
EU contract number RII3-CT-2003-506395 CARE-Conf-06-077-SRF

SRF

TIMING BASED PROCESS EXECUTION IN LINUX
ENVIRONMENT

M. BORZ, ECKI, B. S WIERCZ, A. NAPIERALSKI

TECHNICAL UNIVERSITY OF ŁÓDZ, POLAND

Abstract

The complex design process of real-time control systems can be significantly simplified by use of
high level abstractions. In particular, the separation of platform-dependent implementation from
platform-independent definition helps the design process by providing a predictable, deterministic
execution model with well defined timing constraints.Basic block of TDL is a stateful module,
composed of modes. Each mode is characterised by period, task invocation frequency, output
update sequence and possible mode transitions. This paper describes the use of Timing Definition
Language for the purpose of automated generation of execution environment, which mimics the
expected module behavior. Using mode description appropriate priorities for Linux’s Round-
Robin scheduler can determined, additionally the task execution can be monitored for compliance
with defined timing constraints. The logging facilities can be used for debugging of the timing
aspect aspects of software execution

Contribution to the MIXDES, Gdynia (Poland)

Work supported by the European Community-Research Infrastructure Activity under the FP6
“Structuring the European Research Area” programme (CARE, contract number RII3-CT-
2003-506395)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44192811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIMING BASED PROCESS EXECUTION IN LINUX
ENVIRONMENT

M. BORZĘCKI , B. ŚWIERCZ , A. NAPIERALSKI
TECHNICAL UNIVERSITY OF ŁÓDŹ, POLAND

KEYWORDS: execution control, timing abstraction, timing constraints,
TDL, Round-Robin scheduling

ABSTRACT: The complex design process of real-time control systems canbe significantly simplified by use of high level
abstractions. In particular, the separation of platform-dependent implementation from platform-independent definition
helps the design process by providing a predictable, deterministic execution model with well defined timing constraints.
Basic block ofTDL is a stateful module, composed of modes. Each mode is characterised by period, task invocation
frequency, output update sequence and possible mode transitions. This paper describes the use ofTiming Definition
Languagefor the purpose of automated generation of execution environment, which mimics the expected module behav-
ior. Using mode description appropriate priorities for Linux’s Round-Robin scheduler can determined, additionally the
task execution can be monitored for compliance with defined timing constraints. The logging facilities can be used for
debugging of the timing aspect aspects of software execution.

INTRODUCTION

The design process of real-time systems is mostly fo-
cused on the timing considerations of the runtime envi-
ronment. A real world system consists commonly of ac-
tions taking place periodically with specific frequency.
Direct implementation of system’s model in low level
language may appear troublesome and error prone. In-
troducing a layer of abstraction and providing a clear de-
scription of expected behaviour may significantly sim-
plify the design and implementation processes [3] result-
ing in more effective solution. In past there have been
several attempts to provide the designers with possibili-
ties of describing the system in high level language, with
Giotto [1] andTiming Definition Language[2] as exam-
ples.

TIMING DEFINITION LANGUAGE

TDL is conceptually based onGiotto. It assumes that
the system’s actions can be enclosed inside a separa-
ble elements called modules. However, unlikeGiotto,

Fig. 1. TDL modules

TDL assumes that that modules can interoperate and pro-
vide each other with well defined interfaces, hence laying
foundations for distributed environment (Fig. 1). Each
module is composed of smaller elements, which model
the functionality of a real world system. These areactu-
ators, sensors, tasksandmodes. All these elements are
equivalent to theirGiotto counterparts and are well de-
scribed inTDL language specification [2]. Use ofTDL
for the purpose of modeling, is based on providing a high
level of abstraction, separating the actual implementa-
tion issues in low level languages and hardware complex-
ity from the designer’s view (Fig. 2).TDL module de-

Fig. 2. TDL abstraction layer

scription can easily interact with lower level languages
(C++/C/Java) using well defined data types:int, long,
float, charand providing means for declaration of user
defined types and data structures (what requires the ac-
tual definition to be provided by user)

IMPLEMENTATION

The module definition inTDL is the entry point for tim-
ing based process execution described in this paper. Lan-
guage specification [2] suggests use of underlying virtual

machine for interpretingTDL code. However, during ini-
tial analysis stage it was found that our own implementa-
tion of virtual machine would significantly increase com-
plexity of the project as well as the execution overhead,
hence it was decided to use scheme as shown in Fig. 3.
The final design will support two platforms: Linux and

Fig. 3. System implementation

sCore [4] but it would be possible to runTDL environ-
ment on all POSIX compliant platform. Because of ex-
perimental and scientific character of sCore kernel [5],
modifications to compiler (tdlc) were required as well as
a separate set of libraries. It was decided to separate the
TDL system into two distinct parts:

• static - compiler, header files

• runtime - platform specific libraries:libtdl-linux
andlibtdl-score

The compiler design, as shown in Fig. 4 proved to be ef-
fective. Use of generic data structure layer, allowes addi-

Fig. 4. tdlc -TDL compiler

tion of code generators for more platforms and languages
(ex. C, Java, Python) to be realised with little effort, as
most of usability required for handling the data structures
is already provided by base classes. TheTDL module
description is fed into the code generator object, which
produces code suitable for the target platform.
The TDL library (libtdl-linux) includes implementation
of such generic elements as ports (actuators, sensors,
task ports), tasks, logging objects, each element is im-
plemented having in mind the concurrent nature of final
program. TDL module uses a variety of external calls:
write and read from output/input ports (setters/getters),
guards, tasks implementations. User is required to pro-
vide the implementation of these calls in specific source
files:

• <module>_<task>_TDLTask.cpp- task imple-
mentation

• extern_calls.cpp- other calls (guards, setters, get-
ters)

The Makefilecan be easily modified and project can be
linked with user’s own files instead (user provided imple-
mentation must be compliant with declarations found in
extern_calls.h). Each external type has to be defined (or
supplied by including appropriate header) in special file
extern_types.h, which is included in the generated code
where needed. Summing up, the process shown in Fig. 5
is used for generating and building C++ code correspond-
ing to TDL module description.

Fig. 5. Code generation process

TDL mode describes a state in which specified actions are
performed. Modes are implemented as state machines,
with port updates and task invocations taking place as
appropriate. The tasks invocations take place sequen-
tially (one after another), however implementations are
run concurrently, only the calls which trigger the task im-
plementation to be run are executed sequentially. For de-
tails seeTDL modes definition in Listing 1 and gener-
ated C++ code in Listing 2. The resulting C++ code is
a switchclause, which can be easily optimised by com-
piler to a jump table. The following mechanism is used
by compiler to determine the states:

• find least common multiple (LCM) of frequencies
of each of the actions defined in a mode, thus find-
ing the number of states

• divide mode period/LCM yielding state transition
time (used byusleep(3)call)

Listing 1.TDL modes definition

s t a r t mode main [10 ms]
{

task
[1] t 1 () ;
[2] i f t 2 g u a r d (s1)

a c t u a t o r
[1] a1 := t 1 . o ;
[5] i f a c t g u a r d (s1 , t 1 . o)

mode
[2] i f f a i l (s1 , t 2 . o)

then s t o p () ;
}
mode s t o p [100ms]
{

mode [1] i f r e s t a r t e d ()
then main () ;

}
mode f r e e z e [200ms] { . . . }

Listing 2. Generated C++ code
swi tch (__mode)
{

case FREEZE :
{

. . .
}
case MAIN:
{

swi tch (_ _ s t a t e)
{

case 0 : { / / 0 us
/∗ s w i t c h t o mode STOP

s t a r t w i th s t a t e 0
i f f a i l == t r u e

∗ /
i f (f a i l (Tes t . s1 ,

Tes t . t 2 . o)
{

__mode = STOP ;
_ _ s t a t e = 0 ;
break ;

}
/ / c a l l t a s k t 1
Tes t . t 1 . exposeOu tpu t () ;
Tes t . t 1 . i . upda teVa lue (

Tes t . s1 . ge tVa lue ()
) ;
Tes t . t 1 . i 2 . upda teVa lue (

Tes t . s2 . ge tVa lue ()
) ;
/ / c a l l t a s k t 2
i f (t 2 g u a r d (Tes t . s1)) {

. . .
Tes t . t 2 . run () ;

}
break ;

}
case 1 : { / / 2000 us

. . .
}
case 2 : { / / 4000 us

. . .
}
. . .

}
}

}

The concurrency is provided by Linux system facilities,
i.e. standard POSIX threads mechanism [7]. The library
libtdl-linux guarantees that there will be only one instance
of each task implementation running, hence whenever the
currently running instance has not finished at the time of
subsequent invocation error is generated. This informa-
tion can be used for realtime analysis of running envi-
ronment. By adjusting the scheduling policy to Round-
Robin [8] and assigning appropriate scheduling priorities
satisfactory results can be obtained. Moreover the over-
head related to thread creation has been minimised by use
of thread pools.

The priority adjustment mechanism is based on well
known solutions described in [9]. A mix both ofrate-
monotonicand deadline drivenpriority assignments is
used with several assumptions:

• requests for tasks are periodic (due to mode period
and task invocation frequency)

• task processing is finished before the subsequent
request (controlled by synchronisation mechanism)

• run time for each task is constant (holds under low
system load)

Task invocation frequency is used as main factor for de-
termining priority, following rate monotonicapproach
tasks with highest frequency are given highest priority.
Remaining tasks are adjusted by use ofdeadline driven
algorithm. It has to be noted that although priorities are
assigned by use of methods described above, the actual
scheduling mechanism is governed by Linux system, par-
ticularly fixed priority Round-Robinscheduler. The ex-
ecution of module, i.e. task invocations (start and stop
times), port updates are logged, allowing offline analysis
with simple Python script and carrying out performance
evaluation.

PERFORMANCE

Simple performance test has been conducted with module
as shown in Fig. 6. Two tasks are used:

Fig. 6. Module used for testing

• crypt - usescrypt(3) call, task inputi provides salt,
encrypted key is exposed at outputo

• Par_out - outputs least significant byte of inputi on
outputo

Moreover, the module is composed of the following
modes:

• main - period 10ms, runs crypt once and Par_out
twice per period

• freeze - period 200ms, waits for parallel port to be-
come available

• stop - period 1000ms, stops the execution due to
port failure

Fig. 7. Performance graph

Although the tasks are simple with short execution times,
the actual performance may be disturbed by other user-
land processes working in the background. It can be seen
in Fig. 7 that the second task invocation missed it’s ex-
pected time (starts at 8ms instead of 5ms). This may be
caused by low accuracy of timing measurements, which
will be modified in future version.

FUTURE WORK

The future work will be mainly concentrated on fur-
ther analysis of adequate priority assignment algorithms.
Specifically aimed at reducing latency and jitter. Addi-
tionally a need to implement faster synchronisation el-
ements than POSIX semaphores may appear. It is ex-
pected that significant improvement may be obtained by
refactoring the state machine for eachTDL mode, which
currently uses mostlyusleep(3)call. New implementa-
tion may be based onsetitimer(2)instead for more accu-
rate timings. TheTDL compiler tools and libraries de-
scribed in this article will be proposed to use for the pur-
pose of CARE project in which the authors’ department
takes part.TDL module definitions will be used for auto-
mated code generation with specific timing requirements.
The nature of the project focuses on design of a radia-
tion tolerant system working in error prone environment
(specifically under influence of radiation induced errors)
[5][6]. Using TDL one may define which tasks should
be run and the desired frequency. The library provided
mechanisms allow for real time execution control, hence
radiation triggered memory corruption which may lead to
system instability can be detected and appropriate action
can be taken.

CONCLUSIONS

TheLinux implementation shows that it is relatively easy
to generate code which will try to follow the design as-
sumptions. However, the main caveats are due to the non-
realtime properties of unmodifiedLinux system. Use of
real-time extensions available inRTLinux [10] or other
operating system may help to improve obtained results,
especially to reflect real-time properties ofTDL modules.
Another factor that may significantly influence the perfo-
mance is appropriate priority assignment. Assigning high
priority with use ofRound-Robinscheduling policy may
help to reduce the latency and favourTDL process even
under heavy load. The only significant inconvenience is
the need to supply theworst case execution timeof each
task, as it cannot be directly estimated and requires prior

measurements. The attempt to create timing based exe-
cution environment is actually a proof-of-concept show-
ing that it is possible to schedule tasks meeting specific
constraints with acceptable accuracy even on unmodified
standard Linux system. The range of possible applica-
tions spans from remote device polling to system load
monitoring. It is expected that portingTDL to system
providing real-time extensions such as sCore may pro-
vide even better results.

ACKNOWLEDGEMENTS

We acknowledge the support of the European
Community-Research Infrastructure Activity under
the FP6 "Structuring the European Research Area"
program (CARE, contract number RII3-CT-2003-
506395), and Polish National Science Council Grant
"138/E-370/SPB/6.PR UE-DIE 354/2004-2007".

REFERENCES

[1] Thomas A. Henzinger Benjamin Horowitz
Christoph M. Kirsch, “Giotto: A Time-triggered
Language for Embedded Programming”, Pro-
ceedings of the IEEE, Vol. 91, No. 1, January
2003.

[2] Josef Templ, “TDL Specification and Report”, Uni-
versity of Salzburg, Computer Science Department,
2004.

[3] Wolfgang Pree, “Trends in Embedded Software En-
gineering”, University of Salzburg, Department of
Computer Science, 2005.

[4] B. Świercz, “Mikrojądro systemu czasu rzeczywis-
tego” (Polish), Master thesis, 2004.

[5] B. Świercz, D. Makowski, A. Napieralski, “The
sCore – Operating System for Research of Fault-
Tolerant Computing”,12th Mixed Design of Inte-
grated Circuits and Systems, Mixdes 2005

[6] B. Świercz, D. Makowski, A. Napieralski, “The
IAradSim - IA32 architecture under a high radi-
ation environment simulator”, NSTI Nanotechnol-
ogy Conference and Trade Show, Smart Sensors and
Systems, Nanotech 2005

[7] Information technology - Portable Operating Sys-
tem Interface (POSIX), International Standard
ISO/IEC 9945-1: 1996 (E), IEEE Std 1003.1, 1996
Edition

[8] D. Abbott, “Linux for Embedded and Real-time Ap-
plications”, Elsevier Science, 2003.

[9] C. L. Liu, J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Envi-
ronment”, Journal of the Association of Computing
Machinery, Vol. 20, No. 1, January 1973.

[10] V. Yodaiken, “FSMLabs Lean POSIX for
RTLinux”, Finite State Machine Labs 1999,
2000.

