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1 Introduction

It has been known for a long time that integrable quantum systems are intimately related

to Lie algebras (see, for instance, [1]). Therefore, it is natural to expect their appearance

also in supersymmetric extensions of integrable multi-particle quantum mechanics models.

In this paper, we revisit such systems with N=4 superconformal symmetry in one space

dimension and, within a canonical ansatz, investigate them for the superconformal alge-

bra su(1, 1|2) with central charge C. Despite physical interest in these models [2], their

explicit construction has remained an open problem until now.

N=4 superconformal many-body quantum systems on the real line are very rigid.

Their existence is governed by a system of nonlinear partial differential equations for two

prepotentials, U and F , for which few solutions are known when C 6=0 [3–6]. The determi-

nation of F is decoupled from U and requires solving ‘only’ the well-known (generalized)

Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation [7, 8], which arises in topological

and Seiberg-Witten field theory. The WDVV solutions known so far are all based — again

— on the root systems of simple Lie algebras [9, 10].1

If C=0 any WDVV solution F , together with U≡0, will provide a valid multi-particle

quantum model. For nonzero central charge, however, one is to solve a second partial

1 As a slight generalization, all Coxeter reflection groups appear.
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differential equation for U in the presence of F . To this so-called ‘flatness conditon’ only

particular solutions for at most four particles are in the literature [3, 6].

All considerations up to now have employed a natural ansatz for F and U in terms of

a set {α} of covectors. We find, however, that for systems of less than four particles this

ansatz must be generalized in order to capture all solutions. In these cases, the WDVV

equation is trivially satisfied, and we can (and do) construct new three-body models for any

dihedral I2(p) root system, starting with a Calogero-type A2 model. For more than three

particles, where the WDVV equation is effective, we show that even our generalized ansatz

is insufficient to produce irreducible U 6=0 solutions in the root-system context. A model

is reducible if, after removing the center-of-mass degree of freedom, it can be decomposed

into decoupled subsystems. As for the WDVV equation alone, we generalize the solutions

of [9, 10] and give a geometric interpretation of certain An deformations [11] in terms of

orthocentric simplices.

The paper is organized as follows. In section 2 we recall the formulation of conformal

mechanics of n+1 identical particles on the real line in terms of so(1, 2) generators including

the Hamiltonian. In this description, an N=4 supersymmetric extension with central

charge C is straightforward to construct as we demonstrate in section 3. The closure of

the superconformal algebra poses constraints on the interaction, which in section 4 lead to

what we call the ‘structure equations’ on the prepotentials U and F . The analysis of these

structure equations in section 5 suggests constructing the prepotentials in terms of a system

of covectors, which reduces the differential equations to nonlinear algebraic equations.

Sections 6 and 7 derive families of F solutions with U≡0, based on certain deformations of

the root systems of the finite reflection groups. Turning on U for these F backgrounds is

analyzed in sections 8 and 9, with negative results for more than three particles, but with

a positive classification and the full construction of the prepotentials for three particles via

the dihedral groups I2(p), including five explicit examples. Section 10 concludes.

2 Conformal quantum mechanics

Let us consider a system of n+1 identical particles with unit mass, moving on the real line

according to a Hamiltonian of the generic form (I = 1, . . . , n+1)

H =
1

2
pIpI + VB(x1, . . . , xn+1) . (2.1)

Throughout the paper a summation over repeated indices is understood. After separating

the center-of-mass motion we will work with the n degrees of freedom of relative parti-

cle motion in later sections. Also, the bosonic potential VB will get supersymmetrically

extended to a potential V including VB .

For conformally invariant models the Hamiltonian H is a part of the so(1, 2) conformal

algebra

[D,H] = −iH , [H,K] = 2iD , [D,K] = iK , (2.2)
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where D and K are the dilatation and conformal boost generators, respectively. Their

realization in term of coordinates and momenta, subject to

[xI , pJ ] = iδJ
I , (2.3)

reads

D = −1

4
(xIpI + pIx

I) and K =
1

2
xIxI . (2.4)

The first relation in (2.2) restricts the potential via

(xI∂I + 2)VB = 0 , (2.5)

meaning that VB must be homogeneous of degree −2 for the model to be conformally

invariant. Imposing translation and permutation invariance and allowing only two-body

interactions, we arrive at the Calogero model of n+1 particles interacting through an

inverse-square pair potential,

VB =
∑

I<J

g2

(xI − xJ)2
−→ H = H0 + VB . (2.6)

3 N=4 superconformal extension

Let us extend the bosonic conformal mechanics of the previous section to an N=4 su-

perconformal one,2 with a single central extension [13]. The bosonic sector of the N=4

superconformal algebra su(1, 1|2) includes two subalgebras. Along with so(1, 2) considered

in the previous section one also finds the su(2) R-symmetry subalgebra generated by Ja

with a = 1, 2, 3. The fermionic sector is exhausted by the SU(2) doublet supersymmetry

generators Qα and Q̄α as well as their superconformal partners Sα and S̄α, with α = 1, 2,

subject to the hermiticity relations

(Qα)† = Q̄α and (Sα)† = S̄α . (3.1)

The bosonic generators are hermitian. The non-vanishing (anti)commutation relations in

our superconformal algebra read3

[D,H] = −iH , [H,K] = 2iD ,

[D,K] = +iK , [Ja, Jb] = i ǫabcJc ,

{Qα, Q̄
β} = 2Hδα

β , {Qα, S̄
β} = +2i (σa)α

βJa − 2Dδα
β − iCδα

β ,

{Sα , S̄
β} = 2Kδα

β , {Q̄α, Sβ} = −2i (σa)β
αJa − 2Dδβ

α + iCδβ
α ,

[D,Qα] = −1

2
iQα , [D,Sα] = +

1

2
iSα ,

[K,Qα] = +iSα , [H,Sα] = −iQα ,

[Ja, Qα] = −1

2
(σa)α

βQβ , [Ja, Sα] = −1

2
(σa)α

βSβ ,

2 For a one-particle model, see [12].
3 σ1, σ2 and σ3 denote the Pauli matrices.
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[D, Q̄α] = −1

2
i Q̄α , [D, S̄α] = +

1

2
i S̄α ,

[K, Q̄α] = +i S̄α , [H, S̄α] = −i Q̄α ,

[Ja, Q̄
α] =

1

2
Q̄β(σa)β

α , [Ja, S̄
α] =

1

2
S̄β(σa)β

α . (3.2)

Here ǫ123 = 1, and C stands for the central charge.

For a mechanical realization of the su(1, 1|2) superalgebra, one introduces fermionic

degrees of freedom represented by the operators ψI
α and ψ̄Iα, with I = 1, . . . , n+1 and α =

1, 2, which are hermitian conjugates of each other and obey the anti-commutation relations4

{ψI
α, ψ

J
β} = 0 , {ψ̄Iα, ψ̄Jβ} = 0 , {ψI

α, ψ̄
Jβ} = δα

βδIJ . (3.3)

In the extended space it is easy to construct the free fermionic generators associated with

the free Hamiltonian H0 = 1
2pIpI , namely

Q0α = pIψ
I
α , Q̄α

0 = pIψ̄
Iα and S0α = xIψI

α , S̄α
0 = xI ψ̄Iα , (3.4)

as well as su(2) generators

J0a =
1

2
ψ̄Iα(σa)α

βψI
β . (3.5)

Notice that these are automatically Weyl-ordered. The free dilatation and conformal boost

operators maintain their bosonic form

D0 = −1

4
(xIpI + pIx

I) and K0 =
1

2
xIxI . (3.6)

In contrast to the N≤2 cases, the free generators fail to satisfy the full algebra (3.2).

Even for C=0, the {Q, S̄} and {Q̄, S} anticommutators require corrections to the fermionic

generators, which are cubic in the fermions and can be restricted to Q and Q̄ via

Qα = Q0α − i [S0α, V ] and Q̄α = Q̄α
0 − i [S̄α

0 , V ] where H = H0 +V (3.7)

and V 6= 0. Hence, there does not exist a free mechanical representation of the algebra (3.2).

It follows further that V contains terms quadratic and quartic in the fermions, thus can be

written as [3, 5, 6]5

V = VB(x) − UIJ(x)〈ψI
αψ̄

Jα〉 +
1

4
FIJKL(x)〈ψI

αψ
Jαψ̄Kβψ̄L

β 〉 , (3.8)

with completely symmetric unknown functions UIJ and FIJKL homogeneous of degree −2

in x ≡ {x1, . . . , xn+1}. Here, the symbol 〈. . . 〉 stands for symmetric (or Weyl) ordering.

The ordering ambiguity present in the fermionic sector affects the bosonic potential VB . In

contrast to the N=2 superconformal extensions [14, 15], the quartic term is needed, and

so we get

Qα =
(

pJ − ixI UIJ(x)
)

ψJ
α − i

2
xI FIJKL(x) 〈ψJ

β ψ
Kβψ̄L

α 〉 ,

Q̄α =
(

pJ + ixI UIJ(x)
)

ψ̄Jα − i

2
xI FIJKL(x) 〈ψJαψ̄Kβψ̄L

β 〉 .
(3.9)

4 Spinor indices are raised and lowered with the invariant tensor ǫαβ and its inverse ǫαβ, where ǫ12 = 1.
5 The classical consideration in [5] implies that (3.8) is indeed the most general quartic ansatz compatible

with the N=4 superconformal algebra.
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To summarize, in order to close the algebra (3.2), the D, K, Ja, Sα and S̄α generators

remain free, while Qα and Q̄α as well as H acquire corrections as above.

4 The structure equations

Inserting the form (3.4)–(3.8) into the algebra (3.2), one produces a fairly long list of

constraints on the potential V . One of the consequences is that [3, 5, 6]

UIJ = ∂I∂JU and FIJKL = ∂I∂J∂K∂LF , (4.1)

which introduces two scalar prepotentials. The constraints then turn into the following

system of nonlinear partial differential equations [5, 6],

(∂I∂K∂PF )(∂J∂L∂PF ) = (∂J∂K∂PF )(∂I∂L∂PF ), xI∂I∂J∂KF = −δJK , (4.2)

∂I∂JU − (∂I∂J∂KF ) ∂KU = 0 , xI∂IU = −C , (4.3)

which we refer to as the ‘structure equations’.6 Notice that these equations are quadratic

in F but only linear in U . They are invariant under SO(n+1) coordinate transformations.

The first of (4.2) is a kind of zero-curvature condition for a connection ∂3F . It coincides

with the (generalized) WDVV equation known from topological field theory [7, 8]. The

first of (4.3) is a kind of covariant constancy for ∂U in the ∂3F background. Since its inte-

grability implies the WDVV equation projected onto ∂U , we call it the ‘flatness condition’.

The right equations in (4.2) and (4.3) represent homogeneity conditions for U and F .

They are inhomogeneous with constants δJK and C (the central charge) on the right-hand

side and display an explicit coordinate dependence. Furthermore, the second equation

in (4.2) can be integrated twice to obtain

xI∂IF − 2F +
1

2
xIxI = 0 , (4.4)

where we used the freedom in the definition of F to put the integration constants — a linear

function on the right-hand side — to zero. It is important to realize that the inhomoge-

neous term in this integrated equation excludes the trivial solution F = 0 equivalent to a

homogeneous quadratic polynomial. This effect is absent in N=2 superconformal models,

where the four-fermion potential term is not required and, hence, F need not appear [15].

This issue is also discussed in [3].

To simplify the analysis of the structure equations, it is convenient to separate the

center-of-mass and the relative motion of the particles. This is achieved by a rotation of

the coordinate frame,

{xI } −→ {xi , X } with i = 1, . . . , n and X =
1√
n+ 1

∑n+1
I=1 x

I , (4.5)

which introduces relative-motion coordinates xi for the hyperplane orthogonal to the center-

of-mass direction. The structure equations then hold for both sets of coordinates indepen-

dently, with an accompanying split of the prepotentials and the central charge,

F = Fcom(X)+Frel(x) , U = Ucom(X)+Urel(x) and C = Ccom+Crel , (4.6)

6 Wyllard [3] obtained equivalent equations, but employed a different fermionic ordering.
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where now x ≡ {xi}. For the center-of-mass coordinate, the solution is trivial:

Fcom = −1

2
X2 ln |X| and Ucom = −Ccom ln |X| . (4.7)

For the relative coordinates, we simply replace I, J, . . . by i, j, . . . and C → Crel in the

structure equations. In the following, we shall investigate the construction of Frel and

Urel only and therefore drop the label ‘rel’ from now on. However, since these coordinates

often obscure a permutation invariance for identical particles, it can be useful to go back

to the original xI by embedding R
n into R

n+1 as the hyperplane orthogonal to the vector

ρ = 1√
n+1

(1, 1, . . . , 1) for achieving a manifestly permutation-symmetric description of the

(n+1)-particle system. Furthermore, the center-of-mass case is still covered in our analysis

by just taking n=1.

There are some dependencies among the equations (4.2) and (4.3), now reduced to the

relative coordinates. The contraction of two left equations with xi is a consequence of the

two right equations, and therefore only the components orthogonal to x are independent,

effectively reducing the dimension to n−1. This means that only 1
12n(n−1)2(n−2) WDVV

equations need to be solved and only 1
2n(n−1) flatness conditions have to be checked.

For n=2 in particular, the single WDVV equation follows from the homogeneity condition

in (4.2), and the three flatness conditions are all equivalent. Hence, the nonlinearity of the

structure equations becomes relevant only for n≥3.

The scalars U and F govern the N=4 superconformal extension. Note, however, that

F is defined modulo a quadratic polynomial while U is defined up to a constant. Together,

they determine VB as7

VB =
1

2
(∂iU)(∂iU) +

~
2

8
(∂i∂j∂kF )(∂i∂j∂kF ) . (4.8)

We note that U≡0 still yields nontrivial quantum models, whose potential only vanishes

classically. Finally, from the two right equations in (4.2) and (4.3) it follows that

xi Fijkl = −∂j∂k∂lF and xi Uij = −∂jU , (4.9)

which is relevant for (3.9).

5 Prepotential ansatz and consequences

Our attack on (4.2) and (4.3) begins with the homogeneity conditions

(xi∂i − 2)F = −1

2
xixi and xi∂iU = −C . (5.1)

The general solution to (5.1) may be written as

F = −1

4

∑

s

fs Qs(x) ln |Qs(x)| + Fhom and U = −1

2

∑

s

gs ln |Qs(x)| + Uhom (5.2)

7 We have restored ~ in the potential to illustrate that the F contribution disappears classically.
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with quadratic forms Qs(x), real coefficients fs and gs, as well as homogeneous functions

Fhom and Uhom of degree two and zero, respectively. The conditions (5.1) are obeyed if

Qs(x) =
∑

i,j

qs
ij x

ixj satisfies
∑

s

fsQs(x) = xixi and
∑

s

gs = C . (5.3)

Unfortunately, it is hard to analyze the WDVV equation (4.2) and the flatness condi-

tion (4.3) in this generality. Therefore, we take the simplifying ansatz that the quadratic

forms are either of rank one or proportional to the identity form,8

Qα(x) = αiαj x
ixj =: (α·x)2 and QR(x) = xixi =: R2 , (5.4)

which defines a set {α} of p covectors

α = (α1, α2, . . . , αn) with values α(x) = α·x = αix
i . (5.5)

Replacing the label ‘s’ by the covector name ‘α’ or by ‘R’, the prepotentials (5.2) read

F = −1

2

∑

α

fα (α·x)2 ln |α·x| − 1

2
fRR

2 lnR + Fhom(x) ,

U = −
∑

α

gα ln |α·x| − gR lnR + Uhom(x) .
(5.6)

The covector part of this ansatz is well known [3, 6, 9, 10], but the ‘radial’ terms (labelled

‘R’) are new and will be important for admitting nontrivial solutions U .

The expressions above are invariant under individual sign flips α → −α for each cov-

ector, and so we exclude −α from the set. For identical particles our relative configuration

space carries an n-dimensional representation of the permutation group Sn+1, whose ac-

tion must leave the set {±α} invariant. Furthermore, the fα and gα couplings have to be

constant along each Sn+1 orbit. Finally, a rescaling of α·x may be absorbed into a renor-

malization of fα. Therefore, only the rays R+α are invariant data. We cannot, however,

change the sign of fα in this manner.

Compatibility of (5.6) with the conditions (5.1) directly yields
∑

α

fα αiαj + fR δij = δij and
∑

α

gα + gR = C . (5.7)

The second relation fixes the central charge, and the gα are independent free couplings if not

forced to zero. The first relation amounts to a decomposition of (1−fR)δij into (usually non-

orthogonal) rank-one projectors and imposes 1
2n(n+1) relations on the coefficients {fα, fR}

for a given set {α}.
All known solutions to the WDVV equations can be cast into the form (5.6) with

Fhom ≡ 0, so from now on we drop this term. From (5.6) we then derive

∂i∂j∂kF = −
∑

α

fα
αiαjαk

α·x − fR

{

xiδjk + xjδki + xkδij
R2

− 2
xixjxk

R4

}

,

∂iU = −
∑

α

gα
αi

α·x − gR
xi

R2
+ ∂iUhom ,

(5.8)

8 Our configuration space R
n carries the Euclidean metric (δij), hence index position is immaterial.
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and so the bosonic part of the potential takes the form

VB =
1

2

∑

α,β

α·β
α·x β·x

(

gαgβ +
~

2

4
fαfβ (α·β)2

)

−
∑

α

gα
αi

α·x ∂iUhom

+
1

2

1

R2

(

gR(2C−gR) +
~

2

4
(3n−2)fR(2−fR)

)

+
1

2
(∂iUhom)(∂iUhom) .

(5.9)

The WDVV equation in (4.2) becomes

1

2

∑

α,β

fαfβ

α·β
α·xβ·x (α ∧ β)⊗2 + fR (2−fR)

T

R2
= 0 (5.10)

with (α ∧ β)⊗2
ijkl = (αiβj − αjβi)(αkβl − αlβk) and

Tijkl = δikδjl − δilδjk − δikx̂j x̂l + δilx̂j x̂k − δjlx̂ix̂k + δjkx̂ix̂l where x̂i ≡
xi

R
.

(5.11)

The different singular loci of the various terms in (5.10) allow one to separate them, thus

∑

α,β

(α6=β)

fαfβ

α·β
α·xβ·x (α ∧ β)⊗2 = 0 and fR (2−fR) = 0 . (5.12)

The two admissible choices for fR,

fR = 0
(5.7)−→

∑

α

fαα⊗α = 1 or fR = 2
(5.7)−→

∑

α

fαα⊗α = −1 , (5.13)

are related by flipping the signs of all coefficients fα, i.e. fα → −fα. Note, however, that

the n=2 case is special, since then T≡0 and (5.10) is identically satisfied, so no restrictions

on fR arise.

The flatness condition in (4.3), on the other hand, is already nontrivial at n=2 and

reads

∂i∂jU +
∑

α

fα
αiαj

α·x α·∂U + fR

{

xi∂jU + xj∂iU − δijC

R2
+

2xixjC

R4

}

= 0 . (5.14)

In particular, its trace,

∂·∂ U +
∑

α

fα
α·α
α·xα·∂U = C fR

n

R2
, (5.15)

and its projection onto some covector β,

(β·∂)2U +
∑

α

fα
(α·β)2

α·x α·∂U + 2fR
β·x
R2

β·∂U = C fR

(

β·β
R2

− 2(β·x)2
R4

)

, (5.16)

prove to be useful. They are potentially singular at R=0 and on the hyperplanes α·x=0.

For example, near β·x=0 (but away from R=0) we may approximate (5.16) by

(β·∂)2U +
fβ β·β
β·x β·∂U ≈ 0

fβ≥−1−→ U ∼ (β·x)1−fβ for β·x ∼ 0 , (5.17)

– 8 –
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which displays the leading singularity structure of U (and thus of VB) on the β·x=0 hy-

perplane provided that fβ is sufficiently large.

Of course, there is always the trivial C=0 solution, which puts gR = gα = 0 ∀α.

As long as we keep Uhom to be nonzero, it is not too illuminating to insert the covector

expression (5.8) into the above equations. So let us, for a moment, ponder the consequences

of putting Uhom ≡ 0 in (5.6). In such a case for n>2, (5.14) together with (5.8) implies

gα (1−α·αfα) = 0 ,
∑

α,β

(α6=β)

gαfβ

α·β βiβj

α·x β·x = 0 , gα fR = C fR = gR = 0 , (5.18)

which essentially kills all radial terms and fixes fα = 1
α·α unless gα = 0. Turning on all gα

would then saturate the first option in (5.13),

∑

α

α⊗α
α·α = 1 −→ α·β = 0 ∀α, β , (5.19)

because this partition of unity is an orthonormal one and the number p of covectors α

must be equal to n. Clearly, such a system is reducible: If a set of covectors decomposes

into mutually orthogonal subsets, (5.10) and (5.14) — at fR=0=gR — hold for each subset

individually. Then, the partial prepotentials just add up to the total F or U . In fact, we

have already encountered such a decomposition when separating the center-of-mass degree

of freedom. Here, however, it is the relative motion of the particles which can be factored

into independent parts. Since the irreducible relative-particle systems are the building

blocks for all models, the case of p = n is just a collection of n=1 systems and does not

provide an interesting solution. We learn that Uhom≡0 is not an option for n>2.

Let us finally take a look at the special case of n=2, i.e relative motion in a three-

particle system. First, as already mentioned, the n=2 WDVV equation is empty; it follows

from (5.7), which can be fulfilled for any set of more than one covector. Hence, fR is

unrestricted. Second, at n=2 the content of (5.14) is fully captured by its trace (5.15),

which in this case allows nontrivial solutions even with Uhom ≡ 0. Namely, inserting the

second line of (5.8) with Uhom ≡ 0 into (5.15) one obtains

∑

α

gα(1−α·αfα)
α·α

(α·x)2 −
∑

α,β
(α6=β)

gαfβ

α·β β·β
α·x β·x − 1

R2

(

2(n−1)gR + n(C−gR)fR

)

= 0,

(5.20)

which splits into

gα(1−α·αfα) = 0,
∑

α,β
(α6=β)

gαfβ

α·β β·β
α·x β·x = 0, gR =

fR

fR − 2 + 2/n
C . (5.21)

If all couplings gα are nonzero, then

fα =
1

α·α > 0
(5.7)−→ fR = 1− p

n
and gR =

p− n

p+n−2
C (5.22)

besides
∑

α

α⊗α
α·α =

p

n
1 and

∑

α,β
(α6=β)

gα
α·β

α·xβ·x=0. (5.23)
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These equations will be analyzed in section 8. We already see that the radial terms are

essential for having p > n. Of course, we are to put n=2 in the equations above, but we

have displayed the general formulae to make explicit the conflict between (5.22) and (5.12)

for n≥3 and p>n, which essentially rules out Uhom≡0 solutions beyond n=2.

6 U=0 solutions: root systems

The obvious strategy for solving the structure equations is to first construct a prepoten-

tial F satisfying (4.2), i.e. find covectors α (and coefficients fα) subject to (5.13) and (5.12).

Without loss of generality we restrict ourselves to the first of the two cases in (5.13) and

put fR=0. The structure equations are linear in the prepotential U , and so a solution to

the WDVV equation trivially extends to a full solution (F,U≡0) for C=0.

In 1999, Martini and Gragert [9] discovered that, in (5.6) with fR=0=gR, taking {α}
to be a (positive) root system of any simple Lie algebra yields a valid prepotential F .

Shortly thereafter, it was proved [10] that certain deformations of root systems are also

allowed, as well as the root systems of any finite reflection group, thus adding the non-

crystallographic Coxeter groups to the list. In the following, we shall rederive these results

and generalize them.

Let us begin with the simply-laced root systems. Here, any two positive roots α and β

are either orthogonal, or else add or subtract to another positive root, then giving rise to

an equilateral triangle

α+β+γ = 0 −→ α∧β = β∧γ = γ∧α and α·β = β·γ = γ·α . (6.1)

The contribution of the pairs (α, β), (β, γ) and (γ, α) to (5.12) is thus proportional to

fα fβ

α·x β·x +
fβ fγ

β·x γ·x +
fγ fα

γ·x α·x , (6.2)

which vanishes precisely when fα = fβ = fγ . We recognize the triple (α, β,−γ) as the

positive roots of A2.

It is not hard to see that in (5.12) the sum over all non-orthogonal pairs (α, β) of

positive ADE roots can be decomposed into partial sums over the three pairs of a triple.

Two triples may share a single root but not a pair. Since all triples are connected in this

way, all fα are equal,9 and their value is fixed by the homogeneity condition (5.13), which

implies that our root system must be of rank n. To find f , recall that, for any Lie algebra

and with α·α=2 for the long roots, one has

∑

α∈Φ+

α⊗ α = h∨ 1 and
∑

α∈Φ+

2
α⊗ α

α · α = h1 , (6.3)
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Φ+ An Bn Cn Dn E6 E7 E8 F4 G2 H3 H4 I2(p)

h n+1 2n 2n 2n−2 12 18 30 12 6 10 30 p

h∨ n+1 2n−1 n+1 2n−2 12 18 30 9 4 — — —

Table 1. Coxeter and dual Coxeter numbers for all Coxeter groups.

α

β

β

α+β β β
α+βα α+2β

β

α+2β α+3β
β β β

β

2α+3β

α+βα

r=1 r=2 r=3

Figure 1. Short-root strings through a long root, for length2 ratios r = 1, 2, 3

where Φ+ is the set of positive roots, and h and h∨ denote the Coxeter and dual Coxeter

numbers, respectively, which are listed in table 1 for the reader’s convenience.. Thus,

f = 1/h∨ in the ADE case, where h=h∨.

In essence, the root systems of all ADE Lie algebras provide us with prepotentials [9]

FADE = − 1

2h∨

∑

α∈Φ+

(α·x)2 ln |α·x| . (6.4)

What about the other root systems? There, we have long roots, with length2 = 2, and

short roots, with length2 = 2/r, where r = 2 or 3. Any two non-orthogonal short roots

add or subtract to another short root, and the same is true for the long roots. Hence, for

the short/short or long/long pairs in our double sum we can again employ (6.2)=0, which

identifies the f coefficients in each triple. However, we also encounter long/short pairs

in (5.12). The key is to realize that the ADE triple (α, β, α+β) represents the β-string

of roots through α. The root string concept works for any pair of roots and in general

groups together r+2 coplanar roots (α, β, α+β, α+2β, . . . , α+rβ), with α being long, β

short and α · β = −1.

For the long/short pairs in Bn, Cn and F4 (r=2) the role of (6.2)=0 is then taken by

a four-root identity based on the quadruple (α, β, α+β, α+2β). With the scalar products

from table 2 and the relevant wedge products all equal modulo sign, the equal-length pairs

drop out, and the quadruple yields just four long/short pairs for the sum in (5.12),

− fα fβ

α·x β·x +
fα fα+β

α·x (α+β)·x +
fα+2β fβ

(α+2β)·x β·x +
fα+2β fα+β

(α+2β)·x (α+β)·x . (6.5)

This expression vanishes only when it must, namely for

fα = fα+2β =: fL and fβ = fα+β =: fS . (6.6)

9 The trivial way to avoid this conclusion puts fα=0 for sufficiently many roots such that the system

decomposes into mutually orthogonal parts, with their fα values determined individually via (5.13).
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· β α+β α α+2β

β 1 0 -1 1

α+β 0 1 1 1

α -1 1 2 0

α+2β 1 1 0 2

Table 2. Scalar products for an r=2 root string.

Like in the ADE case, each non-orthogonal pair of roots defines a unique plane, which

carries either a triple or a quadruple. Hence, the sum in (5.12) again splits into sums over

the pairs of a triple or a quadruple, which yield zero individually. Since each plane shares

its roots with other planes and all are connected unless the system is decomposable, all long

roots come with the same coefficient fL, and all short roots with fS. The normalization

in (5.13) then reads

fL

∑

α∈Φ+
L

α⊗ α + fS

∑

α∈Φ+
S

α⊗ α = 1 , (6.7)

where Φ+
L and Φ+

S stand for the positive long and short roots, respectively. Using

∑

α∈Φ+
L

α⊗ α =
rh∨−h
r−1

1 and
∑

α∈Φ+
S

α⊗ α =
h−h∨
r−1

1 , (6.8)

the solution to (6.7) is a one-parameter family,

fL =
1

h∨
+ (h−h∨)t =

1

h
+ (h−h∨)t′ ,

fS =
1

h∨
+ (h−rh∨)t = r

{

1

h
+

(

h

r
−h∨

)

t′
}

,
(6.9)

with t = t′ − 1
hh∨ ∈ R. Therefore, we arrive at a family of prepotentials

F = −1

2
fL

∑

α∈Φ+
L

(α·x)2 ln |α·x| − 1

2
fS

∑

α∈Φ+
S

(α·x)2 ln |α·x| . (6.10)

Incidentally, the formulae (6.9) and (6.10) hold for all root systems, including the ADE

(r=1) and G2 (r= 3) cases. The only r=3 example, G2, is trivial since of rank two, but let

us anyway also prove the assertion for this case. The six positive roots of G2 contribute

3 short/short, 3 long/long and 6 long/short pairs to the sum in (5.12). As argued before,

the contributions of the equal-length pairs vanish by virtue of (6.2)=0, provided fα=fS for

the short roots and fα=fL for the long ones. The mixed pairs yield

−1

α·xβ·x +
1

α·x (α+β)·x +
1

(α+3β)·xβ·x +
1

(α+3β)·x (α+2β)·x
+

1

(2α+3β)·x (α+β)·x +
1

(2α+3β)·x (α+2β)·x (6.11)
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Figure 2. Root systems of the dihedral groups I2(p) for p = 2, 3, 4, 5, 6

for a long root α and a short root β, with α·β = −1, which as simple roots generate the

G2 system. It is quickly verified that the above expression indeed vanishes, which proves

our claim. Hence, for all Lie-algebra root systems and any plane Π, we have proved the

identity

∑

αβ∈Π
(α6=β)

α·β
α·x β·x = 0 for (α, β) ∈

(

Φ+
L ,Φ

+
L

)

or
(

Φ+
S ,Φ

+
S

)

or
(

Φ+
L ,Φ

+
S

)

, (6.12)

which is effectively equivalent to the WDVV equation. Our solution (6.9) for the f coef-

ficients generalizes the one of [9, 10] and reduces to them at t=0. One might think that

the one-parameter freedom is ficticious since fL and fS may be absorbed into the roots.

However, this is not so because fL and fS may have opposite signs, which is crucial for

constructing U solutions in this F background.

We have also checked the non-crystallographic Coxeter groups H3, H4 and I2(p) for

p=5 and p>6.10 Of these, the dihedral I2 series

{α} = { cos(kπ/p) e1 + sin(kπ/p) e2 | k = 0, 1, . . . , p−1 } (6.13)

trivially fulfils (5.10), as it is of rank two.

7 U=0 solutions: orthocentric simplices

In order to generalize the root-system solutions found in the previous section, in this

section we take a more general look at the n=3 case. Again, the goal is to solve the

WDVV equation (5.12) and the homogeneity condition (5.13) for fR=0.

Previously we have mentioned that any set of p≥2 covectors in n=2 dimensions

solves (4.2), because the WDVV equation is empty and (5.7) only serves to restrict fα

and fR. We now deliver a simple argument. Let us represent a covector α ∈ R
2 by a

complex number a ∈ C. Then, the traceless and the trace part of the homogeneity condi-

tion (5.7) translate to

∑

a

fa a
2 = 0 and

∑

a

fa aā = 2 (1−fR) , (7.1)

respectively, where ā is the complex conjugate of a and fa ≡ fα ∈ R. Since the length of

each covector can be changed by rescaling the corresponding f , it is evident that for more

10 Up to a root rescaling, I2(2) = A1⊕A1, I2(3) = A2, I2(4) = B2 or C2, and I2(6) = G2.
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Figure 3. Triangular configuration of covectors

than one covector one can always select these coefficients in such a way that the complex

numbers fa a
2 form a closed polygonal chain in two dimensions, thus satisfying the first

of (7.1). A common rescaling then takes care of the second equation as well, while fR can

still be dialed at will. Therefore, by taking the complex square roots of the edge vectors of

any closed polygonal chain, we obtain an admissible set of covectors.

Before moving on to three dimensions, it is instructive to work out the fα coefficients

from the homogeneity condition (5.13) for fR=0 and n=2. For the case of two covec-

tors {α, β}, necessarily α·β = 0. For p=3 coplanar covectors {α, β, γ}, the homogeneity

condition (5.13) uniquely fixes the f coefficients to

fα = − β · γ
α∧β γ∧α and cyclic , (7.2)

due to the identity

β∧γ β·γ αiαj + cyclic = −α∧β β∧γ γ∧α δij . (7.3)

The traceless part of the homogeneity condition should imply the single WDVV equa-

tion (5.12) in two dimensions. Indeed, the choice (7.2) turns the latter into

α∧β γ·x + β∧γ α·x + γ∧α β·x = 0 (7.4)

which is identically true. Without loss of generality we may assume that α + β + γ = 0,

i.e. the three covectors form a triangle. In this case we have α∧β = β∧γ = γ∧α = 2A,

where the area A of the triangle may still be scaled to 1
2 , and (7.2) simplifies to

fα = −β · γ
4A2

and cyclic . (7.5)

In dimension n=3, the minimal set of three covectors must form an orthogonal basis,

with fα = 1/α·α. Let us skip the cases of four and five covectors and go to the situation of

p=6 covectors because the homogeneity condition (5.13) then precisely determines all f co-

efficients. However, it is not true that six generic covectors can be scaled to form the edges
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Figure 4. Tetrahedral configuration of covectors

of a polytope. The space of six rays in R
3 modulo rigid SO(3) is nine dimensional, while the

space of tetrahedral shapes (modulo size) has only five dimensions. In order to generalize

the n=2 solution above, let us assume that our six covectors can be scaled to form a tetra-

hedron, with edges {α, β, γ, α′, β′, γ′} where α′ is dual to α and so on. Any such tetrahedron

is determined by giving three nonplanar covectors, say {α, β, γ′}, which up to rigid rotation

are fixed by six parameters, corresponding to the shape and size of the tetrahedron.

Let us try employing the triangle result (7.5) to patch together the unique solution to

the homogeneity condition (5.13) for the tetrahedron. To satisfy the traceless part of the

relation, we take the f coefficients around any face to be proportional to the triangular

ones (7.5). Now each edge is shared by two triangular faces, so we should have

fα = −λαβγ β·γ = −λαβ′γ′ β′·γ′ (7.6)

and so forth cyclicly around the triangles 〈αβγ〉 and 〈αβ′γ′〉, with coefficients λ··· depending

only on the triangle indicated. It is then tempting to put

fα = −λ β·γ β′·γ′ , fβ = −λ γ·α γ′·α′ , fγ = −λ α·β α′·β′ (7.7)

and so on using the tetrahedral incidences, with λ depending only on the volume V of the

tetrahedron. However, comparing the two previous sets of equations we see that this can

only work if

β′·γ′ = γ′·α′ = α′·β′ =
λαβγ

λ
(7.8)

and likewise for any three convergent edges dual to some face. These eight relations are

non-generic but immediately equivalent to the three conditions

α · α′ = 0 , β · β′ = 0 , γ · γ′ = 0 (7.9)

for the pairs of dual (skew) edges of the tetrahedron. Such tetrahedra, called ‘ortho-

centric’ [16], are characterized by the fact that all four altitudes are concurrent (in the
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orthocenter) and their feet are the orthocenters of the faces. The space of orthocentric

tetrahedra is of codimension two inside the space of all tetrahedra and represents a three-

parameter deformation of the A3 root system (ignoring the overall scale).

For orthocentric tetrahedra, our ansatz (7.7) is successful: Due to the identity

β·γ β′·γ′ αiαj + β·γ′ β′·γ α′
iα

′
j + cyclic = −36V 2 δij , (7.10)

the homogeneity condition (5.13) is obeyed for

fα = −β·γ β
′·γ′

36V 2
and fα′ = −β·γ

′ β′·γ
36V 2

(7.11)

plus their cyclic images. What about the WDVV equation in this case? The 15 pairs of

edges in the double sum of (5.12) group into four triples corresponding to the tetrahedron’s

faces plus the three skew pairs. Using (7.11), the contribution of the 〈αβγ〉 face becomes

proportional to β′·γ′ γ·x+ cyclic, which vanishes thanks to (7.8). Repeating this argument

for the other faces, we see that the concurrent edge pairs do not contribute to the double

sum in (5.12), which leaves us with the three skew pairs. At this point, the orthocentricity

again comes to the rescue via (7.9), and the WDVV equation is obeyed. Apparently,

any reduction of the WDVV equation to some face already follows from the homogeneity

condition, and the only independent projection is associated with the skew edge pairs.

Although we do not know the f coefficients for a general tetrahedron, we can employ

a dimensional reduction argument to prove that the WDVV equation already enforces the

orthocentricity. Consider the limit n̂ · x → ∞ for some fixed covector n̂ of unit length.

Decomposing

α = α·n̂ n̂+ α⊥ −→ α·x = α·n̂ n̂·x+ α⊥·x (7.12)

we see that any factor 1
α·x vanishes in this limit unless α·n̂ = 0. Thus, only covectors

perpendicular to n̂ survive in (5.10), reducing the system to the hyperplane orthogonal

to n̂. In addition, 1
R

→ 0 as well, killing all radial terms in the process.11 In a general

tetrahedron, take n̂ to point in the direction of α∧α′. Then, the limit n̂·x → ∞ retains

only the covectors α and α′, and the WDVV equation reduces to a single term, which van-

ishes only for α·α′ = 0. Equivalently, the plane spanned by α and α′ contains no further

covector, and two covectors in two dimensions must be orthogonal. The same argument

applies to β·β′ and γ·γ′, completing the proof.

This scheme may be taken to any dimension n. A simplicial configuration of 1
2n(n+1)

covectors is already determined by n independent covectors, which modulo SO(n) are given

by 1
2n(n+1) parameters. The homogeneity condition (5.13) uniquely fixes the f coefficients.

Employing an iterated dimensional reduction to any plane spanned by a skew pair of edges

and realizing that no other edge lies in such a plane, we see that the WDVV equation

always demands such an edge pair to be orthogonal. This condition renders the n-simplex

orthocentric and reduces the number of degrees of freedom to n+1 (now including the

11 Note, however, that the reduced system in general does not fulfil the homogeneity conditions (5.7)

since the ‘lost covectors’ have nonzero projections onto the hyperplane.
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Figure 5. Faces sharing an edge of an n-simplex

overall scale given by the n-volume V ). In this situation we can write down the unique

solution to both the homogeneity condition and the WDVV equation,

fα =
β·γ β′·γ′ β′′·γ′′ · · · β(n−2)·γ(n−2)

(n! V )2
, (7.13)

where the edge α is shared by the n−1 faces 〈αβγ〉, 〈αβ′γ′〉, . . ., 〈αβ(n−2)γ(n−2)〉, and we

have oriented all edges as pointing away from α. This formula works because any sub-

simplex, in particular any tetrahedral building block, is itself orthocentric. To summarize,

the WDVV solutions for simplicial covector configurations in any dimension are exhausted

by an n-parameter deformation of the An root system. The n moduli are relative angles

and do not include the 1
2n(n+1) trivial covector rescalings, which, apart from the common

scale, destroy the tetrahedron. It has to be checked whether our deformation coincides

with the An deformation found in [11] in a different setting.

As a concrete example, the reader is invited to work out the details for the generic

(scaled) orthocentric 4-simplex with vertices

A : (0, 0, 0, 0) B : (1, 0, 0, 0) C : (x, y, 0, 0)

D :

(

x,
x(1 − x)

y
, z, 0

)

E :

(

x,
x(1 − x)

y
,
x(1 − x)(y2 − x(1 − x))

y2 z
,w

)

.
(7.14)

Orthocentric simplices are not the only generalization of our analysis of six covectors

in three dimensions. Recalling that A3 = D3, we know that the six edges of a regular

tetrahedron can be reassembled into one-half of a regular octahedron. Let us relax the

regularity and look at a more general octahedron defined by six vertices ±v1, ±v2 and ±v3,
which are fixed (up to rigid rotations) by six parameters, just like for the tetrahedron. For

the full set of edges we need to include here also the negatives of all positive covectors,

{±α} =
{

α(±i±j) = ±vi±vj for 1 ≤ i < j ≤ 3
}

. (7.15)
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Figure 6. Octahedral configuration of covectors

With f−α = fα, the homogeneity condition uniquely fixes all f coefficients. For the

WDVV equation, let us again consider the dimensional reduction to the plane spanned

by any pair of covectors, and restrict to the positive ones. Like for the tetrahedron, it

turns out that such a plane contains either a triangular face or just two convergent cov-

ectors α(i+j) and α(i−j). The reduced WDVV equation requires a right angle between the

latter, which puts vi·vi = vj ·vj, and so all three vertices must have the same distance

from the origin. We are not aware of a particular name for such octahedra, which admit

a circumsphere. In any case, these two conditions and ignoring the overall scale reduce

the modular space to a three-dimensional one, which we already identified as the space of

orthocentric tetrahedral shapes.

The virtue of this alternative picture is a different generalization: In addition to the

simplicial polytopes (related to An) we obtain as well hyperoctahedral polytopes (related

to Dn) for WDVV solutions in any dimension, by letting i<j in (7.15) run up to n.12

Such a configuration consists of n(n−1) covectors plus their negatives, but is completely

determined again by n of these, for which 1
2n(n+1) parameters are needed. Beyond n=3

the homogeneity condition (5.13) no longer fixes the f coefficients. The WDVV equation

now demands not only that vi·vi = vj ·vj but also that α(±i±j)·α(±k±l) = 0 for all indices

mutually different. This is strong enough to enforce vi·vj ∝ δij , i.e. complete regularity for

the hyperoctahedron. What remains for n>3 is just the Dn root system (up to scale).

Our findings suggest that covector configurations corresponding to deformations of

other roots systems may solve the WDVV equations as well. For verification, we propose

12 Note that our covectors (plus their negatives) form the edges of these polytopes and not their vertices.

– 18 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
3

to consider the polytopes associated with the weight systems of a given Lie algebra, since

their edge sets are built from the root covectors. The idea is then to relax the angles of

such polytopes and analyze the constraints from the homogeneity and WDVV equations.

The n-dimensional hyper-tetrahedra and -octahedra we found emerge simply from the

fundamental and vector representations of An andDn, respectively. Extending this strategy

to other representations and Lie algebras could lead to many more solutions.

8 U 6=0 solutions: three-particle systems with Uhom≡0

Let us finally try to turn on the other prepotential, U 6=0, in the background of the F so-

lutions already found. Unfortunately, we have no good strategy to solve (5.14) unless

Uhom≡0. Hence, in this section let us make the ansatz

U = −
∑

α

gα ln |α·x| − gR lnR , (8.1)

and face the conditions (5.18) (for n>2) or (5.21) (for n=2). In the background of our

irreducible root-system solutions, the Weyl group identifies the fα and gα coefficients for

all roots of the same length. Hence, besides the fL and fS values in (6.9) we have couplings

gL and gS for a number pL and pS of long and short positive roots, respectively.13 This

simplifies the ‘sum rule’
∑

α

fα α⊗α = (1−fR)1 trace−→
∑

α

α·α fα = n (1−fR) (8.2)

to 2fL pL +
2

r
fS pS = n (1−fR)

gL,gS 6=0−→ p = n (1−fR) . (8.3)

We first consider n>2, hence gR=0 and fR=0 for C 6=0. Since the total number p of

positive roots exceeds n (except for A⊕n
1 ), we are forced to put either gS = 0 or gL = 0.

This fixes all coefficients for n≥3 to

either gS = 0 , gL = g
(5.18)(8.3)−→ fS =

r

2

n− pL

pS
, fL =

1

2
(8.4)

or gS = g , gL = 0
(5.18)(8.3)−→ fS =

r

2
, fL =

1

2

n− pS

pL
. (8.5)

All simply-laced (ADEH) systems are immediately excluded because they have fα = 1
h∨ , as

is seen in (6.4). In the non-simply-laced (BCFG) one-parameter family (6.9) with (6.10),

however, there is always one member which obeys (8.4) or (8.5) and therefore (8.2). Fur-

thermore, the trace of (5.18) follows from (6.12) because gα and fβ are constant on Φ+
L

and Φ+
S . The same consideration simplifies the expression (5.9) for the bosonic potential

at fR=0=gR to

VB =
∑

α∈Φ+

vα

(α·x)2 , where vα = ~
2 f

2
α

r3α
or vα =

1

rα

(

g2
α+

~
2

4

)

(8.6)

13 For expliciteness, pL = n
2

rh∨−h
r−1

and pS = n
2

r(h−h∨)
r−1

, with the sum p = pL + pS = n
2
h.
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for any positive root α with length2 = 2
rα

, depending on whether gα vanishes or not. It

remains to check the traceless part of (5.18) for the choice (8.4) or (8.5). Unfortunately, this

is never fulfilled for n>2, except in the reducible case of A⊕n
1 . This failure extends to the

deformed root systems, e.g. our orthocentric simplex backgrounds. This rules out Uhom≡0

solutions to the flatness condition for all known irreducible WDVV backgrounds at n>2.

Therefore, in our search for C 6=0 solutions (F,U) with Uhom≡0, we are forced back

to two dimensions, i.e. systems of not more than three particles. The plethora of n=2

WDVV solutions F (parametrized by polygonal chains) may be cut down by invoking

physical arguments. If a solution is supposed to describe the relative motion of three

identical particles, then permuting their coordinates xI must be equivalent to permuting

the covectors (up to sign). After separating the center-of-mass coordinate, the planar

set {±α} should thus be invariant under the irreducible two-dimensional representation

of S3. To visualize the situation, consider the R
3 frame rotation by the orthogonal matrix

O =







1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6
1√
3

1√
3

1√
3






: eI

O7−→
√

2

3







cosφI

sinφI
1√
2






with φI =

2πI

3
− π

2
. (8.7)

In the rotated frame, the 3-direction describes the center-of-mass motion, and the first two

entries correspond to the relative-motion plane, on which the S3 representation acts by

reflections and 2π
3 rotations. Reversely, the relative-motion plane is embedded back into

the R
3 configuration space of the total motion and rotated to the xI frame via

αrel =

(

cosφ

sinφ

)

→֒ αtot =







cosφ

sinφ

0







OT

7−→
√

2

3







sin(φ+π
3 )

sin(φ−π
3 )

− sinφ






=







α1

α2

α3






, (8.8)

so that the new direction (0, 0, 1) becomes the center-of-mass covector ρ = 1√
3
(1, 1, 1). The

S3 action is generated by φ → φ+2π
3 and φ → π−φ, which produces all permutations of

the αtot entries and hence permutes the {xI} as required. The S3 orbit of αrel is given by

the angle set
{

± φ , ±φ+
2π

3
, ±φ−2π

3

}

φ special−→
{

0 , ±2π

3

}

or

{

π , ±π
3

}

, (8.9)

where the shorter orbits occur for φ = 0 or φ = π, modulo 2π
3 . The upshot is that the

two-dimensional covectors must form a reflection-symmetric arrangement of A2 systems!

In two dimensions, we take advantage of the radial terms in the structure equations

and turn on all g couplings, which yields (cf. (5.22))

fα =
1

α·α ∀α , fR = 1−p
2
, gR =

p− 2

p
C and

∑

α<β

(gα+gβ)
α·β

α·x β·x = 0 (8.10)

for some ordering of covectors. The bosonic potential (5.9) specializes to

VB =
1

2

∑

α

(

g2
α+

~
2

4

)

α·α
(α·x)2 +

p2−4

2

(

C2

p2
− ~

2

4

)

1

R2
with R2 =(x1)2+(x2)2. (8.11)
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This formula remains correct in the full three-dimensional configuration space, where one

may add the center-of-mass contribution V com
B = 1

2X
−2(C2

com+~2

4 ). Please note, however,

that R still refers to the relative-motion subspace,

R2 →֒ xT
(

1 0 0
0 1 0
0 0 0

)

x
OT

7−→ 1

3
xT
( 2 −1 −1

−1 2 −1
−1 −1 2

)

x 6= ∑

I(x
I)2 . (8.12)

Consider now for {α} a collection of A2 systems, each with its own g value and oriented

at a particular angle in the relative-motion plane. Because each A2 system fulfils the flatness

condition by itself, we only have to compute the ‘cross terms’ in (8.10). Introducing the

polar angles φα, φβ and φx of α, β and x, respectively, the contributions

α·β
α·x β·x =

cos(φα−φβ)

cos(φx−φα) cos(φx−φβ)
=

tan(φx−φα) − tan(φx−φβ)

tan(φβ−φα)
(8.13)

to (8.10) collapse in telescopic sums, if and only if the reflection of any covector on any other

one produces again a covector, and the couplings of mirror-image covectors are identified.

Therefore, the orientations of the various A2 systems must be isotropic, i.e. their collection

forms an I2(p) system with p = 3q. Ordering the positive roots according to their polar

angles φk=k
π
p

with k = 0, 1, . . . , p−1, we get

gk = g for p odd or g2ℓ = g and g2ℓ+1 = g′ for p even , (8.14)

so that
∑

α gα = 2
p
C = p g or p

2(g+g′), respectively. Via (8.8) we further obtain

α·x√
α·α →

√

2

3

(

sin

(

k
π

p
+
π

3

)

· x1 + sin

(

k
π

p
−π

3

)

· x2 − sin

(

k
π

p

)

· x3

)

. (8.15)

To see a few simple examples, let us give explicit results for p = 3, 6 and 12.

A2 model. The minimal model, p=3, has fR=−1
2 and gR=1

3C and a single free coupling

g = 2
9C. The radial terms are essential. In F and U appear the coordinate combinations

α·x√
α·α ∈

{

1√
2
(x1−x2) ,

1√
2
(x1−x3) ,

1√
2
(x2−x3)

}

and

R2 ≡ 1

3
xT
( 2 −1 −1

−1 2 −1
−1 −1 2

)

x =
1

3

(

(x1−x2)2 + (x2−x3)2 + (x3−x1)2
)

,

(8.16)

so that the bosonic potential becomes

VB =

(

g2+
~

2

4

)(

1

(x1−x2)2
+

1

(x2−x3)2
+

1

(x3−x1)2

)

+
5

8

(

9g2−~
2
) 1

R2
. (8.17)

G2 model. At p=6, two A2 systems (with couplings g and g′) are superposed with a

relative angle of π
6 . With fR=−2 and gR=2

3C one has g+g′ = 1
9C. We read off the

combinations

α·x√
α·α ∈

{

x1−x2

√
2

,
2x1−x2−x3

√
6

,
x1−x3

√
2

,
x1+x2−2x3

√
6

,
x2−x3

√
2

,
−x1+2x2−x3

√
6

}

and

R2 =
1

3

(

(x1−x2)2 + cyclic
)

=
1

9

(

(2x1−x2−x3)2 + cyclic
)

(8.18)
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and obtain

VB =
g2+~2

4

(x1−x2)2
+

3 (g′2+~2

4 )

(2x1−x2−x3)2
+ cyclic +

36(g+g′)2−4~
2

R2
. (8.19)

I2(12) model. Integrable three-particle models based on A2 and G2 have been discussed

in the literature before. Among the infinity of novel models, we take p=12, which yields

fR=−5 and gR=5
6C, thus g+g′ = 1

36C. In addition to the positive roots of the G2 model

(now all ‘even’ with coupling g), we have six ‘odd’ roots (with coupling g′),

α·x√
α·α

∣

∣

∣

∣

odd

∈
{

τx1−x2−τ̄x3

√
3

,
τx1−τ̄x2−x3

√
3

,
x1+τ̄x2−τx3

√
3

,

τ̄x1+x2−τx3

√
3

,
−τ̄x1+τx2−x3

√
3

,
−x1+τx2−τ̄x3

√
3

}

(8.20)

where τ = 1
2(
√

3+1) and τ̄ = 1
2(
√

3−1). The bosonic potential reads

VB =
g2+~2

4

(x1−x2)2
+

3 (g2+~2

4 )

(2x1−x2−x3)2
+

3
2 (g′2+~2

4 )

(τx1−τ̄x2−x3)2
+

3
2 (g′2+~2

4 )

(τx1−x2−τ̄ x3)2
+ cyclic

+
630(g+g′)2−35

2 ~
2

R2
. (8.21)

As has been displayed in (8.16) and (8.18), for permutation symmetric models the

radial coordinate R may be expressed via any triple Γ of roots related by π
3 rotations,

∑

α∈Γ

α⊗α
α·α =

3

2
1 −→ R2 =

2

3

∑

α∈Γ

(α·x)2
α·α , (8.22)

so that, for instance, the radial parts of the prepotentials (5.6) may be rewritten as

FR = −1

6
fR

(

∑

α∈Γ

(α·x)2
α·α

)

ln

(

∑

α∈Γ

(α·x)2
α·α

)

, UR = −1

2
gR ln

(

∑

α∈Γ

(α·x)2
α·α

)

. (8.23)

The appearance of sums of roots under the logarithm is new.

We further comment that the radial terms for I2(3q) models with q even can be elim-

inated in two ways. First, choosing g+g′ = 0 and the classical limit ~ → 0, one obtains a

conventional model (with covector terms only), but at the expense of putting C=0. Sec-

ond, taking g′ = 0 we can relax the condition α·αfα=1 for the odd roots and thus put

fR=0=gR in this case, which then yields α·αfα = 4−p
p

for the odd roots and fixes g = 2
p
C.

The bosonic potential in this special situation becomes

VB =
1

2

(

g2 +
~

2

4

)

∑

α even

α·α
(α·x)2 +

~
2

8

(4−p)2
p2

∑

α odd

α·α
(α·x)2 , (8.24)

so in the classical limit only half of the roots remain. Please note that this result differs

from any limit of the generic case (8.11). Of course, the role of even and odd roots may be

interchanged. The results of [3] and [6] describe examples of this kind.

The other dihedral groups may also be used to construct three-particle models, which

however lack the permutation symmetry. Again we give a couple of prominent examples:
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A1⊕A1 model. This model is reducible from the outset. From p=2 it follows that

fR=0=gR so that g+g′ = C. The two orthogonal positive roots are mapped via (8.15) to

α·x√
α·α ∈

{

1√
2
(x1−x2) ,

1√
6
(x1+x2−2x3)

}

, (8.25)

and one finds

VB =
g2+~

2

4

(x1−x2)2
+

3 (g′2+~
2

4 )

(x1+x2−2x3)2
. (8.26)

Adding the cyclic permutations, one seems to arrive at the G2 model but cannot produce

the (necessary) radial term in this manner.

BC2 model. The p=4 case features angles of π
4 . With fR=−1, gR=1

2C and g+g′ = 1
4C,

the one-forms

α·x√
α·α ∈

{

1√
2
(x1−x2) ,

1√
3
(τx1−τ̄x2−x3) ,

1√
6
(x1+x2−2x3) ,

1√
3
(−τ̄x1+τx2−x3)

}

(8.27)

enter in

VB =
g2+~

2

4

(x1−x2)2
+

3 (g2+~
2

4 )

(x1+x2−2x3)2
+

3
2 (g′2+~

2

4 )

(τx1−τ̄x2−x3)2
+

3
2 (g′2+~

2

4 )

(−τ̄x1+τx2−x3)2
+

6(g+g′)2−3
2~

2

R2
.

(8.28)

Again, this looks like a truncation of the model with p→ 3p. Regarding the explicit form

of the above expressions, those are unique only up to rotations around the center-of-mass

axis ρ = 1√
3
(1, 1, . . . , 1). Our convention has been to take the first root as e1 ∈ R

2, which

maps to 1√
2
(e1−e2) ∈ R

3 under OT in (8.8).

The given examples should suffice to illustrate the general pattern of dihedral n=2

solutions with Uhom≡0: The root systems of odd or even order give rise to one- or two-

parameter three-particle models, which are permutation invariant only when the order is

a multiple of three. Except for the reducible case of I2(2), the radial contributions are

needed; they may disappear only when one of the two couplings in the even case vanishes.

9 U 6=0 solutions: three-particle systems in full

Any solution U (including the trivial U≡0 one) for a given F background can be modified

by adding to it a homogeneous function Uhom satisfying xi∂iUhom = 0 and (5.14) for

C=0. As we have seen in the previous section, including this freedom is in fact mandatory

for finding n>2 solutions in the first place. In the three-particle case (n=2), however,

we have identified an infinite series of special solutions, for which we now investigate the

corresponding extension by Uhom. In effect, this will add one additional coupling parameter

to the models of the previous section.
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To construct Uhom for a rank-two system specified by {α, fα, fR}, it suffices to

solve (5.15) for C=0, so that fR drops out. As Uhom depends only on the ratio x2/x1

we change to polar angles φ and φα via

x2

x1
= tanφ and

α · x√
α · α = R cos(φ−φα) (9.1)

and arrive at

U ′′
hom(φ) − h(φ)U ′

hom(φ) = 0 with h(φ) =
∑

α

fα α·α tan(φ−φα) . (9.2)

This is easily integrated (with an integration constant λ) to

U ′
hom(φ) = λ

∏

α

[

cos(φ−φα)
]−fα α·α ∝ R2(1−fR)

∏

α

(α·x)−fα α·α (9.3)

and blows up on the lines orthogonal to the covectors α. Generically, the singularities are

∼ (α·x)−1. Only in case some gα vanishes, the corresponding fαα·α need not equate to

one, thus U ′
hom may have a more general singularity structure. For a dihedral configuration

with nonvanishing couplings gα we can go further since φα = k π
p

with k = 0, . . . , p−1,

which yields

h(φ) =

{

p tan(pφ) for p odd

−p cot(pφ) for p even

}

−→ U ′
hom =

{

λ
[

cos(pφ)
]−1

for p odd

λ
[

sin(pφ)
]−1

for p even

}

(9.4)

and thus (‘≃’ means ‘modulo constant terms’)

Uhom(φ) ≃ 1

p
λ ln

∣

∣

∣

∣

tan

(

p

2
φ+δ

)∣

∣

∣

∣

with δ =
{π

4 for p odd

0 for p even
. (9.5)

This may be compared with the particular solution (8.1),

Upart = −
∑

α

gα ln |α·x| − gR lnR ≃ −
∑

α

gα ln | cos(φ−φα)| − C lnR , (9.6)

which, in the dihedral case, can be simplified to (remember that
∑

α gα+gR = C)

Upart ≃ −C lnR −
{

g ln | cos(pφ)| for p odd

g ln | cos(p
2φ)| + g′ ln | sin(p

2φ)| for p even .
(9.7)

Combining Upart + Uhom = U and lifting to the full configuration space R
3 ∋ (xI), we find

∂IU = −
∑

α

gα
αi

α·x − p− 2

p
C
xi

R
+ λ

(

x2−x3

x3−x1

x1−x2

)

Rp−2
∏

α

(α·x)−1 . (9.8)

For the simplest dihedral example, the A2 system, with (xij := xi−xj)

F = −1

4

[

(x12)2 ln |x12| + (x23)2 ln |x23| + (x31)2 ln |x31|
]

+
1

4
R2 lnR , (9.9)
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one gets

∂IU = [x12x23x31]−1

(

[λR−g(x31−x12)] x23

[λR−g(x12−x23)] x31

[λR−g(x23−x31)] x12

)

− 3

2
g R−2

(

x1

x2

x3

)

, (9.10)

which extends the bosonic potential (8.17) to

VB =

(

g2+
2

3
λ2+

~
2

4

)(

1

(x12)2
+

1

(x23)2
+

1

(x31)2

)

+
5

8

(

9g2−~
2
) 1

R2
+ λ g R

(x12−x23)(x23−x31)(x31−x12)

(x12x23x31)2
.

(9.11)

10 Conclusion

In this paper we systematically constructed conformal (n+1)-particle quantum mechanics

in one space dimension with N=4 supersymmetry, i.e. su(1, 1|2) invariance, and a central

charge C. To begin with, the closure of the superalgebra produced a set of ‘structure equa-

tions’ (4.2) and (4.3) for two scalar prepotentials U and F , which determine the potential

schematically as V = 1
2U

′U ′ + ~
2

8 F
′′′F ′′′ plus fermionic terms. The structure equations

consist of homogeneity conditions depending on C, a (generalized) WDVV equation (for

F alone) and a ‘flatness condition’ (for U in the F background).

Separating the center-of-mass degree of freedom reduces the configuration space from

R
n+1 to R

n for the relative motion. The ansatz (5.6) for the many-body functions U and F

turned the structure equations into a decomposition of the identity (5.7) and nonlinear

algebraic relations (5.10) and (5.18), for a set {α} of covectors in R
n and real coupling

coefficients gα (for U) and fα (for F ). The homogeneous part of U ′ is governed by a linear

differential equation (5.14) (with C=0) of Fuchsian type. The case of three particles is

special, because the WDVV equation is empty and so anything goes for F , but the flatness

condition for U is still nontrivial.

To find the prepotential F it suffices to solve the WDVV equation (5.10). It is known

that the roots of any finite reflection group provide a solution [9, 10], each giving rise to

an interacting quantum mechanics model with U≡0 and thus C=0. Besides rederiving

this result in a new fashion, we were able to generalize it in two ways: First, the An root

system may be deformed to a system of edges for a general orthocentric n-simplex, yielding

a nontrivial n-parameter family of WDVV solutions which might agree with one found

in [11]. Second, the relative weights for the long and the short roots contributing to F are

undetermined even in sign, so that the BCF -type solutions form one-parameter families.

For a nonzero central charge, in any given F background one must turn on the pre-

potential U by solving (5.14). Within our ansatz (5.6), this requires finding a suitable

homogeneous part Uhom — an unsolved task. Only if in appropriate coordinates the sys-

tem decomposes into subsystems not larger than rank two, then Uhom is not needed but can

easily be found. Thus for the special case of three particles, i.e. n=2, the situation is sim-

pler: the flatness condition (5.20) then permits the novel ‘radial terms’ which provided the
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necessary flexibility in our ansatz (5.6). Again the covectors were forced into a root system,

which as of rank two must be dihedral. We explicitly constructed the full prepotentials

(including Uhom) for the new infinite dihedral series and displayed several examples lifted

back to the original configuration space R
3 ∋ (x1, x2, x3). When the dihedral group and

the central charge are fixed, the model depends on one or two tunable coupling parameters

depending on the group order p being odd or even. Permutation symmetry requires p to

be a multiple of 3. The previously found models [3, 6] turned out to be either decompos-

able or peculiar special cases of our dihedral systems, for which the ‘radial terms’ could

by omitted. To summarize, we have classified all one-dimensional N=4 superconformal

quantum three-particle models based on covectors.

It remains an open problem to construct any irreducible U 6=0 solutions with more

than three particles and to find all U≡0 solutions, i.e. the complete moduli space of the

WDVV equation. To complement recent progress in mathematics on this issue [17], we

would like to propose another strategy towards this goal: take any simple Lie algebra,

select one of its irreducible representations and form the convex hull of its weight system.

The edges of this polytope reproduce the roots, with certain multiplicities. Now consider

a deformation of this polytope. Generically, the degeneracy of the edge orientations will

be lifted, but the deformed collection of covectors still satisfies the incidence relation of

the polytope. We suggest to test the WDVV equation on such configurations, generalizing

the method successful for the fundamental An representation. We are confident that this

is feasible and will lead to further beautiful mathematical structures.
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