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ABSTRACT

Are there "laws" of manufacturing? If so, what do they look like? If not, what other

forms of knowledge might comprise intellectual foundations for a discipline of manufacturing?

We differentiate among mathematical tautologies, laws, models, and theories, giving examples

of each. Laws closely analogous to those of nineteenth century physics appear to be unlikely

but empirical models offer the prospect of building new understanding of manufacturing, even

if they may lack the precision ~f their classical counterparts. Descriptive models serving

scientific goals tend to differ from prescriptive models for problem-solving. The latter must be

complete enough to solve the practical problem at hand and yet be selective in their detail so as

not to paralyze problem-solving with irrelevant complication. A growing collection of

parsimonious models and theories can form a basis for the design, analysis and control of

complex manufacturing systems.
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Manufacturing systems are man-made artifacts. Is it possible, in these created worlds,

to discover what might be called "laws of manufacturing?" If so, it can be argued, such laws

would help establish intellectual foundations for a discipline of manufacturing. On the other

hand, if such laws cannot be found, what other forms of knowledge will help us design, analyze

and control better manufacturing systems?

It may be useful to distinguish between several types of potential laws: (1) mathematical

tautologies, (2) physical laws and their analogs, (3) empirical models and (4) theories. Then we

can ask whether we are likely to develop further along each line. Moreover, we can look for

related concepts that may be helpful in organizing our knowledge of manufacturing systems.

Tautologies vs Laws

L=AW ("Little's Law") is an example of a mathematical tautology with useful mappings

onto the real world. L=AW relates the average number of items present in a queuing system

to the average waiting time per item. Specifically, suppose we have a queuing system in steady

state and let

L = the average number of items present in the system,

A = the average arrival rate, items per unit time, and

W = the average time spent by an item in the system,
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then, under remarkably general conditions,

L=AW. (1)

This formula turns out to be particularly useful because many methods for analyzing

queuing systems produce either L or W but not both. Expression (1) permits an easy conversion

between these two performance measures. Queues and waiting are ubiquitous in manufacturing:

jobs to be done, inventory in-process, orders, machines down for repair, etc. Therefore, (1)

finds many uses.

L=AW is a mathematical theorem, having no necessary relationship to the world. Given

the appropriate set of mathematical assumptions, L=AW is true. There is no sense going out

on the factory floor and collecting data to test it. If the real world application satisfies the

assumptions, the result will hold.

The basic tautological nature of the proof can be illustrated by drawing a plot of the

number of items in the system versus time as in Fig. 1. The area, A, under the curve represents

the total waiting done by items passing through the system in the time period, T. Since the

average number of items arriving in a time period, T, is AT, we have as the average wait Per

item (at least to first order, with an accuracy that increases as T becomes larger): W = A/AT.

However, the same area, if divided by the time, also represents the average number of items in

the system during the Period: L = A/T. Eliminating A from these two expressions gives (1).
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Thus the two sides of equation (1) are really two views of the same thing and, with appropriate

treatment of end effects and the taking of mathematical limits, become equal. (Notice that we

have argued the existence of the relationship by considering a single sample of the queuing

process. The generality of the formula and its independence from particular probability

distributions arises because the argument holds for each specific evolution of the system.)
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Fig. 1. The two sides of the queuing formula, L = AW, reflect two different
views of the area A under the curve of number of items in the system vs. time.
In the limit L tends to AIT and W to AlAT.

Physical laws are different. For example, the equality of the two sides of Newton's law,

F=ma, cannot be taken for granted. Each must be measured separately and the equivalence

verified experimentally. In fact, it is well known that F=ma is only approximate and breaks

down at velocities approaching the speed of light. Thus physical laws require observation of the

world and induction about the relationships among observable variables.
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Laws vs Empirical Models

Nineteenth century physics produced many "laws of nature": Hooke's law, Ohm's law,

Newton's laws, the laws of thermodynamics, etc. By the mid twentieth century, however, many

of these laws had been found to be only approximate and many new, messy phenomena were

being examined. As a result scientists became more cautious in their terminology and began

speaking of models of phenomena. This continues to be the popular terminology today. Such

is particularly true in the study of complex systems, social science phenomena, and the

management of operations. The word, model, conveys a tentativeness and incompleteness that

is often appropriate. We enter a class of descriptions of the world in which there are fewer

simple formulas, fewer universal constants, and narrower ranges of application than were

achieved in many of the classical "laws of nature. "

Much valuable knowledge, however, can be packaged into empirical models of

phenomena. Their accumulation into organized bodies of learning represents scientific advance

and provides a basis for engineering and managerial practice. Here are a two examples.

If you examine communications between pairs of individuals in R&D groups vs. the

physical distance between them, you find a curve like Fig. 2. (Allen, 1977). Although there is

no strictly prescribed functional form or universal constant here, there is definitely a general

shaPe and an eXPerimentally determined range of parameter values. The regularity of the curves

can be distorted by a variety of special circumstances, such as electronic mail, location of people
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Distance (meters)

Fig. 2. The number of messages per week between pairs of people in an R&D
group falls off rapidly with the distance between them. After Allen (1977).

on different floors, the presence of a coffee machine, etc., but" the basic phenomenon is strong

and its understanding is vital for designing buildings and organizing work teams effectively.

Another example is the experience curve, which is illustrated in Fig. 3. It is well known

that manufacturing costs Per unit tend to decrease with cumulative production. This has been

documented in a variety of cases (see, for example, Hax and Majluf, 1984).

However, the experience curve is a somewhat different kind of a relationship from that of the

communications example because the decreasing cost does not happen automatically. Rather it

is the result of much purposeful activity in managing the manufacturing process. In a certain

sense, this seems a little less satisfying, than, say, Newton's law, which predicts unequivocally

the trajectory of a ball in free flight after it has been struck by a bat. But knowing about the

experience curve, planning for it, and making it happen, form an important part of many firms'
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strategies.
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Fig. 3. The experience curve shows production cost/unit decreasing with
cumulative units produced. After Hax and Majluf (~984).

Models vs. Theories

In the social sciences one often hears the term model when there is no equation, formula

or other mathematical representation anywhere in sight. Coming from a background in physical

science, I was perplexed when I first encountered this but finally realized that model in these

contexts means theory in its everyday sense. Theory is a quite general ter~ indicating a set of

relationships among constructs. Some theories are mathematical, (for example, relativity

theory), others, qualitative (as Darwin's theory of evolution).

A fine example of knowledge labeled as a theory comes from contemporary psychology.
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Prospect theory (Tversky and Kahneman, 1981) describes how people make decisions under

uncertainty. As a result of many experiments in which people make choices in different

situations with uncertainties, Tversky and Kahneman have produced a descriptive theory of how

people make such decisions. They illustrate it with Fig. 4.

Utility

Loss------~~------ Gain

Fig. 4. Prospect theory describes an individual's utility as increasing in a
concave function with gains and decreasing in a convex function with losses.
After Tversky and Kahneman (1981).

Fig. 4 shows a hypothetical value function for an individual, expressing the person's

utility for the outcome of some decision. The curve displays three interesting characteristics of

people's behavior. First, people tend to make decisions based on potential gains or losses

relative to some reference point. If y~u change the reference point you are likely to change how

they value the possible outcomes of a choice and therefore may affect the choice itself.

For example, if a person has, as a reference point, a belief about the price of a particular
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product and then finds the item in a store at a lower price, he or she is likely to treat the

difference as a potential gain. Subsequently, if the person buys the product, the purchase is

likely to be considered especially satisfactory, and, in fact, the lower price may have helped

stimulate the transaction. This is why stores that are running sales usually display the original

price prominently. This sets a reference point and makes the discount a net gain for the

customer.

A second characteristic of Fig. 4 is that the slopes for gains and losses are different near

the origin. The steeper slope for losses indicates that most people dislike a loss more than they

like a corresponding gain. This helps explain the current unfortunate tendency toward negative

political advertising. A quantity of negative information suggesting that a candidate might do

something harmful if elected may have more influence on the voters than a similar quantity of

positive information.

As a third property, Fig. 4 indicates that people treat gains and losses differently by

showing a concave curve for gains and a convex one for losses. The concavity for gains says,

for example, that two separate small rewards to an employee are likely to be appreciated more

than a single reward with the same total value. The convexity of losses means that people find

it mentally desirable to combine a number of small losses into a large one, as we do when we

charge by credit card and pay a monthly total bill instead of several individual ones.

Prospect theory is even further away from the well-calibrated formulas of nineteenth
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century physics than the empirical models described previously. Notice that Fig. 4 has no units

on its axes and even the terms utility, gain and loss seem to be a little vague. Such apparent

sloppiness would be quite disconcerting in engineering or physical science. Yet the shape of the

curve serves to summarize a great many experiments and sheds light on a whole variety of

phenomena. Contemporary psychology is making impressive strides in understanding human

behavior, but it often does so more by identifying phenomena and indicating the direction of

effects than by producing calibrated models analogous to physical laws.

Models for Science vs. Models for Problem-Solving

The models, theories, and mathematical relations discussed above are candidates to be

part of the intellectual foundations of a discipline of manufacturing. They are descriptive of

phenomena in a traditional scientific way. But models play other important roles as well.

Models for problem-solving often differ from models for science. The difference lies

in the criteria, both for choosing what to model in the first place and for judging the model when

it is finished. In addition, the process of building the model changes.

Science is concerned with describing the universe with fidelity and parsimony. These

fundamental criteria tend to identify which work survives to be recapitulated in the text books

of the next generation, although scientists care about other attributes as well - they talk about
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elegance, beauty, surprise and delight. Scientists have developed a variety of tests for assessing

fidelity, for example, the notion of trying to falsify a result. This often involves developing

alternative hypotheses and devising critical experiments or observations that will discriminate

among them. There are also predictive tests. And one can try to think up threats to validity and

evaluate their seriousness.

Models for problem-solving have different goals. Most of us in engineering or

management science are trying to help organizations make improvements in the world, or at least

our comer of it. This is certainly true in manufacturing. Having such a goal tends to change

and clarify the model-building process. It is also likely to lead to complicated rather than

parsimonious models because the systems we wish to understand and control are complex.

Complicated models provide us with knowledge but would not be called laws.

A key difference in the problem-solving case is that we presuppose a client or customer.

This might be a manager, an organization, or possibly society as a whole. The model-builder

may be thought of as a consultant, often an internal one, and model-building is imbedded in a

larger organizational process. We- now find different criteria from those used in scientific

model-building. The principal purpose is to improve the client's welfare, not just describe the

system.

Interestingly, I can think of many more how-to-do-it lists for the problem-solving side

of model-building than for purely scientific work. People have devised a variety of paradigms
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to help the model-builder. Examples are: (1) systems analysis (Miser and Quade 1985), (2) the

phases of OR (Churchman, Ackoff, and Arnoff, 1957) and (3), Urban's (1974) "Building

Models for Decision Makers." The last is particularly interesting because it explicitly considers

the consulting process itself.

Recipes like these are frequently useful. They are check lists that help jog people's

thinking into directions that need to be examined, although such paradigms mean most to people

who have already tried to build models for problem-solving. To others, the prescriptions seem

vague. I find, for example, that undergraduate students often see these paradigms initially as

empty talk, but after a summer job trying to solve practical problems, they relate to the ideas

quite easily. A really experienced person is also likely to find them superficial because the main

points have long since been internalized and second order subtleties have become salient.

Models for problem-solving have a surprising requirement that is quite different from

models for science. Problem-solving models should be incomplete. They should include that

which is important to the task at hand and leave out that which is not (Little, 1970). For

decision-making purposes we want to restrict ourselves to the detail needed for the job (but

should be complete in this). Such a requirement for artful imperfection is familiar to all

practicing engineers and management scientists but to almost none of their clients, a situation

that can cause confusion and miscommunication.

The exhortation to be complete on important issues and leave out unimportant ones begs
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the question of how to determine which is which. Anybody who has done analyses in live

contexts, however, knows well the pressure from the client and the critics to include more and

more detail in the model, and the importance of resisting many of these pressures. This is

necessary to prevent a modeling project from becoming too large and unwieldy and to avoid a

downhill slide toward expending more and more resources on activities that are not going to

affect the results. There are tough calls that require side analyses and off-line arguments to

make the necessary design decisions. One of the difficulties in keeping models from becoming

overly complicated is that there are always aspects of the problem that are unimportant but can

be blown out of proportion by word pictures and one-of-a-kind anecdotes. Ironically, clients

often reject models because of a lack of some feature and then go on to make decisions on the

basis of far simpler mental models and heuristics.

We conclude that most models for problem-solving are not candidates to be fundamental

laws but are artful constnlctions which provide the practical payoffs that justify building a

discipline in the first place.

Simple vs. Complex Models

Ideally, potential laws of manufacturing would be simple in statement and general in

applicability. Yet manufacturing systems are usually complex and specific, involving not only

machines and organizations of people, but many and varied information flows and control
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processes. How is this situation to be handled?

Since, as humans, we have finite intellectual capacity or "bounded rationality"

(Simon,1957), we tend to break complex systems down into small, manageable pieces for

analysis, design and control. Once we have decomposed a system into parts, we then have a

desire to resynthesize small entities into big ones and work with the large entities as new units.

Such hierarchical modeling is a useful approach, but not without pitfalls. Forrester (1961) points

out that the parts of the system sometimes interact in unexpected ways and offers system

dynamics as an approach for treating this.

Large scale simulations performed in computer languages designed for the purpose are

now quite common (Pritsker, 1990, Cooper, 1990). We have outstanding computer capabilities

and increasing experience in modeling complex systems. However, care must always be

exercised in order not to lose the main points amid the detail. I would argue for having simple

models both before and after a large scale simulation. Before one begins, it is important to ask

what phenomena are critical to the decision at hand. It can be helpful to build a few-variable

back-of-the-envelop model to represent these phenomena. It is likely that such a model will

make too many simplifying assumptions to be accepted by the client. and so a more detailed

model may be necessary. However, if the results of running a complex model suggest a

particular course of action, it is imperative to know why the model produced those results, i.e.,

what were the key assumptions and parameter values that made things come out as they did.

In essence, we should have a simple model with a few key variables that boils down the essence
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of why the recommendations make sense.

The building of more and more complicated models of systems using the same

methodologies runs into diminishing returns. Managers face dozens of different problems each

day: not just late schedules, low throughput and excess inventories but also issues such as key

people being hired away, roofs that leak, complaining customers, absentee employees, etc. Thus

there is a need for multiple views; a hundred different small models are often desired, not a

single big one.

Modeling myopia

People trained in engineering or management science tend to think top-down, that is, in

terms of goals, objective functions, design variables, models of processes, synthesis of systems

from subsystems and the like, with the intent of using the entities under their control to

maximize system performance. Consider, however, the following quote from a talk by Mr.

Konosuke Matsushita of Matsushita Electric Industrial Company (Stevens, 1989).

"We are going to win and the industrial west is going to lose; there's nothing

much you can do about it because the reasons for your failure are within

yourselves. Your firms are built on the Taylor model; even worse, so are your

heads. With your bosses doing the thinking while the workers wield the

screwdrivers, you're convinced deep down that this is the right way to run a
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business. For you, the essence of management is getting the ideas out of the

heads of the bosses and into the hands of labor. We are beyond the Taylor

model; business, we know, is now so complex and difficult, the survival of firms

so hazardous in an environment increasingly competitive and fraught with danger,

that their continued existence depends on the day-to-day mobilization of every

ounce of intelligence. II

Whether or not Mr. Matsushita's forecast is correct, he forcefully articulates a critical idea - the

need for empowering and enhancing the effectiveness of people at all levels of an organization.

We indulge in modeling myopia if, as system analysts, we believe we can (or should) be

building complete models of our systems and setting all the control variables. Doing so misses

major opportunities for system improvement that are possible by finding new ways to empower

the people on the front lines of the organization by giving them information, training, and tools

with which to improve their own performance.

Also implicit here is the recognition that organizational coordination is something much

more than top-down control. New ideas are evolving in this area, for example, developments

in computer assisted collaborative work and coordination theory (Malone and Crowston, 1991).

As information technology has decreased the cost of communication, there has been a growth

of lateral communication and coordination and a shift from vertically hierarchical organizations
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to more lateral and market-like structures. Lateral coordination is valuable in speeding new

product development, finding process improvements, implementing new ideas and generally

facilitating parallel but interdependent operations in different locations.

But what kind of knowledge is this? And how is it tested and proved valid or not?

Certainly there are testable propositions and empirical models and theories to be created here

and they hold opportunities for building more effective manufacturing systems.

Outlook for laws of manufacturing

What can we anticipate, then, in terms of laws of manufacturing? Are there more laws

like L=}..W? Probably so, in the sense that we should be able to find other simple but fairly

general mathematical rules and relationships that map well onto the world and provide valuable

insights about operations. An example might be the "shortest job first" priority that minimizes

average wait in system across a rather broad class of queuing systems.

I am less optimistic about finding many analogs of physical laws because our systems are

quite complicated and messy. Of course, we use the laws of physics directly in the engineering

of manufacturing systems. And we readily write down material flow equations equating inputs

and outputs in an intuitive application of conservation of matter. But our complex manufacturing

systems do not seem to invite new laws like F = mao In part this may be because manufacturing
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systems are built of subunits that we, as designers, have defined, both in terms of the atomic

entities and the rules of connecting them. We therefore know the underlying relationships

already and take them for granted. This is different from the physical world, which was given

to us as an undeciphered puzzle, and where the game has been to figure out how things work

inside the black box.

Manufacturing systems are characterized by large, interactive complexes of people and

equipment in specific spatial and organizational structures. Because we often know the subunits

already, the special challenge and opportunity is to understand interactions and system effects.

There are certainly patterns and regularities here. It seems likely that researchers will find

useful empirical models of many phenomena in these systems. Such models may not often have

the cleanliness and precision of Newton's laws, but they can generate important knowledge for

designers and managers to use in problem solving.

As we analyze manufacturing systems, building models of them to understand their

behavior and help with their design and operations, we shall be building complex, problem

solving models, more often than descriptive, scientific models, although we shall use all of the

latter we can in the process. Ideally, however,our analyses will find summary regularities that

might be called principles or theories and hold over reasonably wide ranges of conditions.

These may be in the form of rules of thumb or few-variable models that capture the essence of

some phenomenon. These will represent the creation of new fundamental knowledge.
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Such work is in fact accumulating. An example might be the work of Wein and

Chevalier (1992). In studying job-shop scheduling (assigning due dates, releasing jobs from

backlog, and sequencing jobs at workstations), these researchers report simplifying principles

of scheduling that decrease the amount of work in progress and improve due-date performance.

Their heuristics are motivated by exact solutions of special cases but can be shown by simulation

to be effective in a range of complex systems. Furthermore, the reasons why the principles

work well (which, in this case, are related to system bottlenecks) can be described and

understood qualitatively.

Finally, in analyzing, designing and managing manufacturing systems we need to bring

in organizational and managerial knowledge, integrating this with operational and engineering

content built up from a few laws, many good empirical models and a variety of theories, but

avoiding model myopia. Many issues will arise that offer fruitful research agendas.
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