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1. Introduction

The heavy quark limit of QCD has been an important tool in understanding the spectrum

and decays of mesons and baryons with a heavy quark constituent; see ref. [1] for a review.

When the mass of the heavy quark is large compared to the QCD scale, mh ≫ ΛQCD, the

interaction between the heavy quark and the light quarks and gluons becomes independent

of the spin and flavor of the heavy quark. This independence yields predictions for the

mh dependence of the meson spectrum and weak decay amplitudes. In this paper, we

investigate the heavy quark limit not in QCD but in a cousin of N = 4 SU(N) super

Yang-Mills (SYM) theory. We add two fundamental hypermultiplets, with masses ml

and mh, to N = 4 SYM, breaking the supersymmetry to N = 2. Using the AdS/CFT

correspondence [3 – 5], we study the spectrum of heavy-light mesons in this theory at large

N and large ’t Hooft coupling λ = g2
YMN .

One reason why heavy quarks are easier to understand in QCD than light quarks is

asymptotic freedom; at short distance scales and high energies, the strong force becomes

weak. Roughly speaking, for energies sufficiently above ΛQCD, the coupling constant αs

becomes small, and thus the interactions of the heavy quarks, charm, bottom and top, are

governed by a weak effective coupling αs(mh). The light quarks, up, down, and strange,

on the other hand experience a much stronger coupling αs(Λ), with Λ only slightly above
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ΛQCD, where the coupling diverges. Indeed, the strong force between two heavy quarks is

weak enough to be treated perturbatively, and is similar to the force between an electron

and a positron. Heavy-heavy mesons, which are bound states of two heavy quarks, therefore

have measured properties very similar to positronium.1

Heavy-light mesons, in contrast, are more complicated objects, as their light quark

constituent experiences strong interactions. Qualitatively, the heavy quark is a small object

of size 1/mh surrounded by a “brown muck” of size 1/ΛQCD of virtual strongly interacting

light quarks, antiquarks, and gluons. However, the small size of the heavy quark leads to

simplifications. The “brown muck” cannot resolve the spin or flavor of the heavy quark to

leading order in 1/mh, which means the interaction is spin and flavor blind.

The current paper was motivated by wondering, what parallels exist between heavy-

light mesons in real world QCD and in strongly coupled N = 2 SU(N) SYM theory

with two massive hypermultiplets. The parent theory N = 4 SU(N) SYM is clearly very

different from QCD. Most importantly for our comparison, N = 4 SYM is conformal, and

we thus have no equivalent notion of the coupling constant being mh dependent. We also

have no notion of a confinement or QCD scale ΛQCD; for us the IR scale will be ml. It is

true that adding Nf = 2 hypermultiplets to N = 4 SYM breaks the conformal symmetry,

but the nonzero beta function in fact runs in the wrong direction, toward strong coupling

in the UV. In this paper, we will, however, work in the limit Nf ≪ N , and therefore ignore

Nf/N suppressed effects.

Despite these differences, there is persistent hope that we may gain insights into QCD

by asking the right questions about N = 4 SYM and its relatives at strong coupling. For

example, at zero temperature, the Klebanov-Strassler model [6] provides a geometric under-

standing of abelian chiral symmetry breaking and confinement for a N = 1 supersymmetric

gauge theory in this AdS/CFT context. Regarding nonzero temperature physics, where

the arguments are perhaps more compelling, ref. [7] made the following two observations.

First, consider the ratio of the pressure at strong and weak coupling. The ratio for N = 4

SYM was computed by ref. [8] to be 3/4. QCD is not conformal, but lattice simulations can

be used to compute the pressure at a few times the deconfinement temperature where the

theory is relatively strongly interacting and the pressure slowly varying. The ratio of this

pressure to the free result is about 0.8. The second observation is that at strong coupling,

both N = 4 SYM and QCD are believed to have very small viscosities (see e.g. refs. [10, 9]).

The AdS/CFT correspondence maps N = 4 SU(N) SYM theory to type IIB string

theory in the curved background AdS5 × S5. We will work in the large N and λ limit,

where the string theory becomes classical and can be well approximated by supergravity.

As described by ref. [2], a hypermultiplet can be added to the gauge theory by placing a

D7 brane in the dual geometry. The heavy-light mesons we consider then, according to the

duality, correspond to strings stretching between two parallel D7 branes, and the energy

spectrum consists of the vibrational and rotational modes of the strings. Consistent with

1Note however that highly excited charmonium and bottomonium states are expected to be sensitive to

the details of confinement. For these excited states, the quarks are separated by relatively large distances

and experience a linear confining potential rather than a Coulombic potential. To reproduce the full

spectrum, the Cornell potential, which interpolates between these two limiting forms, is often used.
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our large N limit, we will neglect the back reaction of the D branes on the geometry, as

well as the back reaction of the strings on the D branes and the geometry.

Despite the conformal nature of the theory we consider, we find that the meson spec-

trum is, in an appropriate sense, spin and flavor blind in the heavy quark and strong

coupling limit. The mass Mhl of the heavy-light mesons we find has the form

Mhl = mh + ml f

(

J√
λ

,
Q√
λ

,
n√
λ

)

+ O
(

m2
l

mh

)

, (1.1)

where J is the angular momentum of the meson, Q an R-charge, and n a quantum number

specifying a radial excitation.2 We have not introduced a confinement scale and thus ml

takes the place of ΛQCD.

One important aspect of this heavy-light meson spectrum is its mh independence,

which can be understood in the following way. The excitations (at least in n and J) we

find are closely analogous to the modes of a guitar string, the length of which is proportional

to 1/ml − 1/mh. In the heavy quark limit, the length of the string becomes independent

of 1/mh, and hence it is expected that also the frequencies of the modes become 1/mh

independent.

After the appearance of ref. [2], there have been many detailed studies of the meson

spectrum of the N = 2 SU(N) SYM theory beginning with refs. [11, 12]. In fact, a nice

review [13] has appeared to which we point the interested reader for a more complete list of

references. To understand what is new about the current paper, it is useful to outline the

differences of our work from ref. [12], where the authors considered the meson spectrum

for N = 2 SYM theory with a single massive hypermultiplet of mass m. They considered

two different types of mesons. The first type have a very small mass M ∼ m/
√

λ and

spin 0, 1/2, or 1, and are dual to fluctuations of the D7 brane embedding. The second

type are dual to U-shaped semiclassical strings with much larger angular momentum J and

mass. For J ≪
√

λ, the mass obeys Regge scaling M ∼ m
√

J/λ1/4 while for J ≫
√

λ, the

potential is Coulombic M = 2m − const/J2. While the behavior of these types of mesons

are qualitatively diffferent, there is expected to be a way in which as we consider mesons

with larger and larger angular momentum, the D7 brane fluctuations in fact morph into

semiclassical string configurations.

The ground state of our heavy-light meson is a string, which stretches between two

D7 branes separated by a finite distance proportional to the mass difference between the

hypermultiplets. Having taken the heavy-quark limit, there is no sense in which our me-

son spectrum is well approximated by D7 brane fluctuations. To find the spectrum, we

therefore instead consider fluctuations of the string itself, which will correspond to radial

excitations of the meson. We also consider the dependence of the string energy on its

angular momentum J and charge Q, and this part of the analysis is similar to the second

half of ref. [12] and section 2 of [14].

The types of heavy-light mesons we consider have been studied before, in refs. [14 –

16]. Ref. [14], is very similar in spirit to ours. Indeed, section 2 of ref. [14] overlaps to

2Recall that N = 2 supersymmetric gauge theories have a global R-symmetry. Geometrically, Q is an

angular momentum in the internal S5.
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some extent with our discussion of the spinning strings in section 5.1. In refs. [15, 16], it

was pointed out that the ground state heavy-light mesons have a mass which scales as the

difference of the heavy quark masses, M = mh − ml. This scaling is very different from

the D7 brane fluctuations considered in ref. [12], which yielded masses M ∼ m/
√

λ for

the heavy-heavy and light-light mesons. Ref. [15] also demonstrated that the excitation

energies above the ground state are suppressed by a power of λ. This work should in

principle be very similar to what we do here, as the authors of ref. [15] also study the

fluctuation spectrum of a semiclassical string stretching between two D7 branes in the

AdS5 × S5 geometry. However, they work in an approximation where the strings do not

bend and find that the excitation energies for heavy-light mesons scale with mh instead of

ml. Ref. [16] in contrast is a calculation in a different limit: They consider the case where

the masses of the two hypermultiplets become degenerate and thus non-abelian effects on

the D7 branes are important.

Our paper is organized as follows. We begin in section 2 by reviewing the dual super-

gravity construction of N = 2 SYM theory with two massive fundamental hypermultiplets,

and in addition we make some remarks about related constructions that preserve only

N = 1 supersymmetry, allowing for a novel way of thinking about meson decay and also

yielding a spectrum of heavy-light mesons similar to the spectrum of the heavy-heavy and

light-light mesons considered in [12]. In the following sections we consider only the N = 2

supersymmetry preserving case. Section 3 fixes our notation and sets up the supergravity

calculation of the heavy-light meson spectrum.

In section 4, we analyze small fluctuations of the string dual to the heavy-light meson

and thus obtain the spectrum as a function of what we called n above. This analysis ignores

nonlinearities in the equation of motion for the string and is valid when the occupation

numbers of the modes are small compared to
√

λ. Section 5 follows with a discussion of

spinning strings dual to heavy-light mesons with large charge and angular momentum. The

analysis is purely classical but employs the full nonlinear equations of motion. We expect

a classical analysis to be valid in the limit where J ≫ 1 and Q ≫ 1, but we also find that

the solutions match smoothly onto the small fluctuations considered in section 4 at small

values of J and Q. The paper concludes with a comparison to the spectrum of real world

(QCD) heavy-light mesons in the summary section.

2. Supersymmetry considerations

We know that type IIB strings in an AdS5×S5 space-time are dual to N = 4 SU(N) super

Yang-Mills theory through the AdS/CFT correspondence. The space AdS5 × S5 has the

line element

ds2 = L2

[

u2ηµνdxµdxν +
δijdyidyj

u2

]

, (2.1)

where the indices i and j run from one to six, µ and ν run from zero to three, and L is the

radius of curvature. The coordinate u2 ≡ ∑

i(y
i)2 is a radial coordinate, and as u → ∞,

we reach the boundary of AdS5. In this notation, the metric is clearly a warped product

of Minkowski space R
1,3 with R

6. The line element can also be written to make the AdS5
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more explicit:

ds2 =
L2

z2
(ηµνdxµdxν + dz2) + L2dΩ2 , (2.2)

where dΩ2 is a line element on the S5 and u = 1/z. The SO(6) isometry group of the S5

geometrically realizes the SO(6) R-symmetry of the dual field theory.

As described by Karch and Katz [2], adding an N = 2 hypermultiplet to the gauge

theory is dual to placing a D7 brane in the dual geometry. The D7 brane spans the

Minkowski directions xµ and four of the remaining directions in R
6. With this ansatz, the

D7 brane is insensitive to the RR-five form flux in the curved geometry, and its behavior

is determined solely through the DBI action

SDBI = −τ7

∫

d8ξ
√

−det(Gab + 2πα′Fab) , (2.3)

where τ7 = 1/(2π)7α′4gs is the D7 brane tension, 1/2πα′ is the string tension, gs is the

string coupling constant, Gab is the induced metric on the D7 brane, and Fab is the gauge

field on the D7 brane. We will consider only the case Fab = 0 in these remarks. Recall

that the AdS/CFT dictionary relates

L2

α′
=

√
λ and 4πgs = g2

YM , (2.4)

where λ = g2
YMN is the ’t Hooft coupling.

To correspond to a hypermultiplet, the D7 brane must span R
1,3, and thus the four

remaining dimensions of the D7 brane lie in R
6. It seems natural to choose a gauge in which

four of the coordinates on the D7 brane are the xµ. Moreover we pick an embedding in R
6

that does not depend on the xµ. Given this independence, the determinant of the induced

metric on the D7 brane will not depend on the warp factor u2 in the ten dimensional

metric (2.1). Dividing out by the volume of Minkowski space, the DBI action can be

written in the form

SDBI = −τ7L
8

∫

d4ξ

√

det

(

∂y

∂ξa
· ∂y

∂ξb

)

. (2.5)

The D7 brane will satisfy the same equations of motion that it does in flat space; the D7

brane describes a minimal four dimensional hypersurface in R
6. Note that the normaliza-

tion of the DBI action can be written in gauge theory language as

τ7L
8 =

2λN

(2π)6
.

The DBI action is smaller by a factor of N compared to the supergravity action, justifying

our neglect of the back reaction of the D7 brane on the geometry.

A particularly simple class of hypersurfaces which satisfy the equations of motion are

surfaces described by a holomorphic embedding equation. If we think of R
6 = C

3 as a

complex manifold and define coordinates wj = y2j−1 + iy2j , a D7 brane which satisfies an

equation of the form f(w1, w2, w3) = 0 for an arbitrary function f will locally satisfy the

equations of motion away from singularities.
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The Karch-Katz D7 brane is a hyperplane described by two linear equations a1 ·y = c1

and a2 ·y = c2. Given the SO(6) rotational symmetry of the sphere, such a hyperplane can

be rotated so that the two equations become y5 = c and y6 = 0.3 In complex coordinates,

the hyperplane is the complex submanifold described by f = w3 − c. The parameter c is

dual to the mass of the hypermultiplet.

The Karch-Katz D7 brane preserves N = 2 supersymmetry, while the more general

case f(w1, w2, w3) = 0 preserves only N = 1 supersymmetry (see e.g. ref. [21]). In brief,

there are 32 real spinors generating supersymmetry transformations that leave invariant

the AdS5 × S5 type IIB supergravity background, 16 of which correspond to ordinary su-

percharges and the remainder of which are superconformal. This number of supercharges is

sufficient to generate the N = 4 superconformal algebra of the dual Yang-Mills field theory.

Of these 32 spinors, only four of the ordinary and none of the superconformal generate su-

persymmetry transformations which leave a general D7 brane satisfying f(w1, w2, w3) = 0

invariant. The four invariant spinors are independent of the choice of f(w1, w2, w3). The

Karch-Katz D7 brane, on the other hand, is left invariant by 8 of the ordinary spinors.

Given that a single Karch-Katz D7 brane corresponds to adding a single N = 2 hyper-

multiplet, adding two such D7 branes should correspond to adding two hypermultiplets.

In the literature [15 – 17], we find that the second D7 brane is usually added in a way such

that the embedding equation for the second D7 brane is parallel to the first, w3 = c′ where

c′ ∈ R. Adding the second D7 brane in such a way has a number of desirable features.

The theory remains N = 2 supersymmetric. Moreover, an unbroken SO(4) ⊂ SO(6) of the

global R-symmetry is preserved. Note that c′ ∈ C still preserves N = 2 supersymmetry

and the SO(4) R-symmetry. The relative phase of c and c′ affects the relative phase of the

hypermultiplet masses and also the mass of the heavy-light meson, a fact we will return to

in the discussion.

However, a generic second D7 brane would not be parallel to the first. Assuming the

second D7 brane is also described by a four dimensional hyperplane inside R
6, the two D7

branes will generically intersect along a plane R
2. Such an intersection generically breaks

all the supersymmetry. If supersymmetry is broken, then there will probably be a tachyon,

i.e. an instability, and the D7 branes will recombine; it’s not clear what the final state will

be, and we have little to say about this nonsupersymmetric situation.

While the remaining SO(4) symmetry is not enough to guarantee the second Karch-

Katz D7 brane can be described by a complex equation as well, there will be a special

case where both D7 brane embeddings are described by complex equations in C
3. This

special case preserves N = 1 supersymmetry. Indeed, if we add any number of Karch-

Katz D7 branes such that they are all described by complex equations in C
3, N = 1

supersymmetry is preserved. The reason is that the four spinors preserved by both the

supergravity background and the D7 brane are independent of the choice of f(w1, w2, w3).

These intersecting brane configurations should lead to a heavy-light meson spectrum similar

to the heavy-heavy and light-light meson spectra found in ref. [12]. There will be short

3Use the SO(6) symmetry to rotate a1 into the y5 direction and a2 into the y5–y6 plane. The problem

reduces to considering the intersection of two lines in a plane. There is a residual SO(2) symmetry in the

y5–y6 plane which always allows us to rotate the intersection point onto the y5 axis.

– 6 –
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strings localized at the intersection of the two D branes whose masses should scale as

the distance of the intersection from the origin of the geometry divided by
√

λ. These

intersecting configurations also provide a novel way of thinking about meson decay, which

is different from what has been considered in the literature before [18, 19]. The case of three

intersecting Karch-Katz D7 branes would be especially interesting to consider because the

intersection of three four dimensional hyperplanes in R
6 is in general a point. We, however,

leave a study of such spectra and decays for the future.

Finally, we make a short remark on the field theory aspects of the system we are

studying. We know that N = 4 SU(N) SYM has the superpotential

W = Tr X[Y,Z]

where X, Y , and Z are chiral superfields transforming in the adjoint of SU(N). The

Karch-Katz D7 brane leads to the modified superpotential

W = Tr X[Y,Z] + Q̃(m − X)Q ,

where Q and Q̃ are chiral superfields that transform in the fundamental of SU(N) and

combine to form a hypermultiplet.4 The N = 2 supersymmetry preserving case of two

parallel D7 branes has the superpotential

W = Tr X[Y,Z] + Q̃h(mh − X)Qh + Q̃l(ml − X)Ql .

When mh and ml are both real, we chose above both c and c′ ∈ R. However, we may

introduce a relative phase between mh and ml as well corresponding to c′ ∈ C. Adding

the D7 branes in a way that preserves only N = 1 superysmmetry corresponds to more

general types of superpotentials, for example

W = Tr X[Y,Z] + Q̃h(mh − X)Qh + Q̃l(ml − Y )Ql .

In most of the rest of what follows, we will restrict to the case where mh and ml are real

and the two D7 branes preserve N = 2 supersymmetry.

3. Mass spectra of heavy-light mesons: preliminaries

We consider the special configuration of two parallel D7 branes in the N = 2 supersym-

metric scenario described above where the ground state string will have a nonzero length.

The string hangs from one brane to the other and the string endpoints correspond to one

heavy and one light quark. Our aim is to derive the mass spectrum of heavy-light mesons

by investigating the spectrum of fluctuations of strings hanging between the branes.

The AdS5×S5 metric (2.1) can be thought of as a warped product metric on R
1,3×R

6.

We will write the line element on R
6 as

δijdyidyj = dρ2 + ρ2dθ2 + ρ2 sin2 θ dΩ2
2 + dy2 + (dy6)2 , (3.1)

4We have been careless of the relative normalizations of the different terms in W , but they will be fixed

by supersymmetry. See e.g. ref. [20] for details.
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Figure 1: A cartoon of our heavy-light mesons as strings stretched between two D7 branes.

where dΩ2
2 is a metric on a unit S2 and we have defined ρ2 ≡ u2− (y5)2− (y6)2 and y ≡ y5.

The metric on Minkowski space R
1,3 we will write as

ηµνdxµdxν = −dt2 + dr2 + r2dφ2 + dx2 . (3.2)

In this geometry, strings that stretch from one D7 brane to another are dual to mesons,

as illustrated in figure 1 which displays our geometric picture of heavy-light mesons. Clas-

sical strings are described by the Nambu-Goto action

SNG =

∫

dτdσL = − 1

2πα′

∫

dτdσ

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2 , (3.3)

where XA(τ, σ) describes the embedding of the string in AdS5 × S5. In our notation,

X · Y = gABXAY B is contracted with the ten dimensional metric, and we have defined

∂σX ≡ X ′ and ∂τX ≡ Ẋ. We choose a gauge in which the worldsheet coordinates are

τ = t, σ = y. The locations of the light and heavy D7 branes will be denoted by y = yl

and y = yh, and the light and heavy quark masses [2] read

ml =
L2

2πα′
yl ; mh =

L2

2πα′
yh , (3.4)

where L2/α′ =
√

λ. The Nambu-Goto action is suppressed by a relative power of N with

respect to the DBI action, and thus we are justified in neglecting the back reaction of the

string on the D7 brane and the geometry in the large N limit.

We wish to study the profile that a string stretching between the D7 branes takes,

assuming that the string sits at a constant position in the internal unit S2. The Nambu-

– 8 –
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Goto action (3.3) produces the equation of motion

0 =
∂

∂τ



gAB
(Ẋ · X ′)(X ′)B − (X ′)2ẊB

√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2



+
∂

∂σ



gAB
(Ẋ · X ′)ẊB − (Ẋ)2(X ′)B
√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2



 , (3.5)

where the various scalar products have the forms

Ẋ · X ′ = L2

{

u2
(

ẋx′ + ṙr′ + r2φ̇φ′

)

+
1

u2

(

ρ̇ρ′ + ρ2θ̇θ′ + ẏ6y
′

6

)

}

, (3.6)

(Ẋ)2 = L2

{

u2(−1 + ẋ2 + ṙ2 + r2φ̇2) +
1

u2

(

ρ̇2 + ρ2θ̇2 + ẏ2
6

)

}

, (3.7)

(X ′)2 = L2

{

u2
(

(x′)2 + (r′)2 + r2(φ′)2
)

+
1

u2

(

1 + (ρ′)2 + ρ2(θ′)2 + (y′6)
2
)

}

(3.8)

and we have rewritten y6 as y6 to avoid confusing superscripts. The energy and momentum

densities of the string are

π0
A =

∂L
∂ẊA

= − 1

2πα′
gAB

(Ẋ · X ′)(X ′)B − (X ′)2(Ẋ)B
√

(Ẋ · X ′)2 − (X ′)2(Ẋ)2
, (3.9)

while the energy and momentum currents read

π1
A =

∂L
∂(X ′)A

= − 1

2πα′
gAB

(Ẋ · X ′)(Ẋ)B − (Ẋ)2(X ′)B
√

(Ẋ · X ′)2 − (X ′)2(Ẋ)2
. (3.10)

We will apply Neumann boundary conditions in the D7 brane directions at y = yl and

y = yh

π1
A

∣

∣

y=yh,yl
= 0 , (3.11)

for A = x, r, φ, ρ, and θ, implying that no momentum is assumed to flow into the string

from the D7 brane in these directions. The coordinate y6 is in contrast subject to Dirichlet

boundary conditions.

4. Fluctuations in x, ρ and y6

In this section, we study radial excitations of the heavy-light mesons. Specializing to the

background of θ̇ = 0, r = 0 and a constant ρ = ρ0, we consider infinitesimal fluctuations

of the string action in the form of x = x(t, y), ρ(t, y) = ρ0 + δρ(t, y) and y6 = y6(t, y).

Applying eqs. (3.6)–(3.8) where now u2 = y2 + (ρ0 + δρ)2, we expand the action to second

order in the fluctuations, and obtain

SNG =
L2

2πα′

∫

dτdσ

{

1 − 1

2
ẋ2 +

1

2
u4

0(x
′)2 +

1

2
((δρ′)2 + (y′6)

2)

− 1

2u4
0

(

δρ̇2 + ẏ2
6

)

}

, (4.1)

with u2
0 ≡ y2 + ρ2

0.
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Translational symmetry in the Minkowski directions guarantees that a constant value

of x is a solution to the equation of motion and thus that there is a zero mode in the

spectrum corresponding to motion of the string at constant velocity in the x direction.

Perhaps surprisingly, a constant value of ρ is also a solution and thus there is another zero

mode in the spectrum corresponding to translations of the ρ coordinate, even though we do

not have translational symmetry in these directions. (We should emphasize that a constant

value of ρ is a solution to the full equations of motion (3.5) and not just to the equations

of motion following from the quadratic action (4.1).) However, we will see below that this

zero mode is only present for the ground state string. The fluctuating string can lower

its energy by moving to ρ = 0, a fact which strongly suggests that this time independent

constant ρ solution is unstable with respect to small perturbations.

There exists an interesting relationship between the equation of motion for the fluctua-

tions in the y6 and δρ directions and the equation of motion for the fluctuations in x which

we believe may be a consequence of supersymmetry. We will assume that the fluctuations

have the time dependence XA ∼ e−iωt so that ẌA = −ω2XA. The equations of motion

thus become

∂

∂y

(

f(y)x′

)

= −ω2x , (4.2)

f(y)δρ′′ = −ω2δρ , and f(y)y′′6 = −ω2y6 , (4.3)

where f(y) = (y2 + ρ2
0)

2. From these expressions, it is clear that if we have a solution x to

eq. (4.2), then δρ = f(y)x′ (or y6 = f(y)x′) satisfies eq. (4.3). Moreover, given a solution

δρ (or y6) to eq. (4.3), then x = δρ′ (or x = y′6) satisfies eq. (4.2).

A consideration of boundary conditions now reveals that the fluctuations in x and y6

have the same spectrum up to a zero mode. While x and δρ satisfy Neumann boundary

conditions, y6 satisfies Dirichlet boundary conditions. If we solve eq. (4.2) for the allowed

fluctuation modes x satisfying Neumann boundary conditions, then the relations between

the two equations of motion give us all the fluctuation modes y6 satisfying Dirichlet bound-

ary conditions. We have to perform a separate calculation for the δρ fluctuations, but had

the x fluctuations satisfied Dirichlet boundary conditions instead of Neumann, they would,

too, be trivially related to the δρ fluctuations. We begin with the x fluctuations.

4.1 The x fluctuations

The equation (4.2) for the x fluctuations can be solved to yield

x(t, y) =
Cρ0

√

y2 + ρ2
0

{
√

1 +
ω2

ρ2
0

cos

[
√

1 +
ω2

ρ2
0

arctan

[

y

ρ0

]

+ α

]

+
y

ρ0

sin

[
√

1 +
ω2

ρ2
0

arctan

[

y

ρ0

]

+ α

]}

e−iωt , (4.4)

where C and α are the two integration constants. We now apply Neumann boundary

conditions x′(yl) = x′(yh) = 0 to determine the allowed spectrum ω. Doing this at the
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light D7 brane, we find

α = −
√

1 +
ω2

ρ2
0

arctan

[

yl

ρ0

]

, (4.5)

while applying the boundary conditions at the heavy brane then yields the discrete spec-

trum:

ωx
n = ρ0

√

n2π2

(arctan[ρ0/yl] − arctan[ρ0/yh])2
− 1 , (4.6)

where n ∈ Z
+. In addition to these values of n however, the spectrum also contains a zero

mode, the trivial solution of ω = 0.

Before moving onto the y6 fluctuations, we note that in the ρ0 = 0 limit, the mode

functions and spectrum become simpler:

x = C(ωz cos(ω(z − zl)) − sin(ω(z − zl)))e
−iωt , (4.7)

ωx
n =

πn

zl − zh
, where z = 1/y . (4.8)

The frequencies are the same as those of a guitar string of length zl − zh, and we thus see

that in the heavy quark limit, zh → 0, the frequencies become mh independent.

4.2 The y6 fluctuations

The solution to the equation of motion (4.3) is now related in a trivial way to the x

fluctuations studied above:

y6 =
(

y2 + ρ2
0

)2
x′ = −Cω2

√

ρ2
0 + y2 sin

[
√

1 +
ω2

ρ2
0

arctan

[

y

ρ0

]

+ α

]

e−iωt . (4.9)

In the ρ0 = 0 limit, the mode function again takes a simpler form

y6 =
Cω2

z
sin(ω(z − zl))e

−iωt where z = 1/y . (4.10)

The Dirichlet boundary conditions y6(yl) = 0 = y6(yh) are equivalent to the Neumann

boundary conditions applied to the x fluctuations above, leading to the same value of α

given in eq. (4.5) and the same spectrum

ωy
n = ρ0

√

n2π2

(arctan[ρ0/yl] − arctan[ρ0/yh])2
− 1 , (4.11)

where n ∈ Z
+. This time, however, there is no zero mode.

4.3 The δρ fluctuations

For the δρ fluctuations, we will not be able to find an analytic spectrum, but will eventually

attempt to understand the spectrum’s features both qualitatively and numerically. We

begin with the general solution to eq. (4.3),

δρ(t, y) = C
√

ρ2
0 + y2 sin

[
√

1 +
ω2

ρ2
0

arctan

[

y

ρ0

]

+ α

]

e−iωt . (4.12)
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Applying Neumann boundary conditions at the light brane δρ′(yl) = 0, we find

α = −
√

1 +
ω2

ρ2
0

arctan

[

yl

ρ0

]

− arctan

[
√

1 +
ω2

ρ2
0

ρ0

yl

]

, (4.13)

while demanding that the boundary conditions are satisfied at the heavy brane leads to

tan

[
√

1+
ω2

ρ2
0

(

arctan

[

yl

ρ0

]

−arctan

[

yh

ρ0

])

+arctan

[
√

1+
ω2

ρ2
0

ρ0

yl

]]

=

√

1+
ω2

ρ2
0

ρ0

yh
. (4.14)

The solutions of this equation give us the spectrum of the fluctuations ωρ
n.

Unfortunately, the transcendental nature of the above equation prevents us from solv-

ing it analytically. There are, however, various limits, where we can simplify the numerical

solution. The first simplification occurs in the limit of large yh, in which one may attempt

a power expansion in yl/yh. To this end, we write

ωρ
n ≡ ωn = yl ×

∞
∑

i=0

ωn,i

(

yl

yh

)i

, (4.15)

substitute this into eq. (4.14), and proceed to solve the equation order by order in the small

parameter yl/yh. At leading order, we easily obtain for ωn,0

√

1 +
ω2

n,0 y2
l

ρ2
0

(

π

2
− arccot

[

ρ0

yl

])

− arctan





√

1 +
ω2

n,0 y2
l

ρ2
0

ρ0

yl



 = nπ, (4.16)

with n ∈ Z
+. The numerical solution to this equation quickly leads to the forms of the

functions ωn,0 (ρ0/yl). The next two terms in the power series expansion of eq. (4.14) are

solved trivially by setting ωn,1 and ωn,2 equal to zero, and it is only at order i = 3 that

we find the next nonzero term in the expansion of eq. (4.15). The forms of the resulting

functions ωn,0 (ρ0/yl) and ωn,3 (ρ0/yl) will be displayed for n = 1, 2, . . . , 5 in the next section

in a slightly different notation.

One limit, where the functions ωn,i are in fact analytically solvable is that of large

ρ0/yl. There, it is straightforward to see that eq. (4.16) reduces to the solution

ωn,0 =
√

(2n + 1)2 − 1
ρ0

yl
, (4.17)

while the three next orders produce

ωn,1 = ωn,2 = 0 and ωn,3 =
4

3π

√

n(n + 1)(2n + 1)2
(

ρ0

yl

)4

. (4.18)

It is interesting to contrast eq. (4.17) with the spectra of the x and y6 fluctuations, which

in the same limit (yh → ∞ and ρ0/yl large) produce from eq. (4.6)

ωx
n =

√

(2n)2 − 1 ρ0. (4.19)
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We thus see that at least in this limit, the fluctuation energies in the x and y6 direction lie

exactly in between the energies of the ρ fluctuations.

Finally, we note that in the limit ρ0 = 0, eq. (4.12) reduces to

δρ =
−C

z
√

1 + ω2z2
l

(ωzl cos(ω(z − zl)) + sin(ω(z − zl))) e−iωt , (4.20)

while condition (4.14) on the frequencies reduces to the simple expression

ω(zh − zl) = arctan(ωzh) − arctan(ωzl) − πn , (4.21)

where n is an integer. This equation, however, is not of an analytically solvable type

either, so it must be dealt with numerically. In the limit yh → ∞, the first few solutions

are ωzl = 4.493, 7.725, and 10.904.

4.4 The meson mass spectrum

Let us finally look at the energy spectrum of the string fluctuations in more detail. Using

the result

E = −
∫

dσ π0
t , (4.22)

we see that to quadratic order in the fluctuations the energy of the string can be obtained

by integrating the canonical momentum density

π0
t = − L2

2πα′

(

1 +
1

2
u4(x′)2 +

1

2
ẋ2 +

1

2
(δρ′)2 +

1

2u4
(δρ̇)2 +

1

2
(y′6)

2 +
1

2u4
(ẏ6)

2

)

.

From a classical perspective, the energies will depend on the amplitudes of the fluctuations,

while from a quantum perspective, these amplitudes can only take on discrete values cor-

responding to the occupation number of a given mode. At quadratic order, we essentially

have a version of the quantum harmonic oscillator. The equal time commutation relation

[XA(y), π0
A(y′)] = iδ(y − y′) implies, in units where ~ = 1, that the smallest quanta of

excitation are the frequencies we determined before, the ωw
n where w = x, ρ, or y. We find

the simple result

E = mh − ml +
∑

w,n

Nn
wωw

n , (4.23)

where Nn
w is the occupation number of the mode (w,n).5 We therefore note that in order to

inspect the mass spectrum of the heavy-light mesons below, we merely need to consider the

frequencies ωw
n obtained above. We anticipate eq. (4.23) remains valid provided Nn

w ≪
√

λ

and we can neglect the nonlinearities in the string equation of motion. Consistent with the

observation that a constant nonzero ρ0 is a solution to the full equations of motion, note

that in the absence of fluctuations, the energy of the string is mh − ml for all ρ0.

5Calculating the zero point energy contribution to these oscillators requires also investigating the

fermionic fluctuations of the superstring. We suspect supersymmetry implies that the zero point energy

vanishes.
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The x and y6 fluctuations. Denoting q ≡ ρ0L
2/2πα′ and using the relation L2/α′ =√

λ, we can write the energy spectrum of the x or y6 fluctuations in the form

Ex
n = Ey

n = mh − ml +
2πq√

λ

√

n2π2

(arctan[q/ml] − arctan[q/mh])2
− 1 . (4.24)

This formula gives the energy for a string with a single quantum of excitation in the

nth mode of the y6 or x fluctuations. In the Introduction, we claimed that in the heavy

quark limit, mh ≫ ml, the energy of the excitations scaled with ml. Here, seemingly in

contradiction with the earlier claim, we find that in the limit mh ≫ q, we may expand the

ωx
n in inverse powers of mh, producing

Ex
n = mh − ml+

2πq√
λ

gn

(

q

ml

)

+
2π3n2q2

√
λmh

1

arctan3[q/ml]gn(q/ml)
+O

(

1

m2
h

)

, (4.25)

where we have denoted

gn(x) ≡
√

n2π2

arctan2[x]
− 1 . (4.26)

Thus, the excitation spectrum depends on both light scales ml and q.

We now give two reasons why the scale q should disappear. First, the derivative of the

excitation energies with respect to q is non-negative

∂Ex
n

∂q
=

∂Ey
n

∂q
≥ 0 , (4.27)

and is equal to zero at q = 0, implying that fluctuations about q 6= 0 have more energy

than the equivalent fluctuations about q = 0. This inequality suggests that a string initially

fluctuating about a nonzero value of ρ0 will experience a potential that will cause it to start

oscillating about ρ = 0. In the case of q = 0, the energy spectra reduce to

Ex
n = Ey

n = mh − ml +
mhml

mh − ml

2π2n√
λ

, (4.28)

where n ∈ Z
+. In the heavy quark limit mh ≫ ml, the excitation spectrum does indeed

depend only on ml to leading order in ml/mh.

The second reason for the disappearance of the scale q will be developed more in

section 5, where we will see that for slowly spinning strings in the ρ–θ plane, a nonzero

value of ρ0 is stabilized. Thus what would seem to be a zero mode in the ρ direction is

lifted and a continuous change of q will not be possible for these spinning strings. However,

the stable value of ρ0 is of order ml or zero, regardless of the angular momentum, and thus

the extra scale q again disappears from the excitation spectrum.

The δρ fluctuations. For the δρ fluctuation spectrum given by eq. (4.14), we have to

resort to numerics. In the limit of large yh ≫ yl, we may use our earlier numerical solution
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Figure 2: Plots of the functions ωn,0(q/ml) and ωn,3(q/ml), respectively. The index n grows from

1 to 5 from the bottom to the top curve in both figures.

utilizing a power series expansion in yl/yh, in terms of which the spectrum can be written

in the form

Eρ
n = mh − ml + ml ωn,0(q/ml)

2π√
λ

+
m4

l

m3
h

ωn,3(q/ml)
2π√

λ
+ O

(

m5
l /m

4
h

)

. (4.29)

This formula corresponds to the energy of a string with a single quantum of energy in the

nth mode of the ρ fluctuations. We plot the functions ωn,0 and ωn,3 in figure 2. From there,

we see that the energies of the fluctuations are always minimized at ρ0 = 0 or q = 0, just as

it was for the x and y6 fluctuations. Another interesting aspect of these excitation energies

is the absence of the two first leading corrections in ml/mh in the heavy quark limit.

5. Spinning strings

To supplement our discussion of the small fluctuations of strings around static quark-

antiquark solutions, we now turn to consider the case where the string joining the heavy

and the light brane is spinning. First, we consider strings spinning in the real space

where they have a conserved angular momentum, and then look into strings spinning in

the internal θ direction where the corresponding angular momentum can be reinterpreted

as a charge. Our analysis is purely classical, but we expect valid, provided the angular

momentum and charge of the strings are large.

As we have discussed briefly already, there is an interesting wrinkle in the discussion

of the ρ–θ spinning strings. A straight, motionless string stretching between the D7 branes

at a nonzero value of ρ0 is a solution for all ρ0. That such a string is a solution is surprising

given the lack of translation invariance in ρ. As we saw before in the analysis of the

fluctuations, if we excite one of these straight strings with ρ0 6= 0, it will experience a

force pulling it toward ρ = 0. In this section on spinning strings, we will find that a string

spinning in the ρ–θ plane is not free to sit at an arbitrary average value of ρ0 either.

– 15 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
0

5.1 Strings spinning in real space

We start by looking into the profile and energy spectrum of a string spinning in real space,

more specifically in the x1–x2 plane, assuming that x3 = ρ = y6 = 0. To begin with,

we transform from Cartesian (x1, x2) to polar coordinates (r, φ), and make the uniformly

rotating ansatz of ref. [12], where φ = Ωt is independent of the worldsheet coordinate σ.6

At the same time, we assume that z(σ) and r(σ) are t independent, which leads to an

action of the form

S = − L2

2πα′

∫

dt dσ
1

z2

√

(1 − Ω2r2)((z′)2 + (r′)2) , (5.1)

invariant under reparametrizations of the worldsheet coordinate σ = f(σ′). For the most

part, we will choose σ = z, though for the numerical studies we will shortly present, we

found it sometimes convenient to make other choices, such as σ = r. This action leads to

the following formulae for the energy and angular momentum of the string:

E =
L2

2πα′

∫

dσ
1

z2

√

(z′)2 + (r′)2

1 − Ω2r2
, (5.2)

J =
L2Ω

2πα′

∫

dσ
r2

z2

√

(z′)2 + (r′)2

1 − Ω2r2
. (5.3)

Choosing now σ = r, the equation of motion for r(z) has the form

r′′

1 + (r′)2
− 2

z
r′ +

Ω2r

1 − Ω2r2
= 0 , (5.4)

which we now proceed to solve, demanding that Neumann boundary conditions be satisfied

on the heavy and light branes at z = zh and z = zl. Neumann boundary conditions for φ

are satisfied trivially because φ′ = 0, while for r the boundary conditions read

r′

√

1 − Ω2r2

1 + (r′)2

∣

∣

∣

∣

∣

z=zh,zl

= 0 . (5.5)

Thus, we must either require that r′ = 0 at the boundary or that Ω2r2 = 1, which physically

is the condition that the endpoint of the string is moving at the local speed of light. We

will in general choose r′ = 0, but will nevertheless find certain “critical” solutions that

satisfy the light-like boundary conditions.

The linearized form of eq. (5.4) provides a good place to begin our study, as this form

z2

(

r′

z2

)

′

+ Ω2r = 0 , (5.6)

of eq. (5.4), valid when r′ and Ωr ≪ 1, is easy to solve. Indeed, we already solved it; eq. (5.6)

is identical to eq. (4.2) in the case ρ0 = 0. Assuming then that the string takes the form

r = A (ωnz cos(ωn(z − zl)) − sin(ωn(z − zl))) , (5.7)

φ = ωnt =
πn

zl − zh
t (5.8)

6We have checked that this ansatz satisfies the full equations of motion (3.5).
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Figure 3: Top: A schematic plot showing the forms of the spinning string solutions r(z) for various

n. The lower (thick) horizontal line corresponds to the heavy brane sitting at zh = 1/100 and the

upper (thin) line to the light brane at zl = 1, with the coordinate z growing vertically. The six

curves, from left to right, correspond to the cases of n = 1, 2, 3, 4, 9 and 13, respectively. Bottom:

Another schematic plot showing the evolution of the n = 3 branch as Ω is decreased from 9.52 (left)

to 0.5 (right). The critical solution Ω3c = 5.84 is the third from the left. For the smallest value of

Ω, corresponding to large J and E, we have rescaled the solution in the z direction by a factor of

4.4 in order to make it fit in the figure. In the Ω → 0 limit, the solution becomes symmetric in the

r direction about the center of mass.

for small A, where we have adapted eq. (4.7), the energy and angular momentum are given

by the approximate expressions

E =
L2

2πα′

(

1

zh
− 1

zl
− (πn)4A2

2(zh − zl)3
+ O(A4)

)

, (5.9)

J =
L2

2πα

(

(πn)3A2

2(zh − zl)2
+ O(A4)

)

. (5.10)

Eliminating A from here, we find that7

E ≈ mh − ml + nπ
mlmh

mh − ml

2πJ√
λ

, (5.11)

which corresponds to the dashed straight lines in figure 4 (left), where we display the E

vs. J dependence of our spinning strings. This linear scaling of E with J is characteristic

of a particle in a Hooke’s law potential, where the constant of proportionality is given by

the frequency of the oscillator.8

As the E and J of the string get larger, r will get larger as well, and eventually our

linearized approximation breaks down. To make further progress, we resort to numerics to

7The n = 1 version of this formula (5.11) was first presented in ref. [14].
8In general, for a nonrelativistic particle in a central force potential U(r) = cra, one finds that E ∼

L2a/(2+a) where for us the relevant angular momentum L is either J or Q.
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Figure 4: Left: The dependence of E versus J for the spinning heavy-light mesons. We display

the curves for mh = 100ml and n = 1, 2, 3, 4 from right to left, with the adjacent dashed straight

lines corresponding to the respective analytic small-J approximations of eq. (5.11) and the dots

on the curves denoting the critical solutions at Ω = Ωnc. Right: The E(J̃) curves for both the

mh = 100ml (solid blue curve) and mh = 10ml (dotted red) cases for the n = 1 branch, together

with their difference multiplied by a factor of 100 (dashed black).

calculate the profile (r, z) of the spinning strings. For simplicity, we rescale our variables

so that zl = 1, and have zh take the values 1/10 and 1/100, corresponding roughly to the

heavy-to-light quark mass ratios one finds in QCD for charm and bottom quarks. We find

that for each n, there is a continuous family of rotating string solutions for all Ω such that

0 < Ω < ωn. The index n parametrizes the number of turning points in the solutions:

For the branch n, the string profile (r, z) has always n − 1 (local) extremal values in r.

Examples of the profile (r, z) for various n are exhibited in figure 3 (top).

Once the results for (r, z) are obtained in a numerical form, we insert them into the

integrals of eqs. (5.2) and (5.3), thus obtaining the energies of the spinning strings in terms

of their angular momenta. The resulting curves fn(x), parametrizing the energies through

En = mh − ml + ml fn

(

2πJ/
√

λ
)

, (5.12)

are shown for n = 1, 2, 3, 4 and zh = 1/100 in figure 4 (left) and in more detail for the n = 1

branch in figure 5. Intriguingly, reducing Ω increases both E and J . A similar behavior

was observed for the heavy-heavy mesons in ref. [12], and is explained by the fact that the

decrease in Ω is made up for by the growing size of the string. The evolution of the profile

of the n = 3 branch string as a function of Ω is shown in figure 3 (bottom).

The dependence of the E(J) curves on mh is relatively mild and easily modeled. The

eq. (5.11) suggests a rescaling of the variable J by 1/(1 − ml/mh), defining

J̃ =
mh

mh − ml

2πJ√
λ

. (5.13)

With this small correction, we see from figure 4 (right) that the curves corresponding to

zh = 1/10 and 1/100 practically overlap.
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Figure 5: We plot E versus J for the n = 1 branch of the spinning heavy-light mesons. The solid

curve is the numerical result for the case mh = 100ml, while the red and blue dashed curves are

the analytic small and large-J approximations of eqs. (5.11) and (5.16), respectively.

As Ω is decreased, there is a critical Ωnc for each family of solutions where the light

quark endpoint of the string is moving at the local speed of light, Ωnc r(zl) = 1. For the

short strings with Ω > Ωnc, the string is contained entirely between the two D7 branes,

while for the long strings with Ω < Ωnc, there is a loop of string in the region z > zl. Like

the ωn, the critical Ωnc depend to some extent on the choice of the heavy and light quark

masses. For the first few n, we find that

zh = 1/10 : Ω1c = 1.54, Ω2c = 3.98, Ω3c = 6.22, Ω4c = 8.41,

zh = 1/100 : Ω1c = 1.38, Ω2c = 3.72, Ω3c = 5.84, Ω4c = 7.91.

We furthermore observe that for n = 1, the critical energies and angular momenta obey

the results

Ec = mh − m2
l

2mh
+ O

(

m3
l

m2
h

)

, (5.14)

J̃c = 0.473 − 0.262
ml

mh
+ O

(

m2
l

m2
h

)

, (5.15)

and that for n > 1, the forms of the equations stay intact, while the numbers in the latter

relation somewhat change. Especially the former of these results deserves some attention;

we have verified this relation to more than 1 part in 10000, but have so far no explanation

for why the limiting energy should obtain such a simple form.

As Ω is decreased below Ωnc, the strings quickly begin to get very large compared to

the separation between the D7 branes, and in the Ω → 0 limit, their size in fact diverges

both in the r and z directions. Indeed, in this limit the spinning string solutions can be

seen to approach those of the heavy-heavy mesons considered in ref. [12], where both ends

of the string end on the same D7 brane. The limit Ω → 0 of the n = 1 branch is special
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because the velocity of any point on the n = 1 string approaches zero as Ω decreases,

while for the n > 1 branches, there always exists a finite set of points σi along the string

where, due to the large size of the string, r(σi)Ω → 1 as Ω → 0. As noticed originally by

refs. [12, 14], the small size of Ωr allows for an analytic treatment of the E and J of the

n = 1 branch in the Ω → 0 limit.

In the Ω → 0 limit, the strings correspond to marginally bound heavy-light mesons

with an energy E ≈ mh + ml. By marginally bound, we mean that the binding energy

becomes very small. For the Ω → 0 limit of the n = 1 branch, the string profile must be

well approximated by the static configuration that determines the potential between two

infinitely massive quarks. As shown in ref. [14], in this limit the energy of the string obeys

the relation

E = mh + ml − κ
mlmh

mh + ml

λ

J2
, (5.16)

where

κ = 2

(

Γ(3/4)

Γ(1/4)

)4

≈ 0.0261 ,

consistent with a Coulombic attraction between the quarks. We see from figure 5 that

eq. (5.16) is quite a good approximation to the E(J) curve already at moderately large

J . In contrast, the Ω → 0 limit of the n > 1 branches all terminate at finite values of

J . Numerically, for the case of mh = 100ml, these terminal values of 2πJ/
√

λ are 0.946,

0.546, and 0.409 for the n = 2, 3 and 4 branches, respectively.

We believe that the long strings are much less stable than the short strings. For one,

they intersect the D7 brane and thus can break in two. For another, they are much bigger

in size than the short strings, and thus it is likely that they are subject to instabilities,

which do not respect the uniformly rotating φ = Ωt ansatz.

5.2 String profile in ρ and θ

Next, we look at the profile of a string spinning inside the R
6, in the ρ–θ directions. Let Q

be the corresponding angular momentum. Although Q is an angular momentum from the

ten dimensional point of view, in the four dimensional field theory it is a charge, namely

the R-charge of the R-symmetry of our supersymmetric field theory. From the point of

view of QCD, Q could be viewed as a model of the electromagnetic charge of the meson.

To begin with, we assume that x = r = y6 = 0, and in analogy with our discussion of

strings spinning in real space, make an ansatz where ρ(y) is time independent and θ = Ωt is

y independent.9 The Neumann boundary conditions for θ are then again trivially satisfied

because θ′ = 0. With these simplifications, the action for the string reduces to

SNG = − L2

2πα′

∫

dt dy
√

(1 − ρ2Ω2/u4) (1 + (ρ′)2) , (5.17)

leading to the equation of motion for ρ(y),

u2ρ′′

1 + (ρ′)2
+ Ω2ρ

u2 − 2ρ2 + 2yρρ′

u4 − Ω2ρ2
= 0 . (5.18)

9We have checked that this ansatz satisfies the full equations of motion (3.5).
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The energy E and internal angular momentum Q of the spinning strings are given by

E =
L2

2πα′

∫

dy

√

1 + (ρ′)2

1 − ρ2Ω2/u4
, (5.19)

Q =
L2

2πα′

∫

dy
ρ2Ω

u4

√

1 + (ρ′)2

1 − ρ2Ω2/u4
. (5.20)

The Neumann boundary conditions for ρ on the other hand reduce to the requirement

ρ′

√

1 − ρ2Ω2/u4

1 + (ρ′)2

∣

∣

∣

∣

∣

y=yh,yl

= 0 , (5.21)

from where we see that we must again either require that ρ′ = 0 at the boundary or that

the ends of the string move at the local speed of light. Similar to the strings spinning in

real space, we generically enforce ρ′ = 0, but in addition find certain special solutions that

satisfy the light-like boundary conditions. Note that a motionless string with ρ = ρ0 and

Ω = 0 is a solution to the equations of motion for all ρ0. Once Ω 6= 0, however, the story

becomes much more interesting.

For non-zero Ω, the equation of motion for ρ, eq. (5.18), seems difficult to solve analyti-

cally at least in full generality, and we will therefore resort to numerics, setting again yl = 1

and varying the location of the heavy brane yh. The story we encounter is strongly remi-

niscent of the strings spinning in real space. We again find multiple branches of solutions

indexed by an integer n, n ≥ 1, with the corresponding string profiles ρn(y) containing

exactly n − 1 extrema in ρ.

The low energy behavior of our strings can again be understood analytically through

the fluctuation analysis of the previous section. In this E → 0 limit, we may take the string

profiles to be complex combinations of ρ fluctuations with infinitesimal amplitude. The

complex combination produces a string spinning in the ρ–θ plane with angular velocity

Ω = ωn, corresponding to the solutions to eq. (4.21). Consistent with the results from

section 4.3, we see that for yh = 100, the values of the first few ωn’s are 4.493, 7.725, 10.904.

For a given n > 0, we find a continuous family of solutions in the range 0 < Ω < ωn.

Decreasing Ω corresponds to increasing E and J , the increase in the size of the string more

than making up for the loss of angular velocity. There are again critical angular frequencies

Ωnc which separate the long strings with Ω < Ωnc from the short strings with Ω > Ωnc, the

former extending to the region y < yl. For the critical solution, the endpoint of the string

sitting on the light brane is moving at the local speed of light. For yh = 100, the critical

angular velocities for the first three branches are found to equal Ω1c = 3.260, Ω2c = 5.152

and Ω3c = 7.108.

In addition to the branches with n ≥ 1, we find an additional branch of solutions which

has no analog for the strings spinning in real space. By a small abuse of notation, we will

call this branch n = 0 although like the n = 1 branch, it has no extrema between the

endpoints of the string. This branch of the spinning strings emerges from the lifting of the

zero fluctuation mode corresponding to translations in the ρ direction, and as we will show
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Figure 6: Top: Profiles of the spinning strings ρ(z) stretching between the two branes at zl = 1

and zh = 1/100, with z ≡ 1/y and the notation as in figure 3. The black dotted line corresponds

to the n = 0 branch, while the blue, red and brown solid curves correspond to the n = 1, 2, 3 cases,

respectively. The gray dashed lines, from left to right, mark the points ρ = 0, 1/2, 1, 3/2. Bottom:

The evolution of the n = 2 branch of solutions as Ω is decreased from 7.725 to 1. The critical

solution is again the third from the left, while the smallest Ω solution has been rescaled in the z

direction by a factor 2.55. In the Ω → 0 limit, the part of the solution extending beyond the light

brane doubles back on itself.

shortly, it is possible to understand its low-energy properties in a semi-analytic fashion.

Earlier in our fluctuation analysis, we saw that while the ground state string sitting at

ρ 6= 0 with Ω = 0 did not experience a potential, excited strings felt a force pulling them

toward ρ = 0. Here, we instead find that strings with even an arbitrarily small Ω are not

free to move in the ρ direction, but must sit at a constant ρ = ρ0 in the limit where Ω

tends to zero. We do not see an n = 0 branch for the real space spinning strings because

the zero mode in the xµ directions is not lifted.

Inspecting the n = 0 branch numerically for yh = 100, we observe that Ω can be

arbitrarily close to zero, with the Ω → 0 limit corresponding to small angular momenta

and energies, in contrast to the branches with n ≥ 1. In this limit, the string profile becomes

a constant, equaling ρ(y) ≡ ρ0 ≈ 1.825. This time there is no maximal angular velocity

at which the solution breaks down, but we rather find that the curve that this branch

of solutions draws on the (Ω, ρ(yl)) plane is not a single valued function of Ω. For the

yh = 100 case we are considering, it starts from the point (0, 1.825), follows monotonically

to the point (2.082, 1.361) and finally turns back to end at (2.069, 1.300), where the light

end of the string is spinning at the local speed of light. We exhibit the forms of the string

profiles for n = 0, 1, 2, 3 in figure 6.

In figure 7, we plot the E vs. Q dependence of the different branches of spinning string

solutions we have encountered. Let us first focus on the n ≥ 1 branches, and specifically
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Figure 7: Left: E versus Q for the spinning heavy-light mesons. From right to left, the solid curves

correspond to the n = 0, 1, 2, 3 branches, and the corresponding dashed curves to the analytic small

Q approximations of eqs. (5.24) and (5.37). The value of yh is set to 100, and the dots on the curves

again denote the critical solutions. Right: The effect of changing the heavy brane location from

yh = 100 (solid blue curve) to yh = 10 (dotted red) in the n = 0 case. The difference of the two

curves is also shown as the dashed black line, magnified by a factor of 500.

on their small Q limits. Similar to the analysis of the strings spinning in real space, we

can consider the approximate solution, valid for small A,

δρ = A
1

z
(ωnzl cos(ωn(z − zl)) + sin(ωn(z − zl))) , (5.22)

θ = ωnt , (5.23)

with z ≡ 1/y and the ωn’s given by our ρ fluctuation spectrum. This solution leads to the

approximate small Q relation

E ≈ mh − ml + ml ωnzl
2πQ√

λ
, (5.24)

which is shown as the dashed straight lines in figure 7 (left). Like the small J result (5.11),

this linear dependence of E on Q is characteristic of a particle in a Hooke’s Law potential.

Decreasing Ω towards the critical angular velocities Ωnc, n ≥ 1, we observe that the

charge Q approaches a critical value Qnc, varying according to n, while the energy E

approaches a universal constant Ec ≈ mh, independent of the branch in question. Both

values, as well as the forms of the E(Q) curves, are highly independent of the location of the

heavy brane at sufficiently large values of yh, and for yh ≥ 10, the first few values of Qnc are

Q1c = 0.258
√

λ/2π, Q2c = 0.156
√

λ/2π, and Q3c = 0.112
√

λ/2π. This mh independence

can be understood by inspecting the form of the canonical momentum densities appearing

in eqs. (5.19)–(5.20). The charge density π0
θ behaves at large y as 1/y4. The energy density

scales at leading order as
√

λ, giving rise to the ground state mass mh − ml of the heavy-

light meson, but the first correction also behaves as 1/y4. These 1/y4 terms mean that the

excitation energy as a function of the charge of the spinning string is highly insensitive to

the form of the string profile at y & 10yl.
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If we proceed to even smaller frequencies, 0 < Ω < Ωnc, we notice that these n > 0

branches persist all the way down to zero. In the limit Ω → 0, the strings become marginally

bound, like their real-space spinning counterparts, with an energy E ≈ mh + ml. In

contrast, the charges Q for the terminal solutions are not universal. For the case mh =

100ml, we find that the terminal values of 2πQ/
√

λ are 0.762, 0.518, and 0.390 for the

n = 1, 2, and 3 branches respectively. Like their real-space spinning counterparts, we

suspect that these long strings are not stable for the exact same reasons.

Switching then to following the n = 0 branch on the (Q,E) plane, we observe that for

a given value of the charge, these strings are always energetically favored in comparison

with their n ≥ 1 counterparts. In the limit yh → ∞, we find that the energy and charge of

the critical solution on the n = 0 branch very quickly approach

E0c = mh − 6(1)
m4

l

m3
h

+ O
(

m5
l

m4
h

)

, (5.25)

2πQ0c√
λ

= 0.69868(1) − 4.0(5)
m3

l

m3
h

+ O
(

m4
l

m4
h

)

, (5.26)

where the coefficients of the first terms have been found by fitting a variety of trial functions

to our numerical data and the errors have been estimated in a very conservative manner.

The vanishing of the first few corrections in 1/mh is similar to the suppression of 1/mh

corrections in the ρ fluctuation analysis of section 4.3. The n = 0 branch does not appear

to admit long string solutions.

Small Ω limit of the n = 0 branch. To conclude our inspection of the string spinning

in the θ direction, we will now take a closer look at the limit of infinitesimally small Ω in

order to gain more understanding of the behavior of the n = 0 solutions there. We note

that this limit corresponds to approximating yl ≫ Ω, and therefore implies that we may

use the relation u4 − Ω2ρ2 ≈ u4 in the equation of motion for ρ. On the other hand, the

observed fact that ρ is nearly a constant in this case implies that

(

u2 − 2ρ2 + 2y5ρρ′
) (

1 + (ρ′)2
)

ρ ≈
(

u2 − 2ρ2
)

ρ, (5.27)

finally giving as the equation to solve

u6ρ′′ + Ω2
(

u2 − 2ρ2
)

ρ = 0. (5.28)

In the last form, we note that we may write

ρ(y) = ρ0 + δρ(y), (5.29)

where ρ0 is a constant and δρ(y) satisfies the Neumann boundary conditions at y = yl and

y = yh. We define ρ0 by the constraint that δρ → 0, as y → yh. Using this parametrization

and the fact that yl ≫ Ω, we see that δρ satisfies the equation of motion

δρ′′ = −Ω2

(

y2 − ρ2
0

)

(y2 + ρ2
0)

3
ρ0 . (5.30)
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If we enforce the boundary condition at y = yh, this differential equation can then be

integrated to yield

δρ(y)/Ω2 =
(y − yh)

(

ρ4
0(y − 2yh) − ρ2

0yyh(3y − yh) − y2y3
h

)

4ρ0(y2 + ρ2
0)(y

2
h + ρ2

0)
2

+
y

4ρ2
0

(

arctan

[

y

ρ0

]

− arctan

[

yh

ρ0

])

, (5.31)

from where — demanding that the derivative of this expression vanish also at y = yl —

we finally obtain as the equation for ρ0

(y2
l + 3ρ2

0)ylρ0

(y2
l + ρ2

0)
2

− (y2
h + 3ρ2

0)yhρ0

(y2
h + ρ2

0)
2

= arctan

[

yh

ρ0

]

− arctan

[

yl

ρ0

]

. (5.32)

Solving this equation numerically produces two solutions, ρ0 = 0 and ρ0 = F (yh/yl)×yl, of

which we can throw out the former, as it is not consistent with our assumption of a small

δρ and furthermore leads to a vanishing angular momentum. The latter result, on the

other hand, is a slowly varying function of yh/yl for large values of this ratio, approaching

in the yh/yl → ∞ limit the result ρ0 ≈ 1.82526 yl . In contrast, for yh ≈ yl, F (yh/yl) ≈ 1.

Properties of the small-Ω solution. To get some feeling for the physical properties

of the above solutions obtained for small Ω ≪ yl, we will next compute their energy E

and internal angular momentum Q using eq. (5.19), where the canonical momentum and

internal angular momentum densities read approximately

π0
t ≈ − L2

2πα′

(

1 +
ρ2
0Ω

2

2u4
0

)

and π0
θ ≈ L2

2πα′

ρ2
0Ω

u4
0

, (5.33)

with u2
0 ≡ y2 + ρ2

0. Here, we have neglected higher order corrections in Ω and used the

approximate solution (5.31). Performing the integrals, we obtain

E ≈ L2

2πα′

(

yh − yl +
Ω2

2yl
Υ

)

and Q ≈ L2

2πα′

Ω

yl
Υ, (5.34)

in which we have defined the dimensionless constant

Υ ≡ ρ2
0yl

∫ yh

yl

dy
1

(y2 + ρ2
0)

2
= ρ2

0yl

(

yl

(ρ2
0 + y2

l )
2
− yh

(ρ2
0 + y2

h)2

)

. (5.35)

In deriving eq. (5.35), we have made use of eq. (5.32). Note that we have

lim
yh→∞

Υ ≈ 0.17757 while lim
yh→yl

Υ =
yh − yl

4yl
. (5.36)

We may now easily solve Ω in terms of Q from eq. (5.34) above, which allows us to

write E in terms of Q

E ≈ mh − ml +
ml

2Υ

(

2πQ√
λ

)2

. (5.37)

Thus we find again that the excitation spectrum does not depend on mh at leading order

in the heavy quark mass limit. As we can see from figure 7, this analytic approximation is

quite good even for moderately large values of Q. The quadratic dependence of E on Q is

characteristic of a particle in a square well, θ(r − r0), type potential.
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6. Summary and discussion

Although different in many respects, the heavy-light mesons we have studied have a spec-

trum which shares certain properties of real-world heavy-light mesons. For example, con-

sider the case where there are two heavy quarks h and h′ and two light quarks l and l′. We

find for the ground state heavy-light mesons that

Mhl − Mhl′ = ml′ − ml = Mh′l − Mh′l′ . (6.1)

This kind of relation is similar to the real world relation (see for example ref. [1]) for mesons

containing a charm or bottom quark,

mBs − mB ≈ mDs − mD ≈ 100 MeV . (6.2)

Of course, the sign of the above difference is wrong: While for us, given that ml > ml′ ,

we would find a negative difference, in the real world the difference is positive. This sign

difference is, however, of little significance in this N = 2 SYM theory. In section 2, we noted

that we could let the lighter D7 brane end along w3 = c′ where c′ ∈ C and |c′| = 1/zl. This

case still preserves N = 2 supersymmetry and allows us to tune the mass of the ground

state heavy-light meson to be anything between mh − ml and mh + ml. We did not study

the excitation spectra of these more general heavy-light mesons in this paper, but it would

be an interesting project for the future.

What we calculated was a portion of the heavy-light meson spectrum for hypermulti-

plets with masses with the same phase. In the dual language, both of our D7 branes sit at

y6 = 0 (or equivalently Imw3 = 0) and different values of y5. One generic feature of this

spectrum is the mh independence of the excitation energies in the heavy quark mass limit.

For example, for low lying fluctuations in the x and y6 directions we found the energy

spectrum

En = mh − ml + ml
2π2n√

λ
+ O

(

m2
l

mh

)

. (6.3)

For the ρ fluctuations, we were not able to determine a spectrum analytically, but were nev-

ertheless able to determine this mh independence numerically. The x fluctuations should

correspond to vector like mesons, while the y6 and ρ fluctuations should correspond to

scalar like mesons.

We also studied spinning strings. For the strings spinning in real space, we found sev-

eral branches, characterized by a radial excitation number n. For small angular momentum

J , we were able to determine the analytic formula

E = mh − ml + ml
2π2nJ√

λ
+ O

(

m2
l

mh

)

, (6.4)

which displays this mh independence. Finally we studied strings spinning in an internal

space, which corresponds to mesons with R-charge Q from the field theory perspective.

For small Q, we found the analytic formulae of eqs. (5.24) and (5.37) which again displays

mh independence.
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Continuing the comparison with QCD, we can consider the mass difference between

an excited and a ground state heavy-light meson in QCD. From the review [1], we learn

that a typical QCD prediction of this heavy quark limit is that the difference in energy

between excited and ground state heavy-light mesons should obey the relations

mB∗
2
− mB ≈ mD∗

2
− mD ≈ 593 MeV , mB1 − mB ≈ mD1 − mD ≈ 557 MeV . (6.5)

Unfortunately, there is no good data yet for mB∗
2

and mB1 . These differences are consistent

with our result that the energy excitations scale with ml, although in real world QCD, we

expect to have ml replaced with ΛQCD.

The electromagnetic mass splittings of heavy-light mesons in QCD are typically

tiny [22]. For example, mD± − mD0 ≈ 5MeV while mB0 − mB± ≈ 0.4 MeV. It is sug-

gestive that in the large λ limit, our approximate formula (5.37) for the Q dependence of

the masses is suppressed by an additional power of Q/
√

λ compared with the linear scaling

of eq. (6.4) on J/
√

λ. However, we have no good understanding of the relative sizes of the

splittings for these D and B mesons.

One interesting phenomenon in QCD that we did not observe in our AdS/CFT model

is hyperfine splitting. There are special pairs of mesons in QCD, which differ by the spin

of the heavy quark and for which the mass difference is proportional to Λ2
QCD/mh. In our

fluctuation analysis, there are degeneracies in the spectra, which might provide a starting

point to look for these hyperfine effects. For example, the lowest lying excitation in the

x direction is a vector meson with the same energy as the scalar meson corresponding to

the lowest lying excitation in the y6 direction. This degeneracy is likely a consequence of

N = 2 supersymmetry, and we expect the fermionic fluctuations of the superstring will fill

out this N = 2 massive supermultiplet. It is tempting to speculate that in a background

with N = 1 or no supersymmetry, the energies of the vector and scalar mesons will develop

a hyperfine splitting.10

Finally, we make some comments regarding two specific open questions related to our

work.

Hybrid mesons. In phenomenological QCD literature, one finds discussion of hybrid

mesons. In perturbative language, such an object would be a bound state of a quark,

antiquark, and gluon [23], while at strong coupling, there exist models of a heavy quark

and antiquark joined by a vibrating flux tube [24]. This second picture is similar to but

also rather different from our model. Like us, the authors of ref. [24] begin by finding the

modes of the vibrating flux tube joining the quarks. However, in their model, both quarks

are heavy. Also, and perhaps more importantly, the quarks themselves have a mass large

compared to the energy of the flux tube, whereas in ours, the mass of the meson is the

mass of the flux tube. As a next step, the authors of ref. [24] use the vibrating flux tube

to construct a phenomenological Cornell like potential through which the massive quarks

interact. Despite these differences, one wonders if there exists a closer connection between

our heavy-light mesons in N = 2 SYM and hybrid heavy-light mesons in QCD — if such

things exist — rather than the “ordinary” heavy-light mesons of QCD.

10We would like to thank J. Erdmenger and D. Son for discussion on this point.
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W bosons. One may also consider Higgsing the N = 4 SU(N) SYM theory down to

SU(N − 2)×U(1)2. In the dual gravitational picture, this Higgsing corresponds to pulling

two D3 branes off of the stack of N D3 branes, whose low energy description this SYM

theory is. As long as we keep the D3 branes parallel in this AdS5 × S5 geometry, they do

not experience a potential and we can imagine placing them at nonzero values of y, just

as we did for the D7 branes. There is then a semi-classical string that stretches between

the two D3 branes, whose fluctuations we may study and which has a dual field theory

interpretation as a W boson.11

We mention this D3 brane and string construction because we can at this point in

our analysis treat it very easily. The treatment of the string spinning in real space and

corresponding to a heavy-light meson is identical for the W bosons. Also, the x fluctuations

of such a string are identical to the x fluctuations for the heavy-light meson. Finally, the

y6 fluctuations are identical, except that there are now four additional y6-like directions

perpendicular to the D3 brane string configuration. Whereas for the heavy-light meson,

the x and y6 fluctuations gave us four towers of identical modes, and the ρ fluctuations gave

us another four towers, for the W boson, the x and y6 fluctuations give us eight towers of

identical modes. We believe this regrouping of one pair of four identical towers into eight

identical towers is related to the doubling in the amount of supersymmetry. The N = 2

SYM relevant for the heavy-light mesons has eight supercharges, whereas the N = 4 SYM,

after the Higgsing which breaks conformal invariance, should have 16.
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