
EU contract number RII3-CT-2003-506395 CARE-Conf-06-070-SRF

SRF

A NOVEL APPROACH FOR OPERATING SYSTEMS PROTECTION AGAINST
SINGLE EVENT UPSET

B. Świercz, D. Makowski, A. Napieralski

Technical University of Łódź, POLAND.

Abstract

Modern high-energy physics experiments require sophisticated and complex control systems.
The control systems should be able to tolerate radiation generated by high-energy accelerators
and thus reliability is important feature. Reliability of control systems depends on hardware
and software quality. Hardware solutions are the most effective techniques to protect system
against radiation influence. Commercial of the shelf (COTS) elements are used often and
protection mechanisms are moved from hardware to software layer, due to costeffective
design. This paper highlights the new approach to protect systems on software level. The
protection against soft errors is assured by operating system that is transparent to other
applications.

Contribution to the MIXDES 2006, Gdynia (Poland)

Work supported by the European Community-Research Infrastructure Activity under the FP6
“Structuring the European Research Area” programme (CARE, contract number RII3-CT-
2003-506395)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44192802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A NOVEL APPROACH FOR OPERATING SYSTEMS PRO-
TECTION AGAINST SINGLE EVENT UPSET

B. Świercz, D. Makowski, A. Napieralski
Technical University of Łódź, POLAND

KEYWORDS: Single Event Upset, Radiation Environment,
sCore, Fault Tolerant System, Virtual Memory,
IA-32

Abstract: Modern high-energy physics experiments require sophisticated and complex control systems. The
control systems should be able to tolerate radiation generated by high-energy accelerators and thus reliability is
important feature. Reliability of control systems depends on hardware and software quality. Hardware solutions
are the most effective techniques to protect system against radiation influence. Commercial of the shelf (COTS)
elements are used often and protection mechanism are moved from hardware to software layer, due to cost-
effective design. This paper highlights the new approach to protect systems on software level. The protection
against soft errors is assured by operating system that is transparent to other applications.

INTRODUCTION

X-Ray Free Electron Laser (X-FEL)[1, 2] is cur-
rently designed at DESY Research Center in Ham-
burg. X-FEL is a 4

th generation of light source
[3, 4]. Total length of the X-FEL will be 3.4 km,
whereas the length of the main linear accelerator is
equal to 2.1 km. Due to the complexity, distributed
control system is necessary to control all subsystems
of X-FEL’s modules. In the past accelerating ma-
chines where consisted of two tunnels, one for the
main accelerator and the other one for control elec-
tronics. The accelerator was shielding using concrete
and lead, therefore the electronics were not subjected
to radiation. The X-FEL consists only of one tunnel
shared between accelerator and control electronics.
Some part of electronic equipment (DSP and FPGA
boards, embedded computers and microprocessors
systems) designed for control and data acquisition
will be placed inside accelerator tunnel in the nearest
proximity of cavities (the main part of accelerator).
Parasitic radiation is produced during normal oper-
ation of accelerator. Neutrons (especially thermal
neutrons) can affect memory and registers in digi-
tal circuits and cause on illegal operation and thus
loss of the system functionality [5, 6]. Single memory
malfunction is known as a Single Event Upset (SEU)
[7, 8, 9]. Microprocessor systems placed inside the ac-
celerator tunnel are subjected to neutron and gamma
radiation. To ensure a reliable operation it is neces-
sary to protect digital circuits against radiation [10].
The more effective way to protect control systems
against SEU is to use hardend computer systems de-
signed for space and military application. Because
of the accelerator complexity, number of control sys-
tems, sensors and computers, electronics devices de-
sign for radiation harden will be too expensive for
X-FEL project. Other solution, much cheaper but

more complex, is to use commercial of the shelf com-
ponents (COTS) connected with system redundancy
and safety algorithms. Protective algorithms can by
used on hardware layer (for example embedded in-
side FPGA chips) or on software one. The authors
decided to implement SEU-tolerant algorithms in-
side the sCore operating system kernel. The sCore
is designed to work with standard computer archi-
tecture such as PC computers or embedded versions
used by industry. There is known many frameworks
and libraries supporting fault tolerant environments
but all of them requires good knowledge about SEUs
nature from application programmers. Moving fault
tolerance from an application level to kernel level is
better way to protect the application against bit-flip
errors. Presented approach is to use a dedicated ker-
nel with embedded protection algorithms which al-
low to develop and run applications that are not able
to tolerate SEUs. Fault tolerant kernels are more
comfortable for application programmers than ap-
plication level libraries.

THE SCORE KERNEL

The kernel sCore was design during master thesis as
a multitasking preemptive kernel based on the mi-
crokernel architecture [11]. Operating system and
kernel architecture study is the goal of sCore devel-
oping. The sCore is design to work on IA-32 archi-
tecture. It can be run on standard PC platform and
embedded industrial computers. The sCore is writ-
ten in C++ and thus portability is assured thanks
to C++ abstraction layer. The sCore provides con-
stant time of task switching independently of number
of tasks. Predictable time behaviour is important for
real-time application. The sCore has more proper-
ties design for real-time systems. Other feature is
scheduler with Round Robin scheduling policy and

256 priority levels queue. The most of internal struc-
tures are static and initialised during system boot-
strap to ensure stability and predictable time depen-
dences. The sCore kernel is divided into two version.
First version uses flat linear memory model and sec-
ond version of sCore deliver more advance memory
policy management based on virtual memory model.

THE FIRST APPROACH TO PRO-
TECT KERNEL AGAINST SEU

The first version of the sCore kernel [13] does not re-
quire Memory Management Unit (MMU) dedicated
to advanced memory protection and address trans-
lation. Main memory is organized as a flat memory
by sCore and all segments registers are configured to
provide access to the all physical memory (see fig. 1).

Access Limit

Base address

Access Limit

Base address

Segment registers

CS

ES

SS

DS

FS

GS

Segment descriptors

OffsetSegment selector

Logical address

4 GB

0 B

Physical memory

Physical address

Stack and
read−write data

Code and
read−only data

Fig. 1. The scheme of memory addressing in the first

version of the sCore kernel

The flat memory model allows to access the linear
memory region (on IA-32 from 0B to 4GB) by ap-
plications. The first version of the sCore uses only
two segments descriptors and only one privilege level.
Due to segmentation policy, all linear memory space
is divided and shared between all tasks. Described
behaviour of sCore kernel is dangerous for system
stability and rare in modern kernels but it is nec-
essary to run sCore on simpler architecture without
MMU unit (e.g. some ARM processors).

AmBe

Moderator

sCore

sCore

converter
electron−positron

Restricted area

Fig. 2. Experiment with 241AmBe and inside the

Liniac2 tunnel

The MMU-less version of sCore kernel has a sim-
ple protection mechanism against SEU called EDAC
Task [13]. EDAC Task is run periodically to scan and
correct memory. The sCore system with EDAC Task
was well examined during simulation with IARad-
Sim [12] and experiments with 241AmBe neutron

source and inside accelerator tunnel (fig. 2). The
results of experiments showed EDAC Task was able
to correct bit-flip error in memory only when seldom
SEU was observed. Therefore, more sophisticated
protection algorithm are required.

MEMORY PAGING AND PROTEC-
TION

The next version of sCore kernel employs MMU unit
and provided by MMU paging technique to protect
memory against SEU. Paging is a mechanism to di-
vide computer memory into small parts, usually with
constant size, and allocate memory using the page as
a quantum part of memory [14]. Every page can be
mapped into physical memory or mass storage de-
vices. Single page is used by sCore to make copies of
information and later to vote the correct one. It is
necessary to know virtual memory mechanism pro-
vided by IA-32 technology to understand how algo-
rithm works.

Virtual memory overview

The second version of the sCore kernel was based on
virtual memory abstraction. Virtual memory mech-
anism is a method to provide individual virtual ad-
dress space for every task. Memory Management
Unit is required by the second version of sCore and
thus sCore is not able tu run on simple MMU-less
processors. The scheme of address translation on the
IA-32 architecture is shown in fig. 3. The main mem-
ory is divided equally to small parts called pages.
The 4 KB page size are used by sCore on the IA-32
platform. Every page is addressed by a page direc-
tory and a page table entries. The main advantage
of a virtual memory is the independent address space
for every task. The same linear address can be trans-
lated into a different physical address of every task.
When the access to memory address is requested,
MMU unit checks if exist the entry of an address in-
side a directory and a page table for a given linear
address. If connection between a directory table or
a page table and a linear address does not exist in-
terrupt number 14 is generated. Interrupt number
14 is called by Intel page fault (PF). The page fault
interrupt is handled by an interrupt service routine
(ISR) and the connection between page directory and
requested linear address is associated.

Avil GPage base address
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

P

31 0

Fig. 4. A page table entry

Apart from a page address, an additional attributes
are stored in the page table entry (fig. 4). From SEUs
protection point of view, the most interesting flags
are:

• Accessed (A) — Indicates whether a page has
been accessed.

Access Limit

Base address

Access Limit

Base address

Entry Entry

Linear address

Dir Table Offset

Page directory Page Table

read−write data
Stack and

Code and
read−only data

Page

Physical memory

Physical address

4 GB

0 B

Segment registers

CS

ES

SS

DS

FS

GS 0 B

 4 GBspace
Linear address

Linear address

Segment descriptors

OffsetSegment selector

Logical address

Fig. 3. The scheme of memory addressing in the second version of the sCore kernel

• Cache disable (PCD) — When the PCD flag is
set caching of page is not allowed. The issue of
cache will be discuss later.

• Read-write (R/W) — Indicates whether a page
can be written or page can be only read.

• Present (P) — Most important flag for dis-
cussed SEUs tolerant algorithm. When the flag
is set the page is in the main memory (in phys-
ical sense) and task is allowed to use it. When
the flag is clear and some task tries to use it a
page-fault exception (PF) is generated by pro-
cessor. This flag is mostly used to realize swap
technology by modern operating systems but
sCore used it for SEUs protection. The present
flag is always set to zero by sCore and interrupt
is generated whenever page is accessed.

The address translation manner is the main differ-
ence between flat memory model and virtual memory
model. The physical address is reflected by a logi-
cal address (one to one) in the first version of sCore.
The second version of kernel allows to translate any
logical address to a physical address. This approach
provide a mechanism to realize a complete micro-
kernel architecture by separating a address space for
every modules and tasks.

The fault tolerant algorithm

The SEUs tolerant algorithm introduced by the sec-
ond version of sCore is based on the memory paging
mechanism. When the system is initialized (and also
when new task is run or in general when a new block
of memory is granted) all used pages are copied to
two independent memory regions. All pages have
cleared a present bit (fig. 4) in every page directory
and table entries. When any task tries to use mem-
ory (code or data), page fault exception is generated
by processor. The interrupt procedure (ISR) com-
pares requested page and its copies using a triple vot-
ing technique. If contents of page is different from
contents of its copies the correct value is restored.
When the task is preemptive by system scheduler all
pages with set RW bit, used during running time,
are copied to copies memory region. The described

mechanism guarantee that task has always valid con-
tents of page (SEUs area corrected by ISR procedure)
and the page is synchronized with its copies. The
algorithm of protection against bit-flip errors inside
memory are shown on fig. 5 This approach is more ef-
ficient and reliable, but also slow, compare to EDAC
Task. In simple words, EDAC Task in second version
of sCore is moved from system task to ISR procedure.

ISR procedure

Triple voting

Page present
in memory?

Memory request

Set page

Compare page

Equal?

Copy the correct pageYes

No

Interrupt (Page Fault)

No

Yes

with its copy.

Fig. 5. A radiation protection algorithm

The influence of cache memory

The cache memory is an inseparable part of modern
processors. Efficiency speed up is the goal of cache
memory. A large size of cache is strongly required
to decrease the number of missing hits in a standard
application but not in the sCore kernel. Cache mem-
ory causes an incoherence between main memory and
data used by processor when SEU is observed. Be-
cause of described cache behaviour it is not recom-
mended to use cache memory with radiation tolerant
system, like sCore. The second version of sCore dis-
able cache memory when ever is possible.

THE FUTURE WORK

The future work should will concentrate on experi-
ments with the second version of sCore kernel. The
efficacy of new algorithm is expected to show by ex-
periments compare to EDAC Task. It is very im-
portant to characterize the policy of cache memory
management. Cache memory behaviour can be or-
ganized in many ways due the advantages of IA-32
architecture. The good cache policy should provide
necessary a memory coherency and a good efficiency.
The future work will be concentrated on the multi-
processor architecture, standard Symmetric Multi-
processing (SMP) as well as custom architecture de-
sign from COTS elements.

CONCLUSION

The second version of sCore provide many advan-
tages in compare to the first version based on EDAC
Task. EDAC Task can be used solely to protect read-
only data. The sCore run EDAC Task in parallel to
other tasks. Moreover, there is no time relation be-
tween memory checked by EDAC Task and memory
used by other tasks. Very often EDAC Task compare
different memory region than the one used by user
task. The second version of sCore guarantee that
memory region used by user task is always checked
by ISR procedure, due to a small memory granularity
called paging. The virtual memory technique allows
to protect sCore also read-write data. Software fault-
tolerant techniques will be more important in the
future because of microelectronics progress. Tran-
sistors are smaller and therefore digital circuits are
more susceptible to SEU and other errors, like elec-
tromagnetic interferences. Described SEU-tolerant
technique can be used not only for physics experi-
ment but also for medical devices and avionics.

ACKNOWLEDGEMENTS

We acknowledge the support of the European
Community-Research Infrastructure Activity under
the FP6 "Structuring the European Research Area"
program (CARE, contract number RII3-CT-2003-
506395), and Polish National Science Council Grant
"138/E-370/SPB/6.PR UE-DIE 354/2004-2007".

THE AUTHORS

Bartłomiej Świercz, Dariusz Makowski and Andrzej
Napieralski are affiliated to the Department of Mi-
croelectronics and Computer Science, Technical Uni-
versity of Łódź , Poland.
e-mail: swierczu@dmcs.pl

REFERENCES

[1] A. Schwarz, "The European X-Ray free electron
laser project at DESY", 26th International Free-
Electron Laser Conference, pp. 85-89, Agust
2004.

[2] W. Shi, "SASE X-Ray Free Electron Laser In
DESY", Journal of the Society of Chinese Ph-
ysists, vol. 6, pp. 5-16, December 2000.

[3] R. Brinkmann, K. Flottmann, J. Rosbach, P.
Schmuser, N. Walker, H. Weise, "TESLA Tech-
nical Design Report - The Accelerator, part II",
DESY, 2001.

[4] G. Materlik, T. Tschentscher, "TESLA Tech-
nical Design Report. The X-Ray Free Electron
Laser, PART V", DESY, 2001.

[5] D.Makowski, M. Grecki, B. Mukherjee, B.
Świercz, S. Simrock, "Radiation Tolerant Sys-
tem for Neutrons Measurement", 12th Mixed
Design of Integrated Circuits and Systems,
MIXDES, July 2005.

[6] G. Messenger, M. Ash, "The Effects of Radia-
tion on Electronic Systems", ISBN 0-442-25417-
2. Van Nostrand Reinhold Company Inc., 1986.

[7] R. Peterson, "Radiation-induced errors in mem-
ory chips", Brazilian Journal of Physics, vol. 33,
nr 2, pp. 246-249, June 2003.

[8] F. Giustino, "Radiation Effects on Semiconduc-
tor Devices", PhD thesis, Politecnico di Torino,
March 2001.

[9] D.M. Fleetwood, H. A. Eisen, "Total-dose ra-
diation hardness assurance", Nuclear Science,
IEEE Transactions, vol. 50, pp. 552-564, June
2003.

[10] D. Makowski, B. Świercz, M. Grecki, A. Napier-
alski, "Projektowanie systemów niewrażliwych
na wpływ promieniowania na potrzeby akceler-
atora X-FEL" (in Polish), Elektronika - Kon-
strukcje, Technologie, Zastosowania, nr 7/2005.

[11] B. Świercz, D. Makowski, A. Napieralski, "The
sCore - Operating System for Research of Fault-
Tolerant Computing", 12th Mixed Design of In-
tegrated Circuits and Systems, MIXDES, July
2005.

[12] B. Świercz, D. Makowski, A. Napieralski,
"IAradSim - IA32 architecture under high radi-
ation environment simulator", 2005 NSTI Nan-
otechnology Conference and Trade Show, Nan-
otech 2005, Smart Sensors and Systems

[13] B. Świercz, D. Makowski, A. Napieralski,
"Research of Fault-Tolerant Computing Using
COTS Elements", 2006 NSTI Nanotechnology
Conference and Trade Show, Nanotech 2006,
Smart Sensors and Systems

[14] Intel Corporation, "IA-32 Intel Architecture
Software Developer’s Manual", Volume 3: Sys-
tem Programming Guide, 2004

