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Abstract 

At European Centre of Nuclear Research (CERN), within 
the new Large Hadron Collider (LHC) project, 
measurements of magnetic flux with uncertainty of 10 ppm 
at a few of decades of Hz for several minutes are required. 
With this aim, a new Fast Digital Integrator (FDI) has been 
developed in cooperation with University of Sannio, Italy 
[1]. This paper deals with the final design tuning for 
achieving target uncertainty by means of experimental 
statistical parameter design.  

Introduction 

In high-accuracy instrument design, accuracy is 
enhanced usually by selecting higher-quality components 
and imposing narrower variations to influence parameters. A 
different approach is used in control system and electronic 
circuit design, or in quality engineering [2]-[5]: the system 
output is made as much insensitive as possible both to 
component tolerances and to influence parameters by 
selecting a suitable system configuration. This is carried out 
through analysis techniques of system theory, range 
methods, or statistical experiment design. In any case, the 
same aim of only finding better nominal values of system 
components or design parameters is pursued, by avoiding a 
cost increase.  

In this paper, a procedure of uncertainty reduction, as 
well as of optimization of metrological characteristics, 
through statistical experimental parameter design in the 
input range as a whole is proposed and applied to the 
abovementioned FDI [1]. 

The proposed method 

A measurement system can be formalized in terms of 
measurand parameters xj (j = 1, 2,..., m), design parameters 
ci (i = 1, 2,..., n), influence factors uj (j = 1, 2,..., r), and 
reading parameters yk (k = 1, 2,..., p) [6]. The ci are sampled 
in order to assume q levels (q = 1, 2, ..., z). The problem of 
uncertainty reduction is defined as to find the combinations 
of ciq  that reduce the reading variance without loss in other 
metrological performance [6]. The burden of this task is 
reduced by experimental fractional factorial plans [2]-[6].  
The first step of the proposed approach is to choose a 
suitable objective function η. Under the hypothesis of 
parameter independency, the relationship between η and ci 
can be expressed by the following model:  
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iq
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where µ is the overall mean of η for the experimental plan, 

δiq is the deviation from µ due to ciq, and ε stands for the 
uncertainty. 

Experimental results are then analysed by [2]: (i) 
analysis of mean (ANOM), in order to estimate the effects 
of the configuration options on the optimum attainment; and 
(ii) analysis of variance (ANOVA), in order to evaluate the 
relative weight of such options with reference to the 
uncertainty of the estimate, and to select only the most 
significant ones.  

 
Experiments 

The proposed method was applied to the FDI developed 
at CERN, under the framework of a cooperation between 
Magnetic Tests and Measurement (MTM) Group and the 
Dipartimento di Ingegneria of University of Sannio [1].  

At CERN, Portable Digital Integrators (PDIs), based on 
gain programmable voltage-to-frequency converters, have 
been used for 20 years successfully [7]. However, in most 
advanced applications of test and control for the LHC under 
construction, more constraining requirements of 10 ppm on 
integrated voltage measurement for an integration time of 1 
s or more are needed for the measurement of magnetic field 
based on rotating coils. Other laboratories proposed full 
digital solutions [8]-[10], however drawbacks related to 
timing constraints still arise. 

The main sections of the FDI analog part are shown in 
Fig. 1: 

• the Programmable Gain Amplifier (PGA); 
• the 18-bit Analog-to-Digital Converter (ADC); 
• the Field Programmable Gate Array (FPGA); 
• the digital trimmer for the gain adjustment; 
• the Digital-to-Analog Converter (DAC) for the 

offset compensation. 
The input signal, picked up form the coil, is conditioned by 
the PGA and quantized and converted by the ADC; the 
digital signal is sent to a Digital Signal Processor (DSP) 
ADSP-21262 through the FPGA Xilinx Spartan III which 
represents the I/O processor of the FDI. The digital trimmer 
and the DAC operate in the calibration procedure for the 
adjustment of the selected gain and for the correction of the 
offset voltage. 

The list of the selected design parameters with the 
respective levels is shown in Tab. 1: fFPGA is the clock 
frequency of the FPGA, Vref is the external reference voltage 
of the ADC, AVDD is the ADC analog power input, while 
Vpow is the power voltage fo the instrumentation amplifier of 
the PGA, and Rgain is a resistor that contributes to the final 
value of RG, the sensing resistor of the PGA (Fig. 1).  
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There are five parameters with three levels thus the 
experimental plan L18 [2]-[6] (Tab. 2) was selected. 

The chosen objective function was: 
( )( )22 1log10 −+⋅−= fff µση          (2) 

each experiment (a row of the matrix) was replied nr = 30 
times. In the presentation, the optimal combination of 
parameter level, carried out with ANOM test, and the terms 
that have gone over Fisher test on ANOVA for a 
significance level of 99 %, and the achieved uncertainty 
reduction is reported. 
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Table 1 – Control parameters with the respective levels 
Parameter Lev. 1 Lev. 2 Lev. 3 

x1 fFPGA [MHz] 20 35 50 
x2 ADC Vref [V] 4.09 4.096 5.02 
x3 AVDD [V] 4.75 5.00 5.25 
x4 Vpow 14.0 14.5 15.0 
x5 Rgain [kΩ] 10 11.0 12 

Table. 2 – Experimental Plan L18 (e: empty) 
Exp. x1 x2 x3 x4 x5 e e 7 e 

1 1 1 1 1 1 1 1 1 
2 1 1 2 2 2 2 2 2 
3 1 1 3 3 3 3 3 3 
4 1 2 1 1 2 2 3 3 
5 1 2 2 2 3 3 1 1 
6 1 2 3 3 1 1 2 2 
7 1 3 1 2 1 3 2 3 
8 1 3 2 3 2 1 3 1 
9 1 3 3 1 3 2 1 2 

10 2 1 1 3 3 2 2 1 
11 2 1 2 1 1 3 3 2 
12 2 1 3 2 2 1 1 3 
13 2 2 1 2 3 1 3 2 
14 2 2 2 3 1 2 1 3 
15 2 2 3 1 2 3 2 1 
16 2 3 1 3 2 3 1 2 
17 2 3 2 1 3 1 2 3 
18 2 3 3 2 1 2 3 1 

Figure 1. Prototype  scheme. 

 

2


