ϑ, z, t) is defined from

Figure 2.5: Pill–box cavity with length extension from −L to L.

z = 0 to z = L; from the Coulomb gauge we have:

∇ ·A = 0 ⇒ 1

r
∂r (rAr) +

1

r
∂ϑAϑ + ∂zAz = 0 (2.61)

and recalling the boundary conditions:

(Ar, Aϑ) |z=0,L = 0

⇒ ∂zAz |z=0,L = 0 .
(2.62)

• Extension of the field A over [−L,L] to a periodic C∞ function

We define a function Ã in this way2:

2from this moment we will use the notation:

0+ = 0 + ε

0− = 0− ε

L− = L− ε

−L+ = −L + ε ,

where ε is an infinitesimally small number (ε →∞).
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X Ãz

Ãz (r, ϑ, z) =

{
Az (r, ϑ, z) for z ∈ [0, L]

Az (r, ϑ,−z) for z ∈ [−L, 0]
(2.63)

and we have:

Figure 2.6: Ãz.

– Continuity at z = 0:

Ãz

(
r, ϑ, 0−

)
= Ãz

(
r, ϑ, 0+

) ≡ Az

(
r, ϑ, 0+

)

– Periodicity at z = ±L:

Ãz

(
r, ϑ, L−

)
= Ãz

(
r, ϑ,−L+

) ≡ Az

(
r, ϑ, L−

)

X Ãr,ϑ

Ãr,ϑ (r, ϑ, z) =

{
Ar,ϑ (r, ϑ, z) for z ∈ [0, L]

−Ar,ϑ (r, ϑ,−z) for z ∈ [−L, 0]
(2.64)
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Figure 2.7: Ãr,ϑ.

where we have again:

– Continuity at z = 0:

Ãr,ϑ

(
r, ϑ, 0−

)
= Ãr,ϑ

(
r, ϑ, 0+

) ≡ 0

– Periodicity at z = ±L:

Ãr,ϑ

(
r, ϑ, L−

)
= Ãr,ϑ

(
r, ϑ,−L+

) ≡ 0 .

X By construction one finds now:

– (even derivatives):

∂2p
z Ãz (z → 0+) = ∂2p

z Ãz (z → 0−) ≡ ∂2p
z Az (0+)
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– (odd derivatives):

∂2p+1
z Ãr,ϑ (z → 0+) = ∂2p+1

z Ãr,ϑ (z → 0−) ≡ ∂2p+1
z Ar,ϑ (0+)

and idem for L− and −L+.

• Demonstration of the continuity of (∂2p+1
z Az) and (∂2p

z Ar,ϑ)

X for z ≤ 0, ∂2p
z Ãr,ϑ (z) = −∂2p

z Ar,ϑ (−z) = −∂2p
z Ãr,ϑ (−z)

⇒ ∂2p
z Ãr,ϑ (z) continuous at z = 0 if ∂2p

z Ar,ϑ |z=0+,L−= 0;

X for z ≤ 0, ∂2p+1
z Ãz (z) = −∂2p+1

z Az (−z) = −∂2p+1
z Ãz (−z)

⇒ ∂2p+1
z Ãz (z) continuous at z = 0 if ∂2p+1

z Az |z=0+,L−= 0.

From Coulomb gauge: ∂zAz = − (
1
r
∂r (rAr) + 1

r
∂ϑAϑ

)

⇒ ∂zAz |z=0+,L−= 0 from boundary conditions, and also:

∂2p+1
z Az = − (

1
r
∂r (r (∂2p

z Ar)) + 1
r
∂ϑ (∂2p

z Aϑ)
)
,

and therefore: ∂2p+1
z Az |z=0+,L−= 0 if ∂2p

z Ar |z=0+,L−= ∂2p
z Aϑ |z=0+,L−= 0 ∀ (r, ϑ).

X Even derivatives of Ar and Aϑ:

(4A)r · 1
c
∂2

t Ar = 1
r
∂r (r∂rAr) + 1

r2 ∂
2
ϑAr + ∂2

zAr − Ar

r2 − 2
r2 ∂ϑAϑ − 1

c2
∂2

t Ar = 1,

⇒ ∂2
zAr = − 1

c2
∂2

t Ar − 1
r
∂r (r∂rAr)− 1

r
∂2

ϑAr + Ar

r2 + 2
r2 ∂ϑAϑ,

⇒ ∂2
zAr |z=0+,L−= 0 .

(4A)ϑ − 1
c2

∂2
t Aϑ = 1

r
∂r (r∂rAϑ) + 1

r2 ∂
2
ϑAϑ + ∂2

zAϑ − Aϑ

r2 + 2
r2 ∂ϑAr − 1

c2
∂2

t Aϑ = 0,

⇒ ∂2
zAϑ = 1

c2
∂2

t Aϑ − 1
r
∂r (r∂rAr)− 1

r2 ∂
2
ϑAϑ + Aϑ

r2 − 2
r2 ∂ϑAr,

⇒ ∂2
zAϑ |z=0+,L−= 0 ;
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and then, by recurrence we obtain:

(
∂2p

z Ar, ∂
2p
z Aϑ

) |z=0+,L−= 0,

⇒ (
∂2p+2

z Ar, ∂
2p+2
z Aϑ

) |z=0+,L−= 0 .

Conclusion: From A, solution of Maxwell Equation on [0, L], and the
boundary conditions, we know that Ã is C∞ periodic, of period 2L, then:

Az (r, ϑ, z, t) =
∞∑

p=0

∫
dωe−iωt cos

(pπz

L

)
A(p)

z (r, ϑ; ω)

Ar,ϑ (r, ϑ, z, t) =
∞∑

p=1

∫
dωe−iωt sin

(pπz

L

)
A

(p)
r,ϑ (r, ϑ; ω)

kp =
pπ

L
.

(2.65)

• Solving for A(p) (r, ϑ; ω)

From the wave equation and the Coulomb gauge:
{
4A− 1

c2
∂2

t A = 0 ⇒ 4A (r, ϑ, z; ω) + ω2

c2
A (r, ϑ, z; ω) = 0

∇ ·A = 0
(2.66)

Let us now introduce the differential operator:

¤s =
1

r
∂r (r∂r) +

1

r2
∂2

ϑ +

(
ω2

c2
− k2

p

)
, (2.67)

and then consider:
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◦ the r−component of the wave equation 2.66:

¤sA
(p)
r (r, ϑ; ω)− A

(p)
r

r2
(r, ϑ; ω)− 2

r2
∂ϑA

(p)
ϑ (r, ϑ; ω) = 0 ; (2.68)

◦ the ϑ−component of the wave equation:

¤sA
(p)
ϑ (r, ϑ; ω)− A

(p)
ϑ

r2
(r, ϑ; ω)− 2

r2
∂ϑA

(p)
r (r, ϑ; ω) = 0 ; (2.69)

◦ the z−component of the wave equation:

¤sA
(p)
z (r, ϑ; ω) = 0 ; (2.70)

◦ the Coulomb gauge fixing:

1

r
∂r

(
rA(p)

r

)
+

1

r
∂ϑA

(p)
ϑ − kpA

(p)
z = 0 . (2.71)

We use now the identity:

1

r2
∂r (r∂r (rφ)) =

1

r
∂r (r∂rφ) +

2

r
∂rφ +

φ

r2

=
1

r
∂r (r∂rφ) +

2

r2
∂r (rφ)− φ

r2
, ∀φ (2.72)

and then:

¤sφ = 1
r

(
¤s (rφ) + φ

r
− 2

r
∂r (rφ)

)
, ∀φ . (2.73)

Replacing φ by A
(p)
r :

◦ from Eq. 2.68 ⇒

¤s

(
rA(p)

r

)− 2

r

(
∂r

(
rA(p)

r

)
+ ∂ϑA

(p)
ϑ

)
= 0 ; (2.74)

◦ from Eq. 2.69 ⇒

¤s

(
rA

(p)
ϑ

)
− 2

r

(
∂r

(
rA

(p)
ϑ

)
− ∂ϑA

(p)
r

)
= 0 . (2.75)
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Notice that:
1
r
∂r

(
rA

(p)
r

)
+ 1

r
∂ϑA

(p)
ϑ = kpA

(p)
z = kp

iω
Ez

1
r
∂r

(
rA

(p)
ϑ

)
− ∂ϑA

(p)
r =

(∇×A(p)
)

z
= B

(p)
z .

(2.76)

Therefore:

◦ from Eq. 2.74 ⇒

¤s

(
rA(p)

r

)
=

2kp

iω
E(p)

z ; (2.77)

◦ from Eq. 2.75 ⇒

¤s

(
rA

(p)
ϑ

)
= 2B(p)

z ; (2.78)

◦ from Eq. 2.70 ⇒

¤sA
(p)
z = 0 ; (2.79)

◦ from Eq. 2.71 ⇒

1
r
∂r

(
rA

(p)
r

)
+ 1

r
∂ϑA

(p)
ϑ = kpA

(p)
z . (2.80)

One can now expand the fields into multiple components:

φ(p) (r, ϑ; ω) =
∞∑

m=0

eimϑφ(p,m) (r; ω) , ∀φ , (2.81)

in such a way that:

¤s = 1
r
∂r (r∂r) +

((
ω2

c2
− k2

p

)
− m2

r2

)

γ2
p ≡

(
ω2

c2
− k2

p

)
.

(2.82)

For the TM modes, Bz ≡ 0:



2.5. FIELDS IN A PILL–BOX CAVITY: ALTERNATIVE METHOD 49

◦ A
(p,m)
z

¤sA
(p,m)
z (r; ω) = 0

⇒ A
(p,m)
z (r; ω) = C

(p,m)
z Jm (γpr) ,

(2.83)

where C
(p,m)
z is a constant;

◦ A
(p,m)
ϑ

¤s (rAϑ)
(p,m) (r; ω) = 0

⇒ A
(p,m)
ϑ (r; ω) = 1

r
C

(p,m)
ϑ Jm (γpr) ,

(2.84)

where C
(p,m)
ϑ is a constant;

◦ A
(p,m)
r

B
(p)
z = 0 ⇒ ∂r

(
rA

(p,m)
ϑ

)
= imA

(p,m)
r

⇒ A
(p,m)
r (r; ω) = C

(p,m)
r J ′m (γpr)

⇔ γpC
(p,m)
ϑ = imC

(p,m)
r ,

(2.85)

where C
(p,m)
r is a constant;
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◦ from Eq. 2.80

1

r
∂r

(
r
(
imA(p,m)

r

))
+

(im)2

r
A

(p,m)
ϑ = imkpA

(p,m)
z

⇒ 1

r
∂r

(
r∂r

(
rA

(p,m)
ϑ

))
− m2

r2

(
rA

(p,m)
ϑ

)
= imkpA

(p,m)
z

⇒ ¤s

(
rA

(p,m)
ϑ

)
− γ2

p

(
rA

(p,m)
ϑ

)
+

m2

r2

(
rA

(p,m)
ϑ

)
− m2

r2

(
rA

(p,m)
ϑ

)
= imkpA

(p,m)
z

where the underlined components annihilate themselves,

⇒ γ2
p

(
rA

(p,m)
ϑ

)
= −imkpA

(p,m)
z

⇒ γ2
pC

(p,m)
ϑ = −imkpC

(p,m)
z ; (2.86)

◦ from the boundary conditions:

A
(p,m)
ϑ (R; ω) = A

(p,m)
z (R; ω) = 0

⇒ γpR = λmn , λmn = nth zero of Jm (λ) with n ≥ 1 ;

⇒ ω2
mnp

c2
= k2

p +
(

λmn

R

)2
,

(2.87)

and then:





A
(p,m)
r (r; ω) = −CmnpγpkpJ

′
m

(
λmn

r
R

)

A
(p,m)
ϑ (r; ω) = −Cmnp (−im) kp

1
r
Jm

(
λmn

r
R

)

A
(p,m)
z (r; ω) = Cmnpγ

2
pJm

(
λmn

r
R

)
.

(2.88)
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For the TE modes, Ez = 0 ⇒ Az = 0:

◦ A
(p,m)
r

¤s

(
rA

(p,m)
r

)
(r; ω) = 0

⇒ A
(p,m)
r (r; ω) = 1

r
C

(p,m)
r Jm (γpr) ,

(2.89)

where C
(p,m)
r is a constant;

◦ A
(p,m)
ϑ

1
r

(
∂r

(
rA

(p,m)
r

))
+ im

r
A

(p,m)
ϑ = 0

⇒ A
(p,m)
ϑ (r; ω) = C

(p,m)
ϑ J ′m (γpr)

⇔ imC
(p,m)
ϑ = γpC

(p,m)
r ;

(2.90)

◦ from the boundary conditions:

A
(p,m)
ϑ (R; ω) = 0

⇒ γpR = λ′mn , λ′mn = nth zero of J ′m (λ) with n ≥ 1 ;

⇒ ω2
mnp

c2
= k2

p +
(

λ′mn

R

)2

,

(2.91)

and therefore:




A
(p,m)
r (r; ω) = C ′

mnp
im
r

Jm

(
λ′mn

r
R

)

A
(p,m)
ϑ (r; ω) = C ′

mnpγpJ
′
m

(
λ′mn

r
R

)

A
(p,m)
z (r; ω) = 0 ,

(2.92)

and recalling from Eq. 2.16
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{
E = −∂tA

B = ∇×A

2.5.2 Single–cell accelerating cavities

In free space, waves of any frequency can propagate. The phase velocity
and the group velocity of such waves are the speed of the light and one can
demonstrate that such waves have a purely transverse polarization, so that
they are not usable for acceleration of charged particles.
Moreover, in a regular cylindrical waveguide only waves above a cutoff fre-
quency 3 can propagate and such waves can have a longitudinal electric field
component; the group velocity of such waves are below the speed of light, but
the phase velocity is above the speed of the light, thus a regular waveguide
is also an unacceptable device for acceleration of beams [Ten03].
The problem with the regular waveguide is that, with a phase velocity ex-
ceeding c, the accelerating phase of the wave will overtake the particles which
are to be accelerated, and ultimately the decelerating phase will overlap those
particles. One solution, then is to consider using the accelerating phase to
accelerate the particles, and then to separate the wave from particles, before
the decelerating phase can interact with them (Fig. 2.8). It would appear
that, by applying conducting boundary conditions in the longitudinal de-
gree of freedom, we at the last have created a time–dependent electric field
which is useful for acceleration of particles. We can now write, after imposing
the reality condition, the general solutions to the time–dependent fields in a

3ωc = 1√
µε

λmn

R where R is the waveguide radius and λmn is the nth zero of the Bessel’s
equation of the first kind, Jm
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TEmnp mode:

Er =
∑
mnp

(
−mωmnp

rγ2
p

)
bmnp cos (ωmnpt + mϑ) sin

(pπz

L

)
Jm

(
λ′mn

R
r

)

Eϑ =
∑
mnp

(
ωmnp

γp

)
bmnp sin (ωmnpt + mϑ) sin

(pπz

L

)
J ′m

(
λ′mn

R
r

)

Ez = 0 (2.93)

Br =
∑
mnp

(
pπ

γpL

)
bmnp cos (ωmnpt + mϑ) cos

(pπz

L

)
J ′m

(
λ′mn

R
r

)

Bϑ =
∑
mnp

(
mpπ

rLγ2
p

)
bmnp cos (ωmnpt + mϑ) cos

(pπz

L

)
Jm

(
λ′mn

R
r

)

Bz =
∑
mnp

bmnp cos (ωmnpt + mϑ) sin
(pπz

L

)
Jm

(
λ′mn

R
r

)
,

where λ′mn is the nth zero of the derivative of the Bessel’s equation of the
first kind, Jm and γp =

√
ω2

c2
− (

pπ
L

)2 (see Eq. 2.82), and a TMmnp mode:

Er =
∑
mnp

(
− pπ

γpL

)
amnp cos (ωmnpt + mϑ) sin

(pπz

L

)
J ′m

(
λmn

R
r

)

Eϑ =
∑
mnp

(
mpπ

rLγ2
p

)
amnp sin (ωmnpt + mϑ) sin

(pπz

L

)
Jm

(
λmn

R
r

)

Ez =
∑
mnp

amnp cos (ωmnpt + mϑ) cos
(pπz

L

)
Jm

(
λmn

R
r

)
(2.94)

Br =
∑
mnp

(
mωmnp

rγ2
pc

2

)
amnp cos (ωmnpt + mϑ) cos

(pπz

L

)
Jm

(
λmn

R
r

)

Bϑ =
∑
mnp

(
−ωmnp

γpc2

)
amnp sin (ωmnpt + mϑ) cos

(pπz

L

)
J ′m

(
λmn

R
r

)

Bz = 0 ,

where λmn is the nth zero of the Bessel’s equation of the first kind, Jm.
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Figure 2.8: Field patterns for several TE and TM modes in circular waveguide.

2.5.3 Eigenmodes in a pill–box cavity

From Eqs. 2.93 and 2.94, the expressions for the allowed resonant frequen-
cies of the TEmnp and TMmnp modes in a cavity of radius R and length L are:

ωTE
mnp = c

√(
λ′mn

R

)2

+
(pπ

L

)2

(2.95)

and

ωTM
mnp = c

√(
λmn

R

)2

+
(pπ

L

)2

. (2.96)

Thus, for a pill–box cavity, the solutions of the wave equations form two sets
of modes, denoted transverse magnetic (TM) modes and transverse electric
(TE) modes. TM modes have a longitudinal component of the electric field
with respect to the cavity axis (z axis), whereas the magnetic field is trans-
verse everywhere.
In contrast to this, TE modes have a longitudinal component of the mag-

netic field and the electric field is transverse everywhere. We saw above that
the pill–box TM modes are classified by three integer indices m,n, p.The cor-
responding electric field in z direction is
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Figure 2.9: Vector plot for selected eigenmode fields in a cylindrical pill–box cavity. The
size of the arrows indicates the relative amplitude of the electric field (left column) and
the magnetic field (right column) within the cavity. By courtesy of Matthias Liepe.

Ez =
∑
mnp

amnp cos (ωmnpt + mϑ) cos
(pπz

L

)
Jm

(
λmn

R
r

)
. (2.97)
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The meaning of this indices is as follows (for the TE–modes is similar):

• Modes with m = 0 are rotationally symmetric with respect to the cavity
axis z. These so–called monopole modes have a non vanishing longitu-
dinal component of the electric field at the beam axis, since J0(0) = 1.
Note that for all other Bessel function Jm(0) = 0, m 6= 0. Therefore
only modes of the type TM0np are useful for beam acceleration. Modes
with m = 1 are called dipole modes because of their field distribution,
see Fig. 2.9. These modes have a net deflection field on the beam axis
and are therefore not suitable in accelerating cavities, but may be used
to deflect a beam, as we shall see later. Further modes with m = 2 are
called quadrupole modes, and so on.

• According to equation 2.97, the electric field vanishes at the cylinder
wall of the pill–box (r = R) on account of the nth root of Jm. Thus n

gives the number of sign changes Ez, undergoes in radial direction.

• Finally the index p measures the number of sign changes Ez undergoes
along the cavity axis (z direction).

TE modes are classified in a similar manner. In an ideal pill–box cavity
the TE modes have no longitudinal electric field and thus cannot accelerate
the beam nor can an on–axis beam excite them.

When many pill boxes are coupled together, each mode degenerate into
as many coupled modes as the number of cells. The field lines are distorted,
the modes are no longer purely TE or TM. Nevertheless one keeps the clas-
sification of TM–like and TE–like modes.
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2.6 Shunt impendance and R/Q

In order to maintain an accelerating field in the cavity, it is necessary to store
electromagnetic energy in the cavity. Since that energy ultimately comes
from the electrical grid and has to be paid for, a useful quantity to calculate
is the net acceleration achieved for a given quantity energy of dissipated
power

R =
|V |2
Pλ

(2.98)

where Pλ is the power dissipated in the walls.

We will show that quality and loss factors, introduced previously in sec-
tion 2.4.2, are related to the impedance R. The coupling between the wave
and the charged beam is controlled by the loss factor, kλ, which is charac-
teristic for each mode λ. The quality factor Qλ, describes the energy loss
of mode λ which occurs primarily in the cavity walls. These parameters are
defined analytically in the following way:

kλ =
|Vλ|2
4Uλ

, Qλ =
ωλUλ

Pλ

,

where Vλ is the voltage corresponding to mode λ along a path parallel to
z, Uλ is the energy stored in the electromagnetic field of the mode and, as
introduced in Eq. 2.98, Pλ is the power dissipated in the walls. Low losses
imply a high Qλ. These losses may be reduced by choosing a material with
high conductivity, like a superconducting one, as in the case of the TESLA
cavities. The parameter R/Q is often used, which is related to the loss factor
through the equation:

(
R

Q

)

λ

=
4kλ

ωλ

=
|Vλ|2
ωλUλ

, (2.99)

where R is called the shunt impedance.
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The energy density ε is given by ([Jac75], [Rei93]):

ε =
1

2
(E ·D∗ + B ·H∗) , (2.100)

or in another form (see also 2.37):

ε =
1

2

(
εE2 +

1

µ
B2

)
. (2.101)

which becomes, using the electromagnetic components, and the indices seen
previously:

εmnp =
1

2

∫ R

0

∫ L

0

∫ 2π

0

[
ε
(
E2

rmnp
+ E2

ϑmnp
+ E2

zmnp

)
+

+
1

µ

(
B2

rmnp
+ B2

ϑmnp
+ B2

zmnp

) ]
dϑ · r . (2.102)

2.6.1 Energy gain

Let us now consider the energy gain through a cavity and once again the
electric field. We can express the electric field on the axis as simply:

Ez,mnp (z, t) = ξmnp · exp[i(ωt− kz)] , (2.103)

where ξmnp = f(r, ϑ), from 2.97. The energy gain is given by:

e dVmnp = e

∫ L

0

E · dl . (2.104)

If the beam is moving at the speed of light, in the longitudinal direction z,
and parallel to the axis (Fig: 2.10), then we can write:

t = t0 + z/c , (2.105)
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Figure 2.10: Parallel to the axis motion in a perfectly–conducting circular cylinder with
radius R and length L

with t0 the time at z = 0, and the energy gain, integrated over a distance
dz, between z = 0 and z = L as:

eVmnp = e

∫ L

0

Ez dz == eξmnp <
{

exp (iωmnpt0)

∫ L

0

dz exp [i (ωmnp/c− kp) z]

}
,

(2.106)

where kp = pπ
L
, L is the cavity length.

We define:

ψmnp = L ·
(ωmnp

c
− kp

)
, (2.107)

called transit angles. Recalling that TMmnp and TEmnp modes are standing
waves and that such a mode is composed of a left–travellling wave and e
right–travelling wave superimposed within the cavity, one can demonstrate
the result [Ten03]:
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Vmnp = ξmnpL

2

{
TLcos

(
ωmnpt0 + ψL

2

)
+ TRcos

(
ωmnpt0 + ψR

2

) }

ψL,R (Left and Right) = L
(ωmnp

c
± pπ

L

)

TL,R (Left and Right) ≡ sin(ψL,R/2)
ψL,R/2

.

(2.108)

Let’s now consider a particle moving along a straight trajectory which is
not parallel to the z axis (2.11). In this case we express the electric field

Figure 2.11: Motion in a perfectly–conducting pill–box with radius R and length L

as E(r(t), ϑ(t), z, t = t0 + s
c
), where s is the position along the particle path,

then, the voltage becomes:
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Vmnp =

∫

σ

{
ξrmnp exp

[
i
(ωmnps

c

)
− ikz

]
ds +

+ ξϑmnp exp
[
i
(ωmnps

c

)
− ikz

]
ds + (2.109)

+ ξzmnp exp
[
i
(ωmnps

c

)
− ikz

]
ds

}
.

Here σ is the particle trajectory, ξxmnp = f(rσ, ϑσ, zσ)4, with x = r, ϑ, z, and
s (rσ, ϑσ, zσ) is the unit vector along the particle path.
At this point it’s enough to solve this line integral by using mathematical
devices.

2.6.2 Matlab simulation

A Matlab program has been made to compute the Eq. 2.99 and find the
value of R/Q characterizing each mode excited by the passage of a particle
through a pill–box cavity, with any input angle and position by respect the
cavity axis (Fig. 2.11). Solving Eq. 2.102 one can use the well known
integrals, for m, p 6= 0:





∫ 2π

0
cos2 (mϑ) dϑ = π

∫ 2π

0
sin2 (mϑ) dϑ = π

∫ L

0
cos2

(
πp
L

z
)

dz = L
2

∫ L

0
sin2

(
πp
L

z
)

dz = L
2

,

4(rσ, ϑσ, zσ) are (r, ϑ, z) along the trajectory σ.
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Figure 2.12: Parallel trajectory simulation. The particle enters with ϑ = 5 mrad and
r = 5 µm and moves parallel to the axis.

and the conservation of energy, to consider only time t = 0, and obtain two
different expressions, for TE modes:





εTE
mnp = επL

4
b2
mnp

ω2
mnp

γ2
p

∫ R

0
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(
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R
r
)

+
(

γpL

πp

)2

rJ2
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(
λ′mn

R
r
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γp = λ′mn

R
,

(2.110)

or TM modes:
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Figure 2.13: Parallel trajectory simulation. The particle enters with ϑ = 10 mrad and
r = 500 µm and moves parallel to the axis.
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(2.111)

The stored energy does not depend on the particle trajectory, while to calcu-
late the voltage for a parallel trajectory we use Eq. 2.108, and for an angle
trajectory we use Eq. 2.109 and solve the line integral along the trajectory.
The results of this simulation are shown here. In an ideal pill–box cavity the
TE modes have no longitudinal electric field and thus cannot accelerate the
beam nor can the beam excite them for a parallel trajectory. Note that the
R/Q values are in [Ω] for monopole modes and in [Ω/cm2] for dipole modes.
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Figure 2.14: Not parallel trajectory simulation. The particle enters with offset of 5 µm
and 5 mrad and goes out exactly in the geometrical cavity center.

The fundamental frequency is ffund = 1.3 GHz, and the cavity length L ≈ 115.4 mm
is defined as half of the wave length corresponding to the fundamental mode
and agrees with one cell length (see Fig. 1.7) in the TESLA cavities; the
modes frequencies are calculated using Eqs. 2.95 and 2.96.
The requirement of a nonzero accelerating field on the axis of the cavity cor-
responds to a requirement that m = 0. Usually from the TM0n0 group of
modes, the TM010 mode is chosen for beam acceleration because it has the
lowest frequency and the simplest field pattern. For this reason here we take
in account only m,n, p = 0, 1, since monopole modes are accelerating modes,
while only dipole modes give radial fields on the z axis, and, as it will be
shown, are useful in beam diagnostics because they are easily identifiable and
their amplitude depends linearly on the beam offset from the cavity axis.
Modes with m > 1 generate fields only very close to the beam axis.
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Figure 2.15: Not parallel trajectory simulation. The particle enters with offset of 1 mm
and 50 mrad and goes out with offset of 5 µm and 1 mrad.

Figs 2.12 and2.13 show the results of simulating two parallel trajectories,
with an offset of 5 µm, 5 mrad in the first figure, and of 500 µm, 10 mrad in
the second one. In all the figures presented in this section the R/Q for the
TM modes is expressed in logarithmic scale.

In Figs. 2.14 and 2.15 two not parallel trajectories are simulated. The
first one shows a particle entering with an offset of 5 µm and 5 mrad, and
going out exactly on the geometrical cavity center. In the second figure the
particle enters with an offset of 1 mm and 50 mrad and the exit point has
an offset of 5 µm and 1 mrad.
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2.6.3 Wake fields in a pill–box cavity

The longitudinal and transverse wake potential produced by a charge pass-
ing on the axis of a cylindrically symmetric pill–box cavity can be computed
in terms of the mode frequency ωλ and loss parameter values kλ, using the
formalism shown in the previous sections. For longitudinal modes (m = 0)

the frequencies are obtained from:

ω2
np

c2
=

(
j2
n

R

)2

+

(
πp

g

)2

. (2.112)

Here R is the cavity radius, g is the cavity length, jn is the nth zero of J0(x)

and the index p gives the longitudinal variation of the axial electric field,

(Ez)np ∼ J0

(
jn

r

R

)
cos

(
πpz

g

)
exp (iωnpt) . (2.113)

The delta–function wake potential is calculated (see for example [Wei81]) as

Wz(s) =
4

πεpg

∞∑
n=1

∞∑
p=0

ε0
1− (−1)p cos (ωnpg/c)

j2
n J2

1 (jn)
cos

(
ωnp

s

c

)
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where ε0 = 1/2, εp = 1 for p 6= 0. If s is set to zero in the preceding rela-
tion, the sum diverges with increasing mode number, although only logarith-
mically. Thus a point charge passing through a completely closed pill–box
suffers an infinite energy loss. For a Gaussian charge distribution this is no
longer the case. The potential at position z for a bunch centered at z = 0 is
given by ([Wei81]):
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(2.115)

where $(z) is the complex error function, σ the r.m.s of the Gaussian charge
distribution, and < stands for the real part. No closed expression is known
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for this sum, but it has been evaluated numerically for sample cases.

For s < (4R2+g2)1/2−g, the sum in Eq. 2.114 for the delta–function wake
can be evaluated analytically. For the above range of s, no wave created by
leading charge can reach the outer cylindrical wall of the cavity, be reflected
and arrive back at the test charge before it has left the cavity. The pill–box
cavity wake therefore looks identical to the wake for two parallel plates over
this range of s. Over this range it can be shown that ([Wei81],[Cha75]):

2πε0Wz(s) = 2δ(s)ln
(g

s

)
− 2

∞∑
n=1

δ (2ng − s) ln

[
s2

(s + g)(s− g)

]

− 1

g

{
1[

s
2g

]
IP

+ s
2g

− 1[
s
2g

]
IP

+ s
2g

+ 1

}
, (2.116)

where the symbol IP means the integer part of the term in brackets. Note
that the wake is accelerating for all s > 0, even in the delta–function discon-
tinuities given by the second term in the above expression. The combination

Figure 2.16: Longitudinal wake for a
pill-box cavity (g = 3 cm, R = 4 cm) ob-
tained by summing the first 1000 modes.

Figure 2.17: Longitudinal wake for a
pill-box cavity (10000 modes).

of a delta–function discontinuity times a logarithmic discontinuity given by
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the first term above is, however, retarding.

It is instructive to compare the results of the summation of modes up to
mode N (Eq. 2.114) with the analytic result of Eq. 2.116. The summation
is carried out for the case s < 2g in Figs. 2.16 and 2.17. Note that as N

increases, the resultant sum yields an oscillation of increasing frequency. In
the limit N → ∞, we would expect the delta–function wake constructed in
this way to oscillate infinitely fast. The convolution of the wake function
with a smooth bunch current distribution however, is well behaved. this
illustrates an important property of a Green’s function. The function itself
need not be well behaved, only integrals over the function are.



Chapter 3

Preliminary study on HOM–based alignment

The aim of this chapter is to present a series of experiments made by
using a spectrum analyzer to estimate the amplitude of higher order modes
(HOM) excited by the beam. The interaction of the beam with the higher
order modes in the TESLA cavities has been studied in the past at the TTF1
linac, in order to determine whether the modes with the highest loss factor
are sufficiently damped. These experimental studies lead to the discovery of
the effect of the 2.585 MHz of the 3rd dipole passband. They also confirmed
that the damping of the first two dipole passbands was adequate. We will
review these results in the first part of this chapter.
The same modes can be used actively for beam alignment. At TTF2 a first
study on the beam alignment based on the HOM signals has been made in
the first cryo-module, containing 8 accelerating cavities. Four modes with
highest R/Q in the first two cavities have been used and their excitations
from a single bunch beam have been carefully measured.
The main result of these measurement has been:

1) the discovery of the 4 mm misalignment of the first TTF cryomodule
with respect to the gun;

2) the demonstration that a 50 µm resolution could be achieved.

69
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The cavity center could be found for each of the modes, and the results of
this study are presented in the following chapter.

3.1 Up to 2003: HOM excitation with an Intensity

Modulated Beam

In order to describe the experiments performed at the TESLA Test Facility
during the period of this thesis, we want to introduce the starting point from
where our program has been conceived and began in 2003.

A beam experiment was conducted in 1998 on the first accelerating mod-
ule of the TTF linac, to investigate transverse higher order modes in the
super-conducting cavities.
By injecting the beam with a transverse offset and by modulating the inten-
sity of the 216 MHz bunch train with a tunable frequency in the 0–108 MHz
range, transverse HOMs can be excited resonantly.
In fact, if the modulation frequency ωmod is varied from 0 to ωb/2, with
ωb = 2π/tb the bunch repetition angular frequency, all modes can be excited,
when the following resonance relation is fulfilled:

ωmod = |ωl −m · ωb| , (3.1)

where ωl is the angular frequency of the excited mode and m an integer.
Single modes have been excited by a charge modulation:

qn = q0(1 + λ · sin(nωmodtb + φ)) , (3.2)

where n is the bunch index, q0 the average charge, tb the bunch spacing,
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ωmod the angular frequency of the modulation signal. λ is the modulation
amplitude and φ its initial phase [Bab01]. The transverse wake potential
seen by the bunch with the index n in the train contains the contributions
of the wakes excited by all previous bunches, being proportional to:

W⊥(t) ∝
n−1∑

k=1

qkW
δ
⊥((n− k)ctb) , (3.3)

where W δ
⊥ is the delta–like transverse wake potential [Bab01] per accel-

erating structure. The bunches are considered to be point–like because
σz ¿ λl = 2πc/ωn, where σz is the beam size (r.m.s.) in the z direction
and λl is the wavelength of the mode l.
If a mode is excited on resonance it results that the offset amplitude ∆x,
i.e. the difference between the extreme transverse position in the bunch, at
a certain location after the cavity, is given by:

∆x = δxmax − δxmin = R12 ∝ (δx′max − δx′min)

= c δx0λ
(
q0

ωb

2π

) e

E

1

ωl

(
R

Q

)

l

Ql ,
(3.4)

where δx0 is the constant initial offset of the bunches with respect to the
cavity axis, λ is the modulation amplitude, e is the electron charge, and E

is the energy of the bunches in the middle of the cavity [Bab01].

In 1998 a HOM experiment with modulated beam intensity has then been
carried out with an older setup of TTF, when injector 1 was used to generate
electron bunches. The experimental set–up is shown in Fig. 3.1.
The experiment consisted in sending off–axis long bunch train with intensity
modulation through an acceleration cavity [Far99]. By slowly varying of
the modulation frequency ωmod the resonance condition given by Eq. 3.1 was
met for each mode. The transverse positions of the bunches, after the excited
cavity, are monitored with a BPM.
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Figure 3.1: Experimental set–up used in 1998. The intensity modulated beam generated
by the thermionic gun receives an offset with the help of a dogleg deflecting magnet pair.
When a mode is excited in one cavity of module 1, its effect on the bunch offsets is
measured at the BPM.

By doing this excitation, a beam instability was observed on the broad-
band BPM for fmod = 15.0022 MHz with a short beam pulse of 35 µm and
5 mA current, and a large injection offset of about 20 mm. The beam pulse
length could be increased to up to 500 µs while remaining on the HOM res-
onance. Fig. 3.2 shows the comparison of the BPM envelope signals with
charge modulation off or on for a 400 µs long beam pulse.

Figure 3.2: BPM difference signal showing evidence for a HOM resonance (right) in
comparison to the signal for the unmodulated beam (left). The abscissa represents the
time axis, while the ordinate is the BPM difference signal. The pulse length is 400 µs.

With modulation off, the broadband BPM integrates a high but constant
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100 mV level of beam induced noise, although the beam is steered through
its center. This is due to the rejection of the sum signal into the difference
signal BPM antennas. While the modulation is on, the beam offset reaches
a maximum of about 10 mm but, due to the excessive noise no quantitative
measurement could be made. A damped oscillatory behavior of the envelope
signal is visible in Fig. 3.2 with a period of about 125 µs, on top of the
constant envelope of the beam oscillations reached at the steady state. This
behavior was later explained, and reproduced by simulation [Bab01], by the
fact that the modulation frequency was off HOM–resonance by about 8 kHz
(1/125 µs). The resonant oscillations then reach a steady state after some
damped overshooting. Simulations predict that for a perfectly on–resonance
excitation, the oscillations reach the aperture limit within the 35 µs short
pulse: this agrees with the observed veto from the beam loss protection
system occurring at every attempt to fine tune the modulation frequency
towards lower values of fmod.

Figure 3.3: Sidebands around the 2.6 GHz beam harmonics.

The beam experiment revealed the existence of a HOM with a frequency
fHOM = nfb±(15.022 MHz–8 kHz) in the accelerating module. While detun-
ing cavities 1 and 2 had no effect on the beam instability, detuning cavity
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Figure 3.4: Time domain signal from HOM pickup on the 2585 MHz mode.

3 by about ±16 kHz in the fundamental mode did suppress the instability.
It was then possible to measure and identify the mode at the HOM coupler
outputs of cavity 3 with a spectrum analyzer. The frequency domain signal
around the 2.6 GHz beam harmonics in Fig. 3.3 shows a beam modulation
side–band peak enhanced by HOM resonance on the low side of this har-
monics. The same signal, when analyzed in time domain in Fig. 3.4, shows
the 35 µs beam–pulse cavity loading, followed by the relaxation of the field
amplitude with a characteristic time τ = 110 µs. The dipolar nature of the
mode was demonstrated by checking the perfect linear dependance of the
height of the amplitude maximum with the offset of the beam entering the
module, over a range from 0 to 20 mm.
This method of identifying a dipole HOM frequency with a spectrum ana-
lyzer in the frequency domain, and then of doing a quantitative analysis from
the time domain signal obtained by centering the spectrum analyzer on the
HOM frequency with a finite bandwidth (∆f ≈ 300 kHz), is the basis of all
the investigations and results presented in this chapter.

The resonant modes of cavity 3 were studied over a wider range of fre-
quencies with a network analyzer while the beam was turned off. As shown
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by Fig. 3.5, the measured HOM was the highest frequency mode of the 3rd

dipole pass-band. Its frequency was fHOM = 2584.986 MHz ± 1 kHz. The

Figure 3.5: Third dipole pass-band of cavity 3. The vertical scale is in 10 dB per division.

damping factor was then given by [Far99]:

Q =
2πfHOMτ

2
≈ 106 , (3.5)

where τ is the decay constant.
The quite strong maximum kicks on the bunches, even for short pulses of

35 µs, indicates that the mode should have a high R/Q as well.
The time allocated for this experiment allowed the study of three more modes.
None of them was as pronounced as the one described above. All modes are
listed in table 3.1.

The spectrum of each cavity consists of resonant modes grouped in pass-
bands (see Fig. 3.6) according to their TM or TE mode type. There are
9 modes in each passbands, and for the case of dipole modes there are 2
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Figure 3.6: Dispersion diagram for the dipole modes of TESLA cavity. The diamond
symbols represent individual modes. The velocity of the light line is shown as well. Its
intersection with the passbands marks the modes with highest coupling to the beam

polarizations for each mode.

The 10 dipole modes listed bold type in table 3.1 were considered in this
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Figure 3.7: Loss factors for the 1st, the 2nd and the 3nd dipole passbands.
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Figure 3.8: Damping of the first two transversal passbands, respectively for the cryo-
modules ]1 and ]2.

study (see also Fig. 3.9). Measurements with a beam modulated in inten-
sity indicated modes with very high quality factors in several cavities, and
their insufficient damping. Investigations in the RF laboratory showed that
a reason for the poor damping were the boundary conditions imposed by the
neighboring cavities. Depending on the frequency of these modes in different
cavities which are connected by beam tubes, the electromagnetic field can
have such a distribution that it couples badly to the HOM dampers. Never-
theless, the poor damping occurs only in few cavities, which indicates that
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ωmod/(2π) ωl/(2π) (R/Q)l τl Ql passband cavity
[MHz] [GHz] [Ω/cm2] [µs]

15.022 2.585 15 110 9 · 105 3rd TE 3
14.04 2.586 15 8 6.5 · 104 3rd TE 6
22.475 2.5775 1 22 1.8 · 105 3rd TE 3
74.03 1.876 9 20 1.2 · 105 2nd TM 3

Table 3.1: HOMs excited by an intensity modulated beam generated by injector 1.

it can be avoided and anyway it is in agreement with the TESLA tolerances
[Wan01].

For the first two dipole passbands D1 and D2 in Fig. 3.7, Fig. 3.8 shows
that the damping is sufficient in such a way that the decay time τ = 2Q/W

is a fraction of the beam pulse 1 ms duration.

Now we are going to use the modes in table 3.2 to measure the relative
beam position, by respect to the mode axis. Notice that the effect of the
beam angle with respect to the cavity axis was ignored in this experiment. It
has been studied and our analysis refined later, when two additional steerers
were installed in the TTF2 injector.

3.2 Polarizations, beam position resolution and HOM

centers

The HOM signal can be used to monitor the offset of the beam with respect
to the cavity axis, since their amplitude is proportional to it. Monitoring the
beam offset relative to the individual cavity axis would be extremely helpful
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Frequency Loss factor R/Q
[GHz] [V/pC/m2 [Ω/cm2

/9− cells] /9− cells]

TE111−like

1.6291 0.1 0.0028
1.6369 3.3 0.1272
1.6497 0.1 0.0030
1.6671 19.7 0.7534
1.6885 3.6 0.1368
1.7129 297.8 11.067

1.7391 425.4 15.5704

1.7656 58.2 2.0984

1.7912 45.3 1.609

TM110−like

1.8004 20.0 0.7084
1.8391 14.1 1.4168

1.8535 7.7 2.8336

1.8650 186.5 6.365

1.8736 264.2 8.9774

1.8795 62.0 2.1002

1.8834 1.2 0.0420

1.8858 4.8 0.1616
1.8871 0.1 0.0030

Table 3.2: R/Q for the two passbands TE111 and TM110.

to check the alignment and eventually reduce the emittance growth in the
TTF linac. In a linear collider it would, for instance, enable one to optimize
the orbit bumps needed to reduce the transverse wake effect, to localize any
badly misaligned module, or to control the beam position and alignment.
First studies on the possibility to align the beam in the cavities have been
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Figure 3.9: Dipole loss parameters for different boundary conditions (left beam pipe
84.15 mm, right beam pipe 86.51 mm). The upper diagram shows the full ordinate range
while the ordinate scale in the lower diagram is expanded. By courtesy of Martin Dohlus.

made. The amplitude of the fields excited by the beam at several resonances
in the first two cavities of the first TTF module has been measured as a
function of the beam position.



82 CHAPTER 3. PRELIM. STUDY ON HOM–BASED ALIGNMENT

Fig. 3.10 shows schematically the first part of the TTF–phase 2 (TTF2)
[Faa02] injector. The RF gun accelerates the electrons emitted by a photo–
cathode to 4.5 MeV. A horizontal and vertical steerer can deflect the beam,
correcting for possible errors in the transverse and angular alignment of the
gun. Eight cavities in module ACC1 accelerate the beam with a gradient of
12 MV/m.
The frequency spectrum of the wake fields excited by the beam is monitored

Figure 3.10: Schematic view of the alignment setup.

with a spectrum analyzer.

Four modes with highest R/Q have been used. Their frequencies and
R/Q as predicted from simulations for an ideal TESLA cavity are shown in
Table 3.2.Fig. 3.11 shows such a spectrum for the 6thmode of the first dipole
passband of the first cavity. The two polarizations can be distinguished and
their quality factors Q, of about 9.3 · 103 and 2.4 · 104, have been measured
a priori with a network analyzer.

3.2.1 The method

By the help of the horizontal and vertical steerers, the beam position in the
cavity studied could be varied. The beam position with respect to the case
of un–deflected beam (i.e. all steerers between the gun and the module are
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Figure 3.11: Mode ]6 of the first dipole passband in cavity 1 of ACC1.

Dipole passband Mode ] Frequency (simulation) R/Q [MΩ/m2]

1 (TE–like) 6 1713.7 11.21

7 1738.3 15.51

2 (TM–like) 4 1864.7 6.54

5 1872.7 8.69

Table 3.3: Dipole modes with highest R/Q used for monitoring, as predicted by simula-
tions.

off) was calculated based on the steerer calibration and the transfer matrix
[Bry92] from the steerer to the middle of the cavity.

Transmission of the position–velocity vector of a particle through a section
of a transfer line, can be in fact simply represented by a 2 × 2 matrix (Fig.
3.12): (

y2

y′2

)
=

(
C S

C ′ S ′

) (
y1

y′1

)
= M1→2

(
y1

y′1

)
. (3.6)
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Figure 3.12: Transmission through a section of lattice (y represents either transverse
coordinates).

The transfer matrix M1→2 can be found by multiplying together the trans-
fer matrices for the individual elements (magnets, drift spaces, cavities etc.)
in the appropriate order. The individual of the quadrupoles matrices have
the form:

My =

(
cos (or cosh)φ L

φ
sin (or sinh)φ

− φ
L

sin (or − sinh)φ cos (or cosh)φ

)
(3.7)

where

φ = L
√
|K| and |K| =

∣∣∣ 1
Bρ

dBy

dx

∣∣∣ ,

and L is the length of the element. The transfer matrix for the RF cavities
is given by the so–called Chamber matrix [Chm65]:



cos α−√2 cos (φRF (z)) sin α
√

8γin(z)

γ′(z)
cos (φRF (z)) sin α

− γ′(z)
γout(z)

(
cos(φRF (z))√

2
+ 1√

8 cos(φRF (z))

)
sin α γin(z)

γout(z)

(
cos α +

√
2 cos (φRF (z)) sin α

)




(3.8)

where the notations used are the following:
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• s is the abscissa along the cavity axis;

• φRF ≡ φRF −ωRF z/c is the RF phase seen by a particle which is at the
relative position z within the bunch1 and

γ′ (z) ≡ q GRF cos (φRF (z)) /
(
mc2

)

represents the average of the function γ′ (s, z) over the cavity length;

• γin (z) mc2 and γout (z) mc2 =
(
γin + γ′ (z) L

)
mc2 are the initial and

final energy of the particle considered (L is the cavity length);

• α ≡ 1√
8 cos(φRF (z))

ln
(

γout(z)
γin(z)

)
.

A simple method to find the axis of a mode in a cavity is to monitor the
integral power of a mode as a function of the 2D position of the beam. The
spectrum analyzer provides a convenient filter, with variable bandwidth, but
especially with variable frequency. Since the spectra (see Fig. 3.11) take a
long time to record, due to the low repetition frequency of the beam of 1 Hz,
one can monitor the signal amplitude in time domain (see Fig. 3.15). A
faster method is described below and has been adopted for our first measure-
ments.

Recalling Eqs. 2.54 and 2.55 for the m = 1 case:
{

Wz ∝ r2 cos ϑ

W⊥ ∝ r sin ϑ .

In the plane ϑ = 0 {
Wz = max (Wz)

W⊥ = 0 ,

while in the plane ϑ = π
2

{
Wz = 0

W⊥ = max (W⊥) .

1ωRF is the RF frequency.
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To excite HOM power one needs to fix ϑ = 0, while, to observe a HOM
deflection one has to fix ϑ = π

2
. Each polarization of a dipole mode has then

a transverse symmetry plane. When the beam is somewhere on this plane,
that particular polarization is not excited. In this case the corresponding
peak in Fig. 3.11 will disappear. In exchange, when moving the beam on the
perpendicular direction, the amplitude of the HOM peak will change linearly
with the beam offset with respect to the mode axis. In this way one can use
one polarization to monitor motion in one direction and the other polariza-
tion for the orthogonal direction. Due to deformations in the cavity, the two
polarizations have randomly oriented axes.

In reality the two polarizations have an arbitrary axis, randomly oriented
with respect to the horizontal plane (see Fig. 3.14). This is due to the
mechanical defect in the cavities and to the position of the HOM couplers.
When steering the beam position in the horizontal and vertical planes we
have chosen the polarizations responding best to changes in each plane (see
Fig. 3.13). Then we have made one scan say in the horizontal plane with
one polarization until we found a point on the symmetry plane of the mode,
followed by another scan in the vertical plane monitoring the other polar-
ization until finding the minimum. Then by iterating alternate scans one
approaches the electrical center of the mode, as illustrated in Fig. 3.14.

3.2.2 Measurements and results

The time domain signal for one scan in the horizontal plane for the second
polarization of mode ]6 (second peak in Fig. 3.11) of the first passband of
cavity 1 are shown in Fig. 3.15. A filter bandwidth of 300 kHz was used. The
vertical position of the beam was 0.45 mm, with respect to the un–deflected
position. One bunch per beam, of about 1 nC, was used.

The HOM signal builds up rapidly after the bunch passes the cavity, at
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Figure 3.13: Changes of the HOM peaks during the scan, using respectively coupler 1 and
coupler 2. We first steer horizontally, fixing the vertical steerer, and then we proceed in the
opposite way; the modes better responding to the first or the second steering operation are
respectively more horizontally or vertically polarized. They have not exactly horizontal or
vertical polarization since are not exactly TE or TM modes, but only TE–like and TM–like
modes.
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Figure 3.14: Alternate horizontal and vertical beam position scans for a mode with
oblique polarization axes.

Figure 3.15: Time domain signals for the first polarization of the 6th mode of the 1st

dipole band of the first cavity.

about t=10 µs in the plot. Then the amplitude of the signal decays with
a rate given by the quality factor of the mode. The variation of the signal
amplitude with the beam position can be observed. The signal is minimized
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when the beam is on the plane of the mode. The amplitude is not zero in
this case, because of contributions from the other polarization and probably
of an angle in the beam trajectory.

The amplitude of the signal in linear scale as a function of the beam
position is presented in Fig. 3.17. Several scans have been made in the
horizontal and vertical planes using alternatively the two polarizations. The
beam position for minimum HOM amplitude is determined and its value is
then used for the next scan. In the plots, the data is fitted by straight lines
and the values inferred from the fits slightly deviate from the values deter-
mined during the measurements without using a fit. Note that for this mode
four scans were sufficient to find the cavity axis. This was the case for all 4
modes measured in cavity 1, while for cavity 2 in general more scans were
necessary.
This can be explained by the fact that, for the modes studied in cavity 1,

the polarization axes are close to horizontal and vertical, in agreement with
the observation that the two resonance peaks shown in Figs. 3.15 and 3.16
are well decoupled when large horizontal and vertical beam offsets are im-
posed. This is not the case for the modes of cavity 2, where the polarization
axes are oblique and more scans are therefore needed to converge towards
the mode center. We believe that this difference between the two cavities is
due to mechanical defects in the cavity.

• Cavity alignments

It is remarkable that if the steerers between the gun and the module are
switched off, the beam has a large horizontal offset of 4.85 mm in cavity 1.
This seems to show that there is a large offset of this cavity with respect to
the gun axis. After our study, the gun has been realigned.

• Resolution of position measurements
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In the central regions of the scans, steps of about 50 µm in horizontal and
vertical beam displacements have been used for both cavities and all modes.
With a HOM amplitude signal resolution of 1 dBm in the spectrum analyzer,
the effect of these steps could be clearly observed even at the minimum as
illustrated in Figs. 3.15 and 3.16. Such a resolution on the beam position
is also inferred from the fit accuracy and by comparing the center positions
given by the minimum of the signal or by the fitting procedure.

• Mode to mode axis difference

However, the electric centers of the dipole modes do not coincide with
such a fine resolution since they are essentially set by the relative cell to
cell displacements and by their field distributions in the cavity. Fig. 3.18
compares the relative positions of the geometric centers of the 9 cell with
the electric centers of the 4 dipole modes, by arbitrary superposing their two
barycenters. The mode centers differ by 100 µm or less in both planes, while
the cell centers vary over a 400 µm range.

3.2.3 Preliminary conclusions

Clearly more experimental data were needed at that moment.
The preliminary measurements presented in this section show that by mon-
itoring the HOM signal amplitude for two polarizations of a dipole modes,
one could measure the electrical center of the modes with a resolution of
50 µm.
Due to the cavity deformations, the main dipole modes have different elec-
trical centers which differ by about 100 µm in most cases. This method
provides a way to align the beam with respect to each accelerating cavity
with a resolution much better than the 500 µm accuracy of the cavity me-
chanical alignment in the cryo–modules. In the case of a cryo–module, it
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has been possible to align the beam through the middle of the first and the
last cavities, or define an axis of the module based on the information about
the cavity alignment in the module, which has been obtained also from these
measurements.

Summarizing our first results:

• ∆xACC1 = 4.5 mm,

• alignment resolution ≤ 50 µm,

• 1st measurement of mode to mode axis differences.

After a shutdown, in August 2004, a new pair of steerers has been avail-
able in front of ACC1; with this new device we could scan beam offset and
angle in order to minimize the HOM signal and find the axis of each cavity
(which depends on the mode used).
In order to reduce the spent time, we proceeded first with parallel scans,

i.e. keeping the beam angle constant in the middle of the studied cavity, and
then with angular scans, keeping the beam position constant in the middle
of the cavity Note in Fig. 3.19 the resolution of 50 µrad.
With such a parallel–angular scans method we found the injection conditions
for which the beam travels on the axis of cavity 1 and respectively cavity 8,
or alternatively, through the centers of the cavity 1 and 8.

The procedure described here, based on moving the beam, was lengthly,
because only one cavity could be investigated at one time, and only for one
mode at one time.
Moreover, only the amplitude of the mode was measured by the spectrum
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analyzer and the phase information was missing, i.e. one could not distin-
guish between left and right, up and down, just from the HOM signal.
An alternative setup then has been made by the Stanford Linear Accelerator
Center, and installed at TTF2.
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Figure 3.16: Time domain signals for cavity 1. The amplitude peaks are found steering
the beam position in the horizontal and the vertical planes, and then picked and fitted to
obtain the minimum HOM signal, corresponding to the electrical center of the mode.
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Figure 3.17: HOM signal amplitudes obtained with position scans, for each polarization
of mode ]6 of the first passband of cavity 1 as a function of the beam position.

Figure 3.18: Relative positions of the 9 cell centers (blue diamonds) and of the 4 dipole
mode centers (red squares).
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Figure 3.19: HOM signal amplitudes, obtained with angular and position scans, for each
polarization of mode ]6 of the first passband of cavity 1 as a function of the beam position.
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Chapter 4

Advanced beam–based alignment studies using

Higher Order Modes

In addition to the fundamental accelerating mode, superconducting cav-
ities support a spectrum of higher frequency modes (See Chap. 2 [Wan01]).
Of particular interest for use as beam diagnostics are the modes in the first
two dipole bands (TE111 and TM110 respectively) and the first high order
monopole passband. Previously, power measurements on these modes have
been used for alignment, as shown in the previous chapter.
Here we describe the additional use of phase information to provide beam
position and angle measurements. In addition, the monopole modes provide
a convenient signal for charge normalization and beam phase reference. In
this chapter we report the use of the amplitude and phase of the sixth and
seventh TE111 modes. These modes couple strongly to the beam and are
therefore ideal for position monitoring.
Dipole mode signals depend on beam transverse position (x, y), angle (x′, y′)

and bunch tilt. The position signals are proportional to beam charge, posi-
tion and offset. Angle signals are proportional to the product of beam charge,
beam trajectory angle and the cavity length. Bunch tilt signals are propor-
tional to the product of beam charge, bunch tilt angle and bunch length

97
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[Ros03] (Fig. 4.1).

Figure 4.1: Schematic view of the RF cavity with an incoming ”tilted” beam.
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4.1 Studies with broad band setup

4.1.1 Data Acquisition

While the frequency domain setup used for the above study, in Chapter 3,
is easy and straightforward, it has the disadvantage of being slow and of
not providing the phase information. Special electronics has meanwhile been
built. A block diagram of the electronics is shown in Fig. 4.2. The signals
from the HOM ports are: downmixed with the 1.3 GHz accelerator reference
signal using a frequency mixer, a device performing frequency translation in
such a manner that the output frequencies are lower in the spectrum than the
input frequencies, fout = fin − 1.3 GHz. The range 1.3–2.8 GHz is translated
to 0–1.5 GHz; subsequently the signals are digitized by a 5 Gs/s (real time)1,
8 bit, oscilloscope, which records 50.000 points/channel. The digitizer is a
system that converts an analog signal into a digital representation of the ana-
log signal. Note: a digitizer usually samples the analog signal at a constant
sampling rate and encodes each sample into a numeric representation of the
amplitude value of the sample.
In order to improve the precision of the TTF2 triggers, the accelerator 9 MHz
master source and the 1.3 GHz RF reference signals were added to the down-
mixed signal.
Four simultaneously sampled channels were measured by the scope, one for
each of the 2 HOM couplers on 2 cavities. With one scope, four signals can
be recorded in parallel, e.g. from the two couplers of two cavities. Two scopes
have been used in some cases.

The signal from a coupler is filtered around 1736 MHz, i.e. near the fre-
quency of the 7th dipole mode in the first passband with R/Q = 15.5 MΩ/cm2(see
table 3.1). A 9 MHz clock signal is used for time reference, for the synchro-
nization of all the devices. This signal is used to select a cycle of 1.3 GHz

1Gs/s is a giga sample rate per second.
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reference signal which is in turn used for phase reference.

Figure 4.2: Block diagram of down mix electronics. Ten dB of cable attenuation is
included in the noise figure estimate.)

The availability of the phase information gives the potential of measuring
both beam offsets and angles with respect to each cavity HOM axis. Mea-
surements have been made in the TTF2 modules with this setup. Single
bunch beams have been used. The HOM signals have been measured for var-
ious offsets and angles of the beam. The beam was deflected with two pairs
of magnetic correctors for each transverse plane. We will show in the next
section that the resolution for beam position monitoring has been estimated
to about 3 µm for a single cavity.
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4.1.2 Raw signals and HOM data

The raw signal at one HOM channel, and the windowing function used for
spectral analysis, are shown in Fig. 4.3. The initial saturated part of the
signal is eliminated in the analysis by the windowing function.

Figure 4.3: Raw signal at scope, from
cavity 7, module 3, over 10 µs inter-
val and windowing function used for the
spectral analysis.)

Figure 4.4: Averaged power spectrum
for cavity 7, module 3, over both cou-
plers and all data acquisition cycles. The
horizontal scale of the figure is offset
by LO (Local Oscillator) frequency, 1.3
GHz.

The spectrum (for cavity 7, ACC1, averaged over all data acquisitions),
with the HOM bands indicated, is shown in Fig. 4.4. Dipole band 1 (TE111

1.7 GHz) and dipole band 2 (TM110 1.8 GHz) and the ∼2.5 GHz monopole
band are shown. There are a total of 18 modes in the 2 dipole bands. The
first monopole higher order band can also be distinguished. Note that the
mode frequencies are shifted down by 1.3 GHz as a result of the downmixing
with the accelerator reference signal. The 1.3 GHz and 9 MHz are present
in the spectrum, since they were mixed in the HOM signal.

In order to remove the effects of incoming beam motion, simultaneous
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Figure 4.5: Steering X,Y correctors in (+1,0,-1) Amp box pattern.)

measurements from at least 3 cavities are required. The x and y correctors
were steered over a range of +/- 1 mm (see Fig. 4.5) in all cavities for the
purpose of calibrating the HOM signals. At each of the 9 corrector settings,
HOM signals from 10 beam pulses were recorded.

A software to find the best match to peaks, fitting multiplets together, has
been realized. The dipole modes have two orthogonal polarizations (see Figs.
4.6 and 4.7), but some modes overlap because their separation is less than
a single polarization width. In such cases, the modes must be distinguished
by the relative signals at the 2 couplers, yielding the complex dipole mode
amplitude not only for each data set, for each mode, for each polarization,
but also for each coupler:
(2 couplers)× (2 polarizations) = 4 complex signals Zi(i = 1 : 4), or 8 real
numbers, per mode.

The mode signal Zi can be written as:

Zi = A eiΦ = I + iQ , (4.1)
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Figure 4.6: Total spectrum given by
the electronics device. The green lines
correspond to the frequency values pre-
viously measured with a spectrum ana-
lyzer. The new technology permits to
monitor at the same time all the mode
and polarization peaks with a 1.5 GHz
band.

Figure 4.7: Zoom on one peak of the
spectrum for the TE111 − 6 mode at
1.710 GHz.

where A is the signal amplitude and Φ the phase of the signal.

4.1.3 Data analysis

Linear regression

The calculations needed for the linear regression analysis are shown in
every statistics book, and are entirely standard (see also Appendix A). We
shortly summarize here:

• Given a set of measurements for a set of observables, linear regression
allows to predict the measurements for one observable based on the
others.

• The prediction is a linear combination of the other observables for that
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measurement.

• The linear combination is chosen to minimize the error of the prediction
of the observable over all measurements, in the least square sense.

• Linear regression needs more measurements than observables.

In our analysis, one can use regression to predict components of one
mode from measurements of another mode. One can also use the linear
regression to predict the beam position reading from the BPMs, using the
mode components. In general, each dipole HOM delivers power to both
couplers in each of the 2 polarization states. A calibration process (mentioned
above) is required since neither the response amplitude nor the orientation
of the mode polarization is known. Let MN be the (109× 9) real matrix of
I and Q for the 109 beam pulses, as in our calibration sequence, for the 2
couplers and 2 polarizations, for a given cavity N with 1 < N < 8. There
is a (9 × C) conversion matrix R, with C number of steerers, that we will
determine through the calibration:

[MN 1] ·R ≡




M1,1 ... M1,8 1

M2,1 ... ... 1

... ... ... 1

M109,1 ... M109,8 1




N

·




R1

...

R9


 ∼= X . (4.2)

A column of 1 is necessary to take in account the offset. X is a (109 × C)

matrix of corrector settings associated with the given pulses. The over–
constrained matrix R is determined through least–squares linear regression2;
in computing terms, using the transpose matrix:

R =
(
MTM

)−1
MTX .

Note that by using transport matrices one can convert each corrector settings
into relative beam position (x, y) and angle (x′, y′) inside the considered

2see also Appendix A.
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cavity N This calibration has been done for the matrix MN associated with
each cavity. Once R is found, we can estimate the corrector settings Xest

corresponding to the HOM answer M:



M1,1 ... M1,8 1

M2,1 ... ... 1

... ... ... 1

M109,1 ... M109,8 1




N

·




R1

...

R9


 = Xest . (4.3)

At this point, we derive a second conversion matrix, Q, (17× 9) matrix,
corresponding to both cavities at the end of the cryomodule. With the mea-
sured values we make a 109 × 17 matrix E = [M1 M8 1], where M1 and
M8 are the real matrices M of Z for the 109 beam pulses in the calibration
sequence, for cavities 1 and 8, made using measured values:

E ≡




M11,1 ... M11,8 M81,1 ... M81,8 1

M12,1 ... M12,8 M82,1 ... M82,8 1

... ... ... ... ... ... 1

M1109,1 ... M1109,8 M8109,1 ... M8109,8 1




, (4.4)

and a 109 × 8 matrix MN , for an internal cavity (2 through 7); then we
calculate Q from the equation

EQ ∼= [MN 1] , (4.5)

where [MN 1]N is the matrix seen in Eq. 4.2 for the same cavity N , and
the symbol ∼= indicates the ”equivalence” in linear regression sense. Subse-
quently we can use this matrix Q to predict the steerer settings for the given
pulses but this time from the measurements of the HOM signals in the cav-
ities at the end of the cryomodule, in order to compare the two predictions
and estimate the measurement resolution; we call this new estimated matrix
Xest,1,8. The next step is to compare Xest,1,8 as determined from the outer
cavities with that determined from a given cavity in Eq. 4.3:

Xest,1,8 = EQR ,
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from Eqs. 4.2 and 4.5, and

Xest = [MN 1]R ,

for each machine pulse. The standard deviation of the pulse to pulse differ-
ence σ = std (Xest,1,8 −Xest), by using optics matrices to translate steerer
settings in beam position, gives an estimate of the position measurement
resolution.

Results

The results described hereafter are based on the analysis of the TE111–6
mode (∼1700 MHz). Fig. 4.8 illustrates the determination of one of the
elements of Q, which is the slope of the line formed by the strongly correlated
signals M2

3 and E. The estimated corrector settings can be transformed
in beam position (x, y) by optics matrices. Fig. 4.9 shows the pulse to
pulse difference, Xest,1,8 −Xest, for this set of roughly 100 beam pulses. σ is
approximately 6.4 µm for x and 4.5 µm for y. If we assume that this residual
has equal contribution from both cavities, this results in an estimate of single
cavity measurement resolution of about 3 µm.

These measurements were performed with a system noise figure of ap-
proximately 10 dB. The theoretical measurement noise limit, considering
the known dipole mode coupling4 of approximately 10 Ω/cm2, and assum-
ing a 10 dB noise figure is approximately 60 nanometers. The factor of 50
between the theoretical and measured resolution in not yet understood.

3matrix made of I and Q for cavity 2, couplers 1 and 2, polarization 1 and 2.
4there is a factor corresponding to the coupling of the signal out through the HOM

coupler. This is harder to calculate, but e.g. Jacek Sekutowicz has made estimations of
it. (The R/Q describes only the coupling of the beam to the HOM, i.e. how much power
is stored in the fields; but not all are extracted to the HOM electronics.)
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Figure 4.8: A component mode signal Zi from cavity 2 vs those predicted through the
regression fit M = EQ, from cavities 1 and 8. Both quantities are normalized by the
average amplitude signals.

4.2 Studies with Narrow Band Multi–Channel Setup

Multi–Channel Acquisition System

A multi–channel system capable of simultaneously measuring all 40 of the
TTF2 HOM signals has been built (Fig. 4.10).
Narrow band filters were be used to select one or two modes, around 1.7 GHz
and the signals downmixed to an IF5 of approximately 30 MHz. These sig-
nals are digitized by an array of 12 bit 100 Ms/s digitizers (much narrower

5”Intermediate Frequency” is an old term used to describe the operation of Radio Re-
ceivers, but is still used to describe Radio frequency electronics.
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Figure 4.9: x (left) and y (right) predicted from the TE111–6 mode signals of cavity 2
vs that predicted from cavities 1 and 8; σ = ∼6.4 and σ = ∼4.5 respectively.

bandwidth than the Gs/s digitizers used in the previous experiment), named
SIS (Struck Innovative Systems).

Measurements

One such electronics channel has been built for each coupler of each of
the 40 cavities at TTF2. Compared to the previous setup, one can monitor
simultaneously one mode (in some cases two) from each coupler. In exchange
it cannot measure the other frequencies. These signals are now part of the
TTF control system.
This system has been used for beam alignment for the measurement of the
position of the centers of the cavities in the cryo–module with respect to each
other.
No phase or frequency information is required for the analysis described in
this paragraph. For the measurements two pairs of steering correction mag-
nets were used to generate orthogonal ”sine–like” or ”cosine–like” trajectories
through cryomodules ACC2 and ACC3 (Fig. 4.11). In this way we aimed at
covering a good range of the transverse space (x, x′) and (y, y′). We denote
the horizontal correctors with H1 and H2 and the vertical ones with V 1 and
V 2. Fig 4.12 shows a typical signal from one of the HOM channels, from one
coupler of one cavity. One can see here the beating of two frequencies close
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Figure 4.10: Electronics set–up of the multi–channel system measuring simultaneously
all 40 of the TTF HOM signals.

to each other, decaying in time. These frequencies correspond most likely
to the two polarizations of one mode. The sharp signal immediately after
the arrival of the bunch is probably generated by the fundamental mode and
higher frequency modes slipping through the filters. It has been removed
from all the data analysis with a windowing function like in Fig. 4.3.
Fig. 4.13 shows the raw signal power for each of the 16 ACC3 HOM couplers
as a function of corrector current setting. The total number of scan steps is
100, 25 per each steerer:

• from 1 to 25 horizontal steerer H1;

• from 26 to 50 vertical steerer V1;
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Figure 4.11: Sketch of TTF2.

Figure 4.12: Single HOM signal.

• from 51 to 75 horizontal steerer H2;

• from 76 to 100 vertical steerer V2.

In each individual scan parabolas can be recognized, characteristic to dipole
modes. For each scan most of the signals show a minimum, showing that the
scans have been made around a well centered beam.
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Figure 4.13: Showing the raw data from the corrector scans. The data are in the
sequence H1 (steps 1–25), V1 (steps 26–50), H2 (steps 51–75), V2 (steps 76–100).
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Figure 4.14: x (top) and y (bottom) difference trajectories for first and second corrector
sweep.
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Since the TTF correctors, at low energy (∼ 100 MeV), have hysteresis the
surrounding BPM’s have been used to define the trajectory. There is a ”cavity
BPM” at the end of each cryomodule ACC2 and ACC3 and warm stripline
BPM’s before and after the accelerator section. Figs. 4.14 and 4.15 show
the difference trajectories for each of the 4 corrector current settings as a
function of BPM number. The figures have 8 parts, two for each of the
correctors sweeps. It is important to note that there appears to be a lot
of out–of–plane motion. Only one of the BPM’s (9ACC3) is known to be
rotated.
Since there were difficulties with the optics model of the facility, the attempts
to ”fit” the trajectories and use linear regression were unsuccessful. Therefore
we used another technique, model independent analysis, which is independent
of the knowledge of optics. This method can be applied to BPM’s readings, or
HOM signals, or corrector settings, in order to correlate these quantities with
the beam motion by a Singular Value Decomposition. In the next section
we will show how model independent analysis is used in diagnostics with
BPM’s, and then our application of the same method to HOM signals will be
presented. In this way we are going to demonstrate how higher order modes
can be used as beam position monitors to estimate the beam trajectory inside
the cryomodules.

4.2.1 Model Independent Analysis

The idea of Model Independent Analysis (MIA) is to analyze large statistical
samples without the need for a model of the accelerator.
In our case a large set M of BPM data vectors b̂p for each measured pulse
p is needed. The average orbit is subtracted and the individual vectors are
normalized by the square root of M · P , where M is the total number of
BPM’s and P the total number of pulses [Irw99]:

bp =
(
b̂p− < b̂ >

)
/
√

PM . (4.6)
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Figure 4.15: x (top) and y (bottom) difference trajectories for third and fourth corrector
sweep.
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These BPM normalized difference vectors are arranged row-wise in an orbit
matrix B that contains P rows, and M columns. Typically the number of
pulses is much larger than the number of BPM’s.
Next the matrix B is decomposed into a product of the three matrices, U,
Λ and V, using singular value decomposition (SVD) (Appendix B).

B = U ·Λ ·VT with :
UTU = 1

VTV = 1
(4.7)

The left and right matrices U and V are orthogonal, whereas Λ is a P–by–
M matrix containing the singular values on the diagonal and zeros off the
diagonal. It turns out that the column vectors of the matrix V point into
the direction of linear independent modes of orbit jitter. They are called
spatial vectors and are orthogonal to each other. Their length is normalized
to 1. Typical patterns are betatron oscillations or patterns proportional to
the dispersion function, caused by energy jitter.
The column vectors of U describe the time development of the correspond-
ing orbit patterns in V and are called temporal vectors. The singular values
in Λ are given by the r.m.s. jitter amplitude averaged over space (BPM’s)
and time (pulses) for individual jitter modes. The vectors with the largest
corresponding singular values contain the prominent jitter modes.
The SVD of a BPM matrix is shown schematically in Fig. 4.16. In the next
section we will show that the model independent analysis can be easily ap-
plied also to the HOM signals to obtain an estimation of the beam trajectory
inside the cryomodules, with a resolution of a few µm.

4.2.2 Data analysis

We applied MIA to the BPM readings in individual scans. We use the Mat-
lab SVD function which separates the SVD eigenvalues and normalizes the
basis vector to one. The four most significant eigenvalues are shown in the
figure. It is expected that the most significant eigenvalue should be more
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Figure 4.16: Schematic singular value decomposition of BPM matrix.

than 10 times stronger than the next one. This is not so for most of the cor-
rector sweeps, probably because of signal saturation areas and not exactly
orthogonal corrector sweeps. In order to determine the movement associated
with a change in corrector strength at a given location, we multiply the basis
vector amplitude at the location of the cavity by the eigenvalue and the step
delta from the corrector sweep. We will use this scale for the power response
analysis. The absolute position of each cryo–cavity is not of interest, only
differences between them are needed to determine their locations with re-
spect to best fit line.
Fig. 4.17 shows the first SVD spatial vector (picked from V ) corresponding
to the most significant mode for the first and the second corrector sweeps.
The two graphics in the left side show the spatial vector due to horizontal
scan versus the BPM number in the top and versus the ’time’ or step number
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Figure 4.17: First SVD spatial vector (from V ) corresponding to the most significant
mode for the first and the second corrector sweeps (x left, y right);top vs BPM number
(x, y followed by the corrector current); bottom: versus time (step number).

dependence of that mode in the bottom. The two graphics in the right side
of the figure correspond to vertical scans.
Fig. 4.18 shows a typical sequence of HOM waveforms during the first (x)
corrector sweep. Using the conversion to volts (the digitizer scale is 0.125
millivolts per east significant bit), the estimated losses in the cable and the
receiver circuit gain, we are able to estimate the total energy emitted. Several
of the waveforms show a sharp transient at the beginning. This transient is
believed to be due to higher frequency HOM’s and is not included in the data
analysis. The HOM power should have a parabolic response to the corrector
sweep. Fig. 4.19 shows the curve that results depicted in Fig. 4.18. Each
point in Fig. 4.19 represents a single waveform, i.e. there is no pulse–to–pulse
averaging. The horizontal axis is given by the SVD mode strength. For this
coupler, for this sweep, the location of the minimum is at -1.2 mm and the
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Figure 4.18: Single pulse, single bunch waveforms for the first and the second 8 steps in
the x corrector sweep.

estimated power level (averaged over one decay time) is 35 µW. On either
side of the minimum, the character of the mode interface changes, indicating
the phase shift of one mode with respect to the other.

Fig. 4.20 shows the minimum value for each of the parabolas. Many are
quite close to zero, the waveforms in these cases must be quite small. The
next 4 fits, Figs. 4.21, 4.22, 4.23, 4.24, show the center locations from the
fits for angle and position, for both the SVD based and the nearest neigh-
bor. There appears to be a scale difference, and possibly a sign error for
the SVD position estimation. The nearest neighbor position (4.22) shows re-
markably similar answers for x, x′ and y, y′. Close look at the SVD for y and
y′ shows that these trajectories are remarkably similar, and not orthogonal
as intended. To correct this results, due to not exactly orthogonal corrector
scans, source of coupling, new measurements are needed and already planned.
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Figure 4.19: Sample (ACC3, cavity 6, coupler 2) power response from corrector sweep
1.

4.3 Analysis of a single HOM signal

In this section, we describe the detailed investigation of the HOM signal from
one channel, i.e. one cavity and one coupler. The purpose is to understand
the signals and develop the method to convert the HOM signals into beam
position signals (HOM–BPM). The method is also applied to the determina-
tion of the transverse position of the accelerating cavities in the cryomodules.
For this we use the MIA technique described in section 4.2.1.

We chose channel 26, i.e. the second coupler of the fifth cavity of the
second module (ACC2), because we observed only one distinguishable fre-
quency, making it simpler to understand and explain the signals and the
procedure.
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Figure 4.20: HOM dipole power minimum vs channel number (from one cavity and
coupler) for the 4 corrector sweeps.

Figure 4.21: Fit minima location
(mm) vs HOM channel number. The
centroid and scale are derived from the
SVD mode separation.

Figure 4.22: Fitted position minima
from interpolations of nearest 2 BPM’s.

4.3.1 Waveform processing

In order to derive beam position from the raw HOM signals, precise determi-
nations of the amplitudes and phases of the digitized waveforms is needed.
The first step in this analysis is to find the time reference; it is useful, for
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Figure 4.23: Fitted angle minimum–
from nearest 2 BPMs.

Figure 4.24: Fitted centers vs trajec-
tory angle as determined from SVD low-
est order mode.

a more precise analysis, to take the time reference exactly where the HOM
waveform starts, Fig. 4.25, and then take only the most significant data for
the analysis. The value for t0 is determined by fitting the rise of the signal
from the HOM and defining t0 to be at the interception with the x axis of
the the straight line fitting the two points where the rms of the rise itself is
bigger than five times the standard deviation of the signal itself.
Once we determined the time reference, we can proceed with the identifi-

Figure 4.25: Time reference starting
when the waveform starts. In this pic-
ture the time axis is in SIS (Struck In-
novative Systems SIS3300, VME 8ch,
100Ms/s 12 bit digitizers) units.

0 2 4 6 8 10 12

x 10
7

0.5

1

1.5

2

2.5

3

3.5
 PHASE 

φ

frequency [Hz]

Figure 4.26: Phase before frequency
correction.

cation of the HOM frequency ω for this channel, from a Fourier transform
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Figure 4.27: Raw Fast Fourier Transform (fft) of the original signal and of the product
waveform.

(Fig. 4.27, left plot).
By multiplying the waveform with the function exp (iω(t− t0)) we can dis-
tinguish a sine–like and a cosine–like component of the HOM signal. The
frequency ω is determined from a fit of the amplitude spectrum, and is not
very precise one. The result depends on the precision of the fit. Fig. 4.27
shows the Fast Fourier Transform of the original signal (left) and the product
waveform (right).

For this reason we filtered the new waveform, with the Matlab tools,
to clean the signal, and after an attentive observation of the polynomial fit
of the filtered waveform and of its phase slope (4.26), we could find the
exact frequency. We now then go back and multiply the original waveform
with exp (iΩ (t− t0)), where the frequency has been corrected by a dω:
Ω = ω + dω (Figs. 4.29 and 4.28).
From the polynomial fit of the data one could also calculate the amplitude
and the phase of the signal, and secondarily the quantities I and Q (real and
imaginary (cosine– and sine–like) parts of the signal) for 100 pulses (Figs.
4.29, 4.30 and 4.31).

Looking at the phase (Fig. 4.32, steerers 3 and 4) we note a drastic
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Figure 4.28: Product waveform with uncorrected and corrected frequency.
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Figure 4.29: Phase at one of the 100 pulses and amplitude from the filtered product
signal, with corrected frequency. The flat phase (note vertical scale) indicates that the
frequency is correct.
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Figure 4.30: I and Q of the filtered product signal, with corrected frequency.

change in phase, and we tried to identify the corresponding BPM’s readings
(Fig. 4.33). One could trace a straight line between the two groups of red
point, and divide the beam pipe in two area with a phase shift of ∼ π.

4.3.2 BPM eigenmode and eigenfunction analysis

The readings in any one BPM are related by a linear equation to the value
in the other BPMs due to linear optics:

xi = aijxj + aikxk + ... + bijyj + bikyk + ... + ci (4.8)
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Figure 4.31: Mean Q, over all the pulses, plotted against mean I. The four pictures
contain each 25 pulses corresponding to four different steerer scans. Saturation points are
not removed here, giving the non–perfect linearity.

A similar equation can be written for y. The b coefficients allow for possible
coupling between the two transverse planes.
We look for the values of the coefficients which would allows us to predict x

and y in one BPM from the values of x and y in the other ones.
Repeated application of the above two equations yields a set of simultane-
ous equations which can be expressed in terms of a single matrix equation
X = ΥA, where A is a column vector made of the coefficients a, b c, X is
a column vector of the measured values for either x or y from a given BPM,
and Υ is the matrix of x and y from the other BPMs.The matrix also con-
tains a column of ones to allow for a constant term. Each row of Υ and X

corresponds to a pulse:
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Figure 4.32: Mean phase per each corrector scan. One can clearly see a change in phase
of about π in the y and y′ corrector scans.
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with Υ and A known. In order to find matrix A, we invert the non–square
and possibly singular m×n matrix Υ using singular value decomposition. We
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Figure 4.33: BPM readings during beam position scans. The red points correspond to
the measurements with changed phase.

obtain this way the matrix Υ+ such that the solution A = Υ+X minimizes
the magnitude |ΥA−X| [Jac02].
Once these coefficients are known, x and y in one BPM can be predicted
from the values of x and y from the other BPMs for any pulse.
A similar analysis can be made in order to predict the BPM’s readings at a
certain pulse, from the readings of all the BPMs at the previous pulses. We
will concentrate on this aspect of the analysis, since this will be the procedure,
in the future, to predict the beam position from HOMs at a specific moment.
We will use the procedure described hereafter in the analysis of the HOM
signals.
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Trajectory predictions

Four matrices, one for each corrector scan, have been made, with the
positions read by 9 around the second accelerating module ACC2. The I

and Q of the HOM signals from cavity 5, coupler 2, ACC2 (channel 26)
during the scans, integrated over 4094 points of each HOM waveform and
normalized to 105, are shown in Fig. 4.34. The normalization is needed for
the SVD analysis. The number of measured pulses for each steerer is 25, but
we eliminated the points where the HOM signals were saturated and where
the I and Q did not show a linear behavior. The order of the scan in this
figure is horizontal, vertical, horizontal, vertical.

Figure 4.34: I and Q plotted against the pulse number. Steerers 1 and 3 are horizontal,
while 2 and 4 are vertical.
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The SVD of these four BPM matrices gives back four sets of new matri-
ces, [Un,Sn,Vn], with n = 1, 4.
As explained above, both U and V are unitary matrices representing orthog-
onal temporal patterns and spatial patterns respectively, while S is a diagonal
matrix containing the corresponding eigenvalues. The number of eigenvalues
above the noise floor determines the number of significant physical variables
that are changing and affecting the beam centroid motion. In Fig. 4.35 the
plots of each of the U and V matrices, for the highest eigenvalue, for each
corrector scan, are shown. The abscissa for V contains 9 x readings from
the BPM’s followed by the y readings. Like in the previous figure, the four
correctors are used, respectively, for horizontal, vertical position steering and
horizontal, vertical angular steering. One can note in Fig. 4.356 that when
we steer horizontally, in position or angle, the answer is in the first set of nine
points of the abscissa, corresponding to the x positions read from the nine
BPMs considered, while, if a vertical steering is applied, the answer is in the
second set of nine points of the abscissa, corresponding to the y readings.

In order to check the accuracy of the method we use linear regression.
We calculated the four vectors a1,2,3,4, one for each steerer, which validate
the condition:

Ξ·an =




I25 Q25 I26 Q26

. . . .

. . . .

. . . .




n

·




a(1)

a(2)

a(3)

a(4)




n

=




u(1)

.

.

u(m)




n

= un , (4.10)

with n= steerer 1,4; the matrix to the right hand, Ξn, is a m× 4 matrix of I

and Q for the fifth cavity of the second module, coupler 1 (channel 25) and
2 (channel 26), at all the m pulses of non–saturation for the steerer ”n” and
un is the first column of the matrix U calculated with SVD for the steerer
”n”. Then the four vectors a1,2,3,4 are calculated by linear regression, using

6in this figure the scan order is: horizontal, horizontal, vertical, vertical.
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Figure 4.35: Temporal and spatial eigenvectors, for the highest eigenvalue, from BPM’s
readings. Points 1:9 corresponding to steerer sweeps 1 and 3 (horizontal), while points
10:18 to steerer sweeps 2 and 4 (vertical).
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Matlab tools: an = ΞT · un = Ξ \ un, where the symbol \ means linear
regression, in Matlab language.
Now we multiply this calculated vectors a by the same matrices Ξ, to have
back four ”predicted” temporal eigenvectors to compare with the original
ones, obtained previously from the SVD analysis.
The accuracy of the SVD is in this case revealed by the residual between the
temporal eigenvectors U obtained from SVD and the ones predicted with lin-
ear regression with the HOM signals, by using the same set of measurements
(i.g. same matrix Ξ).
We choose for this test only the first column of each matrix U7, correspond-
ing to the highest eigenvalue, the only one above the noise floor (order of at
least 10 times bigger then the other eigenvalues). Fig. 4.36 shows in com-
parison the two sets of U (calculated with SVD and predicted with linear
regression) for each steerer scan, corresponding to the highest eigenvalue, the
only above the noise floor. By ”known U” we mean in this figure U from the
direct SVD of the BPM readings, while ”predicted U” is the same temporal
eigenvector matrix, estimated by using linear regression. The SVD analysis
results are confirmed by the linear regression against the HOM readings. We
also calculated the corresponding predicted trajectories from both the sets
of vectors u, multiplying them by the corresponding eigenvalues (Figs. 4.37
and 4.38):

xn,traj = un · sn · vn , (4.11)

where un and vn are the temporal and spatial eigenfunctions corresponding
to the highest eigenvalue sn, and n = 1, 4 the corrector sweep number. Note
the different scales in the plots.

The vectors a have been used in a second time, as columns for a 4 × 4

matrix, A, to calculate a predicted set of temporal eigenvectors correspond-
ing to a new measurement of I and Q values for channels 25 and 26, for each
corrector (109 new pulses):

7calculated from SVD.
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Figure 4.36: Comparison between the predicted temporal eigenvectors and the vectors
obtained by SVD analysis. By ”known U” we mean U from the direct SVD of the BPM’s
readings, while the ”predicted U”traces are estimated by using linear regression.
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n,pred

= Un,pred .

(4.12)

One could now introduce these four vectors as columns of a matrix Upred,
in order to predict the beam positions and trajectories corresponding to a
known set of I and Q values, e.g., as seen before:



4.3. ANALYSIS OF A SINGLE HOM SIGNAL 133

Figure 4.37: Comparison between the horizontal trajectories from the predicted tempo-
ral eigenvectors and the vectors obtained by SVD analysis. Same notation for "known"
and "predicted" than in Fig. 4.36. Note the different scales in the plots.
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Figure 4.38: Comparison between the vertical trajectories calculated from the predicted
temporal eigenvectors and the vectors obtained by SVD analysis. Note again the different
scales in the plots.

Xn,pred = Un,pred · Sn ·Vn . (4.13)

We choose in this case as well, for our plots, only the value of each vec-
tor Un,pred corresponding to the highest eigenvalue, and the corresponding
eigenvector inside the matrix Vn. In Fig. 4.39 the results of this prediction
are shown. The term ”Known” indicates here the trajectories obtained by
direct SVD of the BPM readings, while the term ”Predicted” refers to the
trajectories obtained by using Un,pred, i.g. the matrix estimated from a new
set of data multiplied by the coefficient matrix8. Note the different scales
in the plots. It is clear that more measurements and studies are needed to
minimize the residual, for a better resolution, and to achieve such a target
we need to have better orthogonality of the beam trajectory. It is important
to stress the fact that this measurements had the limit due to a too large

8from Eqs. 4.12 and 4.13.
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Figure 4.39: Predicted trajectories from a new set of measurements.
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corrector resolution, with respect to the size of the scan steps, needed for a
more precise analysis; moreover a lot of data points have been dropped from
the analyzed data, because of saturated signals. Figs. 4.37 and 4.38 already
show a good agreement, giving encouraging results for the application of this
procedure.
The corrector power have been recently changed and more measurements,
shown in the next section, have given better results, by using the same
method of analysis.

Results of latest measurements

New measurements have been made successively and the same procedure
has been applied but with finer steerer scans, covering better the (x, x′) and
(y, y′) space., due to a smaller corrector resolution.
The beam was steered in the fourth and fifth modules (ACC4 and ACC5).
Approximately 20 runs, of ∼ 100 points each were used. In Figs. 4.40 and
4.41 the alignments are plotted with the slope and offset removed to show the
relative alignment of the cavities within the module. Different lines corre-
spond to different data set used for the analysis. In ACC4, the rms alignment
in x and y was 105 and 215 µm9, with a measurement reproducibility in x

and y of 37 and 24 µm.
In ACC5 the alignment was 241 and 203 µm respectively, with a measure-
ment reproducibility of 9 and 5 µm. Note that the tolerance for cavity align-
ment is 500 µm rms. The results of this last measurements has been pre-
sented to EPAC 2006 and still are developping.

The procedure described in this chapter is the HOM BPM calibration
procedure; by knowing the I and Q of the HOMs signal, it is possible to
predict the beam position in each cavity. The HOM based cavity alignment
measures the relative positions of the axes of the TE111 − 6 dipole modes in

9Standard Deviation.
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Figure 4.40: Alignment of TE111 − 6 cavity mode centers in module 4.

the cavities in a module. The dipole mode axes may not be aligned to the
mechanical centers of the cavities due to perturbations from couplers, and
manufacturing imperfections.
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Figure 4.41: Alignment of TE111 − 6 cavity mode centers in module 5.



Chapter 5

Summary and conclusions

The passage of an electron bunch through a superconducting cavity in
addition to coupling to the accelerating mode, excites a spectrum of higher
order modes. An analytical study about the electromagnetic fields and the
wake fields expansion, in general and in a pill-box cavity in particular, has
been carried out; throughout these notes the application of basic physical
principles such as energy conservation, superposition and causality have been
emphasized, both to provide insight and to simplify certain derivations. An
alternative and original method of resolution of the Maxwell’s equations have
been shown and the results of a Matlab computation of the R/Q character-
istic of each mode have been presented.

An experimental program at Tesla Test Facility 2 at DESY has been also
described in this thesis. The dipole mode amplitudes contain information
on the beam position relative to the cavity, while the monopole modes pro-
vide information on the arrival time of the beam. A fully relativistic beam
will most strongly excite the cavity modes with near speed of light phase
velocities, and we only consider such modes. Dipole modes are also excited
by a bunch which traverses the cavity at an angle with amplitude where is
the beam angle relative to the mode axis, with a phase 90 degrees from that

139
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produced by a position offset. A tilted bunch also excites dipole modes. For
the TTF2, the bunch length is sufficiently short that the "tilt" signal is in-
significant. The signals from the higher order mode ports on superconducting
cavities have been used to do survey structure alignment and to find the cav-
ity eccentricities and misalignment.

A HOM–based diagnostic system has been successively installed to instru-
ment both couplers on each of the 40 superconducting cavities in the DESY
TTF2 Linac. The electronics uses a single stage down conversion from the
1.7 GHz HOM spectral line to a 20 MHz IF (intermediate frequency signal)
which has been digitized. The electronics was based on low cost surface
mount components suitable for large scale production. The response of the
HOM modes was calibrated using steerers. The two dipole modes with the
strongest coupling to the beam were the TE111–6 and TE111–7. For the HOM
dipole experiments the TE111–6, with a frequency of approximately 1.7 GHz
was used. The dipole modes including the TE111–6 are doublets, with a fre-
quency splitting caused by the asymmetry in the cavity shape, and by the
cavity power coupler. Several TM011 monopole lines were used for the HOM
monopole experiment. The data described here is from a series of experi-
ments until March 2006. The beam was steered by a large amount (∼1 cm)
relative to its nominal orbit, in order to be sure to pass through the centers
of the cavities.

For the analysis of monopole and dipole signals first a linear regression
analysis has been introduced, giving already a resolution of about 3 µm.
Secondly, the Model Independent Analysis (MIA), based on singular value
decomposition, has been used. SVD and linear regression were performed
using the Matlab function, and the accuracy of the SVD analysis has been
revealed by the residual with the linear regression.
Then we have been able to find, by SVD, a set of eigenvalues and eigenfunc-
tions generating orthonormal basis, and effectively average the BPM’s with
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best correlated appropriate weighting as given by the basis set. Successively,
with the correlation coefficients, we have obtained a prediction on the po-
sition of the beam. The procedure of using HOMs as BPMs has been then
explained and then dipole high order modes have been shown to be usable as
beam position monitors with less than 5 µm resolution, expected to improve
to less than 1.5 µm and 5 µrad with the removal of input attenuators. The
dipole modes also define a cavity ”center”.

Studies to correlate this center position with externally measured align-
ments are underway. The HOM experiments on TTF2 have used single bunch
beam. For bunch rates not much faster than the HOM mode decay times,
bunch by bunch position and phase measurements should be possible in the
future. Moreover, the existing broad band HOM diagnostic system can mea-
sure the response of all the HOM modes below 2.5 GHz to beam position
and angle, and this will allow detailed comparison of cavity simulations.
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Appendix A

Introduction to linear regression

Linear regression analyzes the relationship between two variables, X and
Y . For each data taking, you know both X and Y and you want to find
the best straight line through the data. In some situations, the slope and/or
intercept have a scientific meaning. In other cases, you use the linear lines
as a standard curve to find new values of X from Y , or Y from X.

The term ”regression”, like many statistical terms, is used in statistics
quite differently than it is used in other contexts. The method was first used
to examine the relationship between the heights of fathers and sons. The two
were related, of course, but the slope is less than 1.0. A tall father tended to
have sons shorter than himself; a short father tended to have sons taller than
himself. The height of sons regressed to the mean. The term ”regression” is
now used for many sorts of curve fitting.

Matlab determines and graphs the best–fit linear regression line, option-
ally including a 95% confidence interval or 95% prediction interval bands.
You may also force the line through a particular point (usually the origin),
calculate residuals, calculate a runs test, or compare the slopes and intercepts
of two or more regression lines.
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In general, the goal of linear regression is to find the line that best predicts
Y from X. Linear regression does this by finding the line that minimizes the
sum of the squares of the vertical distances of the points from the line.

Note that linear regression does not test whether your data are linear.
It assumes that your data are linear, and finds the slope and intercept that
make a straight line best fit your data.

A.1 How linear regression works

A.1.1 Minimizing sum–of–squares

The goal of linear regression is to adjust the values of slope and intercept
to find the line that best predicts Y from X. More precisely, the goal of
regression is to minimize the sum of the squares of the vertical distances
of the points from the line. Why minimize the sum of the squares of the
distances? Why not simply minimize the sum of the actual distances?

If the random scatter follows a Gaussian distribution, it is far more likely
to have two medium size deviations (say 5 units each) than to have one small
deviation (1 unit) and one large (9 units). A procedure that minimizes the
sum of the absolute value of the distances would have no preference over a
line that was 5 units away from two points and one that was 1 unit away
from one point and 9 units from another. The sum of the distances (more
precisely, the sum of the absolute value of the distances) is 10 units in each
case. A procedure that minimizes the sum of the squares of the distances
prefers to be 5 units away from two points (sum–of–squares = 50) rather
than 1 unit away from one point and 9 units away from another (sum–of–
squares = 82). If the scatter is Gaussian (or nearly so), the line determined
by minimizing the sum–of–squares is most likely to be correct.
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Sum of squares than is more properly ”the sum of the squared deviations”.
Mathematically, it is an unscaled, or unadjusted measure of dispersion.

The distance from any point in a collection of data, to the mean of the
data, is the deviation. This can be written as x(i)− < X >, where x(i) is
the ith data point, and < X > is the estimate of the mean. If all such de-
viations are squared, then summed, we have the ”sum of squares” for the data.

When more data are added to the collection, the sum of squares will in-
crease, except in unlikely cases such as the new data being equal to the mean.
So usually, the sum of squares will grow with the size of the data collection.
That is a manifestation of the fact that it is unscaled.
In many cases the degrees of freedom for the statistical analysis of a data
collection is the number of data minus one. We write this as n− 1, where n

is the number of data.
Scaling (also know as normalizing) means adjusting the sum of squares so
that it does not grow as the size of the data collection grows. This is impor-
tant when we want to compare samples of different sizes, such as a sample
of 100 values compares to a sample of 20 values. If the sum of squares was
not normalized, its value would always be larger for the sample of 100 values
than for the sample of 20 values. To scale the sum of squares, we divide
it by the degrees of freedom, i.e., calculate the sun of squares per degree of
freedom, or variance. Standard deviation is the square root of the variance.
Sum of squares is often abbreviated with the letters SS and his computation
involves just inverting a matrix, in fact, in mathematical terms, this method
is an optimization techinque to find an approximate solution for a system
of linear equations that has no exact solution, and this happens because the
number of equations (m) is bigger that the number of variables (n).
We want to find a solution for the ”equation”:
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Ax ≈ b , (A.1)

where A is an m− by− n matrix (with m > n) and x and b are respectively
n− and m−dimensional column vectors. We want to minimize the Euclidean
norm squared of the residual Ax− b. Therefore the minimizing vector x is
a solution of the normal equation:

AT Ax = ATb , (A.2)

and the solution is unique and given by:

x =
(
AT A

)−1
ATb . (A.3)

The matrix
(
AT A

)−1
AT is called pseudo inverse of A. We cannot use the

true matrix inverse of A (that is A−1), because it does not exist as A is not
a square matrix (m 6= n).

A.1.2 Slope and intercept

Matlab reports the best–fit values of the slope and intercept, along with their
standard errors and confidence intervals1.

The slope quantifies the steepness of the line. It equals the change in Y

for each unit change in X. It is expressed in the units of the Y –axis divided
by the units of the X–axis. If the slope is positive, Y increases as X in-
creases. If the slope is negative, Y decreases as X increases.

The Y intercept is the Y value of the line when X equals zero. It defines
the elevation of the line (Fig. A.1).
The standard error values of the slope and intercept can be hard to interpret,

1i.g. an interval between two numbers, where there is a certain specified level of confi-
dence that a population parameter lies
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Figure A.1: Linear regression sketch. The slope quantifies the steepness of the line.

but their main purpose is to compute the 95% confidence intervals. If you
accept the assumptions of linear regression, there is a 95% chance that the
true value of the slope lies within the 95% confidence interval of the slope.
Similarly, there is a 95% chance that the true value of the intercept lies within
the 95% confidence interval of the intercept.

A.1.3 Goodness-of–fit of linear regression

The value r2 quantifies goodness of fit; it is a fraction between 0.0 and 1.0,
and has no units. An r2 value of 0.0 means that knowing X does not help you
predict Y . There is no linear relationship between X and Y , and the best–fit
line is a horizontal line going through the mean of all Y values. When r2

equals 1.0, all points lie exactly on a straight line with no scatter. Knowing
X lets you predict Y perfectly.
r2 is computed from the sum of the squares of the distances of the points
from the best–fit curve determined by linear regression. This sum–of–squares
value is called SSreg, which is in the units of the Y–axis squared. To turn
r2 into a fraction, the results are normalized to the sum of the square of
the distances of the points from a horizontal line through the mean of all Y
values. This values is called SStot. If the curve fits the data well, SSreg will
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be much smaller than SStot.

Figure A.2: Residual from regression.

Figure A.3: Matlab computation of r2.

r2 = 1− SSreg

SStot

= 1− 0.86

4.91
= 0.83 . (A.4)

Figs. A.2 and A.3 show the best–fit linear regression line. This line min-
imizes the sum–of–squares of the vertical distances of the points from the
line. Those vertical distances are also shown on Fig. A.3. In this example,
the sum of squares of those distances (SSreg) equals 0.86. To use this value
as a measure of goodness–of–fit, you must compare it to something.
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The right half of the figure shows the null hypothesis – a horizontal line
through the mean of all the Y values. Goodness–of–fit of this model (SStot)
is also calculated as the sum of squares of the vertical distances of the points
from the line, 4.907 in this example. The ratio of the two sum–of–squares
values compares the regression model with the null hypothesis model. The
equation to compute r2 is shown in the figure. In this example r2 is 0.8248.
The regression model fits the data much better than the null hypothesis, so
SSreg is much smaller than SStot, and r2 is near 1.0. If the regression model
were not much better than the null hypothesis, r2 would be near zero.

You can think of r2 as the fraction of the total variance of Y that is
”explained” by variation in X. The value of r2 (unlike the regression line
itself) would be the same if X and Y were swapped [Mot03]. So r2 is also
the fraction of the variance in X that is ”explained” by variation in Y . In
other words, r2 is the fraction of the variation that is shared between X and
Y .

In this example, 84% of the total variance in Y is ”explained” by the linear
regression model. That leaves the rest of the variance (16% of the total) as
variability of the data from the model (SStot)
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Appendix B

Singular Value Decomposition

In linear algebra Singular Value Decomposition (SVD) is an important
factorization of a rectangular real or complex matrix, with several applica-
tions in signal processing and statistics. In some respect this matrix decom-
position is similar to the diagonalization of symmetric or Hermitian matrices
using a basis of eigenvectors given by the spectral theorem, but the two de-
compositions have in general rather different characters and should not be
confused even though they are related.

Suppose M is an m–by–n matrix whose entries come from the field K,
which is either the field of real numbers or the field of complex numbers.
Then there exists a factorization of the form:

M = USVT , (B.1)

where U is an m–by–m unitary matrix over K, the matrix S is m–by–n with
nonnegative numbers on the diagonal and zeros off the diagonal, and VT

denotes the conjugate transpose of V, an n–by–n unitary matrix over K.
Such a factorization is called a singular–value decomposition of M.
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¤ The matrix V thus contains a set of orthogonal ”input” or ”analyzing”
base–vector directions for M

¤ The matrix U contains a set of orthogonal ”output” base–vector direc-
tions for M

¤ The matrix S contains the singular values, which can be thought of as
scalar ”gain controls” by which each corresponding input is multiplied
to give a corresponding output.

One commonly insists that the values Si,j be ordered in non–increasing fash-
ion. In this case, the diagonal matrix S is uniquely determined by M (though
the matrices U and V are not).

B.1 Singular values, singular vectors, and their rela-

tion to the SVD

A non–negative real number σ is a singular value for M if and only if there
exist normalized vectors u in Km and v in Kn such that:

Mv = σu and MT u = σu . (B.2)

The vectors u and v are called left–singular and right–singular vectors for σ,
respectively. In any singular value decomposition M = USVT the diagonal
entries of S are necessarily equal to the singular values of M. The columns of
U and V are left– resp. right–singular vectors for the corresponding singular
values. Consequently, the above theorem states that

• An m×n matrix M has at least one and at most p = min(m,n) distinct
singular values.



B.2. Relation to eigenvalue decomposition 153

• It is always possible to find a unitary basis for Km consisting of left–
singular vectors of M.

• It is always possible to find a unitary basis for Kn consisting of right–
singular vectors of M.

A singular value for which we can find two left (or right) singular vectors
that are not linearly dependent is called degenerate.

Non–degenerate singular values always have unique left and right singular
vectors, up to multiplication by a unit phase factor eiφ (for the real case up to
sign). Consequently, if all singular values of M are non–degenerate and non–
zero, then its singular value decomposition is unique, up to multiplication of
a column of U by a unit phase factor and simultaneous multiplication of the
corresponding column of V by the same unit phase factor.

Degenerate singular values, by definition, have non–unique singular vec-
tors. Furthermore, if u1 and u2 are two left–singular vectors which both
correspond to the singular value σ, then any normalized linear combina-
tion of the two vectors is also a left singular vector corresponding to the
singular value σ. The similar statement is true for right singular vectors.
Consequently, if M has degenerate singular values, then its singular value
decomposition is not unique.

B.2 Relation to eigenvalue decomposition

The singular value decomposition is very general in the sense that it can be
applied to any m × n matrix. The eigenvalue decomposition, on the other
hand, can only be applied to (certain classes of) square matrices. Neverthe-
less, the two decompositions are related.

In the special case that M is a Hermitian matrix which is positive semi–
definite, i.e., all its eigenvalues are real and non–negative, then the singular
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values and singular vectors coincide with the eigenvalues and eigenvectors of
M,

M = VΛVT . (B.3)

More generally, given an SVD of M, the following two relations hold:

MT M = VST UT USVT = V(ST S)VT

MMT = USVT VST UT = U(SST )UT (B.4)

The right hand sides of these relations describe the eigenvalue decompositions
of the left hand sides. Consequently, the squares of the non–zero singular
values of M are equal to the non–zero eigenvalues of either MT M or MMT .
Furthermore, the columns of U (left singular vectors) are eigenvectors of
MMT and the columns of V (right singular vectors) are eigenvectors of
MTM.

B.3 Geometric meaning

Because U and V are unitary, we know that the columns u1, ...,um of U

yield an orthonormal basis of Km and the columns v1, ...,vn of V yield an
orthonormal basis of Kn (with respect to the standard scalar products on
these spaces).

The linear transformation T : Kn → Km that takes a vector x to Mx has
a particularly simple description with respect to these orthonormal bases: we
have T (vi) = σiui, for i = 1, ...,min(m,n), where σi is the ith diagonal entry
of S, and T (vi) = 0 for i > min(m,n).

The geometric content of the SVD theorem can thus be summarized as
follows: for every linear map T : Kn → Km one can find orthonormal bases
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of Kn and Km such that T maps the ith basis vector of Kn to a non–negative
multiple of the ith basis vector of Km, and sends the left–over basis vectors
to zero. With respect to these bases, the map T is therefore represented by
a diagonal matrix with non–negative real diagonal entries.
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