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Abstract

It is often asserted that consumers purchasing automobiles or other goods and services un-
derweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile
market by examining the e¤ects of time series variation in gasoline price expectations on the
prices and market shares of vehicles with di¤erent fuel economy ratings. When gas prices rise,
demand for high fuel economy vehicles increases, pushing up their relative prices. Market share
changes - increased production of high fuel economy vehicles and scrappage of low fuel economy
vehicles - attenuate these price changes. Intuitively, the less that equilibrium vehicle prices and
shares respond to changes in expected gasoline prices, the less that consumers appear to value
gasoline costs.
We estimate a nested logit discrete choice model using a remarkable dataset that includes

market shares, characteristics, expected usage, and transaction price microdata for all new and
used vehicles available between 1999 and 2008. To address simultaneity bias, we introduce a
new instrument for used vehicle market shares, based on the fact that gasoline prices cause
variation in new vehicle shares that then persists over time as the vehicles move through resale
markets. Our results show that US auto consumers are willing to pay just $0.61 to reduce
expected discounted gas expenditures by $1. We incorporate the estimated parameters into a
new discrete choice approach to behavioral welfare analysis, which suggests with caution that a
paternalistic energy e¢ ciency policy could generate welfare gains of $3.6 billion per year.
JEL Codes: D03, L62, Q41.
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1 Introduction

There is a growing body of evidence that consumers choosing between products may underweight,

relative to purchase prices, product costs that are less salient or accrue in the future. Consumers

on eBay, for example, are less elastic to shipping and handling charges than to the listed purchase

price (Hossain and Morgan 2006). Mutual fund investors appear to be less attentive to ongoing

management fees than to upfront payments (Barber, Odean, and Zheng 2005). Shoppers are less

elastic to sales taxes than to prices (Chetty, Looney, and Kroft 2009). Consumers�tradeo¤s between

the purchase price and future energy costs of air conditioners imply relatively high discount rates

(Hausman 1979).1

Similarly, it is often asserted2 that vehicles�gasoline costs are not salient to automobile con-

sumers at the time of purchase, and that consumers thus do not fully account for these future costs

when choosing between vehicles. As a result, consumers choose lower fuel economy automobiles,

with higher resulting fuel expenditures, than they would in their private optimum. In 2007, the

median-income American family spent $2400 on gasoline, and American households spent $286

billion in total (U.S. Bureau of Labor Statistics 2007). Misoptimization over such a large expendi-

ture class could result in substantial welfare losses. The purported undervaluation of gasoline costs

would also help explain what Ja¤e and Stavins (1994) call the "Energy Paradox": that consumers

and �rms have been remarkably slow to adopt apparently high-return energy e¢ cient technologies.3

Externalities related to national security and climate change would exacerbate the private wel-

fare losses from consumers�potential undervaluation of fuel economy. There has been substantial

debate over whether these externalities should be internalized through gasoline taxes or Corporate

1Hausman estimates that consumers implicitly use a discount rate of 25 percent per year when they trade of
purchase prices and future energy costs of new air conditioners. He concludes (p. 51), "Yet this �nding of a high
individual discount rate does not surprise most economists. At least since Pigou, many economists have commented
on a "defective telescopic faculty." A simple fact emerges that in making decisions which involve discounting over
time, individuals behave in a manner which implies a much higher discount rate than can be explained in terms of
the opportunity cost of funds available in credit markets. Since this individual discount rate substantially exceeds
the social discount rate used in bene�t-cost calculations, the divergence might be narrowed by policies which lead to
purchases of more energy-e¢ cient equipment."

2See, for example, Greene (1998) and Parry, Walls, and Harrington (2007).
3Various explanations have been proposed for this apparent anomaly, including imperfect information, credit

constraints, principal-agent problems (Murtishaw and Sathaye 2006), some form of bounded rationality (DeCanio
1993), and that discount rates do not properly model hysteresis and irreversible investment under uncertainty (Hassett
and Metcalf 1993). Yet another explanation is that there may be no "Paradox" at all: analysts� estimates of the
returns to investments that improve energy e¢ ciency may be overly optimistic (Metcalf and Hassett 1999).
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Average Fuel Economy (CAFE) standards (e.g. Bento, et al, 2009). Economists often argue that

gas taxes are preferable because they act both on the extensive margin, by encouraging consumers

to buy higher fuel economy vehicles, and on the intensive margin, by encouraging them to drive

vehicles less. CAFE standards, by contrast, only bind on the extensive margin.4 If consumers

undervalue future fuel costs when they choose between vehicles, however, their extensive margin

response to gasoline taxes would not be optimal, and if the undervaluation is su¢ cient, CAFE

standards might be preferred. Indeed, one of the leading economic arguments for CAFE and other

energy e¢ ciency standards is that they could increase welfare by forcing consumers to own more

energy e¢ cient durable goods, regardless of whether their choices indicate that they want them.5

A central problem in taking the paternalistic stance on fuel economy standards is the dearth

of evidence on whether automobile consumers actually are or are not misoptimizing. The rational

model provides our null hypothesis: that consumers are willing to pay one extra dollar in vehi-

cle purchase price to decrease the expected present value of future gasoline costs by one dollar.

Although many phrases could be used, for expositional purposes we will say that rejecting this

hypothesis is evidence that consumers "misvalue gasoline costs."6 This paper tests the null hypoth-

esis using extraordinary micro- and market-level data on the prices, quantities, characteristics, and

usage of all passenger vehicles in the United States between 1999 and 2008.

Our empirical test is based on the intuition that the increase in gasoline prices over the past

decade should increase the relative prices and market shares of high- vs. low-fuel economy vehicles.

Indeed, media reports and academic analyses have documented that as gasoline prices rise, the

market shares of new high fuel economy vehicles rise (Klier and Linn 2008), the scrappage of used

low fuel economy vehicles increases (Li, Timmins, and Von Haefen 2009), and the relative prices

of both new and used vehicles with low fuel economy drop (Busse, Knittel, and Zettelmeyer 2009).

The above null hypothesis, however, does more than predict that gasoline prices should a¤ect

4The higher fuel economy vehicles required under CAFE require less fuel to operate per mile, and thus consumers
actually have the incentive on the intensive margin to increase driving. This is often called the "rebound e¤ect."

5This "paternalistic" argument for fuel economy standards is discussed in the government�s Regulatory Impact
Analysis of the new CAFE standards (NHTSA 2009, page 335) and is suggested by Fischer, Harrington, and Parry
(2007), Greene (1998), Greene, Patterson, Singh, and Li (2005), and Parry, Walls, and Harrington (2007), among
others. Some of these analyses do not necessarily advocate the position given the lack of empirical support for
misoptimization. Hausman and Joskow (1982) discuss this argument in the context of appliance energy e¢ ciency
standards.

6Related research might use di¤erent terms to describe undervaluation of gasoline costs, such as myopia, misop-
timization, inattention, shrouding, salience, high implicit discount rates, and naivete.
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relative demand for vehicles of di¤erent fuel economy ratings: it predicts how much demand should

be a¤ected. Finding that changes in relative prices and shares are smaller than predicted suggests

that consumers undervalue gasoline costs and fuel economy when they purchase vehicles.

In principle, consumers�valuation of fuel economy and future gasoline costs could be estimated

in a hedonic or discrete choice framework using variation in the prices and fuel economy ratings in

one cross section of vehicles. Since energy costs are a function of the product�s energy e¢ ciency and

of energy prices, however, this valuation can alternatively be estimated from time-series changes

in energy price expectations. We adopt this approach, using panel data on vehicle markets with

vehicle-speci�c �xed e¤ects. This allows our estimator to be unbiased even if a vehicle�s fuel

economy is correlated with its unobserved characteristics.

As proposed by Kahn (1986)7, the panel approach is simplest if one assumes that neither new

vehicle supply nor used vehicle scrappage rates respond to gas prices. In this intuitive model, the

relative price of a used vehicle should decrease by one dollar for each one-dollar increase in the

relative present discounted value of expected future gasoline costs. Unfortunately, the observed

response of market shares to gas price changes biases that approach towards concluding that con-

sumers undervalue gasoline costs. Higher gas costs lead to a decrease in production of low fuel

economy new vehicles. The reduced supply in turn increases the prices of both these new vehicles

and used vehicles that are good substitutes. Similarly, production of high fuel economy vehicles

would go up, reducing the prices of new and used high MPG vehicles. The responsiveness of used

vehicle prices to gas costs would therefore be smaller than would be expected if quantities were

assumed to be �xed. This responsiveness is further attenuated if scrappage of low fuel economy

vehicles increases with gas prices.

We account for vehicle quantities and substitution patterns using a discrete choice model of

vehicle demand, where consumers�utility from owning a vehicle is allowed to depend separately on

discounted future gasoline costs and the purchase price. To account for unobserved heterogeneity

in consumers�preferences, we use a nested logit model. The bene�t of the nested logit speci�cation

7Kilian and Sims (2006) and Sallee, West, and Fan (2009) build on Kahn�s (1986) fundamental approach. Other
work that examines how vehicle prices adjust in response to gasoline prices include Sawhill (2008), Langer and Miller
(2009), and Austin (2008). Verboven (1999) estimates the discount rates implied by di¤erences between the prices of
gasoline and diesel vehicles in Europe. Ohta and Griliches (1986) examine whether the 1970s gasoline price shocks
a¤ected consumers�valuations of vehicle characteristics.
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is that it gives a simple market-level relationship between equilibrium vehicle prices, market shares,

and gasoline costs while parsimoniously modeling substitution patterns across similar vehicles.

In estimating the demand equation that results from our model, we face the standard simul-

taneity problem that vehicle market shares (and prices) may be correlated with unobserved vehicle

characteristics. Accordingly, we instrument for market shares by exploiting the fact that the de-

mand for a new vehicle with low fuel economy is higher in years when gasoline prices are low. At

any time in the future, the quantity available of the (now used) vehicle produced in that year will

therefore be higher than the quantity of the same model produced in a model year when gasoline

prices were high. Crucially, this within-model variation in quantity of used vehicles should be inde-

pendent of unobserved product attributes. Our paper therefore introduces into the literature a new

instrument for automobile market shares or prices, based on the interaction of fuel economy with

the gasoline price in the model year in which the vehicle was produced. This may prove to be more

broadly useful as an alternative to the standard Berry, Levinsohn, and Pakes (1995) instrumental

variables procedure.

We estimate the model with perhaps the largest collection of data ever used in the economics

literature on the automobile industry. From microdata on 57 million vehicle transactions at both

auto dealerships and auctions, we construct monthly average prices for all new and used passenger

vehicles available in the United States. From comprehensive vehicle registration data, we observe

the national-level market shares of each of these vehicles and match these to the price data using the

industry�s serial numbers, called VINs. This is in turn matched to each vehicle�s fuel economy and

other characteristics. The vehicle-level data are supplemented by data on retail gasoline prices and

oil futures prices, from which we construct expected future gasoline costs, and the 25,000-household

National Household Travel Survey, covering vehicle ownership and vehicle-miles traveled.

We formulate our assumptions to conservatively bias us against �nding that consumers under-

value gasoline costs. We �nd, however, undervaluation for any plausible set of assumptions about

gasoline cost expectations, vehicle survival probabilities, vehicle-miles traveled, and other parame-

ters. We conservatively estimate that between 1999 and March 2008, American auto consumers

were willing to pay only sixty-one cents to reduce expected discounted gas expenditures by one

dollar.
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Under the assumption that our empirical results are driven by inattention to future gasoline

costs, we then compute the welfare implications of misoptimization. To carry this out, we ap-

ply the framework of Bernheim and Rangel (2009) and related analyses to introduce a new and

highly tractable approach to behavioral welfare analysis in a discrete choice setting. We analyze

a counterfactual "Behavioral Feebate" policy that imposes sales taxes that increase in a vehicle�s

expected future gasoline consumption by an amount such that consumers purchase their privately-

optimal vehicles. Given our parameter estimates and stylized modeling assumptions, the welfare

gains from such a policy are $15 per potential vehicle owner per year. Across approximately 240

million potential vehicle owners, this sums to $3.6 billion annually.

These �ndings have implications in several domains. First, a cap-and-trade program to internal-

ize the marginal damages of carbon dioxide emissions would act on the automobile market through

an increase in gasoline prices. For a cap-and-trade or a comparable Pigouvian tax to achieve the

�rst best requires that all consumers arrive at their own private optima given the new higher relative

prices of pollution-intensive goods. If automobile buyers undervalue future gasoline prices, other

sectors will have to abate more carbon to satisfy a carbon emissions cap, and the marginal cost

of abatement will be above the optimum and will not be equal across sectors. Through this logic,

our �nding adds empirical justi�cation for extending the discussion of tax salience (e.g. Finkelstein

(2009) and Chetty, Looney, and Kroft (2009)) into "environmental tax salience."

Second, understanding consumers�demand for fuel economy is central to analyzing the wel-

fare and pro�t implications of new products and regulatory changes in the automotive industry.

Analyses including Bento, et al, (2009), Berry, Levinsohn, and Pakes (1995, 2004), Goldberg (1995,

1998), Jacobsen (2008), and Nevo (2002) all use an estimate of consumers�demand for higher fuel

economy vehicles. Our analysis is complementary to this body of work in that it provides a careful

estimate of an essential demand parameter.

Third, evidence that consumers are inattentive to future product costs also has important

implications for how �rms behave in equilibrium. "Myopic" or "unsophisticated" consumers, in

the sense of Gabaix and Laibson (2006) and Ellison (2005), may be one reason why �rms set low

markups on base products such as credit card interest rates, razors, and printers and set high

markups for add-ons such as late fees, razor blades, and printer cartridges. Although automobile
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manufacturing �rms do not sell gasoline (the "add-on"), a related model can be applied in this

industry, as the fuel economy embodied in a vehicle determines gasoline demand, and improving fuel

economy is costly. Furthermore, if gasoline costs are in essence a "shrouded attribute" in consumers�

decisions, this reduces manufacturers�ability to exploit economies of scale in producing high fuel

economy vehicles and dulls their incentives to direct technological change toward reducing the cost

of such vehicles. This suggests additional channels through which regulations such as Corporate

Average Fuel Economy standards and fuel economy information labels can a¤ect consumer welfare.

The paper progresses as follows. In section 2, we provide an overview of how we conceptualize

this problem, making the connection between features of the economic problem and econometric

identi�cation. In the third section, we formally set up consumers�utility functions, and in section 4,

we present our estimation strategy. Section 5 presents the aggregate and consumer-level data that

we have gathered and devotes particular attention to the construction of a vehicle�s discounted

expected future gasoline costs. Section 6 presents our main results and an extensive series of

robustness checks. Section 7 presents the theory and results of the welfare calculation.. Section 8

concludes with a note of caution on whether this analysis should be used to advocate for paternalistic

energy e¢ ciency policies.

2 Conceptualizing the Problem

All else equal, an optimizing consumer should be willing to pay $1 more for a product that entails

$1 less in discounted future costs. The fundamental goal of this paper is to test whether observed

automobile market equilibria are consistent with this condition. Our test requires us to construct a

framework that predicts how gasoline price-induced demand shifts a¤ect equilibrium vehicle prices

and quantities, and then to compare the predictions to data. This section introduces the economic

intuition for our approach; our formal model is introduced in section 3. One key takeaway from

this section will be that both vehicle prices and market shares must be endogenized - a simpler

estimator that holds quantities �xed would generate biased estimates.

A number of analyses have attempted to measure the importance of energy e¢ ciency in the

choice of energy using durable goods, in a long and active literature on "implicit discount rates."
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The most common identi�cation strategy has been to exploit variation in the prices and energy

e¢ ciencies in a cross-section of products. Cross-sectional identi�cation strategies were used in

seminal paper by Hausman (1979) and a number of later papers, including Espey and Nair (2005),

Dreyfus and Viscusi (1995), and Dubin (1992). In the discrete choice framework, conditional on

other product characteristics, a one dollar increase in purchase price should be associated with

the same decrease in market share as a one dollar increase in lifetime energy costs. In a hedonic

regression, a one dollar increase in energy costs should be associated with a one dollar decrease in

price.

For such an estimator to be unbiased, any unobserved characteristics must be uncorrelated with

energy e¢ ciency, and the functional form of any observed and correlated characteristics must be

correctly speci�ed. With automobiles, this assumption is likely to be problematic. Fuel economy is

highly correlated with weight and horsepower, which enter the typical indirect utility function for

automobiles in characteristics space. While these variables are observable, the way in which they

enter the utility function could be mis-speci�ed.8 Furthermore, fuel economy is a¤ected by styling

decisions that a¤ect wind resistance and may enter utility functions, as well as by features such as

air conditioners that increase a vehicle�s value. These features are in some cases di¢ cult to observe

or quantify. In a cross section, fuel economy is negatively correlated with price, which suggests that

low fuel economy vehicles may have more unobserved characteristics that increase utility.

The ability to look "within" the same vehicle over time as gasoline prices change obviates the

need to make assumptions about how the vehicle�s unobserved characteristics are correlated with

fuel economy. As a concrete example, consider comparing the price of a model year 2001 Honda

Civic in 2006 to a model year 2002 Honda Civic in 2007. If all else were equal other than gasoline

prices, the change in price of this 5 year old Civic from 2006 to 2007 would be the response to the

change in expected gas costs between the two years. An increase in gasoline prices should increase

its purchase price relative to a lower-fuel economy vehicle, and decrease its purchase price relative

to a higher-fuel economy vehicle. What we must do now is think through how much these relative

prices should change.

8At least since Atkinson and Halvorsen (1984), it has been pointed out that the high correlation between weight
and fuel economy makes it di¢ cult to estimate demand for fuel economy. In fact, cross sectional estimation of
automobile demand in characteristic space sometimes gives the "wrong" sign on fuel economy.
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We add some mathematical structure to provide intuition for the problem. The simple model

that follows will motivate the need for the formal discrete choice model that will be presented

beginning in the subsequent section. Consider a very simple world where consumers choose between

a vehicle and some outside option. A demand function is:

q = �� �p� 
G (1)

In this equation, q is the vehicle�s quantity, � is an intercept, p is the vehicle�s purchase price,

and G is the discounted gasoline costs over the vehicle�s lifetime, which we assume to be the same

for all consumers. The variable G will depend on a discount rate, future gas prices, fuel economy,

and the vehicle�s usage and scrappage probability over time, and we will later return to these issues

in great detail. We allow consumers to value purchase price and gas costs unequally. We can also

re-arrange this equation to get equilibrium price on the left-hand side:

p =
1

�
(�
G+ �� q) (2)

Assume for the next few paragraphs that the vehicle�s quantity q is constant. Equation (3)

shows that if 
 = �, as in our null hypothesis, a one dollar increase in G would cause a one dollar

decrease in p. Intuitively, if quantity is constant, the same consumer, with the same willingness to

pay, sets the price. To keep this consumer indi¤erent between the vehicle and the most attractive

outside option, the overall product cost p+G must stay the same as G changes.

The ideal dataset would allow us to observe the same consumers, with the same choice set of

vehicles, in the same �xed market shares as gas prices change over time. Under these conditions, the

marginal consumer for each vehicle stays the same. The changes in gasoline prices would generate

variation in G - smaller or larger changes, depending on the fuel economy of each vehicle. In this

ideal world, 
� could then be consistently estimated using the following panel regression:

pjat = �



�
Gjat +  ja + � t + "jat (3)
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In this equation,  ja is a constant for each "vehicle" of model j of age a, equal to a marginal

consumer�s willingness to pay to operate the vehicle. The variable � t captures changes in the overall

average price level at time t, and "jat is some econometric error. This approach is qualitatively

consistent with the analogous speci�cations in Kahn (1986) and the literature that follows his

approach.9

Now let us relax the assumption the the vehicle�s quantity is constant. Either through new

vehicle sales or scrappage of used vehicles, we now recognize that the market share of the vehicle

in equation (1) is not fully inelastic. The quantity supplied qS is:

qS = �0 + �1p (4)

Equating quantity supplied with quantity demanded, the the equilibrium vehicle price is:

p = � 


� + �1
G+

�0 � �0
� + �1

(5)

Since upward sloping supply gives �1 > 0, a one dollar increase in gas costs results in a less

than one dollar decrease in vehicle price even when 
 = �. Thus, estimating equation (3) when

supply is not fully inelastic would result in a downward bias in an estimate of 
� , which would lead

the analyst to incorrectly conclude that consumers undervalue gasoline costs. In other words, if

quantity q is correlated with G, then omitting q in the estimation of (3) will bias the estimated

coe¢ cient on G.

Production of new vehicles is much more price elastic than scrappage of used vehicles. Given

this, one response to the problem of elastic supply would be to analyze only the used vehicle

market, assuming that the e¤ect of gas price expectations on scrappage rates is negligible. However,

consumers also substitute between new and used vehicles with similar characteristics. If an increase

in gas prices leads to a decrease in production of new low fuel economy vehicles, this will increase

9After running the analogous speci�cation, Kahn (1986) further experiments with di¤erent formulations of how
consumers update gasoline price expectations and eventually concludes that vehicle prices fully adjusted to gasoline
price changes in the 1970s.
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the willingness to pay for a substitutable used low fuel economy vehicle. Again referring to equation

(2), this substitution will generate a positive correlation between the G and the demand intercept �.

Not accounting for this generates another correlation between G and the error term in estimating

equation (3), which would further bias downward an estimate of 
� and bias the analysis toward

concluding that consumers undervalue gasoline costs.

3 Model

In this section, we describe our discrete choice model, which addresses the concerns from the

previous section by endogenizing substitution patterns and changes in market shares. This model

will be a modi�cation of the standard framework in the industrial organization discrete choice

literature, e.g. Berry (1994). In our static discrete choice model, consumers derive utility from

owning a vehicle and from consuming a numeraire good. In each period, indexed by t, consumers

have homogeneous expectations E[gt+1; gt+2; :::j
t] about the future path of gasoline prices g given

information set 
.

In each period, consumers choose from a set of new and used models j = 1; :::; Jt, where a

indexes the vehicle�s age. Consumers also can choose an outside option, denoted j = 0, which is

to own no vehicle and instead walk or take public transit. As in all static discrete choice models,

consumers choose a vehicle in each period and expect to hold the vehicle for the remainder of its

life.10 Consumer i receives indirect utility uijat from purchasing vehicle ja in year t:

uijat = �(w � pjat)� 
Gjat +  jat + �ijat (6)

In this equation, w is the consumer�s wealth, pjat is the purchase price, andGjat is the discounted

present value of future gasoline costs over the vehicle�s lifetime. If consumers value purchase price

and future gas costs equally, then � = 
. Gjat depends on the discount rate, expected future

gasoline prices, and expected usage of the vehicle; we will return to the construction of this variable
10 In reality, the consumer�s true problem is dynamic: at any point in time, she has the opportunity to re-sell the

vehicle and purchase a new one. In the results section and in Appendix A.1, we return to the assumptions required
to simplify the consumer�s demand problem from a dynamic choice to a static choice.
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in great detail in section 5. Note that we assume that consumers are risk neutral,11 and Gjat will

be constructed using expectations. The variable  jat is the present discounted value of the �ow

utility that vehicle ja will provide to the average consumer over the rest of its lifetime from year t

forward.

As described in section 2, it is important to capture how a vehicle�s price might be a¤ected by

changes in the prices of substitutes: the model must capture, for example, how a decrease in the

price of new SUVs should a¤ect demand for used SUVs. This requires a reasonable model of how the

individual�s unobserved "taste shock" �ijat varies across vehicles. If taste shocks are uncorrelated

across vehicles, as in the homogeneous consumer logit model, substitution is proportional to market

shares. For example, as the price of a new SUV increases, the homogeneous consumer model predicts

that consumers would substitute equally to a used compact car and a used SUV that had the same

market share. In reality, we should expect more substitution to the used SUV, given that it is a

more similar product. Consumers that transport large families in an SUV will have a hard time

substituting to compact cars.

More realistic substitution patterns are captured econometrically by parameterizing correlations

in unobserved tastes �ijat across vehicles. We use a nested logit framework, which allows consumer�s

idiosyncratic preferences to be correlated across vehicles within the same predetermined set of

vehicles, or "nest": corr(�ijat; �ij0a0t) is nonnegative when ja and j0a0 are in the same nest and zero

otherwise.12 We will estimate a parameter � related to these within-nest correlations.13

11Risk aversion does not bias our estimator if uncertainty over future gasoline prices is constant, or more weakly,
uncorrelated with the level of gas prices. Constant expected volatility in future gasoline prices would result in a risk
averse consumer having a lower willingness to pay for any particular vehicle. Because lower MPG magni�es the e¤ect
of gasoline prices on a consumer�s gasoline expenditures, this e¤ect would be larger for low MPG vehicles. However,
any discount in the vehicle�s price due to constant gas price volatility predicted by a model of risk averse consumers
would be absorbed in the �xed e¤ect.
In reality, however, implied volatility was positively correlated with gasoline prices over the study period. If

consumers are risk averse, this should cause consumers to want to substitute away from low MPG vehicles as volatilities
(and also prices) rose. Since we �nd that relative prices of low fuel economy vehicles did not fall as much as predicted
when gasoline prices rise, the risk neutrality assumption actually strengthens our qualitative result.
12Another common way of parameterizing unobserved taste shocks is through a random coe¢ cients model, which

can allow preferences for continuous attributes such as horsepower and weight to vary across the population. We use
the nested logit because our choice set is unusually large and because it produces a transparent, simple log-linear
relationship between market-level prices and shares.
13 In particular, the cumulative distribution function for �ijat for all ja for individual i at time t is: F (�) =

exp

�
�
P

n2N

�P
ja2Bn e

��ijat=(1��)
�1���

. N is the set of all nests of vehicles, and Bn is the set of vehicles in nest k.
� is a parameter related to the within-nest correlation of utilities and will be estimated in the model. As � approaches
one, the within-nest correlation of utilities approaches one. If � = 0, the standard logit model is recovered. This
distribution can be extended to accommodate multiple nests or separate � parameters for each nest.
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As in other nested logit models, the nests are speci�ed ex ante and determine the structure of

substitution patterns allowed by the model. Nests must be comprised of vehicles over which the

analyst believes are close substitutes. This division may occur along multiple dimensions, such as

vehicle class or age. We use class as the �rst nest because this substitution is central to our analysis:

a consumer is unlikely to have equal preferences for vehicles of substantially di¤erent sizes, and

failing to account for this substitution pattern would likely lead us to overstate consumers�ability

to substitute among vehicles of di¤erent sizes and therefore di¤erent fuel economy ratings. This,

in turn, would lead us to overstate consumers�responsiveness to changes in gas price expectations.

It is well-known (e.g. Berry 1994) that if the utility of the outside good is normalized to zero,

the nested logit choice probabilities can be aggregated over the population to give a market-level

relationship between prices and shares:

ln sjat � ln s0t = ��pjat � 
Gjat + � ln(sjat=snt) +  jat (7)

In this equation, sjat is the market share of vehicle ja, s0t is the share of the outside option,

and snt is the combined market share of all vehicles in nest n, of which vehicle ja is a member.

Recall that the purpose of the model is to test whether � = 
, i.e. whether consumers are indif-

ferent between one dollar in purchase price and one dollar in future gasoline costs. The market-level

relationship between equilibrium prices and quantities implied by this discrete choice framework

will be the basis of our empirical test. Finding from market data that 
 < � would suggest that

consumers underweight future gasoline costs relative to purchase price in their decision.14

4 Empirical Strategy

Any consistent estimator of equation (7) must address two problems. The �rst is simultaneity

bias: prices and quantities are a¤ected by unobserved product attributes that enter utility func-

14We assume that � and 
 are constant and homogeneous in the population, which produces this simple hypothesis
that can be tested with a linear model. The marginal utility of money is likely to vary across consumers, which
explains di¤erences in preferences for luxury vehicles and vehicles of di¤erent ages. We proxy for this heterogeneity
using nests for vehicle age and luxury vehicles, as described in detail in section 7.
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tions through  . The second is the potential correlation of fuel economy and unobserved product

attributes in the cross section.

To address the �rst problem, simultaneity bias, we will in the following subsection introduce

instrumental variables. These instruments will be more intuitive as instruments for market shares

instead of prices, so purely for intuition and notational convenience, we rearrange the market-level

relationship in equation (7) so that price is on the left hand side:

pjat = �
1

�
(ln sjat � ln s0t)�




�
Gjat +

�

�
ln(sjat=snt) +

 jat
�

(8)

The second problem is that average utility obtained from a vehicle  jat depends on average

preferences for observed and unobserved characteristics. It is theoretically possible to estimate

equation (8) using a cross section of vehicles with di¤erent prices and fuel economy ratings. This

would require, however, that we observe and parameterize vehicle characteristics well enough to

assume that no unobserved part of  jat is correlated with fuel economy.

Instead, our panel identi�cation strategy exploits model-by-age �xed e¤ects  ja. Since observ-

able vehicle characteristics are e¤ectively identical across the years of vehicle ja, the deviation from

vehicle average utility is a year-speci�c unobservable:  jat =  ja + �jat. After adding model year

�xed e¤ects �t�a and a time dummy � t to absorb the outside option share ln s0t any overall shift

in the price level of vehicles, equation (8) becomes:

pjat = �



�
Gjat �

1

�
ln sjat +

�

�
ln(sjat=snt) +

 ja
�
+ � t + �t�a +

�jat
�

(9)

Equation (9) resembles the reduced form equation (3) from section 2. Were we willing to assume

that market shares are �xed, or more weakly, uncorrelated with G, then we could leave them in the

error term. 

� could then be identi�ed as the coe¢ cient of Gjat in an estimation of equation (3).

Because of the evidence that both new vehicle sales and used vehicle scrappage respond to gasoline

prices, however, this estimator would be biased.

Our speci�cation requires E[�G] = 0, but allows E[ G] 6= 0. In words, the model-year speci�c
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unobservable characteristic must be uncorrelated with fuel economy and gas prices, but the �xed

e¤ects allow vehicle characteristics that are �xed within models across model years to be correlated

with fuel economy. Even after using �xed e¤ects, however, the model year-speci�c unobservable

characteristic �jat could still be correlated with market shares if, for example, a feature that is

speci�c to particular model year a¤ects both price and share: E[�s] 6= 0. To address this, we

need an instrument that generates variation in market shares that is uncorrelated with unobserved

quality. As we will see momentarily, the fact that new vehicle sales respond to gasoline prices

suggests an instrument for used vehicle quantities. Interestingly, the problem that motivated this

approach - that market shares respond to gasoline prices - is also part of the solution.

4.1 Instruments and Two-Stage Least Squares

Our instrument exploits the stylized fact that vehicle market shares respond to gasoline prices. In

particular, in years when gasoline prices are high, more high fuel economy vehicles are sold. This

di¤erence in quantities in use then persists over time. For example, the increase in gasoline prices

from 2004 to 2005 means that there should be more two-year old gas guzzlers on the road in 2006

compared to 2007.

Our instrument for the market shares of used vehicles is the expected lifetime gasoline costs of

model j in year t�a, when the vehicle was new, denoted Gj0(t�a). This instrument acts conditional

on model year dummy variables, meaning that vehicles that have high values of Gj0(t�a) relative to

other vehicles produced in the same year are expected to have lower sales. For vehicles of di¤erent

model years within the model-by-age �xed e¤ect groups, this generates variation in market shares

that is independent of the demand shifter �jat.

We assume that ln snt, the log market share of nest n, is independent of �jat. Although it

is somewhat awkward, this is necessitated by the fact that, because the class-level nests include

vehicles of di¤erent model years, our instrument does not generate substantial variation in the nest

market shares. In practice, the nests include many vehicles, and the share of vehicle ja is a small

fraction of the share of nest n.15

15Any bias generated in b

�
depends on the covariance of Gjat and ln snt, and the covariance of ln snt and �jat.

The expected supply response suggests that Gjat is likely to be negatively correlated to ln snt. �b
� will be biased
15



The �rst stage equation of the two stage least squares regression is:

ln sjat = �11Gj0(t�a) + �12Gjat + �13 ln snt +  
0
ja + �

0
t + �

0
t�a + �

0
jat (10)

In this equation, the primes on  0ja , �
0
t, +�

0
t�a, and �

0
jat indicate that the concept of the variable

is the same as in the second stage, but the estimated value may of course be di¤erent in the �rst

stage. The second stage is:

pjat = �



�
Gjat �

1� �
�

dln sjat � �

�
ln snt +

 ja
�
+ � t + �t�a +

�jat
�

(11)

5 Data

We have assembled from multiple sources a comprehensive dataset of the average prices, quantities,

and characteristics of all passenger vehicle models registered in the US, in monthly cross sections

from January 1999 to December 2008. Our dataset comprises 1.1 million observations. Table 1

presents descriptive statistics. Appendix 2 provides extensive additional detail on data sources and

variable construction.

Used vehicle prices are based on auction data obtained from Manheim, the largest automobile

auctioneer in the United States. The principal buyers in the auctions are dealers who then resell the

used vehicles to customers. We have data on each of the approximately 4 million vehicle transactions

that occur annually through Manheim auctions, which accounts for half of the country�s auction

volume. We use the individual auction data to predict the mean price of each model in each month

t, adjusting for the vehicle�s condition, odometer reading, and region and method of sale. While

only about one in four used vehicles traded passes through an auction (Manheim 2009), the auction

market is the largest source of transaction price data. Furthermore, the Kelley Blue Book and other

upward (towards zero) if ln snt is positively correlated with �jat. This occurs to the extent that unexplained shifts
in equilibrium prices and nest share are driven by shifts in the demand curve rather than shifts in the supply curve.
Anecdotal evidence suggests that the automobile market is substantially driven by supply shifts, such as variation
in o¤-lease and rental vehicles entering the auction market. Therefore, while a bias is possible, we expect it to be
smaller in magnitude than in a model that does not account for vehicle substitutes.

16



price guides, which are the starting point for price negotiations in many used vehicle transactions,

are largely based on auction prices.

New vehicle prices are from the Power Information Network, a network of dealerships managed

by JD Power and Associates. These dealerships report 2 million new vehicle transactions each year,

about 15% of the nation�s market. For each model, we observe monthly mean prices adjusted for

consumer cash rebates and the di¤erence between the negotiated trade-in price and the trade-in

vehicle�s actual resale value, if any. We also incorporate used vehicle retail transaction prices from

JD Power in speci�cation checks.

We observe national-level quantities in use of each vehicle model in July of each year from 1999

through 2008. These data are from the National Vehicle Population Pro�le, which we obtained from

the automotive market research �rm R.L. Polk. The quantities represent all vehicles registered as

of July 1, including both individual owners and �eets such as taxis, rental cars, and corporate and

government motor pools. A vehicle may be driven on public roads only if it is registered, so this

database is exhaustive for all intents and purposes.

Fuel economy data were obtained from the U.S. Environmental Protection Agency (EPA), which

has estimated the miles per gallon of all new vehicles since 1974. The EPA uses a test to determine

fuel economy over a standardized drive cycle and then adjusts the results to account for the typical

consumer�s in-use fuel economy. Vehicle classes, which are used to de�ne nests in the nested logit

model, are also taken from the EPA�s fuel economy dataset. All other vehicle characteristics are

from the Ward�s Automotive Yearbook.

We de�ned a "vehicle" (in our notation, a ja combination) to capture all possible variation in

fuel economy ratings. This entailed disaggregation to the level of vehicle make, model name, trim

level, and the number of engine cylinders. The average make and model name combination in our

dataset includes four "models"; for example, there are eight di¤erent con�gurations of cars called

the model year 2004 Honda Civic (Dx, Vp (Coupe), Hybrid, etc.) that appear as separate "vehicles"

in our dataset. Data on new and used vehicle prices and registered quantities are matched using

digits from the Vehicle Identi�cation Number that are common within a model and model year.
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5.1 Expected Discounted Gasoline Costs

We now describe the formulation of the di¤erent components of expected discounted gasoline costs

Gjat, including vehicle-miles traveled, survival probability, discount rates, and expected gasoline

costs. Given that our parameter of interest 
� will be the coe¢ cient on this variable, its construction

is especially important for producing convincing results. For example, using a lower discount

rate than consumers actually face would in�ate Gjat, thereby biasing b
� downward. Alternatively,
understating the expected lifetime or usage of the vehicle would de�ate Gjat, biasing b
� upward.

Although we use the best available data to construct the components of Gjat, any of these

calculations could be subject to debate. In determining each component, we therefore choose

"conservatively," meaning that if b
� is biased, it is biased upwards. By erring in this direction,
we will show that 


� < 1 for any plausible set of de�nitions of the components of Gjat. Readers

interested in even more detail on the construction of Gjat should consult the Data Appendix.

The variable Gjat is the net present value of expected lifetime gasoline costs over future years

s:

Gjat = Et

24t+(L�1�a)X
s=t+1

�s�t � gs �mja � f�1jas � �jas

35
=

t+(L�1�a)X
s=t+1

�s�t � Et[gs] � Et[mja] � Et
h
f�1jas

i
� Et

�
�jas

�
(12)

L denotes the maximum possible lifetime of a vehicle, which we take to be 25 years. The variable

gs is a gasoline price in year s, mja is expected vehicle miles traveled (VMT), fjas is fuel economy in

miles per gallon, �jas is the probability that the vehicle survives to year s conditional on surviving

to its current age, and � is an annual discount factor.16 We assume that Gjat is homogeneous for

all consumers that choose vehicle ja at time t.17

16We assume that vehicles survive with probability one throughout each year, then a fraction determined by �jas
are removed from the market at the end of the year. We also model that all gasoline costs �ow halfway through the
year.
17 In reality, there is substantial variation in vehicle-miles traveled across consumers that own the same vehicle.

Similarly, di¤erences across consumers in the proportion of city versus highway driving, other driving behavior, and
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The second line of equation (12) includes expectations of separate quantities - gasoline prices,

fuel economy, VMT, etc. - that we will derive from separate datasets. To get the product of these

separate expectations (in the second line) from the expectation of products (in the �rst line) requires

that these variables are uncorrelated. A key concern about this assumption is that vehicle miles

traveledm are likely to respond to gasoline prices g. Indeed, there are a large number of papers that

estimate the short run elasticity of gasoline demand (e.g. Hughes, Knittel, and Sperling (2007),

Small and Van Dender (2007), and Davis and Kilian (2009)), which often �nd that the parameter is

small but statistically non-zero. If owners of low fuel economy vehicles respond to high gas prices by

driving less, then we overstate their gas costs. However, the consumer�s utility from vehicle use also

decreases in response to the reduced driving. As discussed in Kahn (1986), the Envelope Theorem

implies that these changes are equal and opposite to �rst order, and in our primary speci�cations,

we assume away these e¤ects.

Our primary speci�cation adopts this argument, using VMT predicted from year-2001 gasoline

prices and assuming that @m
@g = 0. We also derive an alternative speci�cation that captures the

e¤ects of intensive margin elasticity; see Appendix 2 for more detail. As we will later show, this

adjustment does not substantially a¤ect the results.

5.1.1 Vehicle-Miles Traveled and Survival Probability

To estimate Vehicle-Miles Traveled (VMT), we use publicly-available data in the 2001 National

Household Travel Survey. This is a nationally-representative survey of approximately 25,000 house-

holds that report, among many other variables, the age, fuel economy, and vehicle class for each

of their vehicles. As part of the survey, about 25,000 vehicles in the national sample had their

odometers read twice, with several months in between readings. These two readings were then

used to estimate annualized VMT. We regress annualized VMT on the vehicle�s age, class, and fuel

vehicle maintenance generate di¤erences in realized fuel economy. As gasoline price expectations change, the change
in relative prices between two vehicles is determined by some marginal consumer who is indi¤erent between them. In
practice, we use the mean VMT for that vehicle since we cannot identify the marginal consumer, but we do not have
a reason to believe that this choice generates a systematic bias in the computation of Gjat.
Note that changes in gasoline prices should lead to a re-sorting of vehicles across consumers with di¤erent VMT.

As gas prices increase, consumers with relatively high VMT are more likely to switch to a vehicle with higher MPG,
but consumers with relatively low VMT would switch to a vehicle with lower MPG. Intuitively, this re-sorting does
not a¤ect equilibrium relative prices as long as our the mean VMT for a vehicle is a good proxy for the VMT of a
consumer who remains on the margin for that vehicle as gas prices change.
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economy, and use these estimates to predict mja for all vehicles in our sample.

We compute survival probability based on observed survival probabilities in our registration

data. As with VMT, we assume that these survival probabilities do not depend on expected gasoline

prices. Note that since we regression-adjust vehicle VMT in the individual auction transactions to

a standardized value, the left-hand-side variable pjat is not a¤ected by changes in VMT, and thus

remaining lifetime, that may be driven by gas price di¤erences over the study period.

5.1.2 Discount Rates

The discount rate r = ��1 � 1 that consumers apply to gasoline costs should re�ect the interest

rate on the marginal dollar spent on the vehicle. We present two potential benchmarks. First, for

a consumer who �nances her vehicle, this should be the automobile loan interest rate. The JD

Power transaction data include the loan annual percentage rate for vehicles that were �nanced at

the dealership. The transaction-weighted average real interest rate over the study period is 4.7

percent for new vehicles and 9.0 percent for used vehicles.

Second, for a consumer who purchases the vehicle with cash, the opportunity cost could be the

expected market returns on an alternative investment. The average real return on the S&P 500 from

1945-2008 was 5.78 percent, but given that the market and oil prices have a very small covariance,

the risk-adjusted discount rate for gasoline costs would in fact be close to the risk-free rate.18 Our

primary speci�cation uses an annual real discount rate of 9 percent, which is conservatively at the

upper end of these benchmarks.

5.1.3 Gasoline Price Expectations

A perfect measure of consumers�gasoline price expectations Et[gs] is not observed. Just as we could

frame the analysis as solving for an "implicit discount rate" at which b
� = 1, we could also solve for
18A risk averse consumer with declining marginal utility of consumption would want to risk-adjust returns for their

covariance with the market. The Capital Asset Pricing Model (CAPM) allows us to compute the risk-adjusted rate
of return that the consumer would require for gasoline purchases, which can also be thought of as disinvestments in
gasoline. Annual data from 1945 to 2008 show that oil prices (and therefore gasoline prices) are slightly negatively
correlated with market returns, as measured by the S&P 500 stock index. Therefore, the CAPM predicts that a
consumer should expect a rate of return on a disinvestment in gasoline that is slightly higher than the risk-free rate
of return - by our calculations, about 1.6 percent. The CAPM therefore suggests that our higher discount rate is
quite conservative.
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any number of formulations of gasoline price expectations which produce that result. The objective

of our primary speci�cation is to estimate 

� based on the most sensible set of expectations that

can be constructed. We will also present robustness checks using other sensible expectations, and

we will demonstrate that b
� = 1 only under implausible beliefs.
Gasoline prices move very closely with crude oil prices: Light Sweet Crude Oil spot prices

predict 93 percent of the monthly variance in gasoline prices. This implies that crude oil futures

prices are very good proxies for the market�s expectation of future gasoline prices. A time series

of U.S. average retail gasoline price expectations Et[gs] is therefore constructed from Light Sweet

Crude Oil futures prices from two sources, the Intercontinental Exchange (ICE) and the New York

Mercantile Exchange (NYMEX). Table 2 shows the annual average real retail gasoline prices and

crude oil futures prices transformed to dollars per gallon of gasoline.

Although oil futures contracts are only traded with high liquidity for settlement dates less

than two to three years in the future, Table 2 illustrates that there are some trades observed for

settlement dates as far as ten years in the future. The market does not believe that gasoline prices

are a martingale: as illustrated in Figure 5, as gas prices rose between 2003 and 2008 above their

1990�s average of approximately $1.50 per gallon, the futures market expected prices to eventually

return closer to that previous level. To model expectations for periods beyond the last settlement

date observed at each time t, our primary speci�cation uses a simple model of mean-reverting

expectations, where deviations from a $1.50/gallon mean decay exponentially. As detailed in the

Data Appendix, the mean-reversion parameter is calibrated using all futures data since 1991. The

equation �ts the data very well: it explains 85% of the variation in the observed futures prices over

our 1999-2008 study period.

5.2 Reduced Form Data Overview

The dataset we use is perhaps the most wide-ranging data ever assembled in the economics literature

on the automobile industry. Before moving to the parameter estimates, we �nd it useful to give

an aggregate, reduced-form overview to build intuition for how the parameters are identi�ed and

what the data will show.

Figure 2 illustrates the variation in the instrument Gj0(t�a), which will identify price elasticity of
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demand. For di¤erent fuel economy categories, we plot the average value of the instrument for each

model year, conditional on time and model year dummies � and �, which in the �rst stage regression

will be the most important covariates, and on the  ja �xed e¤ects. Although some identi�cation

is generated by the e¤ects of the 1985-1986 gasoline price collapse, the primary source of variation

for the �rst stage is from the gasoline price increase between 2003 and 2008. Over those years,

�Gj0(t�a)j(� ; �) rises for the lowest MPG (highest GPM) classes, as illustrated by the solid black

and dashed blue lines. While unconditional Gj0(t�a) also rises for higher MPG vehicles, it rises less

than for low MPG vehicles, so their conditional �Gj0(t�a)j(� ; �) drops. Within the ja �xed e¤ect

groups, this instrument will be negatively correlated with sales of new vehicles.

Figure 3 illustrates the variation in Gjat over the study period, conditional on the same dummy

variables and �xed e¤ects. As gas prices rose in the latter half of the decade, the conditional

�Gjatj(� ; �) rose for low fuel economy vehicles, as again illustrated by the solid black and dashed

blue lines. Observe that the vertical ordering of the lines had been opposite before 2005: higher-

MPG vehicles have higher values of �Gjatj(� ; �). This is because the analysis looks within vehicle

over time, conditional on time dummies: for all vehicles, the within-vehicle values of �Gjat between

2001 and 2005 are lower than after 2005, but they are relatively lower for gas guzzlers during the

early years of the study period. Another source of variation not shown by this graph comes from

the vehicle�s age: those with longer remaining lives see larger changes in Gjat when gas price

expectations change.

Figures 4 and 5 shift attention to the outcome variables of the �rst and second stages. Figure

4 displays the sum of sales for vehicles below 19 MPG and above 28 MPG over the past ten years.

As gas prices rose between the 2004 and 2007 model years, higher MPG vehicles increased in sales

by 450,000 units per year, while sales of the lower-MPG vehicles decreased by 1.4 million units per

year. This reinforces the intuition for our instrument: there is a greater market share of three-year-

old high MPG vehicles now in 2010 than there were in 2007. This variation in available quantities

should cause variation in equilibrium prices.

Figure 5 shows the relative prices of two- to �ve-year old vehicles in the same low and high

MPG categories. As spot gasoline prices rose over the study period, the relative prices of high MPG

vehicles similarly increased. Relative vehicle prices appear also to be responsive to higher-frequency
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gasoline price changes, mirroring changes from 2001-2003 and in 2005-2007.

Figure 5 reinforces the intuition for the "reduced form" version of our identi�cation strategy.

Most of our identi�cation comes from the gasoline price increase between 2002 and the end of our

study period in 2007-2008. Between the beginning and the end of that period, the incremental

cost to fuel the average high vs. low MPG vehicle illustrated in the �gure increased by $3281,

from $4508 to $7790. Meanwhile, the relative price of the low MPG vehicle decreased by $2384,

from $6272 to $3889. In this reduced form example, with a particular subset of the market over a

particular time period, relative prices adjusted by 73 percent of the change in gasoline costs.

6 Results

This section presents the estimation results for the reduced form model in equation (3) and our

nested logit model in equation (9). We detail the sensitivity of our �ndings to a large array of

modeling assumptions and explore various explanations for the results. The primary speci�cation

uses the nested logit model with vehicle class as its only nest. To avoid having thinly-traded vehicles

drive the estimation results, we weight by the number of transactions within jat used to compute

pjat. The primary speci�cation includes all passenger cars and light trucks age 0 to 25 years from

January 1999 through March 2008. It is important to end the primary speci�cation in that month

because macroeconomic changes beginning in the second quarter of 2008 had substantial e¤ects on

vehicle markets which would be di¢ cult to model convincingly and could have di¤erent e¤ects on

di¤erent types of vehicles.

First Stage. Table 3 shows the �rst stage regression results for the primary speci�cation. The

�rst stage can be viewed as a reduced form relation between new vehicle quantities and expected

gasoline costs. The log of market share (sjat) is regressed on expected gasoline costs (Gjat) and

the gas price instrument Gj0(t�a), both measured in $1,000s. The negative coe¢ cient on the

instrument suggests that fewer new low fuel economy vehicles are sold in equilibrium when gas

price expectations are higher. This result is qualitatively consistent with analyses of new vehicle
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sales in recent analyses by Klier and Linn (2008), Li, Timmins, and von Haefen (2009), and Busse,

Knittel, and Zettelmeyer (2009).

Estimation Results. Table 4 compares di¤erent conceptual approaches to estimating 
� . Column

(1) is our primary speci�cation: the instrumental variables estimation of the nested logit model.

The market share coe¢ cients indicate that a one percent increase in market share results in a $24

drop in the vehicle�s price, whereas a one percent increase in the market share of other vehicles

in the nest is associated with an $18 drop in price. Together, these suggest that the correlation

parameter � is just over 0.4, so that utilities within a class have a moderate correlation. The

coe¢ cient on gas cost is the negative of the estimate of 
� , meaning that
b

� = 0:61. Thus, our

primary speci�cation suggests that changes in market equilibria account for 61 percent of gasoline

costs.

Column (2) shows the reduced form from equation (3), in which market shares are assumed

to be uncorrelated with Gjat. Our �nding that b
� = 0:52 is consistent with the intuition that this
assumption biases the estimate towards zero due to endogenous market shares.

Column (3) illustrates a representative-consumer logit speci�cation, instead of the nested logit.

The point estimate of 

� is larger than that of the reduced form, as expected. Because the

representative-consumer logit overstates substitutability between di¤erent vehicle classes, however,

it is unexpected that this speci�cation gives a larger b
� than the nested logit model.
Column (4) in Table 4 shows the nested logit model, estimated using ordinary least squares

instead of the instrumental variables procedure. The discrete choice version of simultaneity bias

- the correlation between market shares and unobserved product quality - often causes estimated

price elasticities to have the wrong sign, and that is indeed what we observe here. This underscores

the importance of our instrument and IV procedure.

Alternative Nest Structures. Table 5 explores alternative nest structures, showing that the

basic result is not sensitive to alternate assumptions about substitution patterns. Column (2) allows

additional correlation in taste errors among vehicles in the same vehicle class and age category.19

19Stolyarov�s (2002) analysis shows that vehicle trade volumes are highest for vehicle ages near �ve and ten years.
We therefore de�ne the age categories to be 0-4 years, 5-10 years, and greater than 10 years.
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In this speci�cation, a correlation is not allowed among vehicles of the same age category but of

di¤erent vehicle classes. Column (3) switches the order of these nests, in case this substitution

within age groups is relatively more important.

Column (4) of Table 5 uses a two level nested logit where the broader nest is vehicle class and

the narrower nest is the interaction of an indicator for whether the vehicle is of a luxury make and

an indicator for the continent where the �rm is based (Europe, North America, or Asia). This

captures preferences of consumers to purchase a certain �style� of vehicle, such as a European

luxury mid-size sedan. Column (5) includes three nests: class, age category, and style. While the

coe¢ cients on share variables change as the nest structure is changed, b
� is quite stable. While
these alternative nest structures does not exhaust all possible forms of substitution patterns, they

do suggest that uncaptured substitution patterns in the primary speci�cation are unlikely to cause

a bias in b
� . Appendix 3 presents a series of "reality checks" of the predicted substitution patterns,
including implied markups and own- and cross-price elasticities for popular vehicles.

Discount Rates. Related literature has framed the question as estimating the "implicit discount

rate" that sets 
� = 1. We chose our "attention weight" formulation because we suspect that it is

more behaviorally descriptive than an implicit discount rate, especially since the purchase prices of

autos and many other energy-using durables are often amortized over time when they are bought

on credit. It is useful, however, to compute this parameter for comparability with other studies

and to test how much alternative discount rates a¤ect b
� .
Columns (2)-(4) in Table 6 show estimates of 
� when consumers use a selected annual discount

rates rather than 9% in the primary speci�cation. Consistent with intuition, consumers appear

more sensitive to gasoline costs when the higher discount rate attenuates the constructed Gjat

variable. The rates in columns (3) and (4) of Table 6 are chosen to show that b
� reaches unity only
when the discount rate reaches 27%, while b
� is statistically indistinguishable from one when the

annual discount rate is as low as 18%. Although some subprime borrowers face interest rates at

these levels,20 we believe that the upper bounds of the average interest rate benchmarks discussed

20For example, the mean annual nominal interest rate on very deep subprime loans described in Adams, et al.
(2009) is 26.2%.
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in Section 5.1.2 are appropriately conservative in the primary speci�cation.

Static Model. In the literal interpretation of a static discrete choice model such as ours, con-

sumers choose a vehicle in each period, but they expect to hold the vehicle for the rest of its useful

life. In reality, the consumer�s true problem is dynamic: at every point in time, she will have the

opportunity to re-sell the vehicle and purchase a new one. A consumer who resells her vehicle has

smaller gasoline expenditures than Gjat, which is computed based on the expected fuel costs over

the life of the vehicle. However, the resale price that the consumer receives incorporates the fuel

costs over the remaining vehicle life after resale. Thus, regardless of whether the model is static

or dynamic, the purchase price should re�ect the full stream of future gasoline costs. We show

this more formally in Appendix A.1, which describes the assumptions required to simplify from a

dynamic model to the static model.

In Appendix A.1, the crucial assumption required to show that our static model is an unbiased

simpli�cation of the dynamic problem is a weak form of stationarity: we must assume that when

forming beliefs about future resale prices, consumers believe that changes in gasoline prices are

uncorrelated with changes in future market shares. The stationarity assumption allows us to

substantially simplify how consumers form expectations of a vehicle�s future resale price. In practice,

market shares do respond to gas prices, and as discussed earlier in the paper, the e¤ect of this

response is to attenuate the e¤ect of gas price changes on relative vehicle price changes. If consumers

anticipate this future quantity response, a gas price increase should not decrease willingness to pay

for a gas guzzler as much as our model predicts. This simpli�cation is not conservative: it biases

our estimator toward zero.

Perhaps the most aggressive test of the importance of this issue is to examine whether consumers

appear to fully value gas costs accrued only during the time that they will own the vehicle, regardless

of the resale value. Using information from Stolyarov (2002), we calculate that the median vehicle

holding period is �ve years. As shown in column (5) of Table 5, b
� < 1 even when Gjat is computed
only over a �ve-year time horizon.
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Intensive Margin. We account for the short-run elasticity of vehicle use to gasoline prices as

discussed during the formulation of Gjat and detailed in Appendix 2. Column (2) of Table 7 presents

the results of this alternative speci�cation. The estimated b
� does not change signi�cantly, although
the standard error of the estimate increases.

Alternative Gasoline Price Expectations. While the primary speci�cation arguably includes

the most defensible formulation of gasoline price expectations, we now present alternative formula-

tions. In column (3) of Table 7, consumers are assumed to believe that gas prices are a martingale,

so that any change in spot gas prices is assumed to be permanent. By overstating (relative to

the futures market) how gasoline price changes a¤ect changes in Gjat over time, the martingale

assumption would bias the model to expect larger changes in relative vehicle prices than the market

should actually generate. As illustrated by the regression results, this strengthens the rejection of

the null hypothesis.

One can also determine the degree of mean reversion that consumers expect in gasoline price

changes that is consistent with the rational model. Column (4) in Table 7 shows that this implicit

mean reversion constant is -0.29. This is substantially larger than the -0.057 suggested by the

futures market data. Loosely put, auto consumers�beliefs about future gasoline prices would need

to have been very strange to explain our results.21

Sticky Information. A burgeoning literature in macroeconomics, including Reis (2006) and

Mankiw and Reis, (2002, 2006), models consumers and �rms that face costs in updating informa-

tion as they choose consumption plans and prices. As a result, consumption and prices do not

immediately and fully adjust to news, and they are sensitive to past news. Our model is identi�ed

o¤ of variation in gasoline price expectations at a monthly frequency. Although most people pre-

sumably drive by a gas station with posted gasoline prices at some point during the choice process,

there is a frequency at which it would be unrealistic to expect vehicle market participants to update

21While many automobile consumers may not be aware of oil futures prices, information about the oil market�s
expectations is likely to be transmitted to consumers through the news media, such as in Krueger (2005).
We believe that the assertion that the auto market�s expectations of oil prices di¤ers substantially and predictably

from the oil market�s expectations would be equally remarkable as our interpretation, which is that consumers form
expectations on average as if informed by futures markets but undervalue fuel costs in choosing between automobiles.
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information. In theory, both inattention to future fuel costs and inattention to "high-frequency"

�uctuations in gasoline prices could explain our results.22

We test for sticky information by including changes in expected gasoline costs over recent pe-

riods: Gja(t�s) � Gjat, with s =1, 4, and 12 months. In the null, where information is not sticky,

these changes should not be correlated with current prices. As shown in Table 8, these changes are

signi�cantly correlated with pjat, which provides empirical support for sticky information. Control-

ling for these recent changes, however, does not statistically change b
� , and the estimate remains
signi�cantly less than unity.

Sensitivity to Time Period and "Extraordinary" Events. In principle, it is possible that



� has changed over time. In practice, our estimation strategy is limited by the fact that su¢ cient

variation in gas prices is needed both during the period when the observed vehicles were produced

(for power in the �rst stage) and during the period of study (for power in the second stage). In

Table 9, we break the sample into earlier and later periods, 1999-2005 and 2004-2008.23 In column

(2), b
� is larger for the early period than the full sample, but also has a larger standard error, most
likely due to lower variation in gas prices during that period. In fact, the estimate is statistically

indistinguishable from unity and from the primary speci�cation. In column (3), b
� is nearly identical
for the later time period as for the full sample.

Ending our primary speci�cation after March 2008 comes at the cost of eliminating potentially-

useful variation in gasoline price expectations: retail spot prices rose from $3.07 in March to

$3.61 in July, and the 8-9 year futures rose by almost as much. Furthermore, one might believe

22To formalize this, notice that the utility function could have been written with separate parameters e
 and 
 for
attention to the vehicle�s average future gas costs over time Gja and deviations from that average Gjat �Gja:

uijat = �(w � pjat)� 
(Gjat �Gja)� e
Gja +  jat + �ijat (13)

Given the use of �xed e¤ects, e
 is not identi�ed. The ideal test between these two explanations would be to have
one permanent change to the market�s gasoline price expectations with no corresponding changes to the choice set.
Estimating the rate of relative vehicle price adjustment over the ensuing time period would give a sense of information
di¤usion, while estimating 


�
with vehicle prices after a very long time would be a convincing measure of attention

to future gas costs with full information.
23The ends of the periods are chosen in order to avoid weak instruments. They are determined such that the F-

statistic of the correlation of the excluded instrument with the endogenous variable is greater than 16.38, the critical
value such that the maximal size of a Wald test with � = 0:05 is less than 0.1, as suggested by Stock and Yogo (2005).
This rule led to a two year overlap in the time periods.
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that consumers became especially attentive to gasoline prices as they spiked during that year. This

would be consistent with existing work that models "extraordinary" events about which information

di¤uses instantly (Reis 2006) or that cause consumers to update beliefs between coarse categories

(Mullainathan 2002) - e.g. from gas costs being "inconsequential" to gas costs being "high." Column

(4) of Table 9 repeats the primary speci�cation including April through December 2008. The point

estimate of b
� is closer to unity, but still signi�cantly di¤erent from that value and not statistically

di¤erent from the primary speci�cation.24

Changing Consumer Preferences and Vehicle Characteristics. Changes over time in un-

observed consumer preferences, as modeled by �jat, could bias our estimate of


� if they are correlated

with Gjat. A leading suggestion is that consumers became increasingly "green," or environmentally-

oriented, over the study period, resulting in increased preference for high fuel economy vehicles

independent of the �nancial savings. This example causes a bias away from concluding that con-

sumers undervalue gasoline costs: it is an unaccounted e¤ect that should increase the relative price

of high fuel economy vehicles over time, while we �nd that the relative price of high fuel economy

vehicles did not increase as much as the model predicts. Columns (2) and (3) in Table 10 show that

excluding hybrids or vehicles rated as the most �green�25 indeed cause the estimated b
� to move
slightly further away from unity.

Similarly, our estimator could be biased if changes in unobserved vehicle characteristics within

a model j over model years are correlated with Gjat. For example, we have limited statistical evi-

dence (available upon request) that manufacturers changed amenities, such as engine displacement,

torque, wheelbase, and stability control, di¤erentially within low-vs. high MPG models over time.

We address this partially by de�ning vehicles as di¤erent models j if their engine displacement or

fuel economy change by more than ten percent between model years. Perhaps the best suggestive

test of the importance of these concerns is to add controls for all observed characteristics, which

still have some small residual variance conditional on the �xed e¤ects. Columns (4) and (5) of
24 In a similar vein, we �nd in an alternate speci�cation (not shown) that each $1 increase in gas costs has a

statistically signi�cant 1.5 cent greater e¤ect on prices in months when retail gas prices changed by at least ten cents
per gallon. This provides some evidence that consumers may be more attentive during periods of larger change, but
the di¤erence is economically small and does not appear to explain our primary �ndings.
25De�ned as the top 60 vehicles in Yahoo�s ranking of the 100 greenest vehicles, at

http://autos.yahoo.com/green_center-top100/
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Table 10 show that these controls have almost no impact on the results, suggesting that most likely

any correlation between gas costs and unobserved changes in characteristics is small.

A related concern is that unobserved vehicle characteristics are correlated with the instrument

Gj0(t�a). While again, we cannot directly test the exclusion restriction, we can test whether within-

model observable characteristics a¤ect the �rst stage relationship. The respective �rst stages (not

shown) of the speci�cations in columns (4) and (5) of Table 10 similarly indicate that the additional

controls have almost no impact on the �rst stage coe¢ cients.

Used Vehicle Retail Prices from JD Power Dealership Data. Because we use �xed e¤ects,

as long as changes in Gjat are passed through from wholesale to resale prices in levels, the use of

wholesale vs. retail data should not a¤ect our estimated b
� . As an additional speci�cation check,
however, we estimate the model using retail transaction prices for used vehicles, which are also

included in the JD Power dealership data. Many of these are the same vehicles that went through

the Manheim auctions. We use the Manheim wholesale data as the measure of used vehicle prices

in our primary speci�cation because these data include substantially more jat observations (over

one million vs 500,000), while there are fewer than 1000 observations in JD Power that are not in

Manheim.

As shown in Table 11, retail prices predict a smaller b
� than do auction prices. Column (2)
repeats the primary speci�cation, except limited to the sample of vehicles that are common to both

data sets. Column (3) shows the same sample with the JD Power used vehicle prices. Column

(4) shows the full JD Power sample. These suggest that retail-wholesale markups for used vehicles

are actually slightly negatively correlated with gas costs Gjat within vehicle, and thus our primary

speci�cation may slightly overstate consumers�b
� .
Measurement Error. If the gas cost variable Gjat is measured with error, the estimate of b
� may
be a¤ected by attenuation bias.26 The three components of this constructed variable that are most

26Measurement error is a separate issue from heterogeneity in gas costs across consumers. While this heterogeneity
certainly exists, our results are consistent if we observe without error the gas costs of a �marginal� individual who
determines the relative price of a vehicle. Furthermore, as discussed in section 4.2, we intentionally introduced
conservative biases in Gjat. Because these are consistent biases in variable construction, they are distinct from the
type of measurement error considered in this subsection.
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likely to be measured with error are gasoline prices, miles per gallon, and vehicle miles traveled. We

examine each of these separately by instrumenting for gasoline costs Gjat with a quantity which

is correlated with gas costs, but (we hope) not the econometric error. Each instrument will be

constructed similarly to Gjat with equation (12), but with one di¤erence.

To address potential measurement error in gasoline prices, our instrument is Gjat calculated

with lagged gasoline prices and price expectations. Columns (2) and (3) of Table 12 show the

results when the instrument is calculated with a one month and one year lag, respectively. To

address measurement error in fuel economy, our instrument is Gjat computed with the average

inverse fuel economy (gallons per mile) across a model and age. Column (4) shows the result

with this instrument. To address measurement error in vehicle miles traveled, our instrument is

Gjat computed with an annual VMT of 12,000 miles for all vehicles. Column (5) shows the result

with this instrument. b
� is not signi�cantly di¤erent from the primary speci�cation in any of these

columns.

6.1 Magnitude of Mispricing

What are the real-world magnitudes of our parameter estimates? For a set of example vehicles, we

now illustrate how much the null hypothesis predicts that vehicle prices should change, compared

to how much they do change.

Recognize �rst that our empirical approach is not informative about the absolute mispricing

of each vehicle at a given time. Our coe¢ cient estimates do predict, however, how much the

relative prices of vehicles with di¤erent fuel economy ratings change in response to a given change

in gasoline price expectations. Consider a set of example used vehicles that will hypothetically be

driven 12,000 miles per year for the remaining seven years of their lifetimes. The "Predicted Price

Change" line in Figure 7 illustrates changes in relative prices caused by a permanent $1 increase

in gasoline prices. This line is computed using the change in Gjat for these example used vehicles

and the b
� from our primary speci�cation. The Honda Civic, which has fuel economy of 30 miles

per gallon, is normalized to have zero relative price change. We hold market shares constant, so

this can be viewed as a short-run e¤ect on prices.

As shown in the graph, our parameter estimates predict that a Ford F-150, rated at 15 MPG,
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with this assumed VMT and remaining lifetime would see its relative price drop by $1010 compared

to the Honda Civic. The double line on the graph presents the relative price changes that would be

expected if 
� = 1; the F-150�s relative price should drop by $1660. This $650 di¤erence suggests

that vehicles were substantially mispriced as gasoline prices changed over the study period.

7 Welfare Implications

A leading explanation for our empirical result is that consumers misoptimize: they are less attentive

to gasoline costs than to purchase prices. For this section, we take as given that this argument

is accepted. What, then, are the welfare gains from policies to correct this misoptimization?

This section de�nes the hedonic utility function, develops a new and highly tractable approach to

behavioral welfare analysis in a discrete choice setting, and presents the welfare results.

We distinguish between choice utility, the utility function that the consumer maximized at the

time of choice, and hedonic utility, the utility that the consumer actually experienced as a result of

the choice. The original utility function in equation (6) was the choice utility function, as it was

used to parameterize a demand model estimated o¤ of consumers�observed choices. For rational

consumers, choices maximize hedonic utility, and choice utility and hedonic utility are equivalent.

If we accept that choices do not reveal hedonic utility, however, we must take an alternative stand

on how to construct hedonic utility functions. Our approach is to maintain the assumption that a

fully-optimizing agent would have 
 = b�: consumers�responses to purchase price variation re�ect
their true marginal utility of money.2728 The hedonic utility function is:

27We note that our results are also theoretically consistent with consumers that attend correctly to gasoline costs but
are over -attentive to purchase price relative to their private optimum. Interestingly, if this were the case, correcting
the internality would cause consumers to be less price elastic and thus to buy more expensive cars, which on average
have lower fuel economy. However, the idea that consumers correctly perceive product price but can misperceive other
costs due to sales tax, future gasoline prices, add-ons, and shipping and handling appears to be the most natural
interpretation of the results of our paper and related work.
28Our approach can be thought of as an application of Bernheim and Rangel (2009) to the case of misoptimization

in discrete choice models. In their language, vehicle purchase is a "Generalized Choice Situation" in which consumer
i chooses between a set of vehicles with total discounted user costs pjat+Gjat and utility �ows  jat+ �ijat. Whether
the total cost �ows through p or G is an "ancillary condition," meaning that while it may a¤ect choices by agents who
misoptimize, it is not material to welfare. We estimate elasticity to total discounted user cost from only the "welfare-
relevant domain," which we assume to be only the variation generated by variation in purchase prices. Conversely,
we assume that variation in total discounted user cost resulting from variation in G is "suspect," meaning that it
should not be used to infer utility functions.
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uijat = �(w � pjat �Gjat) +  jat + �ijat (14)

We note that, as in the empirical analysis, the problem has been simpli�ed by assuming zero

wealth e¤ects. Consumer i�s hedonic utility uhijat from choice jat can be written as choice utility

ucijat minus an "internality" u
b
ijat:

uhijat = ucijat � ubijat (15)

In our application, ub captures the utility value of the portion of future gasoline costs that the

consumer did not appropriately value in the discrete choice. This can be thought of as consumption

of the numeraire good that the consumer anticipated having at the time of the discrete choice, but

does not actually have because of additional expenditures on gasoline. Subtracting uh from uc, we

have:

ubijat = (� � 
)Gjat (16)

The analytical appeal of this approach is that we have written hedonic utility as the sum of

two terms that can be integrated over consumers. Summing over the choices made by consumers of

market sizeM and transforming from utility to dollar terms by dividing by �, we have the expected

internality CSb:

CSb =
1

�
� 1
M

MX
i=1

ubi = (1�



�
)Gjat � sjat (17)

De�ne the variable �jat = ��pjat � 
Gjat +  jat as the average choice utility for product ja at

time t. We integrate up over the logit error to get the expectation of "choice consumer surplus"

using well known formulas originally from Small and Rosen (1981), modi�ed for the nested logit.

Omitting the constant for exposition, we have:
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�351��35 (18)

Having de�ned the analytical approach to welfare analysis of policy changes, consider now a

"Behavioral Feebate" policy designed to move consumers purchasing new vehicles to their private

optima. The Behavioral Feebate imposes a fee on new vehicle purchases of the fraction of lifetime

gas costs that consumers appear to undervalue, (1� b
� ) �Gjat, while rebating some amount R. The
amount of the Feebate Fjat is:

Fjat =

8><>:
�
1� 


�

�
�Gjat �R; a = 0

0; a > 0

9>=>; (19)

Observe that when this Fjat is substituted into new vehicle price in the equation for average

choice utility �jat, it produces a coe¢ cient of � on Gjat:

�jat = ��
�
pjat +

�
1� 


�

�
�Gjat �R

�
� 
Gjat +  jat (20)

= �(w � pjat �Gjat +R) +  jat (21)

The choice utility function now equals the hedonic utility function, with the addition of R,

which modi�es the price level. In our Behavioral Feebate counterfactual, we choose to use the R

such that the policy leaves unchanged the aggregate market share of new vehicles. Put di¤erently,

this assumes that consumers will not perceive a change in new vehicle price level from the policy,

only a change in relative prices across vehicles. Because this policy need not be revenue-neutral,

to compute the change in choice consumer surplus, any de�cit or surplus funds are recycled to all

consumers (including those who purchase the outside option) as a lump sum tax or subsidy.

We recognize that under the counterfactual policy, many aspects of vehicle markets would be

di¤erent. For example, relative prices of used high fuel economy vehicles would increase, and
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auto manufacturing �rms would likely o¤er more high MPG vehicles and invest more in R&D

to improve fuel economy. Simulating these e¤ects is well beyond the scope of this paper. Our

simulation assumes that the prices and characteristics of the year 2007 choice set are constant,

adds Fjat to vehicle prices, and resimulates market shares.

The �tted average utility from vehicle ownership b jat is backed out from the observed baseline

market shares sjat and the estimated demand parameters b�, b
, and b�, using equation (7). As in the
estimation, the outside option is its own nest, with utility normalized to zero. Intuitively, welfare

gains �ow through the fact that the feebate causes consumers to spend less money on gasoline and

more on some combination of higher fuel economy vehicles and the numeraire good.

7.1 Welfare Analysis Results

Table 13 shows the simulation results. All new vehicles with fuel economy below the "pivot" of

19.0 MPG see an increase in sales, while those with fuel economy below 19.0 MPG see a decrease.

The average fuel economy of the new vehicle �eet increases by 2.36 miles per gallon.

Choice consumer surplus CSh drops by a net present value of $17 per potential vehicle consumer

per year of the Behavioral Feebate policy, as the policy moves consumers away from their perceived

optimum. The average internality CSb, however, is $32 lower. Hedonic consumer surplus therefore

increases by $15, as consumers buy higher fuel economy vehicles, total gasoline costs drop, and

consumers spend more on the numeraire good.

The policy reduces gasoline use by each year�s new vehicle consumers by 37.5 gallons over the

lives of their vehicles. Assuming, for the sake of argument, that the marginal damages of carbon

dioxide emissions are $30 per metric ton, this translates into a reduction in climate damages of

$7.60 in present discounted value.

Comparing these �gures shows that the welfare gains from reducing negative externalities are

smaller than the welfare gains from reducing the "internality" by inducing consumers to make the

privately-optimal choice. Intuitively, if we believe that the externality is much less per gallon than

the current price, misoptimization over future fuel costs reduces the consumer�s own private utility

more than it hurts external social welfare. An important takeaway from this analysis, then, is

that behavioral misoptimization can be a more powerful justi�cation for energy e¢ ciency and fuel
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economy standards than internalizing environmental externalities. In a theoretical sense, of course,

this was clear a priori : if consumers did not misvalue future gasoline costs, there is no economic

argument for adding a fuel economy standard or feebate to the optimal Pigouvian energy tax.

While environmental externalities have often been the center of the discussion of energy e¢ ciency

standards, feebates, and fuel economy standards, this simple analysis suggests that understanding

consumer choice is much more important from a welfare perspective.

8 Conclusion

For more than 30 years, economists have attempted to estimate "implicit discount rates": how

much weight consumers place on future energy costs (or other future costs) when they buy energy-

consuming durable goods. Building on this literature, this paper tests whether vehicle prices and

market shares respond to changes in gasoline price expectations in a way that is consistent with

consumers who value equally $1 in purchase price and $1 in present discounted fuel costs. We

use a discrete choice demand model that addresses several economic and econometric challenges,

and we introduce a new instrument for vehicle prices into the empirical literature on automobile

demand. The results show that vehicle market equilibria underadjust to changes in expected future

gas costs: prices and market shares move as if consumers are willing to pay only $0.61 up front to

reduce discounted gasoline costs by $1.

The estimated responsiveness of vehicle prices and shares to expected gas costs depends on

assumptions about expectations of future gas prices, vehicle lifetime, consumers�discount rates,

substitution patterns, and other parameters. We show, however, that market equilibria move as

predicted by the null hypothesis only under implausible sets of assumptions. We explore a variety of

explanations for our results, including risk aversion, measurement error, sticky information, credit

constraints, changes in consumer preferences over time, and other factors. A plausible explanation

for the empirical results appears to be that gasoline costs are a "shrouded attribute," and consumers

attend to them less than upfront prices at the time of purchase.

This explanation implies that two types of policies could theoretically increase welfare. The

�rst are information provision or marketing programs that nudge consumers toward attending to
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fuel economy at the time of choice. While these policies are relatively palatable to economists, it is

not obvious that their e¤ects are large. For example, auto dealerships are already required to post

fuel economy labels on the windows of all new vehicles on their sales lots.

A second type of policies move from "soft paternalism" to paternalism. Feebates, gas guzzler

taxes, and Corporate Average Fuel Economy Standards tax or limit the sale of high fuel economy

vehicles. In a simple welfare calculation such as ours, these substantially increase welfare, by

increasing purchases of high fuel economy vehicles with future �nancial bene�ts that consumers

undervalued relative to their private optimum.

While our results may provide some economic justi�cation for these policies, this should be

viewed very tentatively. As an example of why, notice that our empirical analysis and welfare

calculation assumed for simplicity that the misvaluation of future fuel costs is homogenous in the

population. In reality, this parameter presumably varies across individuals and over time: some

consumers may overvalue fuel economy in their decisions, while others undervalue it, and this may

change depending on media coverage of gas prices, automakers�sales practices and advertising, or

other factors. "Behavioral Feebates" and fuel economy standards are blunt instruments in that they

can only generate optimal vehicle choices for one level of misvaluation. As a result, any given policy

of this type will be too large for some consumers and too small for others relative to the optimum.

Our future work, using randomized trials and natural experiments as well as applied theory, aims

to con�rm these empirical results, shed additional light on potential explanations, and formalize

the implications for business strategy and policy.

37



References

[1] Adams, William, Liran Einav, and Jonathan Levin (2009). "Liquidity Constraints and Imperfect Infor-
mation in Subprime Lending." American Economic Review, Vol. 99, No. 1, pages 49�84.

[2] Austin, David (2008). "E¤ects of Gasoline Prices on Driving Behavior and Vehicle Markets." U.S.
Congressional Budget O¢ ce Working Paper (January).

[3] Barber, Brad, Terrance Odean, and Lu Zheng (2005). �Out of Sight, Out of Mind: The E¤ects of
Expenses on Mutual Fund Flows." Journal of Business, Vol. 78, No. 6 (November), pages 2095-2120.

[4] Bento, Antonio, Lawrence Goulder, Mark Jacobsen, and Roger von Haefen (2009). "Distributional and
E¢ ciency Impacts of Increased U.S. Gasoline Taxes." American Economic Review, American Economic
Review, Vol. 99, No. 3 (June), pages 667-699.

[5] Bernheim, Douglas, and Antonio Rangel (2009). "Beyond Revealed Preference: Choice-Theoretic Foun-
dations for Behavioral Welfare Economics." Quarterly Journal of Economics, Vol. 124, No. 1 (February),
pages 51-104.

[6] Berry, Steven (1994). "Estimating Discrete Choice Models of Product Di¤erentiation." RAND Journal
of Economics, Vol. 23, No. 2 (Summer), pages 242-262.

[7] Berry, Steven, James Levinsohn, and Ariel Pakes (1995). "Automobile Prices in Market Equilibrium."
Econometrica, Vol. 63, No. 4 (July), pages 841-890.

[8] Berry, Steven, James Levinsohn, and Ariel Pakes (2004). "Di¤erentiated Products Demand Systems
from a Combination of Micro and Macro Data: The New Car Market." Journal of Political Economy,
Vol. 112, No. 1 (February), pages 68-105.

[9] Busse, Meghan, Christopher Knittel, and Florian Zettelmeyer (2009). �Pain at the Pump: How Gasoline
Prices A¤ect Automobile Purchasing.�Working Paper, Northwestern University (March).

[10] Chetty, Raj, Adam Looney, and Kory Kroft (2009). "Salience and Taxation: Theory and Evidence."
American Economic Review, Vol. 99, No. 4 (September), pages 1145-1177.

[11] Davis, Lucas, and Lutz Kilian (2009). "Estimating the E¤ect of a Gasoline Tax on Carbon Emissions."
National Bureau of Economic Research Working Paper 14685 (January).

[12] DeCanio, Stephen (1993). "Barriers within Firms to Energy-E¢ cient Investments." Energy Policy, Vol.
21 (September), pages 906-914.

[13] Dreyfus, Mark, and Kip Viscusi (1995). "Rates of Time Preference and Consumer Valuations of Auto-
mobile Safety and Fuel E¢ ciency." Journal of Law and Economics, Vol. 38, No. 1, pages 79-98.

[14] Ellison, Glenn (2005). "A Model of Add-on Pricing." Quarterly Journal of Economics, Vol. 120, No. 2
(May), pages 585-638.

[15] Espey, Molly, and Santosh Nair (2005). "Automobile Fuel Economy: What is it Worth?" Contemporary
Economic Policy, Vol. 23, No. 3 (July), 317-323.

[16] Finkelstein, Amy (2009). "E-ZTAX: Tax Salience and Tax Rates." Quarterly Journal of Economics,
Vol. 124, No. 3 (August), pages 969-1010.

[17] Fischer, Carolyn, Winston Harrington, and Ian Parry (2007). �Do Market Failures Justify Tightening
Corporate Average Fuel Economy (CAFE) Standards?�The Energy Journal, Vol. 28, No. 4, pages 1-30.

[18] Gabaix, Xavier, and David Laibson (2006). "Shrouded Attributes, Consumer Myopia, and Information
Suppression in Competitive Markets.�Quarterly Journal of Economics, Vol. 121, No. 2, pages 505-540.

[19] Goldberg, Pinelopi (1995). "Product Di¤erentiation and Oligopoly in International Markets: The Case
of the U.S. Automobile Industry." Econometrica, Vol. 63, No. 4 (July), pages 891-951.

38



[20] Goldberg, Pinelopi (1998). "The E¤ects of the Corporate Average Fuel Economy Standards in the US."
Journal of Industrial Economics, Vol. 46, pages 1-33.

[21] Greene, David (2007). "Why CAFE Worked." Energy Policy, Vol. 26, No. 8, pages 595-613.

[22] Greene, David, Janet Hopson, R. Goeltz and Jia Li, (2007). �Analysis of In-Use Fuel Economy Shortfall
Based on Voluntarily Reported Mile-per-Gallon Estimates,�Transportation Research Record, No. 1983,
pages 99-105.

[23] Greene, David, Philip Patterson, Margaret Singh, and Jia Li (2005). "Feebates, Rebates, and Gas-
Guzzler Taxes: A Study of Incentives for Increased Fuel Economy." Energy Policy, Vol. 33, No. 6
(April), pages 757-775.

[24] Hausman, Jerry (1979). "Individual Discount Rates and the Purchase and Utilization of Energy-Using
Durables." Bell Journal of Economics, Vol. 10, No. 1, pages 33-54.

[25] Hausman, Jerry, and Paul Joskow (1982). "Evaluating the Costs and Bene�ts of Appliance E¢ ciency
Standards." American Economic Review, Vol. 72, No. 2 (May), pages 220-225.

[26] Hossain, Tanjim, and John Morgan (2006). �...Plus Shipping and Handling: Revenue (Non)Equivalence
in Field Experiments on eBay.�Advances in Economic Analysis and Policy, Vol. 6.

[27] Jacobsen, Mark (2008). "Evaluating U.S. Fuel Economy Standards In a Model with Producer and
Household Heterogeneity." Working Paper, University of California at San Diego.

[28] Ja¤e, Adam, and Robert Stavins (1994). "The Energy Paradox and the Di¤usion of Conservation
Technology." Resource and Energy Economics, Vol. 16, pages 91-122.

[29] Kahn, James (1986). "Gasoline Prices and the Used Automobile Market: A Rational Expectations Asset
Price Approach." Quarterly Journal of Economics, Vol. 101, No. 2 (May), pages 323-340.

[30] Kilian, Lutz and Eric Sims (2006). �The E¤ects of Real Gasoline Prices on Automobile Demand: A
Structural Analysis Using Micro Data,�Working Paper, University of Michigan (April).

[31] Klier, Thomas, and Joshua Linn (2008). "The Price of Gasoline and the Demand for Fuel E¢ ciency:
Evidence from Monthly New Vehicles Sales Data." Working Paper, University of Illinois at Chicago
(September).

[32] Krueger, Alan (2008). "Why the Tepid Response to Higher Gasoline Prices?" The New York Times,
October 13, 2005.

[33] Langer, Ashley, and Nathan Miller (2009). "Automakers�Short-Run Responses to Changing Gasoline
Prices and the Implications for Energy Policy." Working Paper, University of California at Berkeley
(September).

[34] Li, Shanjun, Christopher Timmins, and Roger von Haefen (2009). "Do Gasoline Prices A¤ect Fleet Fuel
Economy?" American Economic Journal: Economic Policy, Vol. 1, No. 2 (August), pages 113-137.

[35] Manheim (2009). "Used Car Market Report." 14th Edition. Atlanta, GA: Manheim Consulting.

[36] Mankiw, Gregory, and Ricardo Reis (2002). "Sticky Information Versus Sticky Prices: A Proposal
To Replace The New Keynesian Phillips Curve." Quarterly Journal of Economics, Vol. 117, No. 4
(November), pages 1295-1328.

[37] Mankiw, Gregory, and Ricardo Reis (2006). "Pervasive Stickiness." American Economic Review, Vol.
96, No. 2 (May), pages 164�169.

[38] Metcalf, Gilbert, and Kevin Hassett (1999). "Measuring the Energy Savings from Home Improvement
Investments: Evidence from Monthly Billing Data." Review of Economics and Statistics, Vol. 81, No. 3,
pages 516-528.

[39] Mullainathan, Sendhil (2002). "Thinking Through Categories." Working Paper, MIT (April).

39



[40] Murtishaw, Scott, and Jayant Sathaye (2006). �Quantifying the Exoect of the Principal-Agent Problem
on US Residential Energy Use.� Lawrence Berkeley National Laboratory Working Paper 59773 Rev
(August).

[41] National Highway Tra¢ c Safety Administration (NHTSA) (2009). "Preliminary Regulatory Impact
Analysis: Corporate Average Fuel Economy for MY 2012-MY 2016 Passenger Cars and Light Trucks."
O¢ ce of Regulatory Analysis and Evaluation, National Center for Statistics and Analysis (August).

[42] Ohta, Makoto, and Zvi Griliches (1986). "Automobile Prices and Quality: Did the Gasoline Price
Increases Change Consumer Tastes in the U.S.?" Journal of Business and Economic Statistics, Vol. 4,
No. 2 (April), pages 187-198.

[43] Parry, Ian, Winston Harrington, and Margaret Walls (2007). "Automobile Externalities and Policies."
Journal of Economic Literature, Vol. 45, pages 374-400.

[44] Petrin, Amil (2002). "Quantifying the Bene�ts of New Products: The Case of the Minivan." Journal of
Political Economy, Vol. 110, No. 4 (August), pages 705-729.

[45] Reis, Ricardo (2006). "Inattentive Consumers." Journal of Monetary Economics, Vol. 53, No. 8 (No-
vember), pages 1761-1800.

[46] Rust, John (1985). "Stationary Equilibrium in a Market for Durable Assets." Econometrica, Vol. 53,
No. 4, pages 783-805.

[47] Sallee, James, Sarah West, and Wei Fan (2009). "The E¤ect of Gasoline Prices on the Demand for Fuel
Economy in Used Vehicles: Empirical Evidence and Policy Implications." Working Paper, Macalester
College (December).

[48] Sawhill, James (2008). "Are Capital and Operating Costs Weighted Equally in Durable Goods Pur-
chases? Evidence from the US Automobile Market." Working Paper, University of California at Berkeley
(April).

[49] Small, Kenneth, and Kurt Van Dender (2007). "Fuel E¢ ciency and Motor Vehicle Travel: The Declining
Rebound E¤ect." The Energy Journal, Vol. 28, No. 1, pages 25-51.

[50] Small, Kenneth, and Harvey Rosen (1981). "Applied Welfare Economics with Discrete Choice Models."
Econometrica, Vol. 49, No. 1 (January), pages 105-130.

[51] Stock, James, and Motohiro Yogo (2005). "Testing for Weak Instru-
ments in Linear IV Regression." In Stock, James, and Donald Andrews,
Identi�cation and Inference for Econometric Models: Essays in Honor of Thomas J. Rothenberg.
Cambridge, England: Cambridge University Press.

[52] Train, Kenneth (1985). "Discount Rates in Consumers�Energy-Related Decisions: A Review of the
Literature." Energy, pages 1243-1253 (December).

[53] U.S. Bureau of Labor Statistics (2007). "Consumer Expenditure Survey."
ftp://ftp.bls.gov/pub/special.requests/ce/standard/2007/quintile.txt

[54] U.S. Department of Transportation (2001). "National Household Travel Survey."
http://nhts.ornl.gov/download.shtml#2001.

[55] U.S. Environmental Protection Agency (2008). "Light-Duty Automotive Technology and Fuel Econ-
omy Trends: 1975 Through 2008. Appendix A: Database Details and Calculation Methods."
http://www.epa.gov/otaq/cert/mpg/fetrends/420r08015appx-a.pdf.

[56] Verboven, Frank (1999). "The Markets for Gasoline and Diesel Cars in Europe." Centre for Economic
Policy Research Discussion Paper 2069 (February).

40



Figures

Figure 1: Gasoline Price Expectations

Figure 2: Identifying Variation in the Instrument

41



Figure 3: Identifying Variation in Gasoline Cost
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Figure 5: Relative Prices Low vs. High MPG Vehicles
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Tables

Table 1: Summary Statistics
Full sample 2007 new models

Year 2003.7 2007.0
( 2.8 ) ( 0.0 )

Model Year 1996.4 2007.0
( 5.6 ) ( 0.0 )

Age (years) 7.3 0.0
( 5.2 ) ( 0.0 )

Price 7,863 24,872
( 8,863 ) ( 10,383 )

Miles per gallon 19.1 20.8
( 4.2 ) ( 5.1 )

Expected lifetime gas costs 6,727 12,283
(2005 $) ( 3,794 ) ( 3,473 )

Horsepower 236.4 260.9
( 104.7 ) ( 77.8 )

Weight (pounds) 4,296 4,617
( 1,441 ) ( 1,035 )

Wheelbase (inches) 121.8 125.8
( 19.7 ) ( 19.8 )

Fraction cars 0.61 0.53

Observations 1,143,610 9,127
Notes: Means are quantity-weighted. Standard deviations in parenthesis. The full sample includes monthly obser-
vations Jan 1999 - Dec 2008 of all passenger cars and light trucks age 0-25. Column (2) includes 2007 model year
vehicles observed in 2007. See text for calculation of expected gas costs.
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Table 2: Gasoline Prices and Expectations
Year Spot Future Year

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
1998 1.34 1.44 1.46 1.47 1.47 1.46 1.46 1.46 1.45 - -
1999 1.43 1.50 1.46 1.45 1.44 1.44 1.43 1.43 1.39 - -
2000 1.77 1.73 1.61 1.56 1.51 1.49 1.47 1.46 - - -
2001 1.69 1.65 1.59 1.55 1.52 1.51 1.49 1.48 1.47 - -
2002 1.56 1.63 1.58 1.55 1.53 1.51 1.50 1.48 1.50 - -
2003 1.74 1.71 1.62 1.59 1.58 1.57 1.56 1.55 1.59 - -
2004 1.99 1.95 1.84 1.78 1.74 1.70 1.68 1.66 1.75 - -
2005 2.34 2.33 2.28 2.22 2.15 2.10 2.06 2.03 2.02 - -
2006 2.55 2.55 2.55 2.49 2.42 2.36 2.32 2.27 - - -
2007 2.68 2.59 2.55 2.50 2.46 2.42 2.39 2.40 2.37 2.35 2.56
2008 3.00 3.12 3.10 3.08 3.06 3.04 3.02 2.99 2.97 2.95 2.67
Note: All prices are in dollars per gallon and are in�ation adjusted to 2005 dollars. Futures prices are transformed
via regression from oil prices to gasoline prices and de�ated to 2005 dollars using in�ation expectations implied by
Treasury In�ation-Protected Security prices.

Table 3: Nested Logit First Stage
(1)

Instrumented variable: ln sjat
Gjat -0.02

( 0.02 )
G at age 0 -0.13

( 0.02 )
Observations 1,053,058
ja groups 37,794
R-squared 0.06
F (excl instruments) 29.1
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. The instrument �G at age 0�
is the expected gas cost in the year the vehicle was new. All regressors are measured in $1,000s. Standard errors are
robust and clustered by ja (model * age).
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Table 4: Comparison of Reduced Form and Nested Logit
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4)

Primary Reduced form Logit Nested Logit OLS
Gjat -0.61 -0.52 -0.78 -0.38
[�
=�] ( 0.07 ) ( 0.05 ) ( 0.09 ) ( 0.04 )

ln(market share) -2372 -2950 179
[�(1� �)=�] ( 723 ) ( 734 ) ( 38 )

ln(nest share) -1807 -1981
[-�=�] ( 655 ) ( 358 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794
F (excl inst) 29.1 33.8
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Market share variables are
instrumented in columns (2) and (4). Columns (3) and (4) use a nested logit model with vehicle class as the only
nest. Nest share is the share of all vehicles in the same class. Standard errors are robust and clustered by ja (model
* age).

Table 5: Alternative Nest Structures
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4) (5)

Primary Class/Age Age/Class Class/Style 3 nests
Gjat -0.61 -0.60 -0.72 -0.60 -0.59
[�
=�] ( 0.07 ) ( 0.07 ) ( 0.08 ) ( 0.06 ) ( 0.07 )

ln(share) -2372 -2455 -2766 -2398 -2581
[�(1� �1)=�] ( 723 ) ( 735 ) ( 824 ) ( 743 ) ( 789 )

ln(nest 1 share) -1807 -4598 -2349 -2412 -4365
[�(�1 � �2)=�] ( 655 ) ( 1295 ) ( 1612 ) ( 831 ) ( 1324 )

ln(nest 2 share) 2304 -731 650 1089
[�(�2 � �3)=�] ( 805 ) ( 514 ) ( 651 ) ( 878 )

ln(nest 3 share) 1071
[��3=�] ( 479 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794 37,794
F (excl inst) 29.1 28.7 27.1 28.1 25.9
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). �Nest 1 share�is the share of all vehicles in the same class. For models with
two nests, �nest 1 share�denotes the share of all vehicles in the narrowest nest (e.g. the number of vehicles in the
same class and age category for column (2)), and �nest 2 share�denotes the share of all vehicles within the broadest
nest. Nest shares are similarly de�ned for the model with three nests. Column (2) uses two nests, vehicle class, and
age buckets (0-4 years, 5-10 years, 11+ years). Column (3) reverses the order of the nests. Column (4) uses as a
second nest the �style�of a vehicle (indicators for whether vehicle is a luxury make and whether the �rm is based in
Europe, North America, or Asia). Column (5) includes all three nests. Standard errors are robust and clustered by
ja (model * age).
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Table 6: Alternative Discount Rates and Time Horizon
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4) (5)

Primary r = 5% r = 18% r = 27% 5 yr horizon
Gjat -0.61 -0.52 -0.81 -1.02 -0.79
[�
=�] ( 0.07 ) ( 0.06 ) ( 0.09 ) ( 0.11 ) ( 0.09 )

ln(market share) -2372 -2442 -2248 -2168 -2029
[�(1� �)=�] ( 723 ) ( 720 ) ( 726 ) ( 728 ) ( 726 )

ln(nest share) -1807 -1804 -1816 -1825 -1842
[-�=�] ( 655 ) ( 663 ) ( 640 ) ( 630 ) ( 612 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794 37,794
F (excl inst) 29.1 30.1 27.6 26.7 25.4
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. A 9% annual discount
rate is assumed in the calcuation of gas costs. Columns (2)-(4) use a 5%, 18%, and 27% discount rate in the calcuation
of gas costs, respectively. Column (5) uses a 9% discount rate but only accounts for the next 5 years of gas costs.
Standard errors are robust and clustered by ja (model * age).

Table 7: Alternate Gas Price Expectations and Vehicle Usage
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4)

Primary Intensive mrgn Martingale Mean reversion
Gjat -0.61 -0.35 -0.44 -1.00
[�
=�] ( 0.07 ) ( 0.14 ) ( 0.04 ) ( 0.15 )

ln(market share) -2372 -1749 -1538 -4034
[�(1� �)=�] ( 723 ) ( 785 ) ( 643 ) ( 1037 )

ln(nest share) -1807 -1742 -1908 -2149
[-�=�] ( 655 ) ( 579 ) ( 544 ) ( 887 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794
F (excl inst) 29.1 18.5 29.1 26.7
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. Column (2) assumes
that vehicle usage changes with gas prices; see Appendix 2 for a complete description. Column (3) assumes martingale
expectations of gas prices. Column (4) assumes mean reverting gas prices with constant -0.29; see Appendix 2 for a
complete description. Standard errors are robust and clustered by ja (model * age).
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Table 8: Sticky Prices
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4) (5)

Primary
Gjat -0.61 -0.66 -0.68 -0.64 -0.63
[�
=�] ( 0.07 ) ( 0.07 ) ( 0.08 ) ( 0.09 ) ( 0.09 )

1 month lag -1.13 -1.07
( 0.08 ) ( 0.08 )

4 month lag -0.40 -0.28
( 0.08 ) ( 0.07 )

12 month lag -0.08 0.18
( 0.08 ) ( 0.09 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794 37,794
F (excl inst) 29.1 28.6 26.9 24.1 23.9
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share variables are not shown in this table. Columns (2)-(5) add controls
for Gja(t�s) �Gjat, where s is 1, 4, or 12 months. Standard errors are robust and clustered by ja (model * age).

Table 9: Alternate Time Periods
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4)

Primary Jan 99 - Dec 05 Jan 04 - Mar 08 Jan 99 - Dec 08
Gjat -0.61 -0.90 -0.59 -0.69
[�
=�] ( 0.07 ) ( 0.14 ) ( 0.05 ) ( 0.06 )

ln(market share) -2372 -4301 -3447 -2415
[�(1� �)=�] ( 723 ) ( 1296 ) ( 850 ) ( 690 )

ln(nest share) -1807 -602 -2012 -1944
[-�=�] ( 655 ) ( 957 ) ( 859 ) ( 655 )

Observations 1,053,058 766,713 524,093 1,143,593
ja groups 37,794 27,825 25,976 38,534
F (excl inst) 29.1 17.6 24.4 31.5
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. Columns (2)-(4) limit
the sample to the time periods shown. Standard errors are robust and clustered by ja (model * age).
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Table 10: Changing Characteristics and Preferences
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4) (5)

Primary Exclude hybrids Exclude �green� Char. sample Char. control
Gjat -0.61 -0.61 -0.49 -0.57 -0.57
[�
=�] ( 0.07 ) ( 0.07 ) ( 0.07 ) ( 0.09 ) ( 0.09 )

ln(market share) -2372 -2385 -2617 -1695 -1706
[�(1� �)=�] ( 723 ) ( 727 ) ( 716 ) ( 1019 ) ( 1017 )

ln(nest share) -1807 -1807 -1652 -132 -298
[-�=�] ( 655 ) ( 657 ) ( 701 ) ( 1099 ) ( 1119 )

Observations 1,053,058 1,052,577 1,013,868 171,873 171,873
ja groups 37,794 37,766 36,493 8,841 8,841
F (excl inst) 29.1 29.0 29.6 14.5 14.1
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. Column (2) excludes
hybrid vehicles. Column (3) excludes �green�vehicles. Columns (4) and (5) are limited to a subsample for which
additional vehicle characteristics are available, (wheelbase, engine displacement, horsepower, torque, traction control,
ABS brakes, and stability control) and column (5) controls for those characteristics. Standard errors are robust and
clustered by ja (model * age).

Table 11: Retail and Wholesale Prices
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4)

Primary Common sample Retail prices Retail only
Gjat -0.61 -0.75 -0.60 -0.57
[�
=�] ( 0.07 ) ( 0.09 ) ( 0.07 ) ( 0.07 )

ln(market share) -2372 -2921 -2273 -2174
[�(1� �)=�] ( 723 ) ( 915 ) ( 743 ) ( 719 )

ln(nest share) -1807 -1415 -1775 -2100
[-�=�] ( 655 ) ( 742 ) ( 613 ) ( 631 )

Observations 1,053,058 475,336 475,336 476,080
ja groups 37,794 19,039 19,039 19,095
F (excl inst) 29.1 26.4 29.6 30.3
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. Column (2) is limited
to the sample with both wholesale and retail used vehicle prices available. Column (3) uses the retail price data in
the common sample. Column (4) uses the retail price data with the full sample. Standard errors are robust and
clustered by ja (model * age).
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Table 12: Measurement Error
Dependent variable: Vehicle price
Speci�cation (1) (2) (3) (4) (5)

Primary Lag G 1 mo Lag G 1 yr G average GPM G �xed VMT
Gjat -0.61 -0.66 -0.66 -0.57 -0.62
[�
=�] ( 0.07 ) ( 0.07 ) ( 0.10 ) ( 0.04 ) ( 0.07 )

ln(market share) -2372 -2684 -2643 128 -2395
[�(1� �)=�] ( 723 ) ( 778 ) ( 920 ) ( 328 ) ( 684 )

ln(nest share) -1807 -1729 -1739 -1474 -1795
[-�=�] ( 655 ) ( 697 ) ( 696 ) ( 381 ) ( 664 )

Observations 1,053,058 1,053,058 1,053,058 1,053,058 1,053,058
ja groups 37,794 37,794 37,794 37,794 37,794
Cragg-Donald stat 29.1 14.2 9.9 41.0 16.5
Notes: Sample includes monthly observations Jan 1999 - Mar 2008 of all passenger cars and light trucks age 0-25.
Model*age �xed e¤ects, monthly time dummies, and model year dummies are included. Column (1) is the primary
speci�cation from Table 3, column (1). Nest share is the share of all vehicles in the same class. Columns (2)-(5)
instrument for Gjat with a value similar computed with some change. The instruments in columns (2) and (3) are
computed with gas prices lagged by 1 month and 1 year respectively. Column (4) uses the average gallons per mile
within a model*age. Column (5) assumes that all vehicles travel 12,000 miles per year. Standard errors are robust
and clustered by ja (model * age).

Table 13: Welfare E¤ects of Behavioral Feebate
E¤ects on New Vehicle Market
Feebate Pivot (MPG) 19.0
�Quantity Above Pivot (%) 31.0
�Quantity Below Pivot (%) -49.8
�Average MPG 2.36

Welfare E¤ects, Excluding CO2
�CSc: Change in Choice Consumer Surplus ($/person) -17.0
�CSb: Change in Internality ($/person) -32.1
�CSh: Change in Hedonic Consumer Surplus ($/person) 15.1

Gasoline and CO2 E¤ects
�Gasoline Use (gallons/person) -37.5
�Gasoline Costs ($/person) -82.1
�CO2 Emissions (metric tons/person) -0.3
�Climate Damages ($NPV/person) -7.6
"Notes: All welfare and CO2 numbers are net present values over the lifetime of the vehicle, for a counterfactual
policy that a¤ects one model year of sales. Marginal damages of CO2 are assumed to be $30 per metric ton. Change
in choice consumer surplus also includes the recycled net revenues from the feebate policy."
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A Appendices (Not For Publication)

A.1 Appendix 1: Dynamic Consumer Choice Model

In this Appendix, we derive our static discrete choice model from a more realistic model of the consumer�s
decision problem. In the process, we clarify and discuss the assumptions required for our estimator to be
consistent.

We build on the approach of Stolyarov (2002) in writing down the consumer�s dynamic durable goods
choice problem. The consumer maximizes an indirect utility function U = �w + uijat(�; 
; �), which is
additively separable in "vehicle utility" uijat and consumption of a numeraire good. As in the text, consumer
i chooses a vehicle in period t from the set JA of possible model-by-age combinations. Owning vehicle ja
at time t forces expected one-period gasoline expenditures eGjat and gives one-period utility �ow e ijat. This
individual-speci�c utility �ow is the sum of average utility e jat and an individual taste error e"ijat. In the
next year, where utility �ows are discounted by factor �, the consumer will have the choice to sell the vehicle,
incurring transaction cost �ja, or hold it.

In the body of the paper, we assumed risk neutrality, homogeneous 
 and �, and that G does not vary
within-jat. Under these assumptions, the consumer maximizes the following Bellman Equation:

max
JA

uijat = ��pjat � 
 eGjat + e ijat
+ �max

n
max
KA

fuikat+1g+ �pj(a+1)(t+1) � �ja; uij;a+1;t+1 + �pj;a+1;t+1
o

(22)

Most analyses of durable goods markets, including Stolyarov (2002) and the literature following Rust
(1985), assume that the market is stationary: the prices, quantities, and attributes of the choice set remain
constant. This is useful for us because it prevents us from needing to make a series of other, potentially
more complex assumptions about how consumers believe the market will evolve.

Assumption: Stationarity: E[pjat+s] = pjat and E[sjat+s] = sjat, 8s and E[JAt+s] = JAt

Stolyarov (2002) shows that if the market is stationary, the consumer�s decision rule is also stationary:
she will purchase her preferred vehicle, hold that preferred vehicle as it ages until the utility gain from
replacing the vehicle outweighs the transaction cost �ja, and then replace with the same preferred vehicle.
We denote the optimal holding period as � jat. For expositional ease, this is assumed to be constant within
the set of consumers that purchase vehicle ja at time t in equilibrium. The vehicle utility from buying vehicle
ja is:

uijat = ��pjat +
��1X
s=0

�s
�

 eGj;a+s;t+s + e ij;a+s;t+s�+ �� (�pj;a+�;t+� � �ja) + ��uija(t+�) (23)

The �rst line captures the utility from paying for the vehicle and then fueling and using it over � years.
The �rst term on the second line captures the discounted utility from selling it, including the transaction
cost. The last term re�ects the fact that, in a stationary market, the consumer will re-purchase the same
vehicle - and realize the same utility - over the next � years.

We can be more speci�c about the resale price by assuming that consumers expect the prices predicted
by the nested logit model. Recall that this gives:

pjat =
1

�

�
�(ln sjat � ln s0t)� 
Gjat + � ln s(j=n)at +  jat

�
(24)
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Substituting this into the utility function, we have:

uijat = ��pjat +
��1X
s=0

�s
�

 eGj;a+s;t+s + e ij;a+s;t+s�

+��

 
�(ln sj;a+�;t+� � ln s0;t+� ) + � ln s(j=n);a+�;t+� +

L�1�a��X
s=0

�s
�
�
 eGj;a+�+s;t+�+s + e j;a+�+s;t+�+s�� �ja

!
+ ��u�ijat+�

= ��pjat +
L�1�aX
s=0

�s
�

 eGj;a+s;t+s + e j;a+s;t+s�+ ��1X

s=0

e"ij;a+s;t+s
+ ��

�
�(ln sj;a+�;t+� � ln s0;t+� ) + � ln s(j=n);a+�;t+� � �ja

�
+ ��uijat+� (25)

The �rst term of the last line re�ects that part of the vehicle�s resale value depends on future market
share. The last term generates an in�nite sum of utilities. We now omit it, as it simply scales nominal utility
by an amount that depends on the consumer�s time horizon. Note that the introduction of a constant vehicle
death probability is simply equivalent to decreasing the discount factor.

By speci�cally de�ning some of the terms from our apparently-static utility function, we can now show
that our dynamic model maps into this utility function. This allows us to make explicit the assumptions
required for our estimator to be consistent in a dynamic world. Recall that our apparently-static utility
function was:

uijat = �(w � pjat)� 
Gjat +  jat + �ijat (26)

We map the "dynamic" variables into the "static" variables with the following equations:

Gjat =
L�1X
s=0

�s eGj;a+s;t+s (27)

 jat =
L�1X
s=0

�se j;a+s;t+s + �� ��(ln sj;a+�;t+� � ln s0t+� ) + � ln s(j=n)at � �ja�
"ijat =

��1X
s=0

�se"ij;a+s;t+s
The �rst line indicates that, as before, we can de�ne Gjat as the discounted sum of future fuel costs.

The second line now captures both the consumer�s utility from using the vehicle and the resale value and
transaction cost. The third line is the individual-speci�c error term, which we assume takes the "nested
logit" structure.

For the dynamic decision to simplify directly to the static model, the critical assumption is therefore
that consumers believe that the market is stationary. For our estimator based on the static model to be
unbiased given the true dynamic nature of consumers�decisions is of course a weaker requirement than that
the models be identical. In principle, simplifying to the static model can introduce any additional error, as
long as that error is uncorrelated with �Gjat. This means that the critical assumption from above, that
consumers believe that the market is stationary, could in principle be weakened. For our estimator to be
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unbiased, consumers need not believe that the market is stationary, but they must believe that any "non-
stationarities" - changes in prices and characteristics of future products - are uncorrelated with changes in
gasoline prices. The implications of this assumption are discussed in the text, and in particular, section 7
provides evidence that our results are not sensitive to this assumption.

A.2 Appendix 2: Data

In this Data Appendix, we describe in detail the construction and cleaning of vehicle price and quantity
data, vehicle attributes, and future expected gasoline prices. We then detail how the data from multiple
sources was merged into one dataset.

A.2.1 Vehicle Price and Quantity Data

Vehicle Prices The Manheim dataset consists of observations of individual vehicles put up for sale at a
Manheim auction. We keep observations that resulted in a sale and for which we have a valid VIN number
that can be matched to our other data sets. Prices are adjusted for in�ation, logged, then used as the left
hand side variable in a �xed e¤ects regression containing odometer reading and its square, dummies for
vehicle condition code, region of sale, type of sale (open to the public or restricted to certain buyers), and
auction type (physical in-lane auction or internet sale). The �xed e¤ects are model by model year by year by
month. A single logged price is predicted for each �xed e¤ect, assuming a vehicle with an odometer reading
predicted using the NHTS data, in �good�condition, sold in the Midwest, in a sale open to all buyers, in a
physical auction. These predicted values are then exponentiated to obtain monthly price estimates for that
model and model year.

The JD Power dataset consists of monthly summaries of individual dealer-to-customer transactions by
vehicle (at the level of a VIN pre�x) and transaction type (cash, lease, or �nanced). Mean monthly prices
are adjusted for customer rebates and any di¤erence between the negotiated trade-in price and the trade-in
vehicle�s actual resale value.

Mean new and used vehicle prices for selected model years are shown in Appendix Figure A1. Although
new vehicle prices are substantially higher than prices of used vehicles sold early in the vehicle�s life, this
discontinuity will not a¤ect our analysis since all regressions are run with model by age �xed e¤ects.

All regressions are weighted by the number of observations in the price data sets. This assigns higher
weight to vehicles for which a more precise estimate of price is available, and a smaller weight to �exotic�
vehicles that may vary substantially in price for reasons other than gas costs. However, since prices are taken
from two di¤erent data sets, we scale the weights on new vehicles so that the mean weight for new vehicles
and one year old vehicles is equal. Our results are qualitatively similar without this reweighting, and when
new vehicles are excluded from the analysis.

Quantities Vehicle quantities are annual snapshots of registration data collected for all new and used
vehicles in the entire United States by R.L. Polk. We assume that the quantity in any month is equal to the
registered quantity in the July snapshot. Since registrations are typically renewed annually or biennially,
there may be slight di¤erences between the registration snapshots and the actual quantities of a model in
use at the time. New vehicles are a particular problem in that not all vehicles are registered by July of the
model year. Since very few vehicles are retired in the �rst few years after the model year, we set the quantity
in the model year equal to the quantity one year later. Total registered quantities for selected model years
are shown in Appendix Figure A2.
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A.2.2 Vehicle Attributes

Fuel Economy Since 1975, the EPA has employed a consistent test, called a dynamometer test, to
measure fuel economy.29 In 1985, the EPA introduced adjustment factors to these tests to account for an
"in-use shortfall," the di¤erence between fuel economy computed under laboratory conditions and the actual
fuel economy that the EPA measured for drivers on the road. The "Adjusted" values were computed for City
and Highway MPG by multiplying the Laboratory values by 0.9 and 0.78, respectively, and these Adjusted
values were the ones made public for consumers for model years 1985-2007. To construct a Composite fuel
economy rating from the reported MPG�s between 1985 and 2007, inclusive, the EPA originally took the
weighted harmonic mean of City and Highway New Adjusted MPG ratings, with 55% and 45% weights,
respectively.

During the past several years, the EPA has again adjusted its fuel economy calculation to account for
changes in driving patterns since 1984. For model year 2005-2008 vehicles, these New Adjusted values are:

New Adjusted City = 1=(0:003259 + 1:1805=Lab City) (28)

New Adjusted Highway = 1=(0:001376 + 1:3466=Lab Highway)

To construct the revised Composite rating, the EPA changed these weights for the harmonic mean to
57% and 43% for City and Highway, respectively. In recent years, these revised ratings were the ones made
public to consumers. The EPA also retroactively changed its fuel economy ratings for old vehicles, now
assuming that the changes between original and new adjustments actually occurred linearly between 1986
and 2005.

We construct two measures of fuel economy, one which should re�ect consumers�best guess at MPG
based on information publicly available at the time, and one which re�ects analysts�best guess in 2008 at
what each vehicle�s fuel economy actually was. For 1985-2008, we use the (retroactively phased in) New
Adjusted EPA methodology in our primary speci�cation, to re�ect analysts�best guess at the true value
of MPG. Using the alternative construction of MPG - consumers� best guess - does not statistically or
substantively change the results, giving b
� = 0:63.

Greene, et al. (2007) report that fuel economy in used cars degrades at an average of 0.07 MPG per year.
We further adjust both measures of MPG to account for this. The distribution of fuel economy constructed
for our primary speci�cation (in miles per gallon) is shown for selected model years in Appendix Figure A3.

Other Attributes In selected speci�cations, we use data on vehicle characteristics, including horsepower,
weight, wheelbase, torque, ABS brakes, traction control, and stability control. For all model years, these
data are from the Ward�s Automotive Yearbook. These were purchased in electronic form from Ward�s for
model years beginning with 1995. We use curb weight as the measure of weight.

Vehicle Class Vehicle class data is from the EPA when available. When EPA data is not available, we use
vehicle characteristics to determine vehicle class consistent with EPA�s de�nition. Cars are divided into two-
seaters (which seat only two adults) and sedans, which are further subdivided into minicompact, subcompact,
compact, mid-size, and large based on interior volume. Trucks are divided into pickup trucks, sport utility
vehicles, minivans, and vans based on their intended purpose. Pickup trucks and SUVs are further subdivided
into standard and small based on gross vehicle weight rating, but we ignore this distinction, as vehicles may
be highly substitutable across these categories. An additional class of light trucks, special purpose vehicle, is
not used in recent years but includes pickup trucks, SUVs, and minivans. These are manually recoded into
the most appropriate class.

29The information in this and the following paragraph is from the U.S. Environmental Protection Agency (2008).
We acquried the EPA adjusted and unadjusted test data for 1975-2008 directly from researchers at Oak Ridge National
Laboratory.
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A.2.3 Future Gasoline Costs

Computation of discounted future gasoline costs Gjat requires the expected gas price, expected vehicle miles
traveled, and probability that the vehicle is still functional for all future time periods. We outline the
computation of each of these.

Note that a vehicle of a given model year typically begins being sold in September of the previous calendar
year. The gasoline prices used to construct the instrument Gj0(t�a) were thus the September-August mean
gasoline prices.

Gasoline Prices Our source of gasoline price data is the US Energy Information Administration (EIA).
We use US City Average Motor Gasoline Retail Price for all types of gasoline, which are available on a
monthly basis from Table 9.4 of the EIA�s Monthly Energy Review.

Oil Futures We acquired the entire history of futures prices for Light Sweet Crude Oil (LSCO) on the
NYMEX and Intercontinental Exchange. Oil futures prices are transformed into gasoline price expectations
in constant 2005 dollars using the following approach.

First, futures prices are denominated in future dollars at the delivery date, meaning that they must be
discounted to current dollars using a measure of in�ation expectation. Our measure of in�ation expectations
is from the di¤erence in yield rates between standard and in�ation-protected (TIPS) treasury bonds, available
from http://www.federalreserve.gov/releases/h15/data.htm#fn14. We use the �ve year bonds for futures
with maturities zero to six years in the future, the seven year bonds for maturities six to eight years in the
future, and the ten year bonds for maturities more than eight years in the future. Before the TIPS bonds
were sold in 2003, we use in�ation expectations of 2%. This is approximately consistent with actual observed
in�ation over the period 1998-2002.

Second, all data are de�ated into real July 2005 dollars. Third, these constant-dollar oil price expectations
are converted into gasoline price expectations. This is done using the slope and intercept coe¢ cient estimates
from a linear regression of historical national city average retail gasoline prices on spot LSCO prices. Among
other things, this assumes that re�ners�margins will be constant over time.

Finally, to model expectations for periods beyond the last futures contract settlement date observed at
each time t, we use a simple model of mean-reverting expectations, where deviations at time t from a mean
of $1.50 per gallon decay exponentially over years s:

E[gt+s] = 1:50 + (gt � 1:50) � e�s

Re-arranging this equation, the mean reversion parameter � is estimated from the post-1991 observed
futures data using the following linear speci�cation:

log jEgs � 1:50j = log jgt � 150j+ �(t� s)

The estimation gives b� = �0:057, meaning that the market expected recent gasoline price increases to
decay back to $1.50 per gallon at 5.7 percent per year.

In�ation Adjustment All vehicles prices and gasoline prices are de�ated using the BLS consumer price
index series for All Items, Urban (CUUR0000SA0), available from ftp://ftp.bls.gov/pub/time.series/cu/cu.data.1.AllItems.
We use real dollars for the average CPI in 2005, which is almost exactly equivalent to real July 2005 dollars.
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Survival Probability In our base speci�cation, the probability that a vehicle is still functional in a
future time period is estimated using a probit model with grouped data. The outcome variable is the
number of vehicles of a model and model year registered next year, qja(t+1), out of the number of vehicles
registered today, qjat, from the R.L. Polk data. The estimation of survival probabilities recovers coe¢ cients
on age dummies, model year and its square, vehicle class dummies, �rm dummies, and �rm-speci�c linear age
trends. The sample used in the estimation is the same as the sample used in our discrete choice model. The
estimation coe¢ cients are used to predict a series of probabilities that each vehicle in the data set survives
to time t+ 1 conditional on surviving to time t, for current and future values of t. These are multiplied to
compute probabilities that each vehicle survives an additional s years beyond its current age, for all positive
s up to L = 25. This is the relevant probability that enters the computation of Gjat. Due to scarce data for
vehicles older than 25 years, we set the probability that a vehicle survives past age 25 equal to zero. The
trends in the data set suggest this is not an unreasonable assumption.

Vehicle Miles Traveled We do not observe average Vehicle Miles Traveled (VMT) for all vehicles on
the road. Instead, we use microdata from the National Household Travel Survey (NHTS) for 2001. These
data allow us to predict the expectation of a vehicle�s VMT conditional on its characteristics. There are two
possible measures of VMT included in the data: consumers�stated VMT and recorded odometer readings.
Because we are interested in consumers�expectations of VMT, we use the stated VMT. Appendix Figure
A4 illustrates these data by showing average annualized VMT as a function of vehicle age.

Accounting for Elasticity on the Intensive Margin While our primary speci�cation of Gjat
assumes that the elasticity of vehicle miles traveled with respect to gasoline prices is negligible, we also
present an alternative speci�cation that accounts for this elasticity. We now detail how this alternative
speci�cation was derived. The model must capture two e¤ects. First, changes in VMT change total expected
gasoline expenditures Gjat. Second, the utility from vehicle ownership and use  jat also depends on VMT:
the utility from owning a vehicle and driving it 12,000 miles per year is di¤erent than the utility of owning
a vehicle and driving it 11,500 miles per year.

We adopt estimates of short run elasticity of gasoline demand from three recent papers. Hughes, Knittel,
and Sperling (2007) �nd that between 2001 and 2006, the short run elasticity was between -.034 and -.077.
Small and Van Dender (2007) �nd that with covariates at their 1997-2001 levels (the latest years in their study
period), the short run elasticity is -.022. Davis and Kilian (2009) use an instrumental variables procedure
identi�ed o¤ of state-level changes in gasoline taxes and estimate a short run elasticity of -0.46. We assume
an elasticity of -0.5 to conservatively overstate the potential e¤ects of intensive margin elasticity.

We generate expected VMT at any possible gasoline price, using the following constant elasticity formula:

log(mjas) = (�0:5) � log(gs) + �0 (29a)

�0 = log(mja;2001)� (�0:5) � log(g2001) (29b)

Appendix Figure A5 shows a vehicle owner�s demand for VMT. In 2001, gas prices are g2001 and con-
sumers choose VMT mja;2001 (g2001), giving total annual gasoline costs in the shaded rectangle bounded by
those two values. At time s with higher gasoline prices gs, consumers reduce VMT to mjas(gs). The new
annual gasoline cost is now the unshaded rectangle bounded by gs=fjas and mjas. The values of Gjat in our
alternative speci�cation are calculated from these adjusted VMT values mjas.

The VMT demand curve also provides insight into how changes in VMT change consumers�utility from
vehicle use. The consumer�s total utility from vehicle use is the area under the demand curve. As gasoline
prices increase from g2001 to gs, this total utility decreases by the area of the shaded trapezoid in Appendix
Figure A5. Summing this over the future years of the vehicle�s life, we have an adjustment denoted Ijat. For
simplicity, we assume a linear demand curve between mja;2001 and mjas in computing the utility change:

56



Ijat =

t+(L�1�a)X
s=t+1

�f�1jas � (g2001 + gs) � (mja;2001 �mjas) � �jas � �s�t (30)

The sign of the variable Ijat is de�ned such that as the utility from vehicle use decreases and utility
decreases, Ijat increases. Because Ijat is in measured in dollar terms, a one dollar increase in Ijat should
reduce willingness to pay for the vehicle by one dollar. In our alternative speci�cation that accounts for
intensive margin elasticity, we move Ijat to the left hand side and estimate equation (9) with pjat + Ijat as
the dependent variable.

A.2.4 Data Construction and Coverage

Our data are merged by partial VIN number using the Complete Pre�x File, a product sold by R.L. Polk.
This allows us to use a common set of vehicle names and descriptions throughout the data set. Wards
and EPA data do not contain VIN information, so these were matched by name. Each dataset provides
information at di¤erent levels of detail: one dataset may include separate information for a two wheel drive
versus a four wheel drive version of a model, while another includes only mean information on that model.
We have collapsed the dataset to the most disaggregated level that is feasible given the data constraints. In
this collapsing process, prices are estimated with number of observations as weights, quantities are summed,
MPG is averaged using the harmonic mean, and other characteristics are averaged using an arithmetic mean.

The aim of the dataset is to include consumers�entire vehicle choice sets for every month between 1999
and 2008. This includes all light duty vehicles (cars and light trucks) available to the public. Due to data
constraints, we had to drop parts of the choice set; this is not uncommon in discrete choice models where
data on small parts of the choice set may not be available. In particular, we dropped vehicles for which we
are missing one or more of the required data sources: prices, quantities, or fuel economy. Vehicles with model
years before 1983 were also dropped, as we can only match VIN numbers to a vehicle name after 1983. We
drop vehicles which do not use gasoline or are not part of the set of substitutable passenger vehicles, such as
delivery vehicles and motor homes. Finally, because we use �xed e¤ects, a small number of ja vehicles with
prices observed only at one t must be dropped from the estimation. Appendix Figure A6 shows the data
coverage.

A.3 Appendix 3: Predicted Substitution Patterns

This appendix presents a "reality check" of the substitution patterns predicted by our parameter estimates
in the nested logit model. Table 14 presents example substitution patterns between new vehicles in the 2007
choice set predicted by the nested logit model for the two most popular vehicles in the compact, SUV, and
pickup vehicle classes. The table shows the own-price and cross-price elasticities computed by increasing
the price of all submodels within a given new model by �ve percent. Instead of using the analytical nested
logit cross-price elasticities, these are generated while holding constant the quantities of all used vehicles and
of the outside option, using a modi�cation of the Berry, Levinsohn, and Pakes (1995) contraction mapping
procedure.30

30The modi�ed contraction is:

ep0jat = epjat � 1

�

�
ln sjat � ln bsjat(b�; b
; b ; b�; epjat; Fjat)� (31)

In this equation, ep0 indicates the used vehicle prices to be used in the subsequent iteration of the contraction
mapping. Note that if the prices of all substitutes are unchanged, the procedure would immediately solve for epjat =
pjat, the intially-observed equilibrium used vehicle prices, as the b jat were themselves implied by the initial market
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The table shows, for example, that the Honda Civic had 325 thousand new model sales in 2007. If its
price were increased by 5 percent, quantity demanded would decrease by 6.15 � 0.05 = 31 percent. Quantity
demanded of the Toyota Corolla would increase by 0.18 � 0.05 = 0.9 percent. This table brings to light
the substitution patterns implied by the nested logit speci�cation. If the price of a vehicle increases, the
quantities of all vehicles in other nests change by essentially the same percent, after accounting for small
changes in used vehicle prices. Cross-price elasticities are higher within the same nest, depending on the
value of the substitution parameters �, but are e¤ectively the same for all substitutes within the nest.

We can similarly compute the aggregate price elasticity of demand in the new vehicle market by increasing
the prices of all new vehicles by 10 percent and resimulating quantities, holding constant the market shares
of each used vehicle. Predicted 2007 new vehicle sales drop from 14.16 million to 7.23 million. This secant
calculation gives an overall new vehicle market price elasticity of -4.89.

An additional approach to testing the sensibility of these estimated substitution parameters is to back
out the implied markups that auto manufacturers would be applying to their vehicles if they are playing a
static Nash multi-product pricing game.31 As shown in Table 14, the implied markups for our six example
new vehicles range from 9.3 percent to 18.4 percent, or around $2600 per vehicle.

If anything, the estimated b� and b� are high and low, respectively: relative to our priors, consumers are
estimated to be slightly more price elastic and somewhat more willing to substitute across vehicle classes. To
test whether this a¤ects the results, we experimented with alternative speci�cations that �xed lower values
of � and higher values of � in the second stage of equation (9). Both of these types of changes produce
estimates of 
� that are further away from unity.

equilibrium with no feebate.
This equation can be derived from the original BLP contraction mapping by subsituting in for their average utility

�jat:

�jat = ��pjat � 
Gjat +  jat

Given that Gjat and  jat are constant throughout the procedure, solving for a set of � values that equate observed
with predicted shares is equivalent to solving for a set of equilibrium used vehicle prices.
31See Berry, Levinsohn, and Pakes (1995) or Petrin (2002) for details on computing the markups implied by

estimated substitution patterns in the static Nash pricing game.
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Appendix Figures

Figure A1: Vehicle Prices

Figure A2: Vehicle Quantities
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Figure A3: Fuel Economy Ratings of Vehicles Registered in 2007

Figure A4: Vehicle Miles Traveled By Vehicle Age
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Figure A5: Intensive Margin

Figure A6: Data Coverage
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Appendix Table

Table 14: Predicted New Vehicle Own and Cross-Price Elasticities
Vehicle Quantity Civic Corolla Equinox F-Series Path�nder Ram
Civic 325 -6.15 0.14 0.03 0.20 0.02 0.09
Corolla 300 0.18 -5.30 0.03 0.20 0.02 0.09
Equinox 77 0.13 0.11 -7.09 0.20 0.03 0.09
F-Series 360 0.14 0.11 0.03 -8.08 0.02 0.12
Path�nder 38 0.13 0.11 0.04 0.20 -8.73 0.09
Ram 173 0.14 0.11 0.03 0.26 0.02 -7.81

Markup (%) 14.6 18.4 12.8 12.3 9.3 10.6
Notes: Values shown are the elasticity of demand for the vehicle in the row name with respect to
the price of the vehicle in the column name. To generate this table, the price of all submodels of
the given model were increased by �ve percent, and the market shares of all other new vehicles
were re-simulated. The simulation adjusts the prices of individual used vehicles and the price level
of all new vehicles so as to hold constant the market shares of used vehicles and of the outside
option. Quantities are 2007 new model sales in 1,000s. Markups are those implied by a static Nash
multiproduct pricing game.
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