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Abstract 

Several well-characterized fungal proteins act as prions, proteins capable of multiple 

conformations, each with different activities, at least one of which is self-propagating. 

Through such self-propagating changes in function, yeast prions act as protein-based 

elements of phenotypic inheritance. We report a prion that makes cells resistant to the 

glucose-associated repression of alternative carbon sources, [GAR
+]. [GAR

+] appears 

spontaneously at a high rate and is transmissible by non-Mendelian, cytoplasmic 

inheritance. Several lines of evidence suggest that the prion state involves a complex 

between a small fraction of the cellular complement of Pma1, the major plasma 

membrane proton pump, and Std1, a much lower abundance protein that participates in 

glucose signaling. The Pma1 proteins from closely related Saccharomyces species are 

also associated with the appearance of [GAR
+]. This allowed us to confirm the 

relationship between Pma1, Std1, and [GAR
+] by establishing that these proteins can 

create a transmission barrier for prion propagation and induction in S. cerevisiae. The fact 

that yeast cells employ a prion-based mechanism for heritably switching between distinct 

carbon source utilization strategies, and employ the plasma membrane proton pump to do 

so, expands the biological framework in which self-propagating protein-based elements 

of inheritance operate. 
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Introduction 

The stable inheritance of biological information and phenotype across generations 

is a fundamental property of living systems. Prions, self-perpetuating and heritable 

protein conformations that cause multiple phenotypes, represent an unusual mechanism 

of information transfer that occurs via protein instead of nucleic acid (Wickner 1994). 

Prion proteins can assume at least two conformations and each conformation alters 

protein function, resulting in different phenotypes (Wickner et al. 2004; Shorter and 

Lindquist 2005). When in the self-templating, or prion conformation, prion proteins 

acquire characteristics normally restricted to nucleic acids. The first prion protein 

identified, the mammalian protein PrP, can behave as a transmissible pathogen and 

causes a neurodegenerative disease in its prion form (PrPSc) (Prusiner 1998). Prion 

proteins in fungi, which are functionally unrelated to PrP and to each other, act as non-

Mendelian elements of inheritance by switching to the self-perpetuating, cytoplasmically 

transmissible prion conformation (Wickner 1994). 

Four prions have been extensively characterized in fungi: [PSI
+], [URE3], [Het-s], 

and [RNQ
+]. [PSI

+] (Cox 1965) is the prion form of the translation termination factor 

Sup35, which causes nonsense suppression (Stansfield et al. 1995; Patino et al. 1996; 

Paushkin et al. 1996). [URE3] (Lacroute 1971) is an altered form (Wickner 1994) of the 

nitrogen catabolite repressor Ure2 (Courchesne and Magasanik 1988). [RNQ
+] controls 

the ability of a cell to acquire other prions (Derkatch et al. 2000; Sondheimer and 

Lindquist 2000; Derkatch et al. 2001). [Het-s], found in Podospora anserina, causes 

heterokaryon incompatibility with certain mating partners (Rizet 1952; Coustou et al. 

1997). 
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These four fungal prions, as well as several recently identified prions ([SWI
+], 

[MCA], [OCT
+], and [MOT

+] (Du et al. 2008; Alberti et al. 2009; Nemecek et al. 2009; 

Patel et al. 2009)), share key genetic and physical characteristics despite their disparate 

functions (Chien et al. 2004; Shorter and Lindquist 2005). Their phenotypes appear 

spontaneously at higher frequencies than those caused by genetic mutations. They are 

dominant, show non-Mendelian segregation following meiosis, and are also transmissible 

by cytoduction (cytoplasmic transfer). Physically, they form a self-templating amyloid 

conformation in the [PRION
+] state. Further, their inheritance is linked to the activities of 

chaperones, proteins that mediate conformational changes in other proteins. Transient 

changes in chaperone levels, particularly Hsp104, are sufficient to eliminate the prions 

permanently from cells. This occurs because chaperones alter the prion conformations 

and transmission to daughter cells. Once the prion template is gone cells are “cured” of 

the elements (Uptain and Lindquist 2002; Shorter and Lindquist 2005). Another unusual 

feature is that transient overexpression of the prion protein causes permanent inheritance 

of the prion phenotype. This is because the protein::protein interactions involved in prion 

formation are more likely to occur at higher protein concentrations (Chernoff et al. 1993; 

Ter-Avanesyan et al. 1993; Wickner 1994; Serio et al. 2000; Sondheimer and Lindquist 

2000; Derkatch et al. 2001; Uptain and Lindquist 2002; Shorter and Lindquist 2005). The 

yeast prions also share a distinctive feature with mammalian prions, a strong transmission 

barrier across species. Even subtle differences in amino acid sequence can reduce the 

ability of prion proteins from one species to convert the homolog from other species, 

even though the homologous protein is itself capable of forming a prion on its own 

(Aguzzi et al. 2007; Chen et al. 2007).  
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The precise nature of the mammalian prion template is not known, but all of the 

well characterized fungal prions, as well as the newly discovered prions and prion 

domains (Du et al. 2008; Alberti et al. 2009; Nemecek et al. 2009; Patel et al. 2009) are 

self-templating amyloid amyloids. The simple and robust character of self-templating 

amyloids provides a compelling framework for protein-based inheritance (Glover et al. 

1997; Shorter and Lindquist 2005). Indeed, in many cases the amyloid has been shown to 

be the sole determinant needed for prion formation: recombinant amyloid fibers alone are 

sufficient to convert [prion
-] cells to [PRION

+] cells (Maddelein et al. 2002; King and 

Diaz-Avalos 2004; Tanaka et al. 2004; Brachmann et al. 2005; Patel and Liebman 2007; 

Alberti et al. 2009). Amyloid structure is therefore commonly held to be a critical feature 

of all naturally occurring systems for protein-based inheritance. Indeed, a recent genome-

wide screen for new prion domains in yeast began by examining proteins likely to be 

amyloidogenic (Alberti et al. 2009).  

Here we took a different approach. We searched the literature for S. cerevisiae 

phenotypes with prion-like inheritance patterns. One was described many years ago in a 

screen for cells with an alteration in carbon source utilization (Ball et al. 1976). The basis 

of the screen was the extreme preference of S. cerevisiae for glucose as a carbon source. 

In glucose media, cells repress genes necessary to process other carbon sources such as 

glycerol (Santangelo 2006). Glucosamine, a non-metabolizable glucose mimetic, induces 

a similar repression. Therefore, yeast cells cannot use glycerol as a carbon source if even 

small amounts of glucosamine are present (Hockney and Freeman 1980; Nevado and 

Heredia 1996). Some cells spontaneously acquire the ability to use glycerol in the 

presence of glucosamine, presumably due to defects in glucose repression. Some of these 
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exhibit dominant, non-Mendelian inheritance (Ball et al. 1976). Further, the phenotype is 

neither carried by the mitochondrial genome nor by a plasmid (Kunz and Ball 1977). 

Employing a variety of methods, we show here that this factor, [GAR
+], exhibits all of the 

genetic characteristics of a yeast prion, and we use a broad range of biochemical and 

genetic methods to identify proteins that play a key role in [GAR
+] inheritance. 

 

Results 

[GAR
+
] shows non-Mendelian, infectious inheritance 

 We obtained cells able to utilize glycerol as a carbon source despite the presence 

of glucosamine, as did Ball and colleagues (Ball et al. 1976; Kunz and Ball 1977), by 

selecting for cells that could grow in 2% glycerol in the presence of 0.05% glucosamine. 

Colonies appeared at a frequency of approximately 5 in 104 cells in the W303 genetic 

background, well above the predicted mutational frequency (figure S01). Some recessive 

mutations allow growth on glycerol in the presence of glucosamine ((Ball et al. 1976) see 

table S1 table) but the novel phenotypes described by Ball and colleagues were dominant. 

Therefore, we first crossed our cells to wild-type cells. All diploids exhibited an unstable 

semi-dominant phenotype (figure 1a). Specifically, a mixed population was produced in 

which some diploids showed “strong” phenotypes (large colonies) and others “weak” 

phenotypes (small colonies; figure S02a). Cells with weak phenotypes invariably 

converted to strong over approximately 25 generations (data not shown). Notably, both 

mammalian and fungal prions exhibit “strong” and “weak” strains (Aguzzi et al. 2007). 

In yeast, chromosomally inherited traits show 2 : 2 segregation following meiosis. 

Both strong and weak [GAR
+] phenotypes, however, exhibited non-Mendelian 4 [GAR

+] : 
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0 [gar
-] non-Mendelian segregation (figure 1b). That is, all meiotic proeny exhibited a 

capacity to grow on glucose in the presence of glucosamine. Spores produced from cells 

with weak phenotypes generally converted to strong phenotypes (figure S02b, bottom). 

We named the responsible genetic element responsible for this trait [GAR
+], for "resistant 

to glucose-associated repression", with capital letters indicating dominance and brackets 

([]) its non-Mendelian character. 

To determine whether [GAR
+] is transmissible by cytoduction (that is, 

"infectious"), we used a mutant defective in nuclear fusion (kar1-1). During mating kar1 

cells fuse but nuclei do not (Conde and Fink 1976). Selecting for a particular nucleus and 

cytoplasm of interest after mating accomplishes cytoplasmic exchange without the 

transfer of nuclear material. We mated a [GAR
+] strain carrying the nuclear markers 

URA3
+
 his3

- and the cytoplasmic marker !+ to a kar1-1 [gar
-] strain that was ura3

-
 HIS3

+ 

and !0. We then selected for cells containing the nucleus originally associated with [gar
-] 

cells and the cytoplasm originally associated with [GAR
+] cells. All ten strains tested 

were [GAR
+] (figure 1c). Thus, [GAR

+] exhibits an “infectious,” non-nuclear pattern of 

inheritance. 

 

[GAR
+
] appears at high frequency in a variety of genetic backgrounds 

We next asked whether [GAR
+] was an oddity of specific strains or could appear 

in diverse genotypes. Cells able to utilize glycerol in the presence of glucosamine 

appeared at a frequency of ~9 in 105 cells in the BY background, ~1 in 104 cells in 74D, 

~5 in 104 cells in W303, and ~7 in 104 cells in Sigma. In the SK1 background, [GAR
+] 

appeared at the astonishingly high rate of ~4 in 103 cells (figure 1d). In comparison, the 
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frequency of heritable phenotypic change due to genetic mutation is generally ~1 in 106 

haploid cells (Ohnishi et al. 2004). 

We tested dozens of variants from each background for dominance. All exhibited 

the semi-dominant pattern observed in W303 (figure 1b and data not shown). [GAR
+] 

cells of the 74D background did not sporulate, preventing us from testing segregation 

pattern. In W303 and W303/BY hybrids, [GAR
+] only delayed sporulation (data not 

shown). In every tetrad tested from these backgrounds (more than 25 of each genotype), 

[GAR
+] showed 4 [GAR

+] to 0 [gar
-] segregation (figure 1b and data not shown). 

Together, these data establish that yeast strains of diverse genetic backgrounds commonly 

switch carbon-utilization strategies in a heritable way by acquiring a non-Mendelian 

element of inheritance. 

 

[GAR
+
] is curable by transient changes in chaperone protein levels 

 The inheritance of prions is based upon self-perpetuating changes in protein 

conformations. In contrast to other non-Mendelian elements, a hallmark of prion 

phenotypes is the ability of transient changes in the expression of chaperones to cause a 

heritable loss of the phenotype. Other yeast prions, as well as 18 of 19 newly identified 

protein domains with prion-forming capability, require Hsp104 for propagation (Chernoff 

et al. 1995; Derkatch et al. 1997; Moriyama et al. 2000; Shorter and Lindquist 2004; 

Jones and Tuite 2005; Du et al. 2008; Alberti et al. 2009; Patel et al. 2009). To test the 

influence of Hsp104 on [GAR
+], we crossed [GAR

+] cells to cells carrying a knockout of 

hsp104 and sporulated them. Hsp104 was not required for [GAR
+] inheritance: !hsp104 

segregants remained [GAR
+] (figure 1e). [GAR

+] was also not curable by growth on 
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guanidinium hydrochloride, which inhibits Hsp104's ATPase activity (Ferreira et al. 

2001; Jung and Masison 2001), nor by overexpression of HSP104 (data not shown).  

We next tested the Hsp70 proteins Ssa1 and Ssa2 (Werner-Washburne et al. 

1987), mutations in which affect the inheritance of other prions (Sweeny and Shorter 

2008). These mutations are also a good measure of general chaperone sensitivity, as they 

induce production of most chaperone proteins (Oka et al. 1997). Strikingly, all 

!ssa1!ssa2 meiotic products lost the ability to grow on glycerol in the presence of 

glucosamine (figure 1f). Was this due to curing of the [GAR
+] genetic element or did the 

!ssa1!ssa2 mutations simply mask the phenotype? To test this we restored SSA1 and 

SSA2 to the glucosamine-sensitive !ssa1!ssa2 progeny by mating them back to wild-

type [gar
-] cells (see figure S03a for diagram of cross). Restoring Hsp70 function did not 

result in the reappearance of the [GAR
+] phenotype (data not shown). However, when the 

cells were plated on medium with glucosamine, colonies able to grow on glycerol could 

be recovered at normal frequencies (figure S03b). Thus, a transient change in chaperone 

proteins was sufficient to cure cells of [GAR
+] and this curing was reversible, both 

hallmarks of prion biology (Wickner 1994). [GAR
+] therefore exhibits all of the 

distinguishing genetic characteristics of yeast prions. 

 

[GAR
+
] is regulated by the Rgt2/Snf3 glucose signaling pathway 

 We performed gene expression profiling to identify transcriptional consequences 

of [GAR
+]. In glucose-grown cultures tested just prior to the diauxic shift, only one gene 

showed a detectable difference between [gar
-] cells and [GAR

+] cells on our arrays, but 

that gene was very strongly affected. Hexose Transporter 3 (HXT3) was approximately 
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36-fold down-regulated in [GAR
+] cells compared to [gar

-] cells (figure S04). No other 

transcript exhibited more than a two-fold change. We used an Hxt3-GFP fusion protein 

under the control of the endogenous HXT3 promoter to examine protein levels. Hxt3-GFP 

was easily visible at the plasma membrane in late log phase [gar
-] cells but extremely 

difficult to detect in [GAR
+] cells (figure 2a). The loss of HXT3 expression (!hxt3) alone 

did not allow cells to utilize glycerol in the presence of glucosamine (figure 2b) and thus, 

does not explain the [GAR
+] phenotype. However, it led us to hypothesize that the causal 

agent of [GAR
+] is a regulator of HXT3 expression. 

 To define the protein(s) required for [GAR
+] inheritance, we took advantage of 

two things. First, transient overexpression of each of the known prion proteins 

dramatically increases the frequency at which the corresponding prion appears (Uptain 

and Lindquist 2002). Second, the [GAR
+] determinant exerts a strong effect on HXT3 

expression, and HXT3 predominantly controlled by the Snf3/Rgt2 pathway (Kim et al. 

2003; Santangelo 2006). When glucose is present, transmembrane glucose sensors Snf3 

and Rgt2 transmit a signal to the Yck1 and Yck2 complex, which then phosphorylates 

Mth1 and Std1, marking them for degradation (figure 2c) (Moriya and Johnston 2004). 

When glucose is not present, Mth1 and Std1 accumulate and interact with Rgt1. This 

complex then binds to the HXT3 promoter and represses transcription of HXT3 

(Lakshmanan et al. 2003). 

We tested each gene in the Snf3/Rgt2 regulatory pathway for induction of [GAR
+] 

when overexpressed from a plasmid with a strong constitutive promoter, GPD (figure 

2d). In every strain test, STD1 caused an extraordinary increase in the appearance of 

colonies able to grow on glycerol in the presence of glucosamine. In W303, for example, 
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the increase was ~900 fold over empty vector; more than one in ten cells in these cultures 

converted to [GAR
+]. This is at the high end of prion inductions obtained by analogous 

experiments with other proteins (Masison and Wickner 1995; Derkatch et al. 1996). 

While no other gene in this pathway induced [GAR
+], overexpression of the STD1 

paralog MTH1 blocked its appearance, further confirming the importance of members of 

this pathway in [GAR
+] biology. 

 

Transient STD1 overexpression induces [GAR
+
] but is not required for maintenance 

Next we asked if transient expression of STD1 was sufficient to create a heritable 

change in phenotype, a defining feature of prion biology. When ~100 cells that had lost 

the over-expression plasmid were tested, all retained the [GAR
+] phenotype (confirmed 

by marker loss; data not shown). Thus STD1 is not simply a dynamic regulator of glucose 

repression. Rather, its transient overexpression induces a new, heritable state of carbon 

utilization. 

These data suggested that Std1 is the determinant of the [GAR
+] prion, but further 

date indicated it could not be the sole determinant. First, most prion phenotypes mimic 

loss-of-function phenotypes of their prion determinants. However, !std1 strains derived 

from a [gar
-] background were not able to grow on glycerol in the presence of 

glucosamine (figure 2b and data not shown). Further, !std1 cells derived from a [GAR
+] 

background were able to do so, indicating that they kept the prion (data not shown). 

Finally, such cells were able to pass the [GAR] element onto progeny in tester crosses for 

inheritance of the prion element (figure 2e). Therefore, [GAR
+] maintenance does not 
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require STD1. This makes [GAR
+] highly unusual among yeast prions in that its transient 

inducing agent is not required for propagation. 

We next examined all other members of the Rgt2/Snf3 pathway. None behaved as 

would be expected for the causal agent of [GAR
+]. All knockouts were capable of 

propagating [GAR
+] (figure S05). Cells with rgt1 knockouts did not exhibit the prion 

phenotype, but they maintained it in a “cryptic” form. It reappeared when cells were 

crossed to [gar
-] RGT1 cells. Therefore, RGT1 is required for the manifestation of 

[GAR
+] phenotype but is not necessary for its propagation. 

 

Identification of genes that modify the frequency of [GAR
+
] appearance 

We conducted genome-wide screens for affecters of [GAR
+] induction. We 

screened the S. cerevisiae haploid deletion library (Giaever et al. 2002) for mutants that 

were incapable of inducing [GAR
+] (table S2), caused a high frequency of appearance of 

[GAR
+] (table S3), or that themselves exhibited an ability to grow on glycerol in the 

presence of glucosamine (table S1). Four of the eight members of the Snf3/Rgt2 pathway 

showed a phenotype in this screen (p = 8x10-6; Fisher’s exact test). !snf3 grows on 

glycerol with glucosamine (table S1) and !std1, !mth1, and !rgt1 exhibited lower than 

normal [GAR
+] induction (figure 2b. table S2). However, none of these genes were 

required for the maintenance of [GAR
+] in strains already carrying the element (figure 

S05). 

Finally, we screened a library of ~5000 ORFs (~85% of yeast ORFs) on a 

galactose-inducible single copy plasmid (Leonardo et al. 2002) to find genes that induce 

[GAR
+] following overexpression. STD1 was the only clone that caused strong [GAR

+] 
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induction, ~1000 fold when retested under the regulation of the GPD promoter. A second 

gene, DOG2, caused a 10-fold induction (figure S06). 

 

Pma1 associates with Std1 and is a component of [GAR
+
] 

Since neither the deletion nor the overexpression screen identified a protein that 

by itself could embody the [GAR
+] prion, we turned to biochemical methods. STD1 had 

been implicated in [GAR
+] in three ways: 1) the highly specific down-regulation of HXT3 

pointed to members of the Rgt2/Snf3 glucose signaling pathway; 2) transient STD1 

overexpression caused huge increases in [GAR
+] appearance; and 3) deletion of std1 

reduced the spontaneous appearance of [GAR
+] to the frequency of genetic mutations. We 

hypothesized, therefore, that Std1 might physically interact with an unknown propagating 

agent. 

We sought proteins that interacted with Std1 by co-immunoprecipitation with an 

HA-tagged derivative. A high molecular weight band was recovered from [GAR
+] protein 

lysates but not from [gar
-] lysates (figure S07). Mass spectrometry analysis identified the 

protein as Pma1, a large, highly abundant P-type ATPase with 10 transmembrane 

domains that is the major controller of membrane potential and cytoplasmic pH 

(Morsomme et al. 2000). When the same assay was performed with isogenic !std1 cells, 

Pma1 was not detected. Notably, if Pma1 is indeed a constituent of the prion, we would 

not have identified it in our genetic screens. It is essential (Serrano et al. 1986) and 

therefore absent from the deletion library. Moreover, it is already the most abundant 

membrane protein in yeast and notoriously difficult to overexpress (Eraso et al. 1987). 
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Transient overexpression of STD1 induced [GAR
+] and transient overexpression 

of its paralog, MTH1, inhibited [GAR
+] conversion. We therefore asked whether Pma1 

exhibited heritable differences in association with Std1 and Mth1 in [gar
-] and [GAR

+] 

cells. As a multipass transmembrane protein, Pma1 is intractable to most methods for 

analyzing protein complexes, but it migrates as an oligomeric species when digitonin 

lysates are separated on Blue Native gels (Gaigg et al. 2005). Most Pma1 in [GAR
+] and 

[gar
-] cells migrated as heterogenous high molecular weight (HMW) complexes but a 

smaller fraction migrated as two distinct complexes of (very roughly) 600 and 700kDa 

(figure 3a, top). The lower bands (especially the 600kDa species) were associated with 

Std1 in [GAR
+] cells but with Mth1 in [gar

-] cells (figure 3a, bottom). Std1 is much less 

abundant than Pma1. Consistent with the fact that only a small fraction of Pma1 is 

associated with Std1 in [GAR
+] cells, Pma1 showed a minor but statistically significant 

but minor change in protease sensitivity between [gar
-] and [GAR

+] cells (figure S08). 

 Next we asked whether mutations that affect Pma1 oligomerization and 

trafficking to the plasma membrane alter [GAR
+] frequency. Mutants that affect 

phospholipid synthesis and protein trafficking but not Pma1 oligomerization – LCB3, 

LCB4, DPL1 and ATG19 (Lee et al. 2002; Mazon et al. 2007) – did not change the 

appearance of [GAR
+] (figure 3b and S09a). Mutants that do affect Pma1 oligomerization 

and trafficking — SUR4 and LST1 (Roberg et al. 1999; Lee et al. 2002)  decreased the 

appearance of [GAR
+] (figure 3b and S09a). These genes were not, however, required for 

[GAR
+] maintenance (figure S09b). 

We explored the relationship between Pma1, [GAR
+], and the Rgt2/Snf3 glucose 

signaling pathway. Carbon sources regulate Pma1's phosphorylation state (Lecchi et al. 
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2005), its ATPase activity (Serrano 1983), and its conformation (Miranda et al. 2002) 

through residues S899, S911, and T912 in the C-terminal tail, which faces the cytosol 

(Eraso et al. 2006; Lecchi et al. 2007). We mutated S899, S911, and T912 to alanine, 

which cannot be phosphorylated, or to aspartic acid, which mimics constitutive 

phosphorylation. (Phosphorylated S911 and T912 are commonly observed in glucose 

media and the non-phosphorylated forms when cells are starved of glucose (Lecchi et al. 

2007)) S899 mutations and S911D and/or T912D mutations had no effect on [GAR
+] 

frequency. However, S911A and S911A/T912A increased the frequency of [GAR
+] 

appearance by several fold (figure 3c). Notably, these same mutants also reduced levels 

of an Hxt3-GFP reporter, both a readout for the Rgt2/Snf3 pathway and the only change 

in gene expression detected in [GAR
+] cells (figure 3d). These results indicate that Pma1 

affects glucose signaling to regulate HXT3. In any case, the fact that such subtle 

mutations in the Pma1 protein affect [GAR
+] induction confirms that Pma1 plays a key 

role in [GAR
+] biology. 

 

The unstructured N-terminus of Pma1 is involved in [GAR
+
] propagation 

A characteristic of prions is that transient overexpression is sufficient for 

induction. However, Pma1 is the most abundant plasma membrane protein in yeast 

(Morsomme et al. 2000) and overexpression is not well tolerated (Eraso et al. 1987). We 

found that we could obtain a three-fold increase in Pma1 protein levels with a CEN 

plasmid and a GPD promoter. This caused a corresponding increase in [GAR
+] frequency 

(figure 4a). Introducing stop codons at amino acid positions 23 or 59 eliminated this 

effect (figure S10). Thus, it is not the nucleic acid sequence but the Pma1 protein that 
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contributes to [GAR
+] induction. Finally, when the inducing GPD PMA1 plasmid was 

lost, the cells remained [GAR
+]. Thus a transient increase in PMA1 was sufficient to 

induce a heritable change in phenotype. 

Pma1's N- and C-termini face the cytosol. The C-terminus is predicted to be "-

helical and the N-terminus unstructured (Morsomme et al. 2000), the latter a 

characteristic of prions. An N-terminally truncated (!40) mutant of PMA1 did not 

increase [GAR
+] appearance. although the protein was expressed at wild-type levels, 

(figure 4a). A C-terminally truncated PMA1 did increase [GAR
+] induction, even though 

its levels were reduced. 

 [GAR
+] could be propagated through cells whose only source of Pma1 was a 

GAL1-regulated N-terminal deletion, PMA1!40N (figure S11). Strikingly, however, it 

did not propagate through a double mutant of PMA1!40N and !std1, and it did not 

reappear when wild-type PMA1 and STD1 function were restored with crosses (figure 

4b). (The few glucosamine-resistant colonies that remained were not [GAR
+] but 

contained conventional recessive; data not shown). Thus, once [GAR
+] has been 

established, it is maintained in the absence of either Std1 or the N-terminus of Pma1, but 

not in the absence of both. 

 

[GAR
+
] is sensitive to a Pma1-dependent “species barrier” 

 Previously described yeast prion proteins exhibit changes in localization and 

solubility in the prion state (Uptain and Lindquist 2002) and affect the induction of other 

prions by cross templating (Derkatch et al. 2000; Derkatch et al. 2001). There was no 

difference in localization of Pma1 or Std1 between [gar
-] and [GAR

+] (figure S12). 
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Neither formed a detectable SDS-resistant species in [GAR
+] (figure S13). Furthermore, 

the frequency of [GAR
+] appearance did not change in backgrounds carrying [PSI

+], 

[RNQ+], or [URE3], prions that broadly affect the appearance of amyloid-based prions 

(figure S14). Analysis of protein extracts by 2D gel electrophoresis did not reveal any 

proteins that changed solubility between [gar
-] and [GAR

+] (figure S15). [GAR
+] was not 

affected by Hsp104 expression (figure 1e). Whatever the manner by which Pma1 and 

Std1 contribute to the prion state, it is not likely by forming amyloid. 

The extremely stable nature of amyloids allows them to be confirmed as prion 

determinants by "protein only" transformation (Maddelein et al. 2002; Tanaka et al. 

2004). The lack of an identifiable amyloid in [GAR
+] cells precluded the use of this 

procedure for [GAR
+]. Instead, to rigorously test the relation between Pma1, Std1, and 

[GAR
+], we performed a classic “transmission barrier” experiment. Small differences in 

amino acid sequence cause prions that originate in one species to fail in transmission to 

another (Santoso et al. 2000; Bagriantsev and Liebman 2004; Chen et al. 2007). If Pma1 

and Std1 contribute to a transmission barrier for [GAR
+], it would establish that they are 

integral to the propagating element. 

We chose to study a possible [GAR
+] transmission barrier using S. bayanus and S. 

paradoxus, two closely related sensu stricto species that also exhibit glucose-mediated 

repression of the utilization of other carbon sources. First, we asked whether diploids of 

these species could also acquire the ability to utilize glycerol in the presence of 

glucosamine (figure 5a). They could, and they did so at a higher frequency than expected 

for mutation. Indeed, [GAR
+] appeared in S. bayanus at an astonishingly high rate 

(greater than one in 1,000 cells). Moreover, the [GAR+] phenotype was very stable in 
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these cells. Thus, the ability to heritably switch carbon utilization strategies through this 

prion is broadly utilized. 

We asked whether the Pma1 proteins from S. bayanus and S. paradoxus can 

propagate [GAR
+] in S. cerevisiae. Sequence differences between the species are slight 

(figure S16): S. bayanus Pma1 and S. paradoxus Pma1 are 96% and 99% identical to S. 

cerevisiae Pma1, respectively. Most of these changes are in the N-terminal region, which 

is required for prion induction 

First, we transformed S. bayanus or S. paradoxus PMA1 plasmids into an S. 

cerevisiae strain in which a deletion of the essential PMA1 gene was covered by a 

plasmid encoding S. cerevisiae Pma1. The S. cerevisiae PMA1 plasmid was then selected 

against. All cells grew at the same rate on glucose, indicating that the Pma1 protein from 

these species was fully functional in S. cerevisiae. However, when [GAR
+ cells were 

selected by plating these cells to glycerol-glucosamine medium, the resultant phenotypes 

were weak, unstable, and appeared at a low frequency. When putative [GAR
+] cells were 

passaged on non-selective medium and then plated back onto glucosamine-containing 

medium, many fewer cells with S. bayanus or S. paradoxus PMA1 maintained the 

resistant phenotype than cells with S. cerevisiae PMA1 (data not shown). Thus, in a 

background where the entire genome otherwise remains the same, changing the species 

of origin for Pma1 had a critical effect on [GAR
+] induction and propagation. 

Next we asked whether the S. bayanus or S. paradoxus Pma1 proteins could 

propagate a [GAR
+] state received from the S. cerevisiae protein. We performed another 

plasmid shuffle, this time starting with cells already carrying a strong S. cerevisiae 

[GAR
+] element. We selected against the plasmid carrying the S. cerevisiae PMA1 after 
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approximately 25 generations. After another 25 generations, cells were tested for the 

ability to grow on glycerol in the presence of glucosamine. Most retained a strong 

[GAR
+] phenotype. Thus, strains with S. bayanus and S. paradoxus PMA1 were capable 

of accepting and propagating [GAR
+] from strains with S. cerevisiae PMA1 (figure 5b), at 

least after co-expression of both proteins for 25 generations. 

Finally we tested how efficiently [GAR
+] elements from cells expressing S. 

bayanus or S. paradoxus PMA1 could be transmitted back to cells expressing only S. 

cerevisiae PMA1. Multiple [GAR
+] strains carrying the three PMA1 genes were mated to 

wild-type [gar
-] cells. Cells expressing PMA1 from S. paradoxus could not transmit 

[GAR
+] at all, and cells expressing PMA1 from S. bayanus transmitted it very 

inefficiently. Controls expressing S. cerevisiae PMA1 transmitted [GAR
+] efficiently 

(figure 5b). Thus, the PMA1 species of origin creates a strong transmission barrier for 

[GAR
+] propagation. 

Might Std1, the [GAR
+] induction factor that is complexed with Pma1 in [GAR+] 

cells, create an induction barrier? Std1 is 81% identical between S. cerevisiae and S. 

bayanus but much more divergent in S. paradoxus (figure S17). We transiently 

overexpressed STD1 from each organism in [gar
-] S. cerevisiae cells carrying each of the 

three Pma1 genes. STD1 alleles of S. cerevisiae and S. bayanus acted as general inducers. 

They increased the appearance of [GAR
+] ~1000 fold in strains producing the Pma1 

protein of any of the three species (figure 5c). In contrast, S. paradoxus STD1 did not 

induce [GAR
+] in any. Presumably, some other factor contributes to [GAR

+] induction in 

S. paradoxus. Most importantly, however, this experiment demonstrates that Std1 creates 
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a strong species barrier for [GAR
+] induction, confirming its intimate involvement in the 

prion. 

 

Discussion 

 The ability of cells to sense and adapt to nutrients is crucial to survival in highly 

competitive and rapidly fluctuating environments. Here we describe a cytoplasmically 

inherited element, [GAR
+], that is involved in the fundamental processes of glucose 

sensing and signaling and carbon source utilization. [GAR
+] arises spontaneously in every 

S. cerevisiae strain tested as well as sibling species separated by ~5 million years of 

evolution (Kellis et al. 2004), S. paradoxus and S. bayanus, at frequencies much higher 

than genetic mutations. 

[GAR
+] fulfills all of the genetic criteria established for prions: it is dominant (or 

at least semi-dominant). It exhibits non-Mendelian inheritance. It can be transferred via 

cytoplasmic exchange. Transient changes in the levels of chaperone proteins are 

sufficient to heritably cure cells of the [GAR
+] state. Transient changes in the expression 

of proteinaceous determinants heritably induce [GAR
+]. The non-Mendelian mechanism 

of inheritance that best describes [GAR
+] is that of a prion. 

In other ways, however, [GAR
+] seems very different from previously described 

yeast prions. It has at least two components, the plasma membrane proton pump Pma1 

and the glucose signaling factor Std1. Transient overexpression of either PMA1 or STD1 

is sufficient to establish a heritable conversion to [GAR
+], yet once [GAR

+] is established, 

either is sufficient for propagation. Cells lacking std1 and also carrying a small deletion 

in the N-terminus of Pma1 cannot propagate [GAR
+] at all. Pma1 and Std1 associate in an 
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oligomeric complex in [GAR
+] cells but this complex is barely detectable in [gar

-] cells. 

The integral relationship between these proteins and the [GAR
+] state was tested and 

confirmed by transmission barrier experiments. Substituting the PMA1 gene from S. 

bayanus or S. paradoxus for that of S. cerevisiae blocked propagation of [GAR
+] to S. 

cerevisiae Pma1. Substituting Std1 from S. paradoxus eliminated its potency in [GAR
+] 

induction. 

What, then, is the nature of [GAR
+]? It does not involve a detectable amyloid 

form, at least of the Pma1 or Std1 proteins. It is also not sensitive to overexpression or 

deletion of the general amyloid-remodeling protein Hsp104. Hsp104 severs amyloid 

filaments to ensure orderly inheritance of prion templates to daughter cells. It is required 

for the propagation of all known prions as well as for 18 of 19 recently discovered prion 

candidates (Chernoff et al. 1995; Patino et al. 1996; Derkatch et al. 1997; Ness et al. 

2002; Cox et al. 2003; Kryndushkin et al. 2003; Shorter and Lindquist 2004; Jones and 

Tuite 2005; Shorter and Lindquist 2006; Tipton et al. 2008; Alberti et al. 2009). Thus, the 

absence of dependence on Hsp104 makes it rather unlikely that [GAR
+] involves any 

amyloid-based element. 

One possibility is that [GAR
+] inheritance and propagation results from heritable 

alterations in Rgt2/Snf3 signaling involving a self-sustaining feedback loop. Indeed, Std1 

and its paralog, Mth1, are subject to many feedback mechanisms involving their own 

transcription and degradation (Lakshmanan et al. 2003; Moriya and Johnston 2004; 

Polish et al. 2005; Kim et al. 2006), and Std1 is found both in the nucleus and on the 

plasma membrane (Schmidt et al. 1999). Furthermore, Pma1 is very abundant and Std1 is 

extremely scare (Morsomme et al. 2000). Our data suggest that only a small fraction of 
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Pma1 contributes to [GAR
+] and that Std1 is the limiting factor. This would be consistent 

with altered signaling, as only small amounts of the Std1 protein would be necessary to 

shift the activity of a fraction of Pma1. However, if [GAR
+] is simply due to altered 

signaling, the mechanism that maintains it must be remarkably robust, as it has been 

maintained in a highly stable state in some of our strains for six years now, with repeated 

dilutions into log phase, storage in the freezer and refrigeration, transitions back to room 

temperature, growth in liquid and on plates, in a wide variety of different media, through 

repeated rounds of growth into stationary phase (wherein most aspects of carbon 

metabolism undergo profound changes), and through starvation-induced meiosis. 

Another possibility is that [GAR
+] starts with a change in the association of Std1 

and Pma1 that induces a conformational change in oligomeric species of each. These can 

then be maintained in the absence of either Std1 or the Pma1 N-terminus, but not in the 

absence of both (figure 6). We do not exclude the possibility that another protein 

contributes to the [GAR
+] state. Indeed, our observations that S. paradoxus acquires 

[GAR
+] at a high frequency, but that the Pma1 and Std1 proteins of S. paradoxus do not 

reconstitute [GAR
+] in S. cerevisiae, suggesting the involvement of another protein. (This 

protein might even form amyloid, but if so it does not require Hsp104 and has escaped 

detection in our genetic screens.) 

Of course, models involving self-perpetuating signaling loops and conformational 

changes are not mutually exclusive. Associations between Pma1 and Std1 might result in 

a conformational change that alters signaling and sets up a robust feedback loop that 

helps maintain the association, either between those same molecules of Pma1 and Std1 or 
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between other molecules and these proteins (figure 6). It will be of great interest to 

determine what might render such states stable enough to be so robustly heritable. 

Another remaining question is the precise reason why cells carrying [GAR
+] are 

able to grow on glycerol in the presence of glucosamine. We hypothesize that the [GAR
+] 

phenotype involves altered signaling through a glucose sensing pathway, likely through 

Std1's previously reported ability to interact with the DNA binding protein Rgt1 

(Lakshmanan et al. 2003) (figure 6). Experiments investigating gene expression patterns 

over a much broader range of carbon sources and time points than examined here, as well 

as chromatin immunoprecipitation experiments with Std1 and Rgt1, may prove 

illuminating. 

Whatever the mechanism may prove to be, Pma1, the major plasma membrane 

ATPase, and Std1, a much rarer and poorly understood signaling protein, contribute to a 

prion-like phenotypic state that heritably alters fundamental decisions about carbon 

source utilization. This heritable element, [GAR
+], has all of the definitive characteristics 

of a prion. It has been stated that prion-mediated epigenetic states are simply diseases of 

yeast (Nakayashiki et al. 2005). Our findings that such an element controls something as 

fundamental to yeast biology as glucose repression, and that this element spontaneously 

arises at high frequency in diverse strains and sibling species, suggests that such 

epigenetic switches are actually integral to yeast biology. Clearly, self-propagating 

protein-based elements (prions) that can stably perpetuate biological states across 

generations operate over a much broader mechanistic landscape than previously 

supposed. 
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Materials and Methods 

Yeast strains and genetic manipulations 

Strain construction and manipulation followed standard yeast techniques. A list of strains 

and plasmids used in this study is available in tables S1 and S2. Unless otherwise stated, 

data shown is from genetic background W303. Five-fold dilutions were used for all 

spotting assays. Media used were yeast peptone-based medium containing the designated 

carbon source (YPD, YPglycerol, YPgalactose), synthetic medium lacking a particular 

amino acid (SD), or glycerol glucosamine medium (GGM; 1% yeast extract, 2% peptone, 

2% glycerol, 0.05% D-(+)-glucosamine [Sigma G4875]). 

 

[GAR
+
] frequency assays and isolation of [GAR

+
] 

Cultures for [GAR
+] frequency assays were grown overnight in 2% glucose, either YPD 

or SD, subcultured in the same, then grown to early exponential phase (OD600 = 0.2-0.4). 

Cultures plated straight to GGM and diluted 10-4 for plating to YPD. To isolate [GAR
+] 

for further study, colonies from GGM were restreaked once to GGM then used in 

downstream applications. Unless otherwise stated, error bars in [GAR
+] frequency assays 

represent the standard deviation and p-values are the binomial distribution of the mean. In 

all assays for [GAR
+] propagation, cells were passaged for >100 generations before 

testing for growth on glycerol in the presence of glucosamine. Sporulation was performed 

by growing to diauxic shift in YPD or SD, plating to sporulation plates (1% potassium 

acetate, 0.05% dextrose, 0.1% yeast extract, and 0.01% complete amino acid mix 

[Bio101]), and incubating at 23°C until sporulated. 
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Genetic, biochemical, and cell biological analysis 

Gene expression profiling, Western blotting, immunoprecipitation, fluorescent 

microscopy, Blue Native gel analysis, protease sensitivity analysis, and genetic screens 

were all performed using standard procedures. Detailed descriptions are available in the 

Supplementary Materials and Methods. 
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Figure Legends 

Figure 1: [GAR
+] shares the genetic characteristics of yeast prions 

a) Mating of [gar
-] MATa to [GAR

+] MAT" in the W303 background. Resultant diploids 

show semi-dominant [GAR
+] with a mixed population of large colonies (“strong”) and 

small colonies (“weak”). All spot tests shown are five-fold dilutions. Diploids are 

selected for prior to plating to ensure that they are a pure population. b) Tetrad spores 

from the “strong” [GAR
+]. Diploids in part A show non-Mendelian segregation of 

[GAR
+]. c). Cytoduction shows cytoplasmic inheritance of [GAR

+]. The [GAR
+] donor is 

10B URA3
+ his3

- #+ kar1-1 and the acceptor is W303 ura3
- HIS3

+ #0 KAR1. The [GAR
+] 

donor is therefore capable of growing on glycerol but the [gar
-] acceptor is not; “mixed” 

cells were selected for growth on glycerol ([GAR
+] cytoplasm) and SD-his 5-FOA ([gar

-] 

nucleus and counter-selection against the [GAR
+] nucleus). d). [GAR

+] frequency in 

various lab strains. Data are shown as mean +/- standard deviation (n=6). e). Tetrad 

spores from a [GAR
+] diploid with the genotype hsp104::LEU2/HSP104. !hsp104 spores 

are still [GAR
+]. f). Tetrad spores from a [GAR

+] diploid with the genotype 

ssa1::HIS3/SSA1 ssa2::LEU2/SSA2. !ssa1!ssa2 spores are no longer [GAR
+]. 

 

Figure 2: The Snf3/Rgt2 glucose signaling pathway affects [GAR
+] 

a) Hxt3-GFP signal in [gar
-] and [GAR

+] cells (S288c background) by fluorescence 

microscopy. b) Frequency of [GAR
+] in knockouts of members the Snf3/Rgt2 glucose 

signaling pathway. !snf3 is completely resistant to glucosamine and therefore [GAR
+] 

frequency could not be measured. Furthermore, the frequency of spontaneous 

glucosamine-resistant colonies in the !rgt1, !std1, and !mths1 strains was close to the 
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rate of genetic mutation and therefore these colonies might not carry the actual [GAR
+] 

element. Overall, this pathway is enriched for genes that alter [GAR
+] frequency when 

knocked out relative to the library of nonessential genes (p = 8 x 10-6, Fisher’s exact test). 

c) The Snf3/Rgt2 glucose signaling pathway (adapted from (Moriya and Johnston 2004). 

d) Measurement of [GAR
+] frequency following overexpression of Snf3/Rgt2 pathway 

members. Data are shown as mean +/- standard deviation (n=6). STD1 strongly induces 

conversion to [GAR
+] and MTH1 blocks it. e) Top: tetrad spores from a [GAR

+] diploid 

with the genotype std1::kanMX/STD1. Bottom: spores from top crossed to a [gar
-] strain 

with a wild-type STD1 allele. 

 

Figure 3: Pma1 is involved in [GAR
+] 

a) Native gel of Pma1, Std1, and Mth1 in [gar
-] and [GAR

+]. Either Std1 (left) or Mth1 

(right) was tagged with six tandem HA tags and samples were processed as described 

below from [gar
-] and [GAR

+] strains of each background. Total, supernatant (sup.), 

digitonin soluble (det. sol.), and digitonin insoluble (insol.) fractions were run on SDS 

gels and probed for Pma1 and Std1 or Mth1 (lower right) as a fractionation control. No 

differences in Pma1, Std1, or Mth1 levels or localization were detected between [gar
-] 

and [GAR
+]. Blots of the total fraction were stained with Ponceau Red to confirm equal 

amounts of starting material (top right). b) Measurement of [GAR
+] frequency in 

knockout mutants of genes previously shown to affect (!sur4, !lst1) (Eisenkolb et al., 

2002) (Roberg et al., 1999) or not affect (!lcb3, !lcb4, !dpl1, "atg19) (Gaigg et al., 

2005) (Mazon et al., 2007) attributes of wild-type Pma1. Graph represents the mean +/- 

standard deviation (n=6). c) Mutants in phosphorylation sites at the C-terminus of Pma1 
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affect [GAR
+] frequency. Starting strain is haploid, [gar

-], genotype pma1::kanMX with 

p316-PMA1. p314-PMA1 carrying wild-type PMA1 or mutants of interest were 

transformed in and then p316-PMA1 plasmid selected against by growth on 5-FOA. 

Graph represents the mean +/- standard deviation (n=6). P-values are the binomial 

distribution of the mean. d) Pma1 mutants that increase [GAR
+] frequency show 

decreased levels of Hxt3-GFP. Graph represents the mean +/- standard deviation (n>6) 

and p-values were determined using the chi-squared test. Strain background is a hybrid of 

W303 and S288C. 

 

Figure 4: Alterations to Pma1 affect [GAR
+] 

a) [GAR
+] induction by transient overexpression of PMA1 in a wild-type background. 

Data is shown as the mean of [GAR
+] frequency +/- standard deviation (n=6). Western is 

total protein probed with "Pma1 antibody and quantified using Scion Image. The blot 

was stained with Ponceau Red to confirm equal loading (right). b) Propagation of [GAR
+] 

is impaired in PMA1!40N !std1 double mutants. Tetrad spores from a [GAR
+] diploid 

with the genotype GAL-PMA1!40N/PMA1 std1::kanMX/STD1 were crossed to a [gar
-] 

strain with wild-type PMA1 and STD1 alleles. PMA1"40N !std1 spores cannot propagate 

[GAR
+] to wild-type [gar

-] yeast. The few glucosamine-resistant colonies found in the 

PMA1"40N !std1 background exhibit standard, Mendelian inheritance of the 

glucosamine resistance phenotype and thus do not carry the [GAR
+] element. 
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Figure 5: [GAR
+] exhibits a Pma1-dependent species barrier 

a) [GAR
+] frequency of S. bayanus and S. paradoxus cells grown at 30°C (left), the 

optimal growth temperature of S. paradoxus, or 23°C, the optimal growth temperature of 

S. bayanus. Data is shown as the mean of [GAR
+] frequency +/- standard deviation (n=6). 

b) Substitution of PMA1 from S. cerevisiae with PMA1 from S. bayanus or S. paradoxus 

prevents [GAR
+] propagation. Starting strain is haploid, [GAR

+], genotype pma1::kanMX 

with p316-PMA1 S. cerevisiae as a covering plasmid. p314-PMA1 carrying PMA1 from 

S. cerevisiae (S.c., top), S. paradoxus (S.par., middle), or S. bayanus (S.bay., bottom) was 

transformed in and p316-PMA1 S.c. selected against by replica plating to 5-FOA (S.c. 

1N, S.p. 1N, or S.b. 1N). These haploids were mated to a wild-type S. cerevisiae [gar
-] 

background, restreaked two times, and tested for [GAR
+]. Representative data from three 

independent experiments is shown. 

 

Figure 6: Pma1 and the Rgt2/Snf3 glucose signaling pathway 

We propose that Pma1 acts as a part of the Rgt2/Snf3 signaling pathway. a) In [gar
-] 

glucose-grown cells, Pma1 associates with Mth1. The glucose signal is propagated 

through Snf3 and Rgt2 to Yck1 and Yck2, which phosphorylate Mth1 and Std1. This 

phosphorylation marks Mth1 and Std1 for degredation, leaving their interacting partner, 

Rgt1, free in the cytosol, where it does not repress transcription at the HXT3 locus. b) 

Under [GAR
+] conditions, HXT3 transcription is repressed, which resembles that of cells 

grown in a carbon source other than glucose. Pma1 associates with Std1, which somehow 

facilitates the repression of HXT3, possibly by altering the affinity of Std1 for Rgt1. 

Association with Std1 has previously been shown to facilitate the binding of Rgt1 to 
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DNA (Lakshmanan et al. 2003). The association between Pma1 can either be transient or 

stable, but either way it aids in the establishment of an altered signaling pathway. This 

altered pathway is then maintained either by the contained association between Std1 and 

Pma1 or by a feedback loop within the signaling cascade itself. 
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