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Abstract

The beam collimation systems are an essential part of the high energy colliders. A collimation
system should remove beam halo to reduce detector background and ensure the machine protection,
thus minimizing the activation and damage of sensitive accelerator components.

The mechanical and optics design of collimation systems is not simple, and they should fullfil
some often conflicting constraints and requirements: high cleaning efficiency, high mechanical
robustness, and low wakefields (impedances). The conventional collimation systems are generally
based on linear optics. Nevertheless, several alternative advanced concepts on collimation have
been proposed in the literature. In this thesis report we have studied in detail nonlinear collimation
systems. These are based on a general scheme with a skew sextupole pair, which can be adapted to
both linear and circular colliders.

In particular we have designed a nonlinear collimation system for the Compact Linear Collider
(CLIC). This system fullfils the function of machine protection against mis-steered or errant beams
with energy offset higher than 1.5 % of the nonimal energy 1.5 TeV. The performance of this
collimation system has been evaluated by means of tracking studies, and compared with that of
the conventional baseline linear collimation system. Since the collimation requirements for linear
colliders designed to operate at center-of-mass energy around TeV are similar to those for the Large
Hadron Collider (LHC) at collision beam energy 7 TeV, it is thus close thought to apply a similar
LHC nonlinear collimation scheme as that designed for CLIC. We have explored this possibility,
and have proposed an alternative nonlinear system for the Phase-II betatron cleaning in the LHC.
Its performance and cleaning efficiency have further been evaluated by tracking studies. Moreover
a comparison of the features of the nonlinear collimation system and the linear collimation system
has been made for the LHC.
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Resumen

Introducción y objetivos

El estudio de la fı́sica más allá del llamado Modelo Estándar de las partı́culas elementales exige de
aceleradores de partı́culas que operen a escalas de energı́a del TeV. Se espera que las primeras re-
spuestas a cuestiones tales como la existencia del bosón de Higgs, el origen del sabor (de quarks y
leptones) y la unificación de las interacciones fundamentales en un único grupo vengan del ‘Large

Hadron Collider’ (LHC) [1]. Este colisionador circular, actualmente en construcción en ‘The Eu-

ropean Organization for Nuclear Research’ (CERN), hará chocar protones a energı́a en el centro
de masas de 14 TeV, con la posibilidad adicional de colisión de iones.

En la actualidad existe consenso en la comunidad de fı́sica de altas energı́as de que la siguiente
generación de aceleradores tras el LHC ha de ser un colisionador lineal leptón-antileptón, operando
en un rango de energı́as 0.5–5 TeV. Los colisionadores lineales e+e−, además de minimizar el prob-
lema de pérdidas de energı́a debido a radiación sincrotrón, facilitarı́an la detección de partı́culas
en el punto de interacción, ya que mientras que en una colisión protón-protón existe una partición
de energı́a entre las partı́culas componentes, quarks y gluones, la colisión de e+e− serı́a puntual,
dando lugar a reacciones muy bien definidas en los detectores. Se puede decir que los colision-
adores lineales proporcinarı́an un excelente complemento al LHC, permitiendo estudiar con mayor
resolución los descubrimientos fı́sicos proporcionados por el LHC. Para detalles de la fı́sica de los
colisionadores lineales e+e− véase, por ejemplo, la referencia [3].

Para alcanzar un gran número de sucesos en el punto de interacción se necesita una alta lu-
minosidad. La luminosidad en el LHC será del orden de 1034 cm−2s−1 en los experimentos a alta
luminosidad (ATLAS y CMS) [1], y en los colisionadores lineales ∼ 1034–1035 cm−2s−1. Esto
se consigue con haces de gran intensidad (∼ 1014 partı́culas por haz en el caso del LHC, ∼ 1011

partı́culas por haz en el caso de CLIC y ∼ 1013 partı́culas por haz para el ILC) y tallas transversales
de los haces en el punto de interacción muy pequeñas, que en el caso de los aceleradores lineales
llegarán al orden del nanómetro, lo cual supone un reto en el transporte y focalización del haz en

v
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el punto de interacción. La calidad del haz debe ser preservada a lo largo de la lı́nea de transporte,
evitando el aumento de la emitancia y minimizando el número de partı́culas viajando a gran am-
plitud con respecto a la partı́cula de referencia o con una energı́a diferente a la energı́a de diseño.
Estas partı́culas constituyen lo que se denomina el halo del haz, y son las responsables de una gran
parte del ruido de fondo en los detectores. Por tanto, las partı́culas del halo deben ser eliminadas.
Los llamados sistemas de colimación están dedicados a tal fin.

Otra función importante del sistema de colimación es la protección de los componentes del
acelerador. Con energı́as del orden del TeV y densidades de potencia del orden de GWmm−2, es
evidente la necesidad de un buen sistema de protección de la máquina en caso de fallo. Haces
desviados de la órbita de diseño pueden irradiar en exceso elementos de la máquina y terminar
dañándolos. Por tanto, el sistema de colimación debe ser capaz de interceptar esos haces. Además,
en el caso de aceleradores basados en imanes superconductores, como el LHC, pérdidas excesivas
de partı́culas en las llamadas regiones frı́as (los arcos que contienen dipolos superconductores),
deben ser evitadas. De lo contrario, se rompe el régimen superconductor debido a un incremento
de la temperatura del imán y tendremos una transición a la fase de conducción normal.

La forma usual de realizar la colimación de los haces es a través de bloques de material que a
modo de barrera interceptan el halo. Éstos son localizados en regiones concretas de la máquina,
con una óptica adecuada para dirigir las partı́culas del halo a los colimadores.

El sistema de colimación debe cumplir una serie de requisitos:

• La óptica del sistema no debe introducir aberraciones que desestabilicen el haz y degraden,
por tanto, la luminosidad.

• La elección de las aperturas de los colimadores debe garantizar una limpieza eficiente del
haz, y no introducir intolerables campos estela (o impedancias), que pueden comprometer la
estabilidad del haz.

• Generalmente el sistema debe ser lo suficientemente robusto como para sobrevivir al impacto
directo del haz.

Los sistemas de colimación estándar están basados en ópticas lineales. Ver, por ejemplo, una
descripcion del sistema lineal de colimación del LHC en [8], y del sistema lineal de colimación de
CLIC en [10].

Sin embargo, otros conceptos alternativos de colimación han sido estudiados en la literatura,
por ejemplo podemos citar: los colimadores desechables [19], los colimadores reparables [19],
la colimación con láser [28], las lentes de electrones [30], la colimación por medio de cristales
[21, 24–26], y la colimación no lineal [15, 33, 37–39].

El objetivo de esta tesis es el estudio detallado de los sistemas de colimación no lineales y su
aplicación a CLIC y al LHC. Se llaman sistemas de colimación no lineal aquellos que incluyen
elementos magnéticos no lineales, tales como sextupolos y octupolos, con el propósito de eliminar
el halo. Más concretamente en este trabajo se describe un diseño de sistema de colimación no
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lineal basado en un par de sextupolos rotados (sextupolos ‘skew’). Estos sextupolos están girados
transversalmente un ángulo de π/6 rad respecto a un sextupolo normal.

El fundamento básico de la colimación no lineal es el siguiente: un primer elemento no lineal,
en nuestro esquema un sextupolo rotado, infları́a el tamaño transversal del haz en el punto de
impacto con el colimador o barrera que intercepta al haz primario, permitiendo ası́ una mayor
apertura del colimador. Esto reducirı́a a su vez la densidad de energı́a del halo en el momento de
impacto, con el consiguiente aumento de probabilidad de supervivencia del colimador. Un segundo
sextupolo de la misma intensidad y separado del primero por una matriz de transferencia−I (siendo
I la matriz identidad) canceları́a las aberraciones ópticas de tipo geométrico introducidas por el
primero. Es importante subrayar que el efecto del elemento no lineal afectará exclusivamente a las
partı́culas del halo, i.e., aquellas viajando a grandes amplitudes o desviadas de la energı́a de diseño,
dejando intacto el núcleo del haz.

Discusión de los resultados

Como ya hemos mencionado en la introducción, en esta tesis hemos presentado un esquema general
de colimación basado en colimadores primarios situados entre un par de sextupolos rotados. Las
siguientes consideraciones son tenidas en cuenta:

• Ambos sextupolos tienen la misma intensidad.

• Los sextupolos están separados por una matriz de transferencia −I. Esto es esencial para que
el segundo sextupolo cancele el efecto y las aberraciones de tipo geométrico introducidas
por el primero.

• El colimador se ha situado con un avance de fase (en su movimiento betatrónico) de π/2 rad
respecto al primer sextupolo. El segundo sextupolo está localizado a su vez con un avance
de fase de π/2 rad respecto al colimador.

• Es preferible que la dispersión Dx en la posición del segundo sextupolo sea igual y de signo
opuesto a la del primero. De este modo, es posible cancelar las aberraciones cromáticas de
primer orden.

Partiendo del Hamiltoniano del sistema (ver capı́tulo 4) hemos calculado analı́ticamente el
valor cuadrático medio de la talla transversal del haz en la posición del colimador. El sistema de
ecuaciones para el cálculo de las aperturas del colimador a partir de los parámetros ópticos y de las
profundidades de colimación ha sido también desarrollado.

Cabe resaltar que el esquema de colimación presentado en esta tesis es bastante general, y se
puede aplicar, con las modificaciones oportunas, tanto a colisionadores lineales como a circulares.
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En el caso de los colisionadores lineales hemos asumido que la componente dispersiva en en-
ergı́a de la amplitud transversal domina sobre las componentes betatrónicas. En nuestros cálculos
también hemos asumido haces planos, con la talla horizontal σx mucho mayor que la vertical σy.
Los colisionadores lineales suelen ser diseñados con haces planos para, por un lado, alcanzar una
luminosidad elevada (L ∝ 1/(σxσy)) y, por otro lado, minimizar los efectos del llamado ‘beam-
strahlung’ [84], cuya intensidad se comporta como 1/(σx + σy).
En el caso de los colisionadores circulares o anillos de almacenamiento, para nuestros cálculos
hemos asumido que la parte betatrónica de la amplitud transversal domina sobre la parte dispersiva
y, por tanto, aplicaremos la colimación no lineal para la limpieza del halo en los planos betatrónicos.

Un sistema de colimación no lineal para CLIC

Teniendo en cuenta las restricciones y requisitos para el sistema óptico impuestas en el
capı́tulo 4, en el capı́tulo 5 mostramos diferentes soluciones ópticas para un sistema no lineal
de colimación en energı́a para CLIC. Estos sistemas ópticos se diferencian esencialmente en su
longitud y la intensidad (y longitud) de los imanes dipolares que crean la dispersión. El ajuste de la
óptica ha sido realizado por medio de un programa informático de diseño de aceleradores llamado
MAD [114].

Las caracterı́sticas y eficiencia de tales sistemas han sido estudiadas por medio de simulaciones
del haz a lo largo de la lı́nea de transporte, desde la entrada del sistema de colimación hasta el punto
de interacción. Para ello hemos usado los códigos MAD y Placet [119], asumiendo una distribución
inicial de partı́culas Gausiana en el plano transversal, y plana en energı́a, con una anchura total de
dispersión en energı́a del 1 %.

La luminosidad, calculada por medio de la simulación de la interacción haz-haz con el pro-
grama Guinea-Pig [86], decrece drásticamente con el aumento de la intensidad del sextupolo. Ello
es debido al efecto de las aberraciones ópticas remanentes, geométricas y cromáticas, de segundo,
tercer y cuarto orden. Con el objetivo de corregir tales aberraciones, dos nuevos imanes multipo-
lares (un octupolo rotado y un sextupolo normal) fueron incorporados al sistema. La intensidad
de estos multipolos fue calculada usando un algoritmo de minimización de aberraciones ópticas
de alto orden denominado MAPCLASS [125]. De este modo, conseguimos suavizar la curva de
decrecimiento de la luminosidad en función la intensidad del sextupolo rotado. Por ejemplo, tras
la optimización del sistema, para una intensidad integrada del sextupolo rotado de Ks ' 20 m−2

la luminosidad aumenta aproximadamente un factor 2 con respecto a su correspondiente valor sin
optimización.

El comportamiento de la talla transversal del haz en el colimador también ha sido evaluada
como función del error promedio en energı́a del haz. La talla en el plano vertical se ve consider-
ablemente incrementada por el sextupolo, mientras que la horizontal permanece prácticamente no
afectada. El objetivo incrementando la talla en el colimador es el de impedir el daño del colimador
en caso de impacto directo de un haz con un cierto error de energı́a. Si denominamos por σr,min a



ix RESUMEN

la talla transversal mı́nima necesaria para evitar el daño del colimador, entonces se debe cumplir
√
σxσy & σr,min para la supervivencia del colimador. Para un colimador de berilio, por ejemplo, y

suponiendo haces Gausianos, este lı́mite ha sido establecido en σr,min ' 120 µm [87]. De las sim-
ulaciones se deduce que los haces son no Gaussianos en el collimador, por lo que un mejor criterio
serı́a comparar el pico de densidad transversal de energı́a del haz ρE(x, y) con el lı́mite definido
por la densidad ρE,max = NE0/(2πσ2

r,min), con N el número de particulas por haz y E0 la energı́a
nominal del haz. Al fin y al cabo, es la deposición de energı́a en la superficie del colimador lo que
es relevante para la fractura del material.

La intensidad de los multipolos del sistema de colimación no lineal debe ser tal que garantice
la reducción de la densidad transversal del haz por debajo del lı́mite de fractura, a la vez que no
degrade sobremanera la luminosidad en el punto de interacción. Un sextupolo con una intensidad
integrada de alrededor de 20 m−2 garantizarı́a la supervivencia del colimador en el caso de impactos
de haces con errores en energı́a & 1.5 %. En operación normal, i.e., sin errores de energı́a, con
una intensidad del sextupolo de 20 m−2, la luminosidad es L ≈ 5 × 1034 cm−2s−1. Este valor
puede ser comparado con el computado para CLIC usando un sistema de colimación lineal: L ≈
7 × 1034 cm−2s−1.

También podemos comparar la llamada anchura de banda en energı́a (‘bandwidth’) del sistema
de colimación no lineal diseñado en esta tesis con la del sistema lineal. Por anchura de banda se
entiende el error lı́mite tolerado en energı́a antes de la degradación brusca de la luminosidad. Tras
la optimización del sistema no lineal, mencionada anteriormente, hemos obtenido una anchura de
banda para el sistema no lineal prácticamente comparable a la del sistema lineal.

Considerando colimadores perfectos, i.e., con absorción total y sin producción de haces secun-
darios, hemos estudiado y comparado la eficiencia de colimación del sistema lineal y no lineal. El
porcentaje de pérdidas de partı́culas es muy similar en ambos tipos de sistema. Si bien, un nuevo
estudio de optimización de las aperturas debe ser realizado, ya que el portentaje de pérdidas en los
colimadores betatrónicos, incluso considerando un caso ideal (sin error promedio de energı́a), es
excesivamente alto, elevando ası́ la probabilidad de producción de muones (en la interacción de
la partı́cula con el colimador), tan indeseados a efectos de ruido de fondo en los detectores de la
región de interacción.

Un sistema de colimación no lineal para el LHC

El diseño del sistema de colimación del LHC está planeado para ser desarrollado por fases [8].
En una primera fase, el esfuerzo está centrado en la robustez del sistema, y está basado en una
óptica lineal. Los colimadores primarios están construidos con grafito y tienen una apertura de 6 σ
(en unidades de valor cuadrático medio de la talla transversal del haz). Debido a la proximidad
de los bloques de los colimadores al haz y a que el grafito tiene una baja conductividad eléctrica,
se estima que las impedancias generadas pueden limitar considerablemente la luminosidad del
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acelerador. Para solventar este problema han surgido propuestas alternativas para una segunda
fase de desarrollo o mejora del sistema. A modo de ejemplo mencionaré la colimación a través
de cristales [26] y la colimación usando lentes de electrones [30]. En esta tesis proponemos un
sistema de colimación no lineal como solución para la segunda fase de desarrollo del sistema de
colimación del LHC.

En el capı́tulo 6 se ha diseñado un sistema de colimación no lineal de la amplitud betatrónica
para el LHC. Este sistema está basado en un concepto similar al sistema no lineal desarrollado
para CLIC, teniendo en cuenta las siguientes diferencias: La dispersión en momento del LHC es
casi dos órdenes de magnitud más pequeña que la de CLIC, por lo que la dispersión no puede ser
explotada para inflar el haz; el crecimiento de la emitancia debido a radiación sincrotrón en el LHC
es insignificante, y no será por tanto un factor restrictivo; y la emitancia geométrica vertical es
aproximadamente unos 3 órdenes de magnitud mayor que en CLIC.

Con el fin de cumplir las condiciones para la colimación no lineal, hemos modificado los
parámetros ópticos de la llamada región de interacción IR7 (versión 6.5), dedicada a la limpieza
betatrónica del haz. Este ajuste fue realizado con el programa MAD sin afectar a las otras regiones
de la máquina.

Para determinar el lı́mite de protección del colimador nos hemos guiado por un criterio similar
al utilizado anteriormente, σxσy & σ

2
r,min. En el caso del LHC, cuyos colimadores primarios están

construidos con grafito: σ2
r,min ≈ 200 µm. Sin embargo, para establecer un lı́mite más preciso, serı́a

necesario realizar simulaciones numéricas de la interacción de los protones del haz con el material
del colimador y su correpondiente deposición de energı́a en el colimador.

Para el estudio de la eficiencia de colimación, hemos considerado un sistema de colimación
no lineal de dos etapas, i.e., compuesto por colimadores primarios y secundarios. Estos últimos
tienen como objetivo interceptar el halo secundario. En este diseño hemos colocado un colimador
primario horizontal y otro vertical en el punto de interacción IP7. Las aperturas son de 16 σx y
8 σy para el primario horizontal y el primario vertical, respectivamente (comparar con los 6 σ de
apertura de un colimador primario en el sistema lineal). La eficiencia de colimación ha sido evalu-
ada para ambos sistemas, el lineal y el no lineal. Para ello, halos de partı́culas fueron generados y
transportados a lo largo de 200 vueltas diferentes usando el código de simulación SixTrack [145].
Considerando un halo en el plano vertical, la eficiencia de los dos sistemas es muy similar. Por otro
lado, el sistema lineal se muestra más eficiente limpiando el halo en los planos horizontal y radial.
Sin embargo, creemos que con un cuidadoso ajuste de la posición de los colimadores secundarios,
ası́ como de su orientación angular, serı́a posible incrementar la eficiencia del sistema no lineal al
mismo nivel que el lineal.

El hecho de que un sistema de colimación no lineal permita aperturas mayores con respecto a
los sistemas lineales convencionales, ayuda a reducir las impedancias de la máquina y, por con-
siguiente, a preservar la estabilidad del haz. A este respecto, se ha demostrado la reducción de las
impedancias usando el sistema de colimación no lineal.
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El primer experimento de colimación no lineal en el SPS

El 8 de Noviembre de 2006, se llevó a cabo el primer experimento de colimación no lineal en
el ‘Super Proton Synchroton’ (SPS) del CERN. En este acelerador hay instalado un prototipo de
colimador secundario tal como los que se utilizarán en la primera fase del LHC.

Para nuestro experimento hemos usado ocho imanes sextupolares que hay instalados en el SPS,
y que en operaciones normales son usados para extracción lenta o resonante del haz. El objetivo
de este primer experimento es determinar el efecto de los sextupolos en el patrón de pérdidas de
las partı́culas del halo a lo largo del anillo. Este patrón de pérdidas ha sido comparado con el que
existe cuando los sextupolos están desactivados.

Con los sextupolos de extracción hemos excitado términos resonantes. En ambos casos, con
sextupolos activados y desactivados, encontramos un patrón similar de picos de pérdidas, estando
el mayor de ellos localizado en la posición del colimador. Sin embargo, el análisis de los datos ha
desvelado una clara diferencia: cuando los sextupolos están conectados, en las posiciones donde
los términos resonantes son altos, encontramos picos de pérdidas adicionales. Esto es debido a la
deflexión por los sextupolos de partı́culas del halo hacia aperturas que en operación normal (sin
sextupolos) no son limitantes.

De esta primera prueba experimental podemos obtener ideas para configurar experimentos más
sofisticados de colimación no lineal en el futuro. Estos deberán focalizar la atención, por un lado,
en mejorar la eficiencia de colimación a la vez que se incrementa la apertura del colimador y, por
otro lado, en la cancelación de aberraciones entre parejas de sextupolos.

Conclusiones

Los sistemas de colimación son una parte esencial de los colisionadores operando a energı́as del
orden del TeV. La colimación del haz es necesaria tanto para reducir el ruido de fondo en los
detectores del punto de interacción, como para proteger los componentes de la máquina en caso de
fallos en la operación.

El diseño de los sistemas de colimación no es nada sencillo y, generalmente, se debe amoldar a
una serie de restricciones: alta eficiencia de colimación, colimadores resistentes y un efecto lo más
debil posible de los ‘campos estela’ (impedancias).

Los sistemas de colimación están basados usualmente en secciones ópticas lineales. Aunque es
posible encontrar conceptos alternativos en la literatura. En esta tesis hemos estudiado con detalle
un sistema de colimación no lineal para aceleradores de altas energı́as, presentando un esquema
general de colimación que es tanto aplicable a colisionadores lineales, tal como CLIC y ILC, como
a colisionadores circulares, tal como el LHC. Este sistema está basado en imanes sextupolares
rotados.

Una aplicación del concepto ha sido explorada para CLIC. En particular, hemos diseñado un
sistema no lineal de colimación en energı́a. Las caracterı́sticas de este sistema han sido estudiadas
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con diversos códigos de simulación de la dinámica del haz. Este sistema garantiza la reducción de
la densidad de la distribución transversal de energı́a en la posición del colimador para haces con
errores en energı́a. La protección del colimador contra fractura está garantizada en caso de impacto
directo de haces con errores promedios de energı́a & 1.5 %.

Uno de los inconvenientes de los sistemas no lineales es el difı́cil control de las aberraciones
ópticas de alto orden, que degradan considerablemente la luminosidad. Sin embargo, tras la opti-
mización del sistema mediante una corrección local de las aberraciones, se consigue una luminosi-
dad comparable a la del sistema lineal de CLIC. La anchura de banda en energı́a, i.e., el error lı́mite
tolerado en energı́a antes de la degradación brusca de la luminosidad, también fue mejorado tras la
optimización, siendo ahora comparable a la del correspondiente sistema lineal.

Un esquema de colimación similar al de CLIC ha sido adaptado para colimación de las fases
betatrónicas en el LHC. Para ello se ajustaron los parámetros del diseño óptico de la región IR7, que
está dedicada a colimación betatrónica. Este ajuste fue realizado sin afectar a las otras secciones
del acelerador.

El sistema de colimación no lineal, al igual que el lineal, incluyen colimadores primarios y
colimadores secundarios, por lo que se le denomina sistema de colimación en dos etapas.

Hemos evaluado y comparado las caracterı́sticas del sistema no lineal con las del sistema lineal.
La eficiencia de colimación ha sido estimada a través de códigos de simulación de la dinámica del
haz incluyendo la interacción del halo con los colimadores. Ambos sistemas, el lineal y el no
lineal, muestran una eficiencia similar limpiando el halo en el plano vertical. Sin embargo, el
sistema lineal, se muestra más eficiente limpiando partı́culas de un halo horizontal y radial. Cabe
resaltar que, con un ajuste más fino de la orientación angular, ası́ como de la posición, de los
colimadores secundarios, se puede mejorar la eficiencia del sistema no lineal. En esta tesis hemos
mostrado que el concepto de colimación no lineal trabaja aceptablemente para el LHC. Para refinar
el rendimiento del sistema, un estudio de optimización del sistema serı́a conveniente en futuros
trabajos.

Es también conveniente resaltar que el sistema de colimación no lineal descrito en este trabajo
para el LHC permite mayores aperturas de los colimadores con respecto al sistema lineal. Esto es
muy importante, ya que contribuye a reducir las impedancias generadas por los colimadores, que
actualmente son un factor limitante para la luminosidad del LHC. Hemos reducido en un factor 2
el módulo de la impedancia efectiva en al plano horizontal, y en un factor 3 en el plano vertical
con respecto a los correspondientes valores generados por el sistema de colimación lineal. Esta
reducción de la impedancia contribuye a incrementar la estabilidad del haz.

Finalmente, podemos concluir, que en esta tesis hemos demostrado que los sistemas de coli-
mación basados en ópticas no lineales pueden ser lo suficientemente competitivos, y pueden con-
tribuir además a resolver algunos problemas clave que en la actualidad limitan el rendimiento de
los aceleradores, como por ejemplo el de las impedancias en el LHC.



Chapter 1
Introduction

The new colliders at high energy physics, operating at beam energies around 1–10 TeV will explore
the physics beyond the so-called Standard Model of the elementary particles. For instance, the
Large Hadron Collider (LHC) [1], currently under commissioning at the European Organization
for Nuclear Research (CERN), will operate at a center-of-mass collision energy of 14 TeV. This
is the biggest hadron storage ring ever constructed, with possibility of proton-proton or ion-ion
collisions.

At present, there is a general consensus among the particle physics community that the next
large-energy particle accelerator ‘post LHC’ should be an e+e− linear collider. Two big projects are
currently being studied: the International Linear Collider (ILC) [2] and the Compact Linear Col-
lider (CLIC) [3,4]. These machines, operating with centre-of-mass collision energies ranging from
0.5 TeV to about 5 TeV, will provide an essential complement to hadron-hadron colliders. Unlike
the hadron-hadron collisions, where the center-of mass energy is split among all the constituents
(quarks and gluons), the point-like e+e− collisions provide a cleaner experimental environment and
a more ‘democratic’ production of all particles within the accessible energy range. This will allow
more precise physics measurements, helping thus to unravel the TeV physics, to be unveiled by
the LHC. In both LHC and linear collider projects a very high luminosity is necessary to reach the
physics goals, a luminosity of about 1034 cm−2s−1 (high luminosity experiments) for the LHC and
about 1034–1035 cm−2s−1 for the linear colliders. In order to reach such a high luminosity, beams
with high intensity and very small transverse beam sizes collide at the interaction point (IP).

In order to keep the quality of the beam, particles at large betatron amplitudes or with a large
momentum offset, what are generally referred to as the beam halo particles, should be eliminated.
The halo particles are an important source of detector background, which limits the ultimate achiev-
able luminosity, such as the experience of running the Stanford Linear Collider (SLC) [5] and the
Large Electron Positron (LEP) collider [6] have shown. Therefore, collimation sections should be
dedicated to the cleaning of the beam halo in order to reduce the experimental background.

1
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Another important function of the collimation system is the protection of the machine compo-
nents in case of failures. The LHC and the future linear colliders will store a transverse energy
density per beam of about GJ/mm2 (' 6.2 × 1018 GeV/mm2). This advances the state of the art by
three order of magnitude respect to recent achievements at TEVATRON (Fermilab, USA) and at
HERA (DESY, Germany) [7], what means a higher damage potential of the beam.

In addition, the collimation system should not compromise the beam stability introducing in-
tolerable wakefields (impedances).

The collimation systems are generally based on linear optics, see [1, 8] for the LHC collima-
tion system and [9, 10] for the CLIC collimation system. Alternatively other concepts have been
proposed in the literature. In this thesis we focus our study on the nonlinear collimation concept.
It is denominated “nonlinear” because it is based on nonlinear magnets, such as sextupoles and oc-
tupoles. We have designed a scheme based on skew-sextupoles 1 for CLIC, and adapted a similar
scheme for betatron collimation in the LHC. The performance of these systems is compared with
that of the conventional linear one.

This thesis report is organized as follows:
The general principles of beam collimation for high energy colliders are presented in chapter 2.

The criteria to determine the necessary collimation depths in both transverse and longitudinal (in
energy) planes, and the necessary optics requirements are introduced. In a first approximation we
assume a linear optics for collimation.

The chapter 3 is devoted to describe briefly some important issues related to collimation: differ-
ent mechanisms which may contribute to the halo and tail generation; and other mechanisms from
beam-collimator interaction which may contribute to the collimator damage. A brief introduction
to the concepts of collimator wakefields and collimator impedances is also given.

In chapter 4 we describe the concept of nonlinear collimation of beam halo in both linear and
circular colliders. In particular we studied an optics scheme based on a pair of skew sextupoles.
We have derived analytically the equation system to evaluate the optics parameters and the required
collimator aperture of the system. Several constraints have been used in order to, on one hand,
ensure the beam stability and, on the other hand, guarantee the collimator survival in case of a
direct beam impact in a failure scenario. In this chapter the resulting expressions to calculate the
transverse beam spot sizes at the spoiler (primary collimator) are given up to second order matrix
expansion, and up to third order in the appendix C.

Chapter 5 studies the particular case of the CLIC collimation system. After a brief introduction
to the present status of the CLIC beam delivery system, we present our results on the study of an
alternative nonlinear energy collimation system for CLIC: optics layout and its performance eval-
uation. We also discuss the optics constraints and requirements to choose the best optics solution
candidate. This optics solution should allow a collimation efficiency as high as possible minimiz-
ing at the same time the luminosity degradation. The system properties, like chromatic bandwidth,
collimator survival condition and cleaning efficiency, are evaluated and compared with those of the

1“skew” refers to sextupoles rotated an azimuthal angle of π/6 rad with respect to a normal sextupole.
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corresponding conventional linear collimation system.
In chapter 6, after a brief introduction to the LHC, we explore the viability of a nonlinear

collimation system for betatron cleaning in the LHC. This system could be a possible solution to the
difficult trade-off between cleaning efficiency, collimator robustness and collimator impedance in
the LHC. We analyze the beam losses and calculate the cleaning efficiency of the system. Moreover,
impedance studies have been also performed. All the results have been compared with those of the
LHC conventional linear collimation system.

The chapter 7 presents some preliminary results from the first experimental test on nonlinear
collimation, based on normal sextupoles, made in the Super Proton Synchrotron (SPS) at CERN.

Finally some conclusions are drawn in chapter 8.
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Chapter 2
Collimation for High Energy Colliders

2.1 Principle of beam collimation

The collimation system of high energy colliders should fulfil the following main functions:

• Reduction of the background in the particle detectors by removing halo particles, i.e. parti-
cles at large betatron amplitudes or energy offsets.

• Protection of machine components, i.e. should minimize the activation and damage of ac-
celerator components outside of the dedicated collimation section. In accelerators using su-
perconducting magnet technology, as in the case of the LHC [1], the collimation system has
the following additional protection functionality: efficient cleaning such that beam-induced
quenches of the superconducting magnets are avoided during routine operation 1.

• Protection of the collimation system itself. The collimators should be protected from being
destroyed during normal and abnormal operational conditions.

The design of a collimation system with the above functions is not trivial, as it has to obey a
number of often conflicting constraints:

• The optics of the system should not adversely affect the beam stability or degrade the nominal
luminosity.

• The choice of the collimator apertures should guarantee a good cleaning efficiency of the
beam halo and, at the same time, not introduce intolerable wakefields (impedances), which
can compromise beam stability.

1The protection against quenches of the superconducting magnets can also be important in future linear colliders, such
as the ILC, whose final doublet in the 2mrad crossing angle scheme contains a superconductive large bore defocusing
quadrupole and nearby two superconductive sextupoles for local chromaticity correction [11]

5
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• The collimation system should withstand the direct impact of mis-steered or errant beams.
This requires robust collimators and an appropriate optics design.

• The choice of the material for the collimator jaws is critical regarding both the robustness
and the impedance issues.

• The regeneration of halo due to beam particle scattering at the collimator, or due to optical
and wakefield phenomena, should be limited.

The beam collimation is generally performed using a mechanical system and a dedicated optics.
Such a system is constituted of blocks of material between the beam and the size of the vacuum
pipe to intercept the beam halo particles. These blocks are commonly called jaws.

In the next section we study the general guide lines for collimation in linear and circular col-
liders based in linear optics. Other alternative schemes are briefly described in section 2.2.

2.1.1 Collimation in linear colliders

A conventional postlinac collimation system for future linear colliders usually consists of a scheme
of spoilers/absorbers, as shown in Fig. 2.1. The halo particles are first intercepted using thin
spoilers, with a length of some fraction of a radiation length of material. Thick (≥ 20 radiation
lengths) absorbers judiciously placed downstream of the spoiler(s) collect the debris generated. The
purpose of the spoilers is to increase the angular divergence of an incident beam. This increases
the beam size at the absorbers and reduces the risk of material damage.
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Figure 2.1: Schematic of a conventional collimation system consisting of a series of spoilers fol-
lowed by absorbers.

The postlinac collimation system is generally composed of a section for betatronic collimation
and another section for energy collimation 2

2Unlike the ILC, where the betatron collimation section is followed by the energy collimators, in CLIC the energy
collimation section is upstream of the betatron one.
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Betatron collimation amplitudes

How tight the betatron collimation has to be, i.e. how close to the core of the beam the apertures
must be set, is determined predominantly by the geometry of the interaction region (IR) and the
quadrupoles close to the IR, particularly the so-called final doublet (FD). The guiding principle is
based on synchrotron radiation (SR) photons generated by the beam halo in the FD: all photons
generated by the remaining halo particles should pass cleanly through the IR, rather than being
intercepted by masks (which protect the detectors at the interaction point). This criterion defines
a maximum allowed amplitude of particles at the entrance to the FD, which is referred to as the
betatron collimation depth in the linear colliders, and it is measured in terms on the nominal core
beam size (σx,y =

√
βx,yεx,y).

In this section we study the betatron collimation depths using a linear optics. We do not con-
sider the nonlinear effects coming, for example, from the sextupoles used for local chromaticity
correction.

The betatron collimation system should perform collimation in the phase spaces x–x′ and y–y′.
To collimate exclusively in the betatronic planes, the collimators are usually located in a region
with zero transverse dispersion 3, Dx,y = 0. The necessary collimation depths nx,y (in units of the
rms transverse beam sizes

√
βx,yεx,y) fix the transverse collimator half gaps: ax,y = nx,y

√
βx,yεx,y.

The transverse phase-advance between the spoiler positions and the IP is generally set to be `π
rad or (1/2 + `)π rad, with ` = 0, 1, 2, 3, . . . . The IP is usually at π/2 phase advance from the FD.
Therefore, on one hand, spoilers at `π phase advance from the IP are said to collimate amplitudes at
the IP phase and, on the other hand, collimators at (1/2 + `)π from the IP are said to collimate am-
plitudes at the FD phase. Figure 2.2 shows schematically an example of a possible transverse phase
advance distribution between spoilers, FD and IP. Unlike circular collimators, where simultaneous
collimation in both phase spaces x–x′ and y–y′ is provided, we consider rectangular collimators,
i.e. by using horizontal and vertical jaws. A horizontal (H) spoiler is used for collimation of the
region |x| ≥ nx

√
βxεx, and downstream, at π/2 phase advance from the former, another spoiler clean

the region |x′| ≥ nx
√
γxεx. A similar arrangement with vertical (V) spoilers is used for cleaning of

the phase space y–y′.
A detailed method to calculate the collimation depth is described in Ref. [13]. Here we will

indicate the general guidelines.
At first order, the collimation depth at the IP is related to the collimated beam phase space

corners at a distance s upstream from the IP by

x∗c(s∗) = R(s∗, s)xc(s) , (2.1)

where x∗c(s∗) = (nx
√
β∗xεx, nx

√
γ∗xεx) is the collimation depth vector at the IP position s∗, xc =

(xc, x′c) is the amplitude vector of the envelope of the collimated halo at position s, and R(s∗, s) is

3An exceptional case was the optics of the collimation system of the NLC project [12], which was designed to perform
collimation simultaneously in the plane x–x′ and in energy with the following collimation depth: nx = (x + Dxδ)/

√
βxεx.
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FD

IP

π/2
π/2

π/2π

yx x, y,

H V H V

Figure 2.2: Schematic of the location in phase advance of spoilers.

the 2 × 2 first order transfer matrix from the s position to the IP.
Beam particles in the collimated beam phase space which reaches the FD emit SR photons.

These photons should cross the apertures in the interaction region without hitting any machine
component. The limiting apertures may include the following: the bore of the incoming doublet
itself, or the one of the opposite doublet, the narrow beampipe at the interaction point, forward
instrumentation devices and protection masks. If s is the position of the FD, s∗ the position of the
IP, and L the distance from the IP to the limiting aperture (A) position, the corners of the SR fan
envelope in this aperture are given by:

xγc (s, L) = D(s∗ + L − s)xc(s)

= D(s∗ + L − s)R−1(s∗, s)x∗c(s∗) , (2.2)

where D(s∗ + L− s) is the transfer matrix of a drift with length s∗ + L− s, and in the second step the
Eq. (2.1) has been inverted. Fig. 2.3 illustrates this situation. A similar development can be done
for the phase space y–y′.

The maximum transverse radial displacement of the SR photon for a given emission point
(xc, x′c) and (yc, y′c) is

r =
√

xγc 2 + yγc 2 . (2.3)

This equation represents an elliptical curve in nx–ny. Considering a circular limiting aperture of
radius A in the interaction region, the transverse collimation depths nx and ny for one particular
emission point are determined by the constraint r . A. The solution usually chosen is that which
maximizes the product nx · ny. Note that this calculation recipe is made for a single emission
point. Obviously, there are many emission points in the final doublet and thus many corresponding
solution ellipses. Therefore, the collimation depths should be computed for many emission points
through the final doublet. For a given limiting aperture the overall solution is the smallest pair of
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Figure 2.3: Schematic of the interaction region of a linear collider. The red lines represent the SR
fan envelope generated in the final doublet. In this example the limiting aperture (A) is defined by
the exit mask.

(nx,ny) values. Moreover this calculation process should be repeated for each small aperture in the
interaction region.

It is worth mentioning that in a real machine, the apertures in the interaction region may not
impose circular symmetric constraints on the collimation depths, rendering the calculation more
complicate.

Actually, the collimation amplitudes should usually be tighter than the calculated depths, due
mainly to the following phenomena:

• A nonzero dispersion across the final doublet, which is an intrinsic feature of the so-called
Raimondi-Seryi final focus optics [14]. Therefore, the horizontal beam size σx includes both
betatron and dispersive components.

• If collimation is performed at π/2 rad intervals, as for the case shown in Fig. 2.2, with
amplitudes of ±nxσx in each phase, the phase space after collimation is the rectangle of
Fig. 2.4 (left). Note that some particles, for instance particles with amplitudes ±nxσx

√
2 are

transmitted which are outside the region of ±nxσx amplitude. These particles may phase-
rotate into the FD phase and generate SR. This problem can be solved by collimating at
±nxσx/

√
2, which ensures that the maximum particle amplitude permitted is ±nxσx. A

similar configuration is chosen for the vertical phase space y–y′.

Above we have considered the case of a phase advance per spoiler of π/2 rad. This solution is
not the only choice, and lattice design with a different phase advance per spoiler can be conceived.
For instance, in the TESLA post-linac collimation system design [15], the betatron spoilers were
conceived to be separated by π/4 rad horizontal phase advance and 7π/4 rad vertical phase advance.
In this way, and using more collimators, instead of the transmitted phase space square of Fig. 2.4,
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Figure 2.4: A) Collimation amplitude nxσx in phase space x–x′. B) Collimation amplitude
nxσx/

√
2. The red square represents the phase space region which is transmitted after collima-

tion.

the collimation depth would correspond to an octagon inside the ellipse defined by the collimation
depth.

Energy collimation amplitudes

The energy collimation depth is usually not determined by the background, but instead it is set
by the failure modes in the linac. Momentum errors in the main linac can be caused, e.g., if the
beam is injected at the wrong phase, or with the wrong charge. This may generate errant or mis-
steered beams which must be intercepted. Otherwise, they can hit and damage magnets in the
BDS or other important technical equipment. In this sense the energy collimation system can be
considered as part of the machine protection system. Namely, it protects the machine equipment
from energy errors. In some cases it also protects the downstream spoilers. For instance in CLIC,
where the momentum collimation system is conceived with the additional function of avoiding the
direct impact of errant beams in the downstream betatron spoilers. The momentum spoilers are
located in high dispersion points, and generally their passive survival in case of direct beam impact
is demanded.

In some cases, as in the NLC post-linac collimation design [16] additional kicker magnets are
incorporated to extract the beam downstream of the main linac energy diagnostic station.

2.1.2 Collimation in circular colliders

The collimation of high energy storage rings, e.g. the LHC, is based on the so-called multi-stage

collimation system [17, 18]. This system is illustrated in the schematic of Fig. 2.5. Particles of the
primary halo are intercepted by the so-called primary collimators. By multiple Coulomb scattering
many of these particles are scattered off the primary collimator with larger angular divergence. In
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addition, by inelastic processes (see Chapter 3) secondary particles may be produced: in the case of
hadronic beams, some halo particles can inelastically interact with the nuclear material of the col-
limator, generating thus hadronic showers (mesons and nucleons). These particles scattered off the
primary collimators form the so-called secondary halo, which should be intercepted downstream
of the primary collimators by additional thicker collimators. The latter are the so-called secondary
collimators. In some cases, even tertiary (and quartiary) collimators can be used to further increase
the efficiency of halo absorption and the protection of sensitive equipment.
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Figure 2.5: Schematic of a multi-stage collimation system.

Betatron collimation amplitudes

In order to simplify the treatment, we consider here one dimensional betatronic collimation for
on-energy (δ ≡ ∆E/E0 = 0) halo particles.

Let n1 and n2 be the normalized apertures (in units of rms transverse beam size) of the primary
and secondary collimators, respectively. We further consider the impact points to be at the surface
of the collimator, with the maximum transverse amplitude vector X0 = (X0, X′0) = (n1, 0). Here X0

and X′0 denote the normalized horizontal amplitudes X0 ≡ x0/
√
βxεx and X′0 ≡ (αxx+ βx x′)/

√
βxεx.

After scattering in the collimator, the particle gets an angular kick X ′1 = K, and then the new
coordinates at the primary collimator are X1 = (n1,K).

The location of the secondary collimators is determined by optimizing the phase advance ∆µopt

between the position of the primary collimator and the secondary collimator. The amplitude at the
secondary collimator is given by the transport equation

X2 = R(∆µopt)X1 , (2.4)

with R(∆µopt) the normalized linear transport matrix
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R(∆µopt) =


cos∆µopt sin∆µopt

− sin∆µopt cos∆µopt

 . (2.5)

The optimum phase advance ∆µopt is chosen to minimize the maximum secondary halo amplitude
escaping the two-stage collimation. This happens for the value [17]

∆µopt = arccos
(
±n1

n2

)
, (2.6)

if the minimum amplitude which cuts the secondary halo corresponds to the values X2,cut = n2 and
X′2,cut = 0.

By using Eqs. (2.4), (2.5) and (2.6) one obtains

X2 = n2
1/n2 + (1 − n2

1/n
2
2)1/2K . (2.7)

Therefore, cutting at X2 = n2, the largest scattering angle which passes the secondary jaws is given
by

Kc = K = (n2
2 − n2

1)1/2 . (2.8)

Fig. 2.6 illustrates this situation for a two-stage collimation in the phase space X–X ′. Two sec-
ondary jaws are located at phase advance ∆µopt = arccos(+n1/n2) and ∆µopt = arccos(−n1/n2)
respectively. Another solution is π − ∆µopt.
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Figure 2.6: Example of a two-stage betatronic collimation system in phase-space X–X ′.

The optimum configuration is given by secondary collimators located at phase advance ∆µopt

and at π−∆µopt from the primaries. More details about two dimensional betatronic collimation can
be found in [18], where the disposition of four secondaries per each primary is proposed to reach
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an acceptable cleaning efficiency.

Energy collimation amplitudes

In circular colliders an insertion can be dedicated to remove halo particles with large energy offsets.
For this a horizontal collimator is usually placed in a region with horizontal dispersion Dx , 0.
As in the previous case for betatron collimation, a two-stage collimation system can be arranged
for energy collimation: primary and secondary collimators with normalized apertures n1 and n2,
respectively.

Following the prescriptions from Refs. [17, 18], we consider D′ = (αxDx + βxD′x)/σx = 0 at
the primary collimator position 4. This condition ensures that the cut made on the secondary halo
does not depend on the relative momentum offset δ. Fig. 2.7 shows the collimation depths of the
primary (n1) and secondary (n2) collimators and an example phase space circle corresponding to a
particle distribution with average energy offset δ , 0.

IfD1 = Dx,1/σx is the normalized dispersion at the primary collimator position, and using the
slow diffusion approximation, i.e. considering the impact points to be at the surface of the colli-
mator while the betatronic oscillation is at its maximum, the particles reach the primary collimator
with amplitude

n1 = D1δ + Xβ , (2.9)

where Xβ is the normalized betatronic contribution. In addition we assume X ′β = 0. The largest
momentum offset which can pass the primary collimator is given by ∆ = n1/D1 with Xβ = 0.

After scattering with the primary collimator, taking the largest scattering angle which passes
the secondary jaw as Kc = (n2

2 − n2
1)1/2 and using Eq. (2.9), the maximum horizontal betatronic

amplitude is

Amax
x,β =

√
X2
β,2 + X′2

β,2 =

√
(n1 − D1δ)2 + K2

c . (2.10)

Therefore, if in the arc of the ring the normalized horizontal dispersion is Darc, the maximum
transverse normalized excursion Xmax = Darcδ + Amax

x,β can be written as a function of the energy
offset δ and the apertures n1 and n2:

Xmax = Darcδ +
(
D2

1δ − 2n1D1δ + n2
2
)1/2
. (2.11)

The largest stable secondary excursionAarc is usually determined by the machine aperture: either
by the geometrical aperture (inner mechanical apertures of the machine components) in the case of

4The following notation is used: D′ is the derivative of the dispersion with respect to the longitudinal coordinate s,
normalized to the beam size, Dx is the horizontal dispersion and D′x is the derivative of the horizontal dispersion with
respect to s
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an ideal linear machine or the so-called dynamic aperture 5 in the case of a real machine. For the
LHC, for example,Aarc ' 12 σ. From Eq. (2.11) with Xmax = Aarc and δ = ∆(n1), one obtains

∆ =
Aarc − (n2

2 − n2
1)1/2

Darc
. (2.12)

Fixing n1 and inserting Eq. (2.12) into D1 = n1/∆, the necessary dispersion at the primary colli-
mator is given by

D1 =
n1Darc

Aarc − (n2
2 − n2

1)1/2 . (2.13)
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Figure 2.7: Example of a two-stage momentum collimation system in phase space X–X ′. The point
(D1∆, 0) indicates the largest momentum offset which can pass the primary collimator aperture n1.

2.2 Advanced collimation concepts

Other ideas for fulfilling the often conflicting collimation constraints and requirements have been
pursued in the literature. Some of these alternative concepts are listed below.

2.2.1 Consumable collimators

The concept of consumable collimator was first proposed for the Next Linear Collider (NLC) de-
sign [19], and it is also the solution adopted for the younger ILC project. The jaws of such a
collimator can be moved to a new position a finite number of times after being damaged by the
beam in case of direct impact.

5The dynamic aperture is defined as the maximum phase-space amplitude within which particles do not get lost as a
consequence of single-particle-dynamics effects
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The mechanical schemes considered in Ref. [19] are based on wheels, bars or tapes which can
be transversally moved after damage. Schematics of these concepts are shown in Fig. 2.8. The
wheel collimator requires vacuum bearings, but its mechanical design is simple compared with the
tape collimator, which requires a complex vacuum mechanical system. The advantage of the tape
collimator is its large usable area. Unlike the wheel and the tape concepts, the bar collimator does
not require any vacuum moving parts, but is large for its active area. From all these candidates,
a prototype based on rotating wheels has been chosen for the ILC. It is worth mentioning that a
similar rotating collimator will be constructed for the LHC Phase-II collimation [20].

Figure 2.8: Schematic of consumable collimators with moving mechanical jaws: bars, wheels and
tapes [19].

2.2.2 Repairable collimators

This kind of collimators is based on jaws which can be continuously repaired during operation an
unlimited number of times after damage. A design with rotating jaws, whose surface is exposed
to a bath of liquid metal, has been proposed in Ref. [19]. In this idea a liquid metal is frozen
on the surface of slowly turning metal drums. The solidified surface is rolled flat with smoothing
rollers. See the schematic of Fig. 2.9. Here the main problem is to find liquid metals with the
required material properties: low vapor pressure at melting point; elemental in order to avoid
fractional crystallization during solidification; no or low toxicity; and adherence to the jaw surface.
Molybdenum rollers and a bath of liquid tin seem to be a good candidate [19].
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Figure 2.9: Schematic of repairable collimators with liquid metal which is solidified onto the col-
limator surface [19].

2.2.3 Crystal collimation

We have already mentioned that the simplest way to remove halo particles is to use a block of
amorphous material, which interacts with the halo so that the particles lose enough energy to be
removed from the beam. However, particles that do not have a large impact parameter can rescatter
from the material, contributing to halo repopulation. So then, in order to remove this halo, another
block of material (secondary collimator or absorber) is needed downstream of the former. But this
block can cause the same problem. To alleviate such a problem, a so-called bent crystal can be
used. In a crystal a particle will tend to follow the atomic planes, i.e. it is channeled. If in addition
the crystal is bent, it is possible to steer the particles.

The basic schematic of the collimation principle using bent crystals is shown in Fig. 2.10.
A bent crystal, serving as a primary collimator or scraper should coherently bend halo particles,
which enter into the crystal at an appropriate angle, onto a secondary collimator or absorber. An
advantage is that the angle of escape from the crystal is known. If a particle impacts tangentially
to the atomic planes in the crystal, with some probability, it can be channeled; otherwise, it may be
reflected by the coherent potential of bent atomic planes, and can again repopulate the halo.

Experiments on crystal collimation at IHEP (Protvino) [21, 22] demonstrated a collimation
efficiency of 40 %, and a factor of-2 reduction in the accelerator background by using a bent
crystal incorporated into a proton beam cleaning system. Crystal extraction of Pb ions was earlier
demonstrated at CERN SPS with efficiency of 4–11 % for a long (40 mm) Si crystal [23]. More
recently, a (5mm O-shaped Si) crystal collimator efficiency of ≈ 30 % have been measured at RHIC
for collimation of gold ions [24]. This modest efficiency ≈ 30 % has been attributed to the high
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Figure 2.10: Schematic of bent crystal collimation.

angular spread of the beam that hits the crystal face due to the machine optics. Following the RHIC
experiment, a similar O-shaped Si crystal was installed into the Tevatron [25]. In this experiment,
using 980 GeV proton beams, a channeling efficiency of 78 % ± 12 % was obtained.

A highlight of recent experimental studies was the first successful test of crystal reflection with
a 400-GeV proton beam at CERN in the SPS North Area by the H8-RD22 collaboration [26].
The demonstration of an extremely high effective field together with more than 95 % extraction
efficiency opens up a completely new perspective for the upgrade of the LHC collimator system.

The Tevatron and the H8-RD22 (at SPS) experiments, besides demonstrating a very high ef-
ficiency of the crystal collimation in colliders, have reveled a new interesting physics of beam
reflection on the coherent field of the atomic planes of bent crystal. This reflection, theoretically
well understood (see for example [27]), causes a strong perturbation of the beam and it is observed
as a very strong factor affecting particle loss in the accelerator ring. The reflection is less sensitive
to incoming angle than channeling, and could serve as a basis of a new crystal collimation system
at high energy.

2.2.4 Laser collimation

Pioneering studies on postlinac laser collimation for high energy linear colliders were done by
F. Zimmermann [28]. He proposed a linear collider based on the schematic of Fig. 2.11.

Laser collimation would consist in Compton scattering of electrons (positrons) in the trans-
verse halo tails off a high power laser beam, avoiding the regime where pair production occurs.
The scattered halo particles, which are off energy, would be intercepted in downstream absorbers,
placed in a dispersive region. In the schematic shown, the dispersion would be created by using a
bunch-combining half chicane.

A laser collimation system has the following advantages: a laser employed as a spoiler can nei-
ther be destroyed by the beam impact nor generate collimator wakefields. In addition, the postlinac
collimation section, presently the longest part of the linear collider beam delivery systems, can be
shortened. However, the laser technology has the following disadvantages: the high cost of the
needed lasers, of high intensity and high power, and the necessary fine alignment of the laser. A
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Figure 2.11: Schematic of a linear collider operating in the TeV energy scale, with linac energy
compensation, laser collimation, bunch combination, sextupole-final focus, and eγ conversion.
Courtesy of F. Zimmermann from [28].

failure in the laser could damage other accelerator components.

2.2.5 Electron lens collimation

Electron lenses have been built and used for beam-beam compensation studies in the Tevatron at
Fermilab [29]. Recently, the use of electron lenses as electromagnetic primary collimators has been
proposed by V. Shiltsev [30].

A hollow electron beam in an electron lens has very strong nonlinear field components, which
can excite betatron motion of particles with larger amplitudes (halo), while smaller amplitude par-
ticles (core) are not affected at all.

The electron lens collimation may offer a possible solution to the problem of ion fragmentation
in ion beam collimation. Unlike primary collimators made of usual material (for example C, Ti, W
and Cu), an electron lens, used as a primary collimator, does not break an ion into fragments.

Fig. 2.12 shows a schematic of the principle, comparing the concept of two-stage collimation
scheme, such as in Phase-I collimation in the LHC, and a possible LHC electron lens (LEL). The
LEL would allow a fast diffusion of the halo particles and opening up the aperture of the usual
collimators by ∼ 2 σ, reducing thus the collimator impedance effects.

2.2.6 Nonlinear collimation

The basic layout for a possible nonlinear collimation system is illustrated in Fig. 2.13. The purpose
of the first nonlinear element is to blow up beam sizes and particle amplitudes, so that the collimator
jaw can be placed further away from the nominal beam orbit (reducing the wakefields and resistive
impedances) and the beam density at the collimator is decreased (for collimator survival). A second
nonlinear element downstream of the spoiler, and at a phase advance of π from the first nonlinear
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Figure 2.12: Diffusion enhanced by electron lens collimation. Picture is redrawn from [30].
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Figure 2.13: Schematic of a nonlinear collimation system.

Different types of nonlinear collimation systems for future linear colliders have been described
in the literature [15, 31–33, 37–39]:

• For the NLC, in [31–33] a scheme with skew-sextupole pairs for nonlinear betatron collima-
tion in the vertical plane has been proposed.

• Subsequently, in [37] a halo reduction method with the addition of “tail-folding” octupoles
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(‘Chebyshev arrangement of octupoles’) in the NLC final focus system was presented (see
also [38] for an earlier study with only 1 octupole in front of the final doublet).

• For the TESLA post-linac collimation system a magnetic energy spoiler (MES) has been
suggested [15]. Here, an octupole is placed at a high dispersion point between a pair of skew
sextupoles (at π/2 phase advance from the octupole). The skew sextupoles are separated by
a optical transfer matrix −I. The result is a significant increase in the vertical beam size at a
downstream momentum spoiler.

A characteristic feature of all these systems is that they separate between energy and betatron
collimation, and typically employ the nonlinear elements only in one or the other half.

A nonlinear collimation system for CLIC with three skew sextupoles was explored in [39]. It
contains a single vertical spoiler which collimates simultaneously in the horizontal and vertical
betatron amplitude at both betatron phases as well as in energy.

The nonlinear collimation is the main topic of this thesis. Detailed studies of alternative nonlin-
ear collimation systems based on skew sextupoles for CLIC and LHC are presented in Chapters 4,
5 and 6.



Chapter 3
Important Issues in Collimation for
High Energy Colliders

3.1 Beam halo and tail generation

The experience with SLC [5] and LEP [40,41] showed that the ultimate luminosity was limited by
detector background due to beam tails. In the SLC the beam halo was estimated to be about 0.1 %
of the beam. The identification and the study of the beam halo sources are difficult subjects outside
the scope of this thesis. The aim of this section, however, is to briefly mention some of the halo
formation mechanisms. A more complete overview can for example be found in [42–44].

In the e+e− linear colliders the main sources of beam halo have been identified to be the follow-
ing processes: scattering between beam particles in the beam core and scattering off the residual gas
atoms in the vacuum chamber (beam-gas Coulomb scattering, beam-gas bremsstrahlung); Comp-
ton scattering between beam particles and thermal photons; linac wakefields which deflect beam
core particles; injection errors in the sources and from the damping ring.

At high-energy e+e− circular colliders, such as the LEP, the halo formation arises mainly from
beam-gas Coulomb scattering, beam-gas bremsstrahlung, beam-beam resonances, small tune drifts,
and Compton scattering off thermal photons. A detailed explanation of some of these mechanisms
for LEP can be found in [42].

In the case of proton or ion storage rings (e.g. LHC, Tevatron, RHIC) the halo can arise
from space-charge forces, injection errors, Touschek effect, intrabeam scattering, diffusion driven
by magnet nonlinearities, and beam-beam interaction. A detailed review of all these processes is
given in [45]. Another contribution may arise from electron cloud effects (see for example [46]
and [47]).

In the following sections I will briefly describe some scattering processes relevant for halo
generation.

21
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3.1.1 The concepts of beam and luminosity lifetime

Beam lifetime

The loss rates due to scattering processes scale as dN/N ∝ σi, where σi is the corresponding
scattering cross section. In the case of beam-gas scattering, the rate of scattered beam particles per
time interval dt is given by

dN
N
= βvc dt ngasσgas , (3.1)

where ngas is the local gas density, βvc the speed of the incident beam particle, and σgas the beam
particles cross section for scattering off gas molecules. If more than one gas species are present in
the beam pipe, then summing over the different types of gas is required as

dN
N
= βvc dt

∑

i

niσi , (3.2)

where the index i indicates the gas species.
The evolution of the loss rates with time can be quantified by the so-called beam lifetime τ,

1
τ
= − 1

N
dN
dt
, (3.3)

which is defined as the time needed to reduce the number of beam particles to a fraction 1/e of the
initial intensity. The beam lifetime is a parameter commonly used in storage rings.

Emittance lifetime

The so-called emittance lifetime is another important concept in circular colliders. It is defined as

1
τε j

= − 1
ε j

dε j

dt
, j = x, y, z , (3.4)

where εx and εy denote the horizontal and vertical normalized beam emittance, respectively, and
εz is the longitudinal normalized beam emittance. Among the main sources of emittance growth
are the following scattering processes: beam-gas multiple Coulomb scattering, beam-beam elastic
scattering at the interaction points, and the intrabeam scattering (see the section 3.1.2 for defi-
nitions). Additional optical processes, as magnet nonlinearities, dispersion, coupling and orbit
mismatch can also lead to a substantial emittance growth in combination with scattering processes
and synchrotron radiation.

The emittance growth is dominated by intrabeam scattering (see section 3.1.4) in the proton
beam with small contribution from beam-beam effects. In lepton colliders, as LEP, the beam-
beam effects have been identified as the most important source of emittance growth in the vertical
plane [42].
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Luminosity lifetime

The luminosity lifetime is defined as

1
τL
=

1
τB1
+

1
τB2
+

1
τBB
+

1
2τεx
+

1
2τεy

, (3.5)

where τB1 and τB2 denotes the lifetime contribution of the single beams 1 and 2, respectively. If
we assume two similar opposing beams τB1 ≡ τB2. The single beam lifetime is determined by
(both elastic and inelastic) beam-gas scattering and intra beam scattering. τBB refers to the lifetime
relying on the beam-beam effects. The terms τεx and τεy denote the horizontal and the vertical
emittance lifetime, respectively.

3.1.2 Scattering with residual gas

The vacuum conditions of the accelerator chamber are not perfect. There is a certain residual gas
density inside the chamber, and the beam particles can interact with the gas molecules.

The beam-gas scattering can be elastic or inelastic. The former changes the direction of the
beam particle while its energy is not affected; the latter changes the beam particle energy. Informa-
tion on the total cross section for different gases can be found in [48].

Elastic scattering processes

A charged particle traversing a medium is deflected by the Coulomb potential of the particles in
the residual gas. This, alone or in combination with other nonlinear phenomena, for example
optics nonlinearities, can lead to large betatron amplitudes and loss of particles at collimators or
any other aperture restriction. We will survey the following elastic scattering phenomena: single
Coulomb scattering of spin-1/2 beam particles off an unpolarized target nucleus, multiple Coulomb
scattering and elastic nuclear scattering.

• Single Coulomb scattering of spin-1/2 particles:

The cross section for single Coulomb scattering, also denominated Mott scattering, is given
by [50]

(
dσel

dΩ

)

Mott
=

(
Zrq

2γ

)2
F2(q)

1 − β2
v sin2(θ/2)

sin4(θ/2)
(
1 + 2 E

Mc2 sin2(θ/2)
) , (3.6)

with Z and M the charge and the mass of the gas nuclei respectively, rq the radius of the
incident particle, E the energy of the incident particle, γ ≡ E/mqc2 and βvc the Lorentz
factor and the speed of the incident particle respectively, and θ the scattering angle. In
addition, F(q) is the nuclear form factor, which for relatively small scattering angles can
be approximated by 1. Note that in the nonrelativistic regime, i.e. βv � 1, and for mq �
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M, one can approximate the expression (3.6) by the classical Rutherford scattering formula
dσel/dΩ ∝ 1/ sin4(θ/2), and for small angles dσel/dΩ ∝ 1/θ4.

• Multiple Coulomb scattering:

The random accumulation of a large number of small angle scatters is called multiple
Coulomb scattering. Assuming small deflection angles, the angular distribution can be ap-
proximated by a Gaussian with a rms width [48]

θmC =
13.6 MeV
βvcp

zq

√
LR[1 + 0.038 ln(LR)] , (3.7)

where p, βvc and z are the momentum, velocity and charge number of the incident beam
particle, and LR ≡ z/zR is the thickness of the scattering medium in units of radiation length
(r.l.) zR. The radiation length is defined as the mean distance over which a high energy
electron loses all but 1/e of its energy by bremsstrahlung.

The expression (3.7) is accurate to 11 % or better for 10−3 < LR < 100.

The beam-gas multiple Coulomb scattering can cause an increase of the transverse beam
emittance, thus contributing to the population of the beam halo. A similar effect occurs
when the beam particles strike a thin spoiler. In this case the particles acquire a net rms angle
given in good approximation by the distribution of Eq. (3.7), thus increasing the number of
halo particles, which will be intercepted by downstream absorbers or secondary collimators
(see the spoiler/absorber scheme or the multi-stage collimation concept in sections 2.1.1
and 2.1.2, respectively).

• Elastic nuclear scattering:

This process is exclusively relevant for hadronic beams, such as in the LHC (with beams of
protons or ions). The differential cross section of proton-nucleus elastic scattering can be
parameterized as [51]

dσel
nucl

dt
= σel

pN Bcohe−Bcoh(A)|t| + σel
pnBincohe−Bincoh|t| . (3.8)

Here t = −(pθ)2 is the momentum transfer expressed in terms of the momentum p of the
incoming proton and the scattering angle θ. The coefficients σel

pN and Bcoh represent the
total cross section and the slope of proton coherent scattering, respectively. This process is
called coherent because all the nucleons of the gas nuclei react as a single body, diffracting
the incoming protons. A second term is added in expression (3.8), with the coefficients σel

pn

and Bincoh, which represent the total cross section and the slope of the proton incoherent
scattering, respectively. This process is denominated incoherent or quasielastic, since it
describes the proton individual scattering with some of the nucleons forming the gas nuclei.
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The slope Bcoh can be obtained from experimental data on elastic scattering for 70, 125 and
175 GeV protons on various targets materials [52]. The log-linear fit to the scattering data of
175 GeV gives [51],

Bcoh ' 12.85 A2/3 GeV−2 . (3.9)

Note the dependence of Bcoh on the atomic number A of the target.

The slope of incoherent scattering is usually obtained from abundant experimental data
on proton-proton elastic scattering 1 [53]. From the extrapolation of Bincoh to the re-
gion of the LHC beam-gas proton-proton collision energy (with center-of-mass energy
√

scoll ≈
√

2mp p = 114.59 GeV, with mp the proton mass and p = 7000 GeV), the fol-
lowing behavior is predicted [54]

Bincoh ' (8.5 + 1.086 ln
√

s) GeV−2 . (3.10)

The elastic proton-proton cross section σel
pp (σel

pp ≈ σel
pn) can be obtained from experimental

data [48], which are represented in Fig. 3.1 as a function of the momentum p (in the Lab
frame) of the incoming proton. One can see that for p = 450 GeV (the LHC beam energy at
injection) σel

pp ≈ 7.0 mb. For p > 450 GeV, the data varies slowly with the beam momentum,
and can be fitted to a linear function on a logarithmic scale [45],

σel
pp ≈ σel

pp(p = 450 GeV)
( p
450 GeV

)0.0479
, (3.11)

where the cross-section at LHC injection momentum has been taken as reference. From
Eq. (3.11), the value of the cross section at LHC collision energy can be estimated: σel

pp(p =

7000 GeV) ≈ 7.98 mb.

Inelastic scattering processes

• Bremsstrahlung:

In lepton accelerators, at high energy, the dominant process caused by inelastic beam-gas
scattering is bremsstahlung. The cross section for bremsstrahlung at high energies (assuming
complete screening from the atomic electrons) can be approximated by [56]

σbrem '
16
3 αZ(Z + 1.35)r2

e ln
(

183
Z1/3

) [
ln

(
δmax

δmin

)
+ δmin − δmax

]
, (3.12)

1Proton-neutron scattering is considered approximately equal to proton-proton scattering, the latter one being more
exhaustively measured and characterized by more abundant data.
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Figure 3.1: Total and elastic proton-proton cross sections [55]. The arrows indicates the LHC beam
energy at injection and at collision.

where α is the fine-structure constant, δmin and δmax are the minimum and maximum photon
energies emitted in units of the beam energy. The factor Z(Z + 1.35) accounts for the nuclear
charge and includes the contribution from the atomic electrons.

The angular cross section of this process scales as [57]

dσbrem

dΩ
∼ θ

(1 − cos θ + γ−2)2 . (3.13)

Figure 3.2 compares the cross section of bremsstrahlung with the Mott scattering as a func-
tion of scattering angle. At small scattering angles θ, the Mott scattering is the dominant
process.

The number of scattered beam particles can be estimated by

∆N
N
= ngasLσbrem , (3.14)

where L is the distance travelled by the beam and ngas is the residual gas density in the
vacuum pipe, which can be expressed as ngas = 3.2 × 1022PNatom m−3 Torr−1 at 300 K, with
P the vacuum pressure, and Natom the number of atoms per molecule of gas. As an example,
assuming N2 as the remanent gas inside of the vacuum pipe, δmin = 0.01 and δmax = 1,
one has σbrem ' 5.2 barn. Assuming further 10 nTorr pressure at 300 K of temperature,
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Figure 3.2: Cross sections for elastic Mott scattering (solid line) and bremsstrahlung (dashed line)
as a function of the scattering angle. Courtesy of L. Neukermans.

then about 3000 particles per bunch train suffer scattering by bremsstrahlung in the CLIC
Linac+BDS (16.5 km long). In this estimate the following CLIC parameters have been
assumed: 2.56 × 109 electrons (positrons) per bunch, and 220 bunches per train.

• Inelastic nuclear scattering:

This process is only relevant for hadronic machines, where protons or ions interact with the
nucleus of the rest-gas in the vacuum pipe.

When a high energy proton (kinetic energy > 1 GeV) strikes a nucleus there is a high prob-
ability of inelastic scattering. The circulating protons can interact either coherently with
the nuclei of the rest-gas or incoherently with their individual nucleons. In these reactions
secondary particles are emitted. The energy of such secondaries is much lower than the pri-
mary energy, and these particles are usually lost in downstream bending magnets. Losses
may be distributed all around the machine and the dedicated global collimation sections be
not effective against them. The number of losses produced in this way can be calculated
from the inelastic nuclear cross-section, taking into account both the proton-nucleon (pn)
and the proton-Nucleus (pN) scattering. The proton-nucleon scattering refers to both the
proton-proton (pp) scattering and the proton-neutron scattering.

The total pp cross-section, i.e. including both the elastic and the inelastic contributions, can
be evaluated from experimental data of Fig. 3.1 as a function of the beam momentum. In the
range > 20 GeV the data are well represented by the Regge theory [58]:

σtotal
pp = 22 · s0.079 + 56.1 · s−0.46 , (3.15)
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with s ≈ 2mp p the square of the center-of-mass energy (mp being the proton mass).

The cross section of the inelastic pp scattering can be evaluated by substracting the elastic
contribution from the total cross-section,

σinel
pp = σ

total
pp − σel

pp . (3.16)

Fig. 3.3 compares the pp total cross section from Eq. (3.15) with the elastic pp cross section
from Eq. (3.11) and the inelastic part from Eq. (3.16).

 0

 20

 40

 60

 80

 100

 120

102 103 104 105 106 107 108 109

C
ro

ss
 s

ec
tio

n 
(m

b)

p [GeV/c]

σpp
el

σpp
total

σpp
inel

σpp
el

σpp
total

σpp
inel

σpp
el

σpp
total

σpp
inel

Figure 3.3: Total pp cross section as given by Eq. (3.15), elastic pp cross section as given by
Eq. (3.11), and inelastic pp cross section as given by Eq. (3.16).

Another possible inelastic process is the diffractive proton-proton scattering. It consist of
a coherent excitation of one of the protons in a gas nucleus into a resonance state, i. e.
pp→ Xp, where X is an excited nucleon state with mass MX > mp. This process is dominant
within the range m2

0 < m2
X < 0.15s, where the lower limit is m0 = (mp + mπ) ≈ 1 GeV/c2,

with mπ the pion mass. The nucleus with excited nucleons can decay via the emission of
lower energy particles in a so-called evaporation process (emission of neutrons, α particles,
deuteron, etc.). The diffractive nuclear effect has been studied extensively in [59].

Concerning the proton-nucleus inelastic scattering, experimental data of inelastic neutron-
nucleus scattering have been analyzed in [60] for energies in the 160-375 GeV range. Ac-
cording to Ref. [60], σinel

pN ≈ σinel
nN can be assumed. This cross section scales approximately

with the atomic mass as A0.71, and the total cross section (elastic + inelastic) scales as
A0.77 [60].

3.1.3 Scattering off thermal photons

An important source of beam halo in electron or positron accelerators is Compton scattering off
thermal photons. This effect was identified as the largest contribution to the beam lifetime without
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collision in LEP [40–42]. This process has also been extensively studied for the NLC.
The total cross section for Compton scattering of a electron (positron) beam and a photon is

given by [61]

σc =
2πre

u

[(
1 − 4

u
− 8

u2

)
ln(u + 1) + 1

2 +
8
u
− 1

2(u + 1)2

]
, (3.17)

with the scattering factor

u =
4Eω}
m2

ec4 cos2(θ/2) , (3.18)

where E and }ω are the beam and incident photon energy respectively, me the electron mass, and θ
is the angle of the incident photon with respect to the beam in the laboratory system.

The energy of the scattered photons, }ω′, extends between 0 and a maximum value }ω′max

0 ≤ }ω′ ≤ }ω′max =
u

1 + u
E . (3.19)

The thermal photon density is described by the well known Planck black-body formula

dnγ
dω
=

ω

π2c3(e}ω/kT − 1)
, (3.20)

with a photon density of nγ ≈ 2×107T 3 [K−3 m−3] and an average photon energy of }〈ω〉 = 2.7kT ,
where k is the Boltzmann constant. If a beam of N particles is propagating through a distance L,
its distribution of large-amplitude scatterings can be obtained by integrating the product of cross
section and Planck spectrum over the solid angle dΩ and over all photon energies, i.e. [61]

1
N

dN
dω′
= L

∫ π

0

∫ ∞

ωmin

dσc

dω′
(1 + cos θ)dnγ(ω, T )}dωdΩ

4π , (3.21)

where the factor (1 + cos θ) accounts for the relative motion of the electron and the photon, and
}ωmin is the minimum photon energy capable of producing a fractional energy loss }ω′/E, given E

and θ,

}ωmin =
}ω′m2

ec4

4(E − }ω′)E cos2 θ/2
. (3.22)

Assuming that half the photons are scattered to the maximum energy, the number of large-
amplitude scatterings off thermal photons can be roughly estimated by using the following simpler
expression:

∆N
N
=

1
2nγLσc , (3.23)

where nγ is the photon density, L the distance the beam travels and σc is obtained from Eq. (3.17).
As an example, at room temperature (300 K) nγ = 5.4 × 1014 m−3. The total cross section σc is
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close to the Thomson cross section σth ' 8πr2
e/3 ' 0.7 barn. Therefore, for the 16.5 km CLIC

Linac+BDS system about 200 particles per bunch train are scattered by thermal photons.
In the case of a circular e+e− collider, such as the LEP, assuming that all scattered particles are

lost, the beam lifetime can be evaluated from

τ =
1

cnγσc
≈ 1

cnγσth
, (3.24)

where the cross section σc can be approximated by the Thomson cross section σc ' 0.7 mb. For
LEP the beam lifetime due to Compton scattering on thermal photons has been estimated to be
τ = 60 hours.

3.1.4 Intra-bunch scattering processes

Coulomb scattering processes suffered by particles inside the same circulating bunch induce an
exchange of energy between the transverse (betatronic) and longitudinal oscillations. If the relative
energy deviation after scattering exceeds the energy acceptance of the machine the particle is lost.
Two kinds of processes can be distinguished: the so-called intra-beam scattering (IBS) and the
so-called Touschek effect. The former is due to multiple Coulomb scattering, while the Touschek
effect is a single scattering effect.

Touschek scattering

In storage rings, the Touschek effect refers to the single particle-particle Coulomb collision within
the same bunch, where the energy transferred from the transverse to the longitudinal phase space
could be as high as the scattered particles could leave the stable RF bucket. This effect was first
seen in the small AdA storage ring [62] and explained by Bruno Touschek.

The Touschek effect is the main limitation of the beam lifetime for all low-energy e+e− rings
and most synchrotron light sources. This effect is also important in the damping rings of future
linear colliders, such as CLIC and ILC. It further causes proton beam loss and halo formation at
the LHC.

The inverse Touschek lifetime can be obtained from the following expression [63]

1
τTous

=
r2

qcN0

8πγ2δ2
maxσz

∫ C

0

D(ε)
σxσy

ds , (3.25)

where τTous is the beam lifetime limit owing to the Touschek effect, and the following parameter
notation is used:

ε =

(
δmax

γσδ

)2
, (3.26)

where ε is the momentum acceptance, with δmax ≡ (∆E/E)RF, limited by dynamics or RF voltage,
and σδ the rms energy spread of the beam distribution. In Eq. (3.25) the average effect over the
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whole circumference is taken into account by integrating over the longitudinal coordinate s.
For round beams the function D(ε) is given by [64]

D(ε) =
√
ε

∫ ∞

0

1
u3/2

[(u
ε

)
− 1

2 ln
(u
ε

)
− 1

]
e−udu . (3.27)

For flat beams, such as in the case of the damping rings of linear colliders, D(ε) is given by [63]

D(ε) =
√
ε

[
−3

2e−ε +
ε

2

∫ ∞

ε

e−u ln u
u

du +
1
2(3ε − ε ln ε + 2)

∫ ∞

ε

e−u

u
du

]
. (3.28)

An expression for the general case with arbitrary ratio of horizontal to vertical betatron amplitudes,
arbitrary energies, and non zero derivative of the lattice functions (β′x,y, D′x,y) can be found in
Ref. [65].

Some quantitative examples of τTous are shown in Table 3.1 for the CLIC damping ring at
2.424 GeV, and the LHC (with the nominal parameters) at injection energy (450 GeV) and at
collision energy (7 TeV).

Table 3.1: Touschek lifetime value estimated for the CLIC damping ring [66], and for the LHC at
injection energy and the LHC at collision energy [67]. E denotes the corresponding beam energy.

Accelerator E [GeV] τTous [h]
CLIC damping ring 2.424 ∼ 4.19
LHC at injection 450 ∼ 4830.9
LHC at collision 7000 ∼ 12077.3

Intrabeam scattering

The IBS refers to multiple Coulomb scattering between particles within the same bunch. This
involves a continuous interchange of energy between the interacting particles and between the
(transverse and longitudinal) degrees of freedom, leading to emittance growth in all three direc-
tions. In proton accelerators, such as the LHC, IBS causes the beam to grow slowly over a period
of several hours. This limits the luminosity lifetime. In circular lepton accelerators, such as in the
damping rings of future linear colliders, IBS is counteracted by radiation damping, resulting in a
new equillibrium beam emittance with a relaxation time on the order of millisecons.

Two theories exist for computing this effect: Piwinski’s [68] and Bjorken-Mtingwa’s [69]. Both
of these theories give a recipe how to estimate the emittance growth rate due to IBS. Recently a
more general formulae for the three intrabem scattering growth rates, including non-ultrarelativistic
terms and vertical dispersion, has been derived by Frank Zimmermann in [70]. Table 3.2 shows
some examples of IBS growth rates for CLIC and LHC.
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Table 3.2: IBS growth rates estimated for the CLIC damping ring [70], and for the LHC at 7 TeV
[70].

Accelerator τz [ms] τx [ms] τy [ms]
CLIC damping ring 2.2 2.1 2.0
LHC at collision 2.11 × 108 3.75 × 108 15.7 × 108

3.1.5 Beam-beam interaction

Beam-beam effects in storage rings

When two beams cross at the interaction point, on one hand, elastic and inelastic particle-particle
collision occurs and, on the other hand, the electromagnetic field created by a beam can interact
incoherently with the particles of the opposite beam and coherently with the bunches of the opposite
beam (considering the coherent motion of all particles in a bunch).

Considering the incoherent beam-beam effect, when a test particle passes through the opposite
bunch, it receives a small transverse impulse as a result of the electromagnetic field associated to
the opposite beam. A derivation of the beam-beam force for both round (σx = σy) and elliptical
beams (σx , σy) with a Gaussian distribution in the two transverse directions can be found in [71].
As a example, for round beams (σx = σy = σ) the corresponding beam-beam force is given by [71]

Fr(r) = −ne2(1 + β2
v)

2πε0
· 1

r
·
[
1 − exp

(
− r2

2σ2

)]
, (3.29)

in function of the amplitude r =
√

x2 + y2, with βv ≡ v/c the relativistic factor (βv ≈ 1 for ultrarel-
ativistic beams), n the longitudinal density of particles in the beam, e the elementary charge, and
ε0 the permittivity of the free space. Depending on the sign of the two colliding beams, the force
can be attractive or repulsive. Figure 3.4 shows the force and its derivative as a function of the am-
plitude r. For small amplitudes Fr(r) is approximately linear, and this results in a quadrupole-like
tune change. In this sense, the incoherent beam-beam effect can be treated as a static thin lens.
For amplitudes higher than 1 σ the force is no longer linear and the tune change depends on the
amplitude.

The instantaneous tune shift of a particle when it crosses the other beam is related to the deriva-
tive of the force with respect to the amplitude. For a test particle with a small amplitude, the tune
shift is given by the slope of Fr at the origin, which is called the beam-beam parameter

ξx,y =
Nrq β

∗
x,y

2πγσx,y(σx + σy) . (3.30)

with rq the particle radius, N the beam intensity and β∗x,y is the β-function at the interaction point.
The beam-beam parameter is often used to quantify the strength of the beam-beam interaction
at the interaction point. The total beam-beam parameter over all interaction points is defined as
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Figure 3.4: Beam-beam force (solid red line) and its derivative (dashed blue line) for round beams.
Force in arbitrary units; amplitude in units of rms beam size.

ξtot = nIPξx,y, with nIP the number of interaction points.
In the majority of the colliders, head-on collisions occurs at the interaction point. However,

in order to avoid the ‘parasitic’ collisions, in the LHC two bunches collide at a small angle (quasi
head-on) at the centre, while the other bunches are kept separated by the crossing angle. The
schematic of Fig. 3.5 illustrates this situation, where the crossing angle has been exagerated. Actu-
ally in the LHC the value of the crossing angle is 285 µrad. When the separation between opposite
bunches is large, the beam-beam interaction receives the name of long-range beam-beam interac-
tion. While the head-on collisions are strongest for small amplitude particles, the long-range one
perturbs the motion at large amplitudes where particles come close to the opposing beam. They
thereby may cause a denominated ‘diffusive’ (or dynamic) aperture [72], causing a fast particle
loss at large aperture and possibly contributing thereby to a tail formation. Several diffusion mod-
els have been described in the literature to explain the proton tail formation. See, for example,
Ref. [73] for a complete overview of the status of the studies on halo formation due to beam-beam
collisions in both lepton and hadron accelerators.

In LEP the largest contribution to the halo formation (the shortest beam lifetime) in the vertical
plane was the beam-beam bremsstrahlung at the interaction point [41, 42, 49]. The differential
probability of incoherent bremsstrahlung for a single collision per particle is [74]

dN
dEγ

≈ 0.4 1
Eγ
α

(
r2

e N2

σxσy

) [
ln

(
4γ3mec2

Eγ

)
− 1

2

]
, (3.31)

where Eγ > Ec ≡ 4γ2
}c/σz, and N2 denotes the bunch population of the opposing beam. The

LEP halo was very sensitive to the residual vertical dispersion at the IP. Comparisons between



CHAPTER 3: Important Issues in Collimation for High Energy Colliders 34

Beam 1

Head−on

Long−range d

Beam 1
Beam 2

Beam 2

Figure 3.5: Head-on and long-range beam-beam interactions.

simulations and measurements at 45.6 GeV for a beam-beam parameter ξy ≈ 0.025 showed a
reasonable agreement [42, 49] (see Fig. 3.6).

Figure 3.6: Vertical tails for different dispersions at the LEP interaction points at 45.6 GeV mea-
sured by upper jaw scan (left) and lower jaw scan (right) with ξy ≈ 0.025. The dotted line corre-
sponds to the simulation results for no dispersion at the IP and ξy = 0.025 (Courtesy of Helmut
Burkhardt from [49]).

Coherent bremsstrahlung, which occurs for Eγ < Ec ≡ 4γ2
}c/σz, have been study for lepton-

lepton scattering and for pp and pp̄ [75]. Most likely it does not much contribute to tail formation.
The lifetime due to beam-beam bremsstrahlung is given by [42]

τBB =
2re me

nIP frevσBB
·
β∗y

Eξy
, (3.32)

where re and me are the radius and the mass of the electron, respectively, nIP the number of collision
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points (in LEP nIP = 4), frev the revolution frequency and σBB the total cross section leading to a
loss of the scattered particle from the beam. Note the dependence on the beam energy E and the
beam-beam tune shift ξy. For example, for LEP τBB ≈ 10−20 hours depending on the beam energy
and the beam-beam tune shift [42].

In hadron colliders, as the LHC, nuclear (elastic, inelastic, diffractive) interaction mechanisms
take place at the IP. For what concerns emittance growth and emittance lifetime, only elastic and
diffractive scatterings should be considered since inelastic interactions are designed to happen
within the 4 detectors of the machine. For more details see the above description of the differ-
ent nuclear scattering processes in this chapter. The corresponding transverse emittance growth
rate can be calculated as [76]

1
ε j

dε j

dt
=
σel

BBθ
2
el

2εNbN

∑

i

β∗j,iLi , j = x, y , (3.33)

where β∗j,i and Li are the β-functions and luminosity at the interaction point i. All the interaction
points are added. σel

BB is the fraction of the elastic cross-section resulting in the emittance growth,
θel the rms projected elastic scattering angle, Nb the number of bunches, and N the number of
particles per bunch.

In the case of ion-ion collisions, for example as in RHIC and LHC, two other incoherent colli-
sion processes, which are expected to contribute to the generation of tails and to limit the maximum
reacheable luminosity, are the e+e− pair production followed by electron capture, and the nuclear
excitation with the subsequent neutron emission [77].

Beam-beam effects in linear colliders

In linear colliders, where the bunches collide only once, intense e+e− beams and small cross sec-
tions are required in order to achive high luminosity. This gives rise to intense electromagnetic
fields that strongly affect the dynamics of the particles in the oncoming beam. Unlike for circular
colliders, for linear colliders the generated beam-beam effects are not a halo and tail source, but an
important background source and a cause of luminosity modification.

We can distinguish the following effects: the disruption [78, 79] and the beamstrahlung [80–
82]. The primary effect of the disruption is a luminosity enhancement, i.e. the particles of the
colliding beams are mutually focused by the electromagnetic force of the opposite beam towards
the beam center. The result is a small effective beam size. This is also known as the pinch effect.
All disruption effects can be described in terms of the horizontal and vertical disruption parameters

Dx,y =
2re Nσz

γσ∗x,y(σ∗x + σ∗y) , (3.34)

where σ∗x,y denotes the transverse rms beam sizes at the IP and N the number of particle per bunch.
Note the similarities between Eq (3.34) and Eq (3.30). In linear colliders the parameter Dx,y plays
a similar role that the beam-beam parameter ξx,y in circular colliders.
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Since particles are bent by the field of the opposing beam charge (disruption effect), they emit
synchrotron radiation, which is referred to as beamstrahlung. This causes the spread of the centre-
of-mass energy. Thus, the luminosity is not peaked at the mean nominal energy but a luminosity
spectrum is induced [83]. In addition, beamstrahlung is an important source of background. High-
energy beamstrahlung photons can further interact with the beam fields and with each other through
QED and QCD processes, generating e+e− pairs (coherent pair creation) and hadronic minijets. The
latter are produced when a high energy photon produces a quark-antiquark pair.

Other sources of background due to beam-beam interaction include: incoherent pair creation
and hadronic showers. The main contribution to the former process arise from ee → ee(e+e−),
eγ → e(e+e−) and γγ → (e+e−), with the photons coming from beamstrahlung. The hadronic
showers can arise from high energy γγ collisions. In addition, neutrons produced in the electro-
magnetic showers induced by the electrons and positrons lost in the final quadrupoles can also
contribute to the detector background. A complete description of all these processes can be found
in [84].

It is worthwhile to mention that excellent codes have been written to compute the beam-
beam effects and beam-beam interactions in e+e− linear colliders, for example, CAIN [85] and
GUINEA-PIG [86]. As an example, for CLIC, GUINEA-PIG predicts 700, 3 × 106, 7 × 108 and
2 × 109 coherent e+e− pairs per bunch crossing for a center-of-mass energy of 0.5, 1, 3 and 5 TeV,
respectively [84].

3.2 Collimator protection

The circular collider LHC and the linear colliders will store a transverse energy density per beam
of the order of GJ/mm2. For this density energy the local deposition of heat can be so high that
the collimator may be damaged. Therefore, in this section it is worth introducing some important
issues for collimator protection as: the limit for instantaneous temperature rise of a collimator,
and the main mechanisms for heat deposition in the collimator. Concerning the production of
secondary particles due to a direct beam impact in the collimator, we also introduce briefly the
muon production, which is relevant for the IP background.

3.2.1 Limit for instantaneous temperature rise of a collimator

Some criteria listed in the literature [16, 87] for estimating the maximum acceptable temperature
rise in collimators are the following:

• Melting temperature point: the maximum allowed temperature excursion is given by

∆Tmelt = Tmelt − Troom , (3.35)

with Tmelt the melting temperature in Kelvin and Troom = 293.15 K the room temperature.
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• The mechanical fracture temperature:

∆Tfail =
ζσuts

αT Y
, (3.36)

with αT the thermal expansion coefficient, σuts the ultimate tensile strength of the material
and ζ an empirical factor. For instance, ζ = 1.5 is adopted in Ref. [16] and ζ = 2 in Ref. [87].

• The vapor pressure of the collimator at its elevated operating temperature may be high
enough to evaporate the surface of the material during the course of a run. The tempera-
ture for this process represents a higher limit than the melting and the fracture temperatures.

The safe limit is usually chosen as ∆T limit = min[∆Tmelt,∆Tfail]. Generally the minimum cor-
responds to ∆Tfail. The limit temperature ∆Tmelt and ∆Tfail are registered in Table 3.3 for several
materials.

Table 3.3: The melting point temperature Tmelt, the melting temperature excursion limit ∆Tmelt =
Tmelt−293 K, the thermal fracture temperature excursion limit ∆T fail (corresponding to the ultimate
tensile strength from Eq. (3.36)), the elastic modulus Y, the coefficient of thermal expansion αT and
the ultimate tensile strengthσuts, for the following materials: beryllium (Be), graphite (C), titanium
(Ti), titanium alloy (90 % Ti, 6 % Al, 4% V), copper (Cu) and tungsten (W). For Ti alloy we have
assumed the same melting point as for pure Ti. Data obtained from [?, ?].

Material Tmelt [K] ∆Tmelt [K] ∆Tfail [K] Y [105 MPa] αT [10−6 K−1] σuts [MPa]
Be 1560 1267 370 2.87 11.3 600
C 3800 3507 14207 0.12 7.1 580

Ti (pure) 1941 1648 742 1.16 8.6 370
Ti alloy 1941(?) 1648(?) 1710 1.14 9.2 897

Cu 1358 1065 201 1.3 16.5 216
W 3695 3402 670 4.11 4.5 620

3.2.2 Collimator-beam interaction mechanisms

Next we will review the main sources which may contribute to the temperature rise at the collima-
tors: image current heating and energy deposition by direct beam-matter interaction.

Image current heating

This is a collective effect. When a beam of charged particles passes through the aperture of the
collimators, image currents are generated on the resistive surface of the collimator jaws.

Depending on the distance from the beam centroid to the jaw different cases can be distin-
guished (see Fig. 3.7):

• In the case a >> σy (see Fig. 3.7 (A)), i.e. the beam is far away from the collimator and it can
be considered as a transverse point-like beam. Assuming a Gaussian bunch of rms length σz
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Figure 3.7: Schematic of a particle beam passing near a collimator jaw. Different cases for image
current heating can be distinguished depending of the distance between the beam and the block of
material.

and total charge Q = Nq (with N the number of particles per bunch and q the unit charge),
the energy density deposited at the collimator surface by image current was calculated in
Ref. [88] for a round pipe of radius r0,

Ed(x = 0, y = 0) = Z0c
2π

(
Q
πσz

)2 1
4r2

0
, (3.37)

where Z0 = 376.7 Ω is the vacuum impedance and c the speed of light. We will make the
assumption that the case of a beam centered in a rectangular collimator of half-gap r0 is
comparable.

If a << r0 but the beam is still far enough away to be approximated as transverse point-
like, the general expression for the energy density deposited by a single bunch centered at
arbitrary position (x0, y0) is given by [87]:

Ed(x, y; x0, y0) = Z0c
2π

(
Q
πσz

)2
f 2(x; x0, y0)g(y/δ(ωσ)) , (3.38)

where

f (x; x0, y0) = y0

y2
0 + (x0 − x)2 , (3.39)

and the called penetration function
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g(y/δ(ωσ)) =
∫ ∞

0
dz e−ze−2 y

δ(ωσ ) z1/4
, (3.40)

which depends on the skin depth δ(ωσ) =
√

2/(ωσµ0σ), with ωσ = c/σz the frequency
spread, µ0 the permeability of free space and σ the electrical conductivity of the collimator
material.

It is necessary to mention that the expression (3.38) does not take into account the heat
diffusion over the time scale ∆t = σz/c, and it is then valid as long as the thermal diffusion
length, defined by ldiff =

√
(K/(%C))(σz/c), is much smaller than the skin depth, ldiff �

δ(ωσ). The parameters K, % and C are the thermal conductivity, density and specific heat,
respectively, of the collimator material. Table 3.4 compares the values of ldiff and of δ(ωσ)
for the case of different accelerators. It is possible to see that the energy collimators for
CLIC, ILC and LHC are in the regime ldiff � δ(ωσ). For details of the material properties,
see the tables of Appendix B.

Table 3.4: The thermal diffussion length ldiff per bunch, the thermal diffusion per bunch train ltrain
diff ,

the skin depth δ(ωσ), and the effective skin depth δe in the case of the CLIC energy spoiler, the
ILC energy spoiler and the LHC primary energy collimator. The nomenclature of the respective
spoilers is indicated between brackets.

Accelerator Material ldiff [µm] ltrain
diff [µm] δ(ωσ) [µm] δe [µm]

CLIC (ENGYSP) Be 2.47 × 10−3 1.87 0.1 0.12
ILC (SPEX) Ti 3.59 × 10−3 105.92 0.9 1.1
LHC (TPC.6L3.B1) C 0.16 170.0 90.97 74.3

The single bunch pulsed heating can be approximately considered as an instantaneous en-
ergy deposition. In such a case, the instantaneous temperature rise becomes T1(x, y) =
Ed(x, y)/(%C).

From Eq. (3.40) it is straightforward to show g(y = 0) = 1, and assuming a point-like bunch
centered at (x0 = 0, y0 = a), one obtains

Ed(x = 0, y = 0) = Z0c
2π

(
Q
πσz

)2 1
a2 . (3.41)

Therefore, T1(x = 0, y = 0) can easily be estimated from:

T1(x = 0, y = 0) = Z0c
2π

(
Q
πσz

)2 1
a2

1
%C
. (3.42)

• Missteered beam can get close to the collimator surface, i.e. a & σy (see Fig. 3.7 (B)). In such
a case, the point-like transverse distribution approximation is no longer valid. Assuming a
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bunch with Gaussian transverse distribution

ρ(x0, y0) = 1
2πσxσy

exp


x2
0

2σ2
x
− (y0 − a)2

2σ2
y

 , (3.43)

the energy density deposited instantaneously by the bunch passage is given by [87]

Ed(x, y) = Z0c
2π

(
Q
πσz

)2
g(y/δ(ωσ))

∫ +∞

−∞
dx0

∫ 0

−∞
dy0 f (x; x0, y0)ρ(x0, y0) . (3.44)

• When a . σy (see Fig. 3.7 (C)), part of the bunch penetrates the material surface. Other
processes, such as radiation heating, which will be studied in the next section, will start
to be important and they add to the image current heating. The maximum energy density
deposition by image current before saturation can be estimated from [88]:

Emax
d (x = 0, y = 0) = Z0c

2π

(
Q
πσz

)2 f 2
max(σy/σx)
σxσy

, (3.45)

where the function fmax is given by

fmax(v) ≈
√

1
2π

ln(1 + πv)
√

v
. (3.46)

The maximum temperature rise induced by a single bunch is then given by

T max
1 = Emax

d /(%C) (3.47)

Using this equation we have represented T max
1 as a function of the horizontal rms beam size

σx for a fixed vertical rms beam size σy = 21.9 µm and for different materials, see Fig. 3.8
(top). The red point indicates T max

1 ' 0.14 oC, which is the value calculated using the beam
sizes at the CLIC energy spoiler (σx ' 1000 µm and σy ' 21.9 µm). Another example
of T max

1 versus σy for different values of σx is shown in Fig. 3.8 (bottom) if the collimator
is made of beryllium. The parameters of CLIC have been used for these calculations: the
longitudinal beam size σz = 30.8 µm and N = 2.56 × 106 particles per bunch. We have used
the material parameters of the Appendix B. Table 3.5 shows the values of T max

1 induced by a
single bunch in the energy collimators of CLIC, ILC and LHC.

Eq. (3.45) can be combined with Eq. (3.41) to roughly estimate the bunch-collimator distance
at which the energy deposition by image current saturates. We obtain

amax ≈
√

2π
σy

ln(1 + πσy/σx) . (3.48)
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For future high energy linear colliders, such as CLIC and ILC, where the beam is transversely
flat by design, i.e. σy/σx � 1, we can further approximate Eq. (3.48) by amax ≈

√
2σx/

√
π.
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Figure 3.8: The maximum temperature rise induced by a single bunch versus the horizontal beam
size σx fixed the vertical beam size, σy = 21.9 µm, for different collimator materials (top); the red
point indicates the case of the CLIC energy spoiler. The maximum temperature rise versus σy for
different values of σx if a Be collimator is chosen (bottom).

Until now we have considered a single bunch passage. Next we will give the corresponding
expressions for the case of multibunch heating.

The thermal diffusion length of a bunch train is defined as ltrain
diff =

√
KNbtb/(%C), with Nb the

number of bunches per train and tb the bunch separation in units of time. An effective skin depth
of penetration is also defined: δe = Γ(3/4)

√
2σz/(cµ0σ). When δe ∼ ltrain

diff , the general expression
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for the temperature rise is given by [88]:

TN(x = 0, y = 0, t) =
Ed(x = 0, y = 0)

%C

Nb−1∑

n=0
ex̂2

n erfc(x̂n)H(t − ntb) ,

x̂n =
√

4D(t − ntb)/δe , (3.49)

where erfc(x̂n) is the complementary error function, which is defined by [89]

erfc(x̂n) = 2
√
π

∫ ∞

x̂n

e−t2 dt . (3.50)

Depending on the different cases listed above, Ed(x = 0, y = 0) of Eq. (3.49) is given by (3.37),
(3.38), (3.41) or (3.45). The parameter D depends on the material and determines the diffusion
length between pulses, lpulse

diff =
√

Dtb. The function H(t− ntb) is the called Heaviside step function.
In the limit of short thermal diffusion length, i.e. ltrain

diff � δe, Eq. (3.49) can be reduced to

TN = NbT1 , (3.51)

where T1 is the temperature rise for a single bunch (see Eq. (3.42)).
On the other hand, in the limit of long thermal diffussion length, i.e. ltrain

diff � δe,

TN = 2
√

Nb
Ed√
πK%Ctb

δe

2 , (3.52)

and the maximum temperature rise induced by a multibunch train will be given by [88]

T max
N =

2
√

NbQ2
√
πK%Ctb

f 2
max(σy/σx)
π2σxσy

√
µ0

2σ

(
c
σz

)3/2
Γ(3/4)

2π . (3.53)

As an example, for the sake of comparison, we have calculated the values of ltrain
diff and δe for the

case of the energy collimators of CLIC, ILC and LHC (see Table 3.4). For these three cases ltrain
diff �

δe, and therefore the maximum temperature rise T max
N can be calculated using the Eqs. (3.53). The

corresponding results are written in Table 3.5.
Fig. 3.9 shows the maximum temperature rise due to multibunch heating as a function of the rms
horizontal beam size for different collimator materials, as calculated using the expression (3.53)
with the parameters of Table 3.6 for CLIC and the material property parameters from Appendix B.

Energy deposition by direct beam-matter interaction

This corresponds to a deep beam impact on the collimator. We need to distinguish: the electron
(positron) beam-matter interaction and the proton beam-matter interaction.

• Electrons or positrons interacting with the collimator material, at low energies ( . 10 MeV)
primarily lose energy by ionization, resulting in soft X-rays, which are absorbed within short
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Table 3.5: Beam sizes, maximum temperature rise by single bunch heating and maximum temper-
ature rise by multibunch heating in the case of the CLIC energy spoiler, the ILC energy spoiler and
LHC primary energy collimator. The nomenclature of the respective spoilers is indicated between
brackets.

Accelerator Material σx [µm] σy [µm] σz [µm] T max
1 [oC] T max

N [oC]
CLIC (ENGYSP) Be 1000. 21.9 30.8 0.141 1.138
ILC (SPEX) Ti 180.4 11. 300 3.54 58.12
LHC (TPC.6L3.B1) C 246.17 246.17 7.55 × 104 3.59 × 10−4 0.3046

Table 3.6: Bunch population, number of bunches, rms longitudinal beam size, and bunch separation
for CLIC, ILC and LHC.

Accelerator N (part. per bunch) Nb (bunches per train) σz [µm] tb [ns]
CLIC 2.56 × 109 220 30.8 0.267
ILC 2. × 1010 2820 300 307.7
LHC (7 TeV) 1.15 × 1011 2808 7.55 × 104 100

distance. Additionally, at energies around 1 MeV other process also contribute to energy
loss: Møller scattering, Bhabha scattering and positron annihilation. Electron or positron
scattering is considered as ionization when the energy loss per collision is below 0.255 MeV,
and as Møller (e−) or Bhabha (e+) scattering when it is above [48].

At energies > 10 MeV the electrons predominantly lose energy in matter by bremsstrahlung.
In addition to the energy loss from bremsstrahlung, the particles undergo multiple elastic
Coulomb scattering, which results in an increase of the angular spread of the primary par-
ticles. The rms angle increase by multiple Coulomb scattering for a spoiler of LR radiation
lengths is given by Eq. (3.7). The photons generated by bremsstrahlung can interact with
matter and produce electron-positron pairs. This process is commonly called electromag-
netic cascade.

Figure 3.10 compares the mean energy deposition ratio of all the above processes as a func-
tion of the beam energy. While the ionization energy loss rate rises logarithmically with
energy, the bremsstrahlung losses rise nearly linearly, i.e. (dE/dLR)brems ∝ −E. In addition,
if the energy of the photons from the electromagnetic cascade is high enough, other heavier
particles, such as µ±, π± . . . can also be produced.

The mean longitudinal profile of the energy deposition in an electromagnetic cascade can be
well described by the following distribution [48]

(
dE
dLR

)

EM
= Eb

(bLR)a−1e−bLR

Γ(a) , (3.54)
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Figure 3.9: The maximum temperature rise induced by a multibunch train versus the horizontal
beam size σx if σy = 21.9 µm for different collimator materials.

where a and b are fit parameters dependent on the material. The maximum deposition occurs
at

Lmax
R = (a − 1)/b = ln

(
E
Ec

)
+C j , j = e, γ , (3.55)

with Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced cascades.
The critical energy Ec is commonly defined as the energy at which the bremsstrahlung energy
loss rate is equal to the ionization loss rate. Ec ' 610 MeV/(Z+1.24) in case of a solid target
material and Ec ' 710 MeV/(Z + 0.92) in the case of gases [48]. The parameter a can be
calculated from Eq. (3.55) assuming b ≈ 0.5,

a ' 0.5
[
ln

(
E
Ec

)
+C j

]
+ 1 . (3.56)

Figure 3.11 shows the longitudinal profile of the energy deposition taking a beam energy
E = 1.5 TeV and considering different collimator materials (Z). For instance, if we consider
a beryllium spoiler of 0.5 r.l. and a 1.5 TeV electron beam, the beam energy deposition
by electromagnetic cascade is (dE/dLR)EM ' 0.023 GeV. In the same conditions, for a
beryllium spoiler of 1.0 r.l. we obtain (dE/dLR)EM ' 0.4 GeV.

From electron-nucleus interaction hadronic cascades can be initiated. In the beam energy
range 6 ≤ E ≤ 60 MeV, the electron can excite the nucleus, generating the so-called giant
resonances. This is a collective nuclear excitation, where the neutrons oscillate against the
protons. The de-excitation proceeds with high probability via neutron emission as a (γ, n)
reaction. For higher energies also (γ, p) and (γ, np) channels are open. The resultant high
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Figure 3.10: Fractional energy loss per radiation length in lead as a function of electron or positron
energy. From Ref. [48].

energy neutrons and protons can then generate a hadronic cascade.

• The interaction of high energy protons with the collimator material is a complex process,
including: ionization energy loss, multiple Coulomb scattering, elastic and inelastic proton-
nucleon and proton-nucleus scattering, and electromagnetic cascades initiated by photons
from the decay of secondary particles.

At high incident beam energies the inelastic scattering is the dominant process. When a high
energy nucleon strikes a nucleus the collision gives rise to a large number of particles (by the
strong interaction at the quark level), principally nucleons, pions and kaons, thus generating
hadronic cascades. Fig. 3.12 (left) compares the ionization-range 2 of protons in various
materials and their probability of inelastic interaction within that range, as a function of the
proton energy. One sees that for energies above 1 GeV, the inelastic scattering probability
rises to nearly 100 % before the proton reaches the end of its ionization-range. Most of the
final channels of these nuclear reactions include neutron emission. As an example, for the
stopping of one 1-GeV proton in copper or iron, ∼ 10 fast neutrons are liberated. The neutron
yield scales approximately with E for beam energies above 1 GeV, see Fig. 3.12 (right).

The principal mechanisms by which the flux of secondary particles is attenuated are ioniza-
tion energy loss and multiple scattering. Neutrons above ∼ 150 MeV take on the dominant
role in the hadronic cascade propagation because they are the most penetrating particles. Ad-
ditionally electromagnetic cascades can also be generated by the decay of pions and kaons,
which can produce leptonic pairs (e+e− and µ+µ−). It is important to mention that for protons
with energy higher than a few tens TeV, the radiative mechanisms (bremsstrahlung and direct
e+e− pair production) dominate on the ionization losses, especially in heavy materials.

2The ionization-range is defined as the distance travelled by the particle inside the block of material before deposition
of its total energy by ionization.
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Figure 3.11: Energy deposition distribution per radiation length for different materials. From
Eq. (3.54) with b = 0.5. Bottom: zoom of the range [0,1] r.l.

The study of the multiplicity of the emitted secondary particles as well as their energy and an-
gular distributions is complicated and all these quantities depend on the individual interaction
cross sections. For this task, complex Monte-Carlo codes, such as FLUKA [91], are generally
used. As an example, we will next show some results from a simulation with FLUKA of a
direct interaction of an LHC beam at collision energy (7 TeV) with a square block made of
graphite. The dimensions of this block of material are: height of 25 mm, length of 0.6 m
and total width of 80 mm (the dimensions of an LHC primary collimator). A total energy of
about 27 GeV is deposited in the material 3 This energy is deposited mainly by ionization
from secondary particles (nucleons, pions, leptonic pairs, . . . ). The electromagnetic shower
(all the photons, electrons and positrons which fall below the transport threshold of FLUKA)
contribute with approximately 18.3 GeV. Different contributions to the energy balance are

3This quantity is simply estimated from the balance “entering-escaping” energy from the system.
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Figure 3.12: Left: Proton ionization ranges in various metals and probability of inelastic nuclear
interaction within the range as a function of the proton kinetic energy. Right: Total number of
neutrons per proton incident on a thick target of various metals as a function of the proton energy.
From [90].

shown in Table 3.7

Table 3.7: Contribution from different secondaries to the total energy deposited by a single proton
(at 7 TeV) hitting a block of graphite. The values have been estimated from a simulation with the
code FLUKA.

Particles Energy [GeV]
Hadrons, muons 7
EM cascade (e+, e−, γ) 18.3
Low energy neutrons 0.01
Nuclear fragments recoil (He4, He3, deuteron, p, n) 0.9

Additionally every primary proton creates a hadronic cascade, which yields an average of
∼ 60 inelastic nuclear interactions. Out of these, about of 7.26 (12.1 %) nuclear interactions
are due to protons. Table 3.8 summarizes the FLUKA results for the secondary particles which
have a very high probability of making a nuclear interaction.

In our example with FLUKA an average of 572 secondaries are generated in inelastic inter-
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Table 3.8: Proportion of particles from the hadronic cascade which contribute to the generation
of inelastic nuclear interactions. The values have been estimated from a simulation with the code
FLUKA, using an LHC proton beam (at 7 TeV) diretly interacting with a block of graphite.

Particles # nuclear interactions [%]
p 12.1
n 14
π+/π− 29.9/13.1
kaons ∼ 30

actions per beam particle. Table 3.9 shows the percentage of the different types of particles
produced.

Table 3.9: Secondaries which have a high probability of being generated by an LHC beam (at
7 TeV) which directly interacts with a block of graphite. The values have been estimated from a
simulation with the code FLUKA.

Secondaries # [%]
p 15
n 17
γ 5
π+π− 29
π0 17
Kaons, deuteron, He3, n̄, p̄ . 1

Temperature Increase Due to Energy Deposition by Direct Beam-Matter Interaction

The most severe scenario for spoiler/collimator damage is the instantaneous heat deposition by
direct beam-spoiler interaction. In this Section we study the most critical case, which is the instan-
taneous temperature rise of the spoiler due to a deep beam impact on the collimator. Assuming
spoilers whose thickness is significantly small in terms of radiation length, e.g. 0.25 r.l. or 0.5 r.l.,
the charged particles deposit energy mainly by ionization. In this case, the instantaneous tempera-
ture rise is given by

∆Tinst(x, y, t = 0) = 1
%C

(
dE
dz

)
ρ(x, y) , (3.57)

where % is the density of the spoiler material, C the heat capacity and ρ(x, y) is an arbitrary trans-
verse beam density. The energy deposition per unit of length is denoted as (dE/dz), whose value
can be determined from the Bethe-Bloch formula [48] (for electrons and positrons we can use
the approximation given by the formula (3.54)). Properties for several materials, including the
radiation length and the minimum energy deposition for ionization, are shown in Table B.1 and
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Table B.2 of Appendix B.
If we assume a Gaussian beam with horizontal and vertical rms sizes σx and σy, respectively,

at the spoiler position, then the peak of instantaneous temperature rise by the impact of a full bunch
train is given by

∆T̂inst =
1
%C

(
dE
dz

)
NeNbe

2πσxσy
, (3.58)

where we have assumed a train with Nb bunches, each of them containing Ne electrons.
During the impact of a full bunch train, the passage of a bunch through the spoiler occurs at

a certain repetition frequency (depending on a certain bunch separation tb). In order to determine
the time evolution of the temperature in the spoiler, it is necessary to solve the heat equation with
a periodic excitation:

∂T
∂t
=

K
%C
∇2T +

Nb−1∑

n=0

∆Tinst

tbNb
δ(t − ntb) . (3.59)

The first term on the right hand side of Eq. (3.59) represents the heat conductivity, and the
second term, containing the Dirac delta function δ(t − ntb), takes into account the periodic heating
bunch after bunch in the train. ∆T inst can be obtained from Eq. (3.58). Possible cooling mecha-
nisms, e.g. radiation cooling, can also contribute to the heat equation. At very high temperatures
cooling by thermal radiation (black body radiation) becomes important. The radiated power per
transverse area is given by:

h = εσSBT 4 , (3.60)

where ε is the emissivity of the material and σSB = 5.67 × 10−8 Wm−2K−4 the Stefan-Boltzmann
constant. If we take into account this cooling mechanism, a term −2εσSBT 4K/(%C) has to be added
to the right hand side of Eq. (3.59). Here we will neglect the contribution of the thermal radiation
energy versus the energy deposited by ionization. Indeed, the ionization energy deposited during
the passage of a train, crossing a length L of spoiler material can be calculated from

Eion = NbNeL
dE
dz
. (3.61)

Taking into account that the duration of a bunch train is Nbtb, the corresponding energy emitted by
thermal radiation (black body) writes

Eblack = NbtbSσSBT 4 , (3.62)

where the emission surface is given by S = 2σxL. Let us consider, for example, a CLIC spoiler
with length L = 0.5 r.l. made of Be, and the following beam parameters: σx = 796 µm, Nb = 312
bunches, Ne = 3.72×109 electrons/positrons per bunch and tb = 0.5 ns. Considering also the upper
temperature limit Tmelt ' 1560 K and (dE/dz)min from Table B.1, one obtains a ratio Eblack/Eion '
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1.5 × 10−6.

Muon production

If the halo particles of an electron (positron) beam strike directly the collimator material, they
may generate an unacceptable muon background. The muon generation occurs by a variety of
mechanisms, the most important one being the Bethe-Heitler pair production [92]: γZ → Zµ+µ−,
with photon energies & 211 MeV (the di-muon rest mass). The initial photon in this proccess is
usually produced by an electromagnetic cascade. It is analogous to e± pair production but with
a production cross section smaller by a factor of ∼ (me/mµ)2 = 2.34 × 10−5. The probability for
muon production has been estimated to be of the order of 4 × 10−4 per lost electron [93, 94].

The photo-produced muon fluence is highly peaked in the forward direction (angle . 10 mrad).
This means that many muons will propagate inside the vacuum pipe almost parallel to the beam.
Moreover, if we take into account their long lifetimes, high energies, and high penetrating power
(they only weakly interact with matter), the muons may easily arrive at the interaction region, and
therefore they are a potentially significant source of background for the detectors in the e+e− linear
colliders.

Performing the halo collimation as far as possible from the interaction region, the muon back-
ground can be reduced. However, a collimation section very far from the interaction region means a
longer beam delivery system, which is not desired. Another possible cure for the muon background
is adding material in the tunnel between the collimation system and the IP, as for example magne-
tised spoilers: tunnel-filling iron blocks with current windings, which produce a toroidal magnetic
field to deflect muons away from the detector (see Fig 3.13). This solution was adopted in the
design of the NLC [16]. Another alternative solution was proposed in [92] and consists of nested
iron cylinders with opposite-polarity azimuthal magnetic fields as shown in Fig. 3.14. These nested
cylinders would be located downstream of each muon source (collimators, critical apertures) and
are long enough to either range out muons or at least cause enough energy loss so that the muons
are unlikely to reach the detector.

In proton accelerators, muon production becomes energetically possible with primary kinetic
energy above ∼ 150 MeV, and it is significant when the beam energy rises above 10–20 GeV.
The beam can interact with the collimator material generating hadronic cascades, as explained
previously. From these cascades, muons can then be produced by the decay of pions and kaons.

3.3 Collimator wakefields and impedances

A charged particle beam moving in an accelerator induces electromagnetic fields which interact
with its environment. Depending on the discontinuities and variations in the cross-sectional shape
of the vacuum chamber, the beam self field is perturbed and can be reflected onto the beam axis
and interact with particles in the beam itself. These electromagnetic fields induced by the beam
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Figure 3.13: Schematic of a tunnel-filling toroidal spoiler magnets to intercept and deflect muons.
From Ref. [92].

Figure 3.14: Sectional view of nested, magnetized iron cylinders of opposite polarity to channel
muons. From Ref. [92].

are called wakefields, due to the fact that they are left mainly behind the driving charge (the source
charge of the wakefield). In the limit of ultrarelativistic motion, i.e. βv ' 1, the wakefields can only
stay behind the driving charge.

In the case of bunched beams, depending on whether the wakefields interact with the driving
bunch itself or with the following bunches, they are denominated short range wakefields or long

range wakefields, respectively. The former may degrade the longitudinal and transverse emittances
of individual bunches and the latter may cause collective instabilities.

3.3.1 The wake function

The strength of the wake force at a distance z behind a driving point charge q is defined by a
longitudinal wake function w‖(~r,~r ′, s) and a transverse wake function ~w⊥(~r,~r ′, s). The former is
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given by:

w‖(~r,~r ′, s) = −1
q

∫ +∞

−∞
dt~v · ~E(~r, z, t)|t=(z+s)/v , (3.63)

where ~v denotes the speed vector of the driving charge and ~E the electrical field excited by the
driving charge, which satisfies the condition | ~E| → 0 as z → ∞ [95]. The transverse offsets of the
driving and test charges from the z axis are ~r ′ and ~r, respectively (see Fig. 3.15). The coordinate
s = vt − z is the relative longitudinal coordinate moving with the bunch. The dimensions of the
longitudinal wake function w‖ are volt per Coulomb (V/C) in the MKS system.

z

v

vr
r  ’

s

E

q

test

drivingq

Figure 3.15: A driving charge q at transverse position ~r ′, moving at velocity ~v parallel to the z
axis and traversing a region of the vacuum pipe with variations in the cross-sectional shape. A test
particle also moving at the same velocity ~v, but at transverse position ~r and at longitudinal distance
s behind the former driving charge. The electric field lines of the driving charge are represented by
the blue arrows.

The transverse wake function is defined as

~w⊥(~r,~r ′, s) = −1
q

∫ +∞

−∞
dz

1
|~r ′|

[
~E +
~v
c
× ~H

]

⊥
(~r, z, t)|t=(z+s)/v , (3.64)

where [ ~E+ (~v/c)× ~H]⊥ denotes the transverse component of the radiated field, with ~H the magnetic
field. Note that for a source displaced transversely by |~r ′|, the transverse electromagnetic field is
proportional to |~r ′|. This dependence is removed by dividing by |~r ′| (see Eq. (3.64)). The wake is
then defined as the integrated force normalized by the offset of the source charge. Note also that
for relativistic beams, i.e. v ≈ c, we should replace c by v in the above equations.

The relation between the longitudinal and the transverse wake functions is given by the Panof-

sky Wenzel theorem [96]:

∂w⊥(s,~r )
∂s

=
1
|~r ′|∇⊥w‖(s,~r ) . (3.65)

It is worthwhile to mention that the wake functions are time domain quantities, and the time domain
analysis is usually adopted for linear accelerators. However, the frequency domain analysis is
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usually prefered for circular accelerators because of the intrinsic periodicity in the beam dynamics.
In this case, the frequency Fourier transform of the wake functions is computed. On one hand, the
resulting quantity from the Fourier transform of the longitudinal wake function has units of Ohm,
and is therefore called longitudinal impedance. On the other hand, the resulting quantity from the
transform of the transverse wake function has units of Ohm per meter, and is called transverse
impedance.

3.3.2 Impedances

A longitudinal impedance Z‖(ω,~r ) is defined as the Fourier harmonic of the wake function of
Eq. (3.63) 4, i.e.

Z‖(ω,~r ) = 1
qc

∫ +∞

−∞
ds w‖(s,~r ) eiωs/c , (3.66)

and the transverse impedance Z⊥(ω,~r ) is defined as the Fourier harmonic of −iw⊥, which writes

Z⊥(ω,~r ) = − i
qc

∫ +∞

−∞
ds w⊥(s,~r ) eiωs/c . (3.67)

By applying the Fourier transformation in the longitudinal coordinate s to both sides of Eq. (3.65),
one obtains the expression for the transverse impedance in terms of the transverse gradient of the
longitudinal impedance:

Z⊥(ω,~r ) = c
ω|~r ′|∇⊥Z‖(ω,~r ) . (3.68)

3.3.3 Collimator wakefield effects

Since the collimators are close to the beam orbit, the strong wakefield excited by the collimator
can perturb the beam motion downstream of the collimator and thereby generate an additional
emittance growth and jitter amplification of the collimated beam.

For future linear colliders, where we have flat beams, i.e. σx � σy, the sensitivity to the beam
offset is larger in the vertical collimators.

Kick factor

Assuming a local transverse offset of the beam ∆y, the deflection of a beam slice at position z is
obtained by [97]:

∆y′(z) =
rqN

γ
κ̃⊥(z)∆y , (3.69)

4Here we will assume relativistic beams, v ≈ c.
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where rq is the classical radius of the charged particle, N is the number of particles per bunch, and
the kick transverse factor κ̃⊥ is defined as the convolution of the transverse wake function with the
longitudinal particle density ρ(z) along the bunch, i.e.

κ̃⊥(z) =
∫ ∞

z
w⊥(z − z′)ρ(z′) dz′ . (3.70)

Here the wake function has been integrated by all the leading bunch slides (z′ > z). The density
ρ(z′) is normalized so that

∫
ρ(z) dz = 1.

The centroid deflection of the beam is obtained by averaging the wakefield deflection over the
longitudinal beam distribution:

〈∆y′〉 =
∫ ∞

−∞
∆y′ρ(z) dz . (3.71)

Therefore, the beam centroid deflection can be expessed in terms of a total kick transverse factor
κ⊥ and the centroid position ∆yc.

〈∆y′〉 =
rqN

γ
κ⊥∆yc , (3.72)

with

κ⊥ ≡ 〈w⊥(z − z′)〉 =
∫ ∞

−∞

∫ ∞

−∞
w⊥(z − z′)ρ(z′ )ρ(z) dz′dz. (3.73)

In addition to the centroid deflection, the wakefield will also increase the beam emittance and the
beam divergence.

A similar kick factor can be defined for the longitudinal wakefield effect: κ‖ ≡ 〈w‖(z− z′)〉. The
physical meaning of the longitudinal wake function w‖ is the energy loss ∆ε of a test particle with
charge e, that follows, at distance s = z − z′, a pointlike bunch having total charge q = eN [98,99]:

∆ε ≡ eq w‖(z − z′) . (3.74)

From this definition, κ‖ is then the energy loss per particle averaged over the particle distribution in
the bunch.

The wakefield kick from a collimator has two contributions: (i) the geometric one arising from
the geometrical aperture variation of the collimator, and (ii) the resistive wall one arising from the
finite conductivity of the chamber wall.

In order to minimize the geometric wakefields, the collimators are tapered as shown in Fig. 3.16.
The following notation is used: LT is the length of the tapered part; b(s) is the radius of the tapered
part, which depends of the longitudinal coordinate s (usually b > b(s) > a); b is the radius of the
beam pipe; a denotes the radius or half gap of the collimator flat part; LF the length of the flat part
(in case of a spoiler or a scraper LF = 0) and θT = arctan((b − a)/LT.

The flat part of the collimator contributes to resistive wall wakes, and the tapered parts con-
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Figure 3.16: Top: longitudinal view of a tapered collimator. An oncoming particle bunch is
schematically represented by the solid ellipse. Bottom: cross-sectional view in the case of a rect-
angular collimator.

tribute to both geometric and resistive wakes. We next review the expressions given in the literature
for the transverse deflection caused by the wakefield effects, using round and rectangular transverse
cross section collimators.

Geometric wakefields

In the literature geometric wakes from tapered collimators have been studied for round geometries
[97, 100] and flat geometries [97, 100, 101].

Depending on the dimensions of the collimator parameters and the longitudinal bunch length,
different regimes can be distinguished [97]:

• Inductive regime:

The inductive regime for tapered and round cross section collimators is defined by the ap-
plicability limit aθT/σz < 2

√
π (smooth tapering). This regime for tapered cylindrical beam

pipe geometry was first studied by K. Yokoya [100]. In this case, the transverse deflection
felt by a particle situated at z coordinate of a Gaussian bunch with rms size σz is given by:

∆y′G =
2Nrq

γ
√

2πσz

e−z2/(2σ2
z )I1∆y , (3.75)

with

I1 =

∫ LT

0

b′2(s)
b2(s)

ds . (3.76)

For a constant b′ and writing b′ds = db the integral I1 is straightforward to evaluate, giving
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I1 = θT

(
1
a
− 1

b

)
. (3.77)

In this case, the vertical average deflection is then given by

〈∆y′G〉 =
Nrq

γ

θT√
πσz

(
1
a
− 1

b

)
∆yc . (3.78)

Assuming flat tapered collimators with a width (height) 5 h (b(s)� h), the inductive regime
is defined in the limit

√
aθT/σz < 3.1a/h, and the result is [101]:

∆y′G =
2Nrq

γ
√

2πσz

[(πhI2 − I1)∆y + I1y]e−z2/(2σ2
z ) , (3.79)

where I1 is the same integral from Eq. (3.76) and

I2 =

∫ LT

0

b′2(s)
b3(s)

ds . (3.80)

Now we have the dependence on the displacement ∆y of the source particle from the axis 6

(kick dipole part) and on the position y of the test particle (kick quadrupole part).

Solving I2 yields

I2 =
θT

2

(
1
a2 −

1
b2

)
, (3.81)

and the average transverse deflection is given by

〈∆y′G〉 =
Nrq

γ

θTh
√
π

2σz

(
1
a2 −

1
b2

)
∆yc . (3.82)

Usually one assumes b >> a and then 〈∆y′G〉 ' NrqθTh∆yc/(2γσza2).

• Diffractive regime:

The diffractive regime is defined in the limit aθT/σz > 2
√
π for round collimators. For round

tapers, the average transverse kick is given by:

〈∆y′G〉 =
√

2Nrq

γa2 ∆yc . (3.83)

5The collimator variable h is evidently the collimator width or the height depending it collimates in the vertical or
horizontal plane respectively.

6Note that if the beam offset is assumed as a constant along the bunch, ∆y is equivalent to the centroid bunch displace-
ment ∆yc.
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For the flat tapers, the diffractive regime limit is established as
√

aθT/σz > 0.37, and the
expression of the transverse deflection is:

〈∆y′G〉 =
Nrq

γa2 ∆yc . (3.84)

• Intermediate regime:

If 0.37 >
√

aθT/σz > 3.1a/h (not very smooth tapering), then a rectangular collimator is in
the intermediate regime, and the average transverse kick is given by the following expression:

〈∆y′G〉 =
2.7Nrq

γ

√
θT

σza3∆yc . (3.85)

Resistive wall wakefields

The resistive wall wakefields are due to the finite conductivity of the collimators (resistance of the
metallic material). This phenomenon is even present for a perfectly regular vacuum pipe. The
theory of the resistive wall wakefields was developed by Piwinski for flat vacuum chambers [102],
round vacuum chambers [103] and elliptical vacuum chambers [104].

For a collimator with a tapered part of length LT and a flat part of length LF (see Figure 3.16)
and electrical conductivity σ, the average kick for a bunch with centroid amplitude offset ∆yc and
length σz is given by [104]

〈∆y′R〉 = FG
Nrq

γ

2Γ
(

1
4

)

π2

√
2

σzσZ0

[
flat part contribution︷                     ︸︸                     ︷

LF
sin

(
π∆yc

a

)
+
π∆yc

a

a2
(
1 + cos

(
π∆yc

a

))

+

taper part contribution︷                                  ︸︸                                  ︷
LT

b − a


tan

(
π∆yc

2a

)

a
−

tan
(
π∆yc

2a

)

b


]
, (3.86)

where FG = 1 for round collimators and FG = π
2/8 for flat collimators.

For very small beam offset, i.e., in the case of near axis bunches (π∆yc/a � 1), one can make
the following approximation:

〈∆y′R〉 ' FG
Nrq

γ

Γ
(

1
4

)

πa2

√
2

σzσZ0

[
LF

a
+

1
θT

]
∆yc , (3.87)

with the term LF/a being the contribution from the flat part and the term 1/θT the contribution from
the tapered part.
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Chapter 4
Nonlinear Collimation for TeV
Colliders

4.1 Introduction

Many nonlinear magnets based ideas for beam collimation have been proposed in the literature.
The basic principle of nonlinear collimation has been briefly exposed in section 2.2.6. It is based
on a first nonlinear element to drive the beam halo to large amplitudes to be caught by the colli-
mator jaws, which can be placed further away from the nominal beam orbit. This permits higher
collimator apertures than for the linear collimation systems, reducing thereby the effects from the
collimator wakefields or collimator impedances. Other possible advantages of the nonlinear col-
limation systems are the reduction of the transverse beam density at the collimators, increasing
therefore the collimator survival probability in case of direct beam impacts during failure scenar-
ios. A second nonlinear element of the same or opposite polarity, depending on their multipolarity,
downstream of the collimator and at a phase advance π from the first nonlinear element, cancels
the geometric aberrations induced by the former.

Pioneering studies on nonlinear collimation for linear colliders were made by N. Merminga et

al. [31–33]. They investigated the possibility to apply sextupole pairs, octupoles pairs and decapole
pairs for betatron and energy collimation in the NLC [31], arriving to the conclusion that decapoles
and higher order multipolar magnets can not be useful for collimation in TeV linear colliders,
because they don’t penetrate to the small necessary distances [33]. Then they focused the effort
on the study of a nonlinear collimation with skew sextupole pairs in the NLC for vertical betatron
collimation, applying usual mechanical linear collimation for the horizontal betatronic plane and
for energy collimation. This system is schematically represented in Fig. 4.1

Another application of skew sextupole pairs for postlinac nonlinear collimation was proposed
in [15]. This system, called Magnetic Energy Spoiler (MES), was designed to protect the machine
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Figure 4.1: Schematic representation of the nonlinear collimation system in the NLC proposed
in [33] for the collimation in the horizontal phase x and x′, in the vertical phase y and y′, and in
energy E.

against mis-steered bunches because of failures in the linac. The MES was located downstream of
the betatron collimation system of TESLA, and it also includes an octupole at a high dispersion
point in between of two skew sextupoles, as shown in Fig. 4.2. The octupole introduces third order
dispersion at the second skew sextupole position, which contributes to significantly increase the
vertical beam size at the downstream momentum spoiler.

Figure 4.2: Schematic of the Magnetic Energy Spoiler (MES) for TESLA. Courtesy of Nicholas
Walker from [15].

Unlike the previous nonlinear collimation system designs, which employ the skew sextupoles
either for betatron collimation or for energy collimation separately, a nonlinear collimation system
for CLIC was proposed in [39] for simultaneously to collimate in energy and in the betatronic
phases.
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On the other hand, the possibility of using octupoles for tail folding in the final focus of lin-
ear colliders has been also explored in [34–38]. Particularly, the performance of a system using
“Chebyshev arranged octupole doublets” for the NLC was study in [37], where the octupole dou-
blets were incorpored in the final focus, providing a significant reduction of the halo amplitude.

More recently a study on octupole tail folding was done for CLIC [135], concluding that an
acceptable tail folding performance for CLIC without luminosity loss would require a new final
focus optics.

Other interesting alternative idea involving octupoles is the nonlinear resonant collimation in
the main Linac [136]. This system consists of octupoles added to the FODO lattice of the main
linac of linear colliders. These octupoles are arranged to resonantly disestablish particles at large
betatron amplitudes. These halo particles are then dispersed by the nonlinear filed and catched by
absorbers before they reach the end of the linac. However, it is important to point out that this
scheme would be only practicable in a “warm” RF cavities based linear accelerator. Evidently, in
an acceletator as the ILC, whose linac is composed of superconducting cavities, no collimation
system can be located in the linac. Particles scattered off the collimators and secondary showers
may be deposited in the cavity walls causing quenches.

For TeV circular colliders a nonlinear collimation system based on a skew sextupole pair for
betatron cleaning has also been studied [137], and particularly for the LHC [138–140] (see Chap-
ter 7).

4.2 Scheme with skew sextupoles pair

In this section we describe a nonlinear collimation system using a pair of skew sextupoles and a
single spoiler, based on the layout of Figure 4.3.
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Figure 4.3: Schematic of a nonlinear collimation system using a pair of skew sextupoles and a
single spoiler.

The beam motion in a skew sextupole at a location with horizontal dispersion Dx,s is given by
the Hamiltonian
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Hs =
1
6 Ks(y3

s − 3(xs + Dx,sδ)2ys) , (4.1)

where xs and ys are the transverse amplitudes at the sextupole, and δ the relative momentum offset.
The subindex ‘s’ means first skew sextupole. We assume no dispersion in the vertical plane. The
integrated sextupole strength Ks can be expressed in terms of the sextupole length ls, the pole-tip
field BT , the magnetic rigidity Bρ and the sextupole aperture as as

Ks =
2BT ls

(Bρ)a2
s
. (4.2)

Then the sextupole deflects a passing particle by

∆x′ = −∂Hs

∂x
= Ks(Dx,sδ + xs)ys , (4.3)

∆y′ = −∂Hs

∂y
= −1

2 Ks(y2
s − x2

s − D2
x,sδ

2 − 2Dx,sδxs) , (4.4)

and the transverse position at the downstream spoiler is obtained from

xsp = x0,sp + R12∆x′ , (4.5)

ysp = y0,sp + R34∆y′ , (4.6)

where x0,sp = xβ,sp + Dx,spδ and y0,sp = yβ,sp are the horizontal and vertical position of the particle
at the spoiler without the sextupole, written in terms of the betatronic parts, xβ,sp and yβ,sp, and the
horizontal dispersion at the spoiler, Dx,sp. R12 and R34 denote the linear optical transport matrix
elements between the skew sextupole and the spoiler (see Appendix A for the transport matrix
notation).

The transverse root mean squared beam sizes at the spoiler are given by the expressions

σx,sp =

√
〈x2

sp〉 − 〈xsp〉2 , (4.7)

σy,sp =

√
〈y2

sp〉 − 〈ysp〉2 , (4.8)

where xsp and ysp are computed from expressions (4.5) and (4.6), and the brackets 〈. . .〉 indicates
the average over the transverse distribution.

The second skew sextupole in Fig. 4.3 downstream of the spoiler with the same strength Ks,
located at a position with horizontal dispersion −Dx,s and π phase advance from the first sextupole,
cancels the geometric aberrations and the first order chromatic aberrations induced by the former
one.
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4.2.1 Spoiler protection

An important issue of the collimator system is the protection of the spoiler against mis-steered or
errant beams which may hit and possibly damage it. Considering Gaussian beams, a minimum
transverse rms beam size σr,min is required for spoiler survival in case of full beam impact, and
then the beam area at the spoiler must satisfy

σx,spσy,sp ≥ σ2
r,min . (4.9)

The minimum beam size σ2
r,min depends on the spoiler material and constrains the values of Ks, R12

and R34 for the optics design of the nonlinear collimation system. If σ2
r,min is known, the maximum

transverse beam energy density can be estimated by

ρE,max =
NE0

2πσ2
r,min
, (4.10)

where N is the number of particles per bunch and E0 the nominal beam energy. Then the condition
(4.9) can be express as NE0/(2πσx,spσy,sp) . NE0/(2πσ2

r,min).

Assuming Gaussian beams, the values of σr,min have been evaluated for the 3 TeV center-of-
mass energy CLIC parameters [87].

Following this criterium we can quickly estimate the relative collimator survival probability be-
tween the nonlinear and the linear collimation systems. Of course, for more precise studies energy
deposition, collimator heating and heat propagation along the collimator material need to be con-
sidered. For these issues, usually powerful simulation software has been developed. As examples
we can mention the simulation tools FLUKA [91] and BDSIM [105]. In this thesis, nevertheless, the
aim is to compare roughly the collimator survival improvement of the nonlinear system respect to
the linear one, and we will consider the approximative criterium (4.9) as sufficient for our purpose.

4.2.2 Nonlinear collimation for linear colliders

For linear colliders we assume that the betatronic components xβ and yβ are small compared with
Dxδ both at the spoiler and at the sextupole position. We assume further flat beams with σx � σy.
The reason of the flat beams is to achieve high luminosity (L ∝ 1/(σxσy)) and low beamstrahlung
(the beamstrahlung parameter Υ ∝ 1/(σx + σy)).

Transverse beam size at spoiler position

Considering the above approximations, and using the Eqs. (4.3) and (4.5) the horizontal mean
squared position of particles and the average horizontal beam offset at the spoiler are given by
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〈x2
sp〉 ' D2

x,sp〈δ2〉 + R2
12K2

s D2
x,s〈δ2〉〈y2

β,s〉 , (4.11)

〈xsp〉 ' Dx,sp〈δ〉 . (4.12)

In a similar way, from Eqs. (4.4) and (4.6) the vertical mean squared position and the average
vertical offset at the spoiler are given by

〈y2
sp〉 '

1
4R2

34K2
s D4

x,s〈δ4〉 , (4.13)

〈ysp〉 '
1
2R34KsD2

x,s〈δ2〉 . (4.14)

From Eqs. (4.7), (4.8), (4.11), (4.12), (4.13) and (4.14), considering first a Gaussian momentum

distribution:

P(δ) = 1
√

2πσδ
e
−1/2

(
δ−δ0
σδ

)2

, (4.15)

with a width σδ and with an average momentum offset δ0, the transverse beam sizes at the spoiler
take the form:

σx,sp '
(
D2

x,spσ
2
δ + R2

12K2
s D2

x,s
(
δ2

0 + σ
2
δ

)
βy,sεy

)1/2
, (4.16)

σy,sp '
(
1
2R2

34K2
s D4

x,s
(
σ4
δ + 2δ2

0σ
2
δ

))1/2
. (4.17)

On the other hand, if we consider the case of a uniform flat momentum distribution:

P(δ) =



0 for δ < − δflat
2 + δ0

1
δflat

for − δflat
2 + δ0 < δ <

δflat
2 + δ0

0 for δ > δflat
2 + δ0 ,

with a full width δflat and an average momentum offset δ0, the transverse beam sizes at the spoiler
take the form:

σx,sp '
D2

x,sp
δ2

flat
12 + R2

12K2
s D2

xs


δ2

flat
12 + δ

2
0

 βy,sεy


1/2

, (4.18)

σy,sp '


1
4R2

34K2
s D4

x,s


δ4

flat
180 +

1
3δ

2
flatδ

2
0




1/2

. (4.19)
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Collimation depth and collimator apertures

The transverse collimation depth for e−e+ linear colliders is set by SR and beam loss in the final
doublet quadrupoles (see Chapter 2). The SR generated in final doublet must pass cleanly through
all apertures on the incoming side of the IP.

If we denote by nx and ny the horizontal and the vertical transverse normalized collimation
amplitudes, our sextupole must deflect passing leptons whose amplitude offsets |xβ,s| & nxσx,β

and/or |yβ,s| & nyσy,β, with σx,β =
√
βxεx and σy,β =

√
βyεy.

On the other hand, the energy collimation amplitude, which we call ∆ in units of δ ≡ ∆E/E, is
not determinated by the background, but instead it is set by the failure modes in the linac. These
failure modes may result in mis-steered or errant beams which will hit the energy spoiler. In this
way the energy collimation section fulfils the function of machine protection, and particles with
energy offsets |δ| & |∆| will be intercepted by the energy spoiler.

If we employ a vertical spoiler of half gap ay, the condition for collimation implies ∆ysp ≥ ay.

For linear colliders we assumed that the dispersive term is dominant in Eqs (4.3) and (4.4). In
this case we can employ the vertical spoiler for nonlinear energy collimation setting the jaws with
half gap

ay '
1
2R34KsD

2
x,s∆

2 . (4.20)

The nonlinear terms in the sextupolar deflection also may yield a weak collimation for horizontal
or vertical betatron amplitudes, at a collimation depth in units of σx,β or σy,β respectively of

nx =
Dx,s∆√
εxβx,s

, (4.21)

ny =
Dx,s∆√
εyβy,s

, (4.22)

In this case to get high betatronic collimation efficiency 1, the betatron functions at the sextupole
have to be increased. This was the approximation chosen in Ref. [39] for the first study of a
nonlinear collimation system for CLIC, where βx,s and βy,s of the order of 100 km were required.
This solution tended to introduce large chromaticity.

Additionally, we can collimate in the other betatron phase, using the linear optics. Denoting
the horizontal and the vertical spoiler half gaps by ax and ay, respectively, and assuming that the

1For CLIC at 3 TeV center-of-mass energy we have nx ' 10 and ny ' 80 [9], and for ILC at 0.5 TeV center-of-mass
energy nx ' 9.6 and ny ' 74 [106]
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vertical gap is adjusted for collimation at the same offset ∆ as the horizontal one, we obtain

nx2 =
ax√
εxβx,sp

'
Dx,sp∆√
εxβx,sp

, (4.23)

ny2 =
ay√
εyβy,sp

' 1
2

R34KsD2
x,s∆

2

√
εyβy,sp

, (4.24)

where the subindex 2 refers to the orthogonal betatron phase, considering that the spoiler and the
skew sextupole are placed roughly π/2 out of phase. These equations can be matched for the beta
functions at the spoiler.

In principle, by combining Eqs. (4.21), (4.22), (4.23) and (4.24), we could collimate in both
betatron phases and in energy using a single spoiler. If we opt for nonlinear betatron collimation,
the other phase could also be collimated by installing a “pre” skew sextupole with a phase advance
of about π/2 in front of the first skew sextupole, as proposed in [39].

Emittance growth due to synchrotron radiation

In order to use a skew sextupole as weak as possible to avoid introducing strong optics aberrations,
which may degrade the luminosity, one could think about increasing the dispersion Dx,s as much
as possible. However the achievable value of Dx,s is limited by the emittance growth ∆(γεx) due to
synchrotron radiation in the dipole magnets. The quantum excitation of beam energy spread along
path of length L is [107]

(∆δE)2 =
55(~c)2

48
√

3
γ7

∫ L

0


1∣∣∣ρ3
x

∣∣∣
+

1∣∣∣ρ3
y

∣∣∣

 ds , (4.25)

with γ ≡ E/mc2 the Lorentz factor and ρu (u = x or y) the radius of curvature of the design orbit.
Here I will be concerned only with deflections by dipole magnets in the horizontal plane, and

then only the term 1/
∣∣∣ρ3

x

∣∣∣ inside the integral will be considered.
That quantum excitation leads to the following statistical increase of the normalized emittance:

∆(γεx) = 55re~c

48
√

3mc2
γ6

∫ L

0

H∣∣∣ρ3
x

∣∣∣
ds . (4.26)

The curvature ρx(s) is a function of the longitudinal coordinate s. However, one can approximate
ρx by a constant value within a given bending magnet. The integral of Eq. (4.26) is called the
radiation integral I5, and it can be written as [108]

I5 =

∫ L

0

H∣∣∣ρ3
x

∣∣∣
ds =

∑

i

Li
〈H〉i∣∣∣ρ3

x,i

∣∣∣
, (4.27)

where the sum runs over all bending magnets, with bending radius ρi, length Li, and the “curly H”
function as defined in Ref. [107].
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The Eq. (4.26) can then be written as

∆(γεx) = CE6I5 , (4.28)

where

C =
55re~c

48
√

3(mc2)7
' 4.13 × 10−8 m2 GeV−6 . (4.29)

In order to avoid the degradation of the emittance we have then to get acceptable values for the
bending magnet strengths, which limits the integral I5 at the same time that the dispersion Dx,s is
maximized. This restricts the value

∆(γεx) ' (4.13 × 10−8 m2 GeV−6)E6I5 < f (γεx) (4.30)

to a fraction f of the initial normalized emittance γεx.

4.2.3 Nonlinear collimation for circular colliders

For circular colliders we will assume the dispersive component Dxδ to be smaller than the betatron
amplitudes xβ and yβ both at the sextupole and at the spoiler, and we will apply the nonlinear
collimation system for betatron collimation.

Transverse beam size at spoiler position

In the above approximation, and using Eqs. (4.3) and (4.5) the horizontal mean squared position of
particles at the spoiler is given by

〈x2
sp〉 ' 〈x2

β,sp〉 + R2
12K2

s 〈x2
β,s〉〈y2

β,s〉 , (4.31)

〈xsp〉 ' 0 , (4.32)

and using Eqs. (4.4) and (4.6) the vertical mean squared position and the average vertical offset at
the spoiler is

〈y2
sp〉 ' 〈y2

β,sp〉 +
1
4R2

34K2
s (〈x4

β,s〉 + 〈y4
β,s〉 − 2〈x2

β,s〉〈y2
β,s〉) , (4.33)

〈ysp〉 ' −1
2R34Ks(〈y2

β,s〉 − 〈x2
β,s〉) . (4.34)

From Eqs. (4.7), (4.8), (4.31), (4.32), (4.33) and (4.34), and assuming a transverse Gaussian distri-
bution, the transverse beam sizes at the spoiler take the form:
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σx,sp '
(
K2

s R2
12βx,sβy,sεxεy + βx,spεx

)1/2
, (4.35)

σy,sp '
(

1
2 K2

s R2
34

(
β2

x,sε
2
x + β

2
y,sε

2
y

)
+ βy,spεy

)1/2
. (4.36)

Collimation depth and collimator apertures

Let ±nx
√
βx,sεx and ±ny

√
βy,sεy be the collimation amplitudes for the horizontal and vertical be-

tatron motion respectively, and ±nx2
√
βx,spεx and ±ny2

√
βy,spεy the physical transverse apertures

of the primary spoiler. Then for the collimation to function in either transverse plane, we must
have [139]

ny2
√
βy,spεy =

1
2 KsR34n2

xβx,sεx , (4.37)

ny2
√
βy,spεy =

1
2 KsR34n2

yβy,sεy . (4.38)

Particles at transverse amplitudes |xβ| & nx
√
βx,sεx and |yβ| ' 0, or |yβ| & ny

√
βy,sεy and |xβ| ' 0,

will be deflected by the skew sextupole and are caught by a vertical spoiler of normalized half gap
ny2. On the other hand, particles with |xβ| ≈ |yβ| will not be collimated by the vertical spoiler.
Instead these particles will receive a horizontal kick by the skew sextupole and can be caught by
the spoiler set to the normalized horizontal aperture nx2, i.e.

nx2
√
βx,spεx = KsR12nxny

√
βx,sεy

√
βy,sεy . (4.39)

Therefore, the aperture at the spoiler nx2 can be adjusted to improve the cleaning efficiency for
particles with offsets in both transverse planes.



Chapter 5
Alternative Nonlinear Energy
Collimation System with Skew
Sextupole Pair for CLIC at 1.5 TeV

5.1 Introduction to the CLIC accelerator

In basic form, a Linear Collider consists of two linear accelerators pointed at each other in 180
degree opposition 1. After obtaining the nominal energy the beams collide at the interaction point,
where the particle detectors are located.

It is worth mentioning that the beam is not recirculated as it happens in the circular machines;
instead, it is dumped after the collision point, following a single acceleration pass. Therefore, the
repetition of the acceleration process and the beam collision is required as frequently as possible.

The CLIC technology is based on the two beam acceleration method. An overall layout for
the centre-of-mass energy of 3 TeV is shown in Figure 5.1. This method consists in extracting RF
power from a low energy and high intensity electron beam (so-called Drive Beam) by Power Ex-
traction and Transfer Structure (PETS). The linear accelerator (linac) is based on a modular design
and has no active components such as modulators or klystrons. Each RF power structure acceler-
ates electron and positron beams (so-called Main Beam) with accelerating gradients of 150 MV/m
at room temperature and are arranged in sectors providing an acceleration of ∼ 70 GeV over 624
m [4]. The main parameters of CLIC are listed in Table 5.1 for center-of-mass energies 0.5 TeV

1The Stanford Linear Collider (SLC) [5], the sole linear collider built to date, did not actually consist of two opposing
machines. The SLC, at a relatively low beam energy of approximately 30 GeV, used only one linac instead a pair of opposing
linacs for the sake economy. The linac accelerated both electrons and positrons via a process involving the generation of
positrons by bombardments of a target, then electrons and positrons were sent in two separate arcs and steered into collision.
However, this scheme is not feasible for beam energies of the order of hundreds of GeV.
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and 3 TeV. The two first columns corresponds to old parameters set previous to the year 2005. The
third column shows parameters set as of mid 2005 [109].

Table 5.1: Overall parameters of CLIC for centre-of-mass energies 0.5 TeV and 3 TeV.

parameter value
Centre-of-mass energy (TeV) 0.5 TeV 3 TeV 3 TeV (updated 2005)
Design luminosity (1034 cm−1s−1) 2.1 8.0 6.5
Mean energy loss (%) 4.4 21 10
Photons/electron 0.75 1.53 1.1
Main linac RF frequency (GHz) 30 30 30
Linac repetition rate (Hz) 200 100 150
Particles/bunch at IP (×109) 4.0 4.0 2.56
Bunches/pulse 154 154 220
Bunch length (µm) 35 35 30.8
Bunch separation (ns) 0.67 0.67 0.267
Bunch train length (µs) 0.102 0.102 0.0587
Emittances εx/εy (10−8 rad·m) 200/1 68/1 68/1
Unloaded/loaded gradient (MV/m) 172/150 172/150 172/150
Beam power/beam (MW) 4.9 14.8 20.3
Total site AC power (MW) 175 410 418
Overall length (km) 7.7 33.2 33.2

The total length of the CLIC will be around 33 km. However, due to its modular structure the
collider could start generation at lower energy simply with a shorter length and then be upgraded
in stages to reach the maximum energy of 5 TeV [4]. Operating at this centre-of-mass energy, the
CLIC linear collider should be designed with a luminosity L ∼ 1035 cm−2s−1.

5.1.1 The CLIC BDS

The latest design of the lattice for the CLIC beam delivery system (CLIC BDS) [10] is based on a
compact FFS “a la Raimondi” [14], adapted to the CLIC requirements [110]. This lattice has been
matched to the twiss parameters of Table 5.2. The corresponding twiss parameters are shown in
Figure 5.2. Here β∗x = 7 mm and β∗y = 0.09 mm have been chosen for the interaction point.

The baseline linear collimation system [9], whose optics is shown in Fig. 5.3, includes a region
of 1375 m with high horizontal dispersion for energy collimation, and a section of 625 m for
betatron collimation upstream of the FFS. Next we will focus our study on the collimation system
of CLIC.

5.1.2 The baseline linear collimation system of CLIC

Two sections upstream the final focus system are dedicated to collimation:
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Table 5.2: System lengths and beam parameters at the entrance and at the IP of the CLIC Beam
Delivery System. The nominal energy spread is a flat square distribution with 1 % full width.

Lattice lengths
FF length 0.5 km
CS length 2.0 km
BDS length 2.5 km

BDS entrance
Beam energy E 1500 GeV
Energy spread δ = ∆E/E 1 % (full width square)
Hor. beta function βx 64.171 m

αx -1.951
Ver. beta function βy 18.244 m

αy 0.606
Hor. emittance γεx 680 nm
Ver. emittance γεy 10 nm
Bunch length σz 35 µm

IP
Hor. beta function β∗x 7 mm
Ver. beta function β∗y 90 µm
Hor. beam size σ∗x 40.12 nm
Ver. beam size σ∗y 0.55 nm

• As explained in chapter 2, section 2.1.1, the collimation depth for the CLIC betatron collima-

tion is determined from the conditions that beam particles and synchrotron radiation photons
emitted in the final quadrupoles should not hit any magnet apertures on the incoming side of
the IP. According to this criterion, the collimation depths were estimated to be less than 14σx

(horizontal plane) and 83 σy (vertical plane) [13]. Due to nonzero dispersion across the final
doublet, the number for the horizontal beam size σx includes both betatron and dispersive
components, roughly equal in magnitude, such that the actual horizontal collimation depth
at a place with zero dispersion needs to be

√
2 smaller, or about 10 σx. Scaling to lower

energies, we need to replace the permanent final open quadrupole by a weaker magnet. In
principle, the aperture of this magnet can be opened like the inverse of the beam energy. This
suggests that, for constant normalized emittances and beta functions, the collimation depth
quoted in numbers of root mean square (rms) beam sizes could be increased in proportion
to the inverse square root of energy. However, the horizontal normalized emittance does in-
crease at 500 GeV, and both IP beta functions decrease somewhat. Background studies [111]
indicate that, at 500 GeV, the direct impact of synchrotron radiation on the vertex detector
could limit the permissible collimation depth to smaller values.

It is worthwhile to mention that the spoilers in the betatron collimation section were designed
to be sacrificial, and will certainly be destroyed (consumable collimators), if they are hit by
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Figure 5.2: Horizontal dispersion and square root of the betatron functions for the CLIC BDS,
using the linear CS, matched to the twiss parameters of Table 5.2.

a bunch train (for example, if the momentum collimators are not positioned properly).

• The energy collimation depth is not determined by the background, but instead it is set by
failure modes in the linac (see chapter 2, section 2.1.1). For CLIC a value of about ±1–1.5 %
was estimated [112]. This setting ensures, for all failure scenarios studied, that mis-steered
or errant beams will either hit the energy spoiler, where the beam size is sufficiently large for
collimator survival, or will pass all the way through the interaction point, without impacting
on a betatron collimator.

The collimator parameters for the standard linear system are listed in Table 5.3, and the colli-
mator database in Table 5.4.

5.2 Benchmarking of tracking codes in the context of the CLIC

BDS

Different tracking and optics design simulation codes have been implemented with different meth-
ods. While some codes as MAD [114] use the TRANSPORT formalism [115] based on Taylor maps up
to second order, the Strategic Accelerator Design (SAD) program [116] uses a symplectic formal-
ism. Therefore, benchmarking the codes could be useful to assess the confidence in the simulations.
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Figure 5.3: Horizontal dispersion and square root of the betatron functions for the CLIC linear CS
(figure on the bottom) matched to the twiss parameters of Table 5.2.

Table 5.3: Collimation parameters for CLIC.

CM energy 3 TeV 500 GeV
energy spoiler gap ±3.51 mm ±4.8 mm
βx spoiler gap ±80 µm ±300 µm

(10σx) (9σx)
βy spoiler gap ±104 µm ±215 µm

(80σy) (69σy)
spoiler material Be (or C) Be (or C)
spoiler length 177 mm (0.5 r.l. C) 177 mm (0.5 r.l. C)
absorber material Ti (Cu coated) Ti (Cu coated)
no. of energy spoilers 1 1
no. of βx,y spoilers 4 4

In the context of the CLIC Beam Delivery System (BDS) [10] several tracking tools have been
compared in previous works [117, 118]. The code Placet [119] is even able to simulate a whole
linear machine, joining the linac and the Beam Delivery System.

In this section we study the performance of the CLIC BDS for centre-of-mass energy 3 TeV,
using the linear collimation system and comparing the results of three tracking tools: SAD, MAD and
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Table 5.4: CLIC post-linac collimator parameters. Longitudinal position, horizontal and vertical β-functions, dispersion, horizontal and vertical
half gaps, geometry of the collimator and material.

s[m] Name βx[m] βy[m] Dx[m] ax[mm] ay[mm] Geometry Material
566.502 ENGYSP 1406.33 70681.9 0.27 3.51 25.4 rect Be
731.502 ENGYAB 3213.03 39271.5 0.417 5.4 25.4 rect Ti(Cu coated)
1490.28 YSP1 114.054 483.253 0. 10. 0.102 rect Be
1506.1 XSP1 270.003 101.347 0. 0.08 10. rect Be
1583.3 XAB1 270.102 80.9043 0. 1. 1. ellip Ti(Cu coated)

1601.12 YAB1 114.054 483.184 0. 1. 1. ellip Ti(Cu coated)
1603.12 YSP2 114.054 483.188 0. 10. 0.102 rect Be
1618.94 XSP2 270.002 101.361 0. 0.08 10. rect Be
1696.14 XAB2 270.105 80.9448 0. 1. 1. ellip Ti(Cu coated)
1713.96 YAB2 114.055 483.257 0. 1. 1. ellip Ti(Cu coated)
1715.96 YSP3 114.054 483.253 0. 10. 0.102 rect Be
1731.78 XSP3 270.003 101.347 0. 0.08 10. rect Be
1808.98 XAB3 270.102 80.9043 0. 1. 1. ellip Ti(Cu coated)
1826.8 YAB3 114.054 483.184 0. 1. 1. ellip Ti(Cu coated)
1828.8 YSP4 114.054 483.188 0. 10. 0.102 rect Be

1844.63 XSP4 270.002 101.361 0. 0.08 10. rect Be
1921.83 XAB4 270.105 80.9448 0. 1. 1. ellip Ti(Cu coated)
1939.65 YAB4 114.055 483.257 0. 1. 1. ellip Ti(Cu coated)
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Placet.
In this chapter we do not include studies at the interaction region, such as extraction lines,

crossing angles, crab cavities, etc.

5.2.1 Tracking codes

The computer tracking code used for the comparison in the context of the CLIC BDS are: SAD MAD
and Placet.

• SAD is a 6D-symplectic tracking tool. In the presence of synchrotron radiation each magnet is
split into several slices, and the radiation occurs at the borders between the slices. A particle
obeys symplectic dynamics within every slice [120].

• MAD uses the TRANSPORT formalism up to order two. In the case of synchrotron radiation,
MAD computes the energy radiated at the entrance and the exit of the element [121]. In this
paper the version MAD8 is used. A new synchrotron radiation generator has been recently
implemented for MADX based on integrals of Chebyshev polynomials [122].

• Placet is a tracking code originally written for linac simulations [119] and later extended to
cover also the Beam Delivery System [123]. Placet implements the Monte Carlo generator
for synchrotron radiation of Ref. [124].

It is worthwhile to mention some differences between the different codes when the synchrotron
radiation is active. In order to maintain the beam nominal energy and the beam matched with
the downstream lattice, MAD accounts for energy losses due to photon emission by artificially re-
accelerating the beam after the bending magnets in the final focus system. Placet can simulate
beam re-acceleration and magnet rescaling. For SAD with synchrotron radiation neither artificial
re-acceleration nor magnet rescaling have been added. The values of the luminosity have been
computed with GuineaPig [86]. This program performs detailed simulations of the beam-beam
interactions at the IP including the hourglass effect, the pinch effect beamstrahlung and e+e− pro-
duction. The interface between the tracking codes and GuineaPig has been done off line. The
output files from the tracking simulations with the above codes are used as input beam particles
distributions to perform beam-beam calculations with GuineaPig.

5.2.2 Tracking results

A distribution of 40000 particles and 1 % full width energy spread for a flat square energy distri-
bution has been tracked along the CLIC beam delivery system. The nominal beam parameters are
shown in Table 5.2.

Figure 5.4 shows an example of the beam transversal profile at the IP. The beam sizes have
been calculated taking the size of the beam core by means of a gaussian fit. For the case of the
CLIC BDS, the transverse tails of the particles distribution at the IP are long and may provide an
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important background source. It was estimated in Ref. [117] that the beam population of those
tails is about 10 % of the total bunch particles. Some of these particles are at very large amplitude
and contribute to increase the value of the standard deviation of the particle position. Therefore,
because of the non-gaussian nature of the beam distribution at the CLIC IP, the standard deviation
is not a good indication of the beam size.

Figure 5.4: Sample of transverse beam profile at the IP after the tracking with Placet, including
the effects of the synchrotron radiation. The core beam sizes is calculated by means of gaussian fit
to the particles distribution in both planes x and y.

Figures 5.5 and 5.6 are a sample of the phase space at the IP as given by Placet for the
horizontal and vertical transversal plane, respectively. The cases without and with synchrotron
radiation have been considered.

Table 5.5 summarizes the results for the beam size at the IP as given by SAD, MAD, and Placet.
We compare the values of the standard deviation and the values obtained by a gaussian fit.

In the lattice with MAD the collimation aperture is defined and we have halo particles losses up
to 4 % from the total number for a beam with 1 % energy spread. This explains why the standard
deviation given by MAD is lower than the result with Placet and SAD, where the collimators are not
defined.

When the synchrotron radiation is switched off, the result from the three codes for the core
beam size is very similar or the same. With synchrotron radiation, we find a discrepancy for the
vertical beam size with SAD up to 14 % from the other two codes, and discrepancies of about 15 %
for the horizontal standard deviation. At this point, it is worthwhile to remind the reader that the
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Figure 5.5: Horizontal phase space without the synchrotron radiation effects (figure on the left) and
with the synchrotron radiation effects (figure on the right) as given by simulation with Placet.
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Figure 5.6: Vertical phase space without the synchrotron radiation effects (figure on the left) and
with the synchrotron radiation effects (figure on the right) as given by simulation with Placet.

compensation for energy losses due to photon emission is implemented in the BDS lattice with
MAD for the final focus system and Placet, and is missing in SAD. This could be the source of
discrepancy when the synchrotron radiation is active.

Table 5.6 shows the values obtained for the luminosity without and with synchrotron radiation.
Placet gives the higher values in comparison to the other two codes.

5.2.3 Particle per particle comparison

We have calculated the difference of the horizontal and vertical particle positions at the IP from
the tracking results with the different codes as a function of the energy. A strong correlation with
energy offset is found for the cases xMAD − xS AD, xPlacet − xMAD, yMAD − yS AD and yPlacet − yMAD.
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Table 5.5: Comparison of the standard deviation (Std. dev. i for i = x, y) of the beam distribution
at the IP as given by the three tracking codes, and comparison of the transversal beam size (σi for
i = x, y) calculated by means of gaussian fit to the particles distribution at the IP. For the tracking a
beam of 40000 particles and 1 % full width flat square energy spread was considered.

w/o SR
Std. dev. x σx (gaus. fit) Std. dev. y σy (gaus. fit)

SAD 84.8 nm 48.0 nm 1.28 nm 0.65 nm
MAD 69.6 nm 47.3 nm 1.11 nm 0.65 nm
Placet 84.0 nm 48.0 nm 1.27 nm 0.65 nm

with SR
Std. dev. x σx (gaus. fit) Std. dev. y σy (gaus. fit)

SAD 82.8 nm 57.1 nm 2.63 nm 0.85 nm
MAD 70.1 nm 57.5 nm 1.96 nm 0.73 nm
Placet 77.6 nm 57.1 nm 2.19 nm 0.73 nm

Table 5.6: Luminosity values calculated for the case without and with synchrotron radiation.

SAD MAD Placet

Lw/o SR [×1034 cm−2s−1] 11.35 10.714 11.655
Lwith SR [×1034 cm−2s−1] 7.171 7.441 8.214

Figure 5.7 shows the dependence on energy for xMAD−xS AD and yMAD−yS AD . For xMAD−xS AD

maximum differences of up to about 10 nm are found for particles with ±0.4 % energy offset. For
the vertical position yMAD − yS AD maximum differences up to about 0.5 nm are found. For the case
of xPlacet − xMAD and yPlacet − yMAD (see Figure 5.8) similar differences up to about 10 nm and 0.5
nm are found, respectively.

Figure 5.9 shows the case xPlacet − xS AD and yPlacet − yS AD . Here |xPlacet − xS AD| < 5 nm,
and a light correlation is observed for a large energy offset lower than the nominal energy. For
yPlacet − yS AD no correlation with energy is observed.

The standard deviations found for the differences of the particles positions are summarized in
Table 5.7. The minimum standard deviations correspond to the differences of position between the
codes Placet and SAD.

5.2.4 Chromatic effects

We consider monochromatic particle distributions arranged to form ellipses in phase space. These
ellipses are matched to the entrance twiss parameters of Table 5.2. The ellipses are tracked for
different energies from the nominal energy. Here we give the example for offset energies ∆E/E =

±0.3 % and ∆E/E = ±0.4 %.
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Table 5.7: The data standard deviation for the difference of the particle positions between the
different codes.

xcode1 − xcode2 Std. dev. [nm] ycode1 − ycode2 Std. dev. [nm]
xPlacet − xS AD 1.027 yPlacet − yS AD 9.639 × 10−3

xPlacet − xMAD 1.393 yPlacet − yMAD 8.701 × 10−2

xMAD − xS AD 2.067 yMAD − yS AD 8.412 × 10−2
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Figure 5.7: Difference of the horizontal (figure on the left) and the vertical (figure on the right)
particle position at the IP as a function of the particle energy, as calculated by MAD and SAD.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 1494  1496  1498  1500  1502  1504  1506

x P
la

ce
t-x

M
A

D
 [

µm
]

E[GeV]

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 1494  1496  1498  1500  1502  1504  1506

y P
la

ce
t-y

M
A

D
 [

µm
]

E[GeV]

Figure 5.8: Difference of the horizontal (figure on the left) and the vertical (figure on the right)
particle position at the IP as a function of the particle energy, as calculated by Placet and MAD.

If we have in the horizontal phase space an initial ellipsoidal particle distribution with vertical
initial coordinates y0 = 0 and y′0 = 0, the center of the ellipse at IP is determined by the Taylor map

xc(δ ≡ ∆E/E) = R16δ + T166δ
2 + U1666δ

3 ,

x′c(δ ≡ ∆E/E) = R26δ + T266δ
2 + U2666δ

3 , (5.1)

where we consider terms only up to third order. The convention of Ref. [155] has been used for
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Figure 5.9: Difference of the horizontal (figure on the left) and the vertical (figure on the right)
particle position at the IP as a function of the particle energy, as calculated by Placet and SAD.

the coefficients Ri j, Ti jk and Ui jkl (see Appendix A). Figure 5.10 shows an example for the tracking
for ellipses at 1σ in the x − x′ phase space using the program Placet. Note that the Taylor map
up to third order dispersion gives a good description of the center ellipse transport in phase space
for ∆E/E & −0.3 % . For lower energies from the nominal, strong deformations of the ellipses
are observed. Particles with an offset energy . −0.3 % bear strong geometric aberrations and
contribute to the long tail of the transversal phase space. Figure 5.11 shows the chromatics effects
for the horizontal phase space at IP, where different colours have been used to distinguish the
position of the particle depending on the energy around the nominal beam energy of 1500 GeV.

For the y − y′ phase space we show in Figure 5.12 an example for the tracking with ellipses at
position amplitudes of 1σ and 3σ, considering the nominal energy and the energy offset ∆E/E =

±0.3 %. The particles at high position amplitude of several sigmas contribute to the population of
the long tails. For the case of the ellipses at 3σ in the vertical phase space, it is possible to observe
a strong deformation of the shape caused by the sextupoles located in the final focus system.

The MAD program can calculate the matrix elements up to second order. We have calculated the
third order with a elliptical fit to the tracked points which allows us to determine the ellipse center.
Table 5.8 shows the result for the matrix elements from Eq. (5.1) corresponding to the CLIC BDS,
FFS and CS separately. For the FFS a description up to second order is enough. The addition of
CS introduces important third order coefficients.

5.2.5 Bandwidth

A way to estimate the importance of the residual high-order chromatic aberrations introduced from
the BDS optics is to evaluate the momentum acceptance of the system. This acceptance is com-
monly denomined as the momentum or energy bandwidth, and is defined as the tolerable range of
central momentum errors, or the tolerable range of energy spread. Outside this range the system
performance is strongly degraded.

The tracking was made with 10000 particles for different energy spreads, considering a flat
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Figure 5.10: Phase space x - x′ at IP for ellipsoidal particles distributions at 1σ, using the tracking
program Placet. Figure on the top shows the tracking result with Placet for nominal energy
(black ellipse) and offset energies +0.3 % (blue ellipse) and −0.3 % (green ellipse). Figure on the
bottom shows the tracking result with Placet for nominal energy (black ellipse) and off energy
+0.4 % (blue ellpse) and −0.4 % (green ellipse). The red line is the center ellipse change as a
function of the energy off-set, see Eq. (5.1).

square energy distribution. Both cases with and without synchrotron radiation have been consid-
ered.

Figure 5.13 shows the beam sizes as a function of the beam energy spread for the horizontal
(figure on the top) and vertical (figure on the bottom) plane without synchrotron radiation. The
bandwidth with synchrotron radiation is shown in Figure 5.14 for the horizontal beam size (on the
top) and for the vertical (on the bottom). The results have been normalized to the value given by
Placet at 0 % energy spread without synchrotron radiation.

The lattice for the CLIC BDS in MAD includes the aperture of the collimators. Because of this,
particle losses are observed with MAD from 0.9 % energy spread on. For the nominal energy spread
of 1 % about 4 % of the total particles are removed. For values of energy spread> 1 % the beam size
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Figure 5.11: Horizontal phase space including synchrotron radiation effects.The color scale on the
right represents the energy of the different particles given in GeV.

remains approximately constant because of the collimation using MAD. Figure 5.15 shows the result
for the luminosity as a function of energy from the tracking simulation using the three simulation
codes. At 1 % full width energy spread we have a luminosity loss ≈ 30 % with respect to the ideal
value. On the other hand, if we compare the values between the cases with and without radiation,
the synchrotron radiation (bending magnets + final quadrupoles) causes about 40 % luminosity
loss from the ideal value. Therefore, the synchrotron radiation is a limitation factor more important
than the beam energy spread. In the next section, the limitation of the radiation in the strong final
telescope will be evaluated.

As it was observed in previous sections, the values obtained from SAD are higher than those
from the simulations with MAD and Placet for the beam sizes with radiation, and therefore lower
for the luminosity.

5.3 An alternative nonlinear energy collimation system

As we have already mentioned in section 4.2.2, high horizontal dispersion and high betatron func-
tions at the skew sextupoles are necessary to collimate simultaneously in energy and transverse
beam amplitude. This solution, first proposed for CLIC in Ref. [39], tends to introduce large chro-
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Figure 5.12: Phase space y - y′ at IP for ellipsoidal particles distributions at 1σ (figure on the top)
and 3σ (figure on the bottom) using the tracking program Placet. The tracking result for nominal
energy (black ellipse) is compared with the tracking results for offset energies +0.3 % (blue ellipse)
and −0.3 % (green ellipse).

maticity, which requires local correction. However the addition of other sextupoles for this cor-
rection introduced residual optics aberrations which degraded dramatically the luminosity. Then
we decided to reduce the optical constraints for the nonlinear collimation system design, and to
perform only collimation in energy using the scheme with a pair of skew sextupoles as described
in section 4.2. For betatron collimation we will use exactly the same linear optics as in the baseline
design of section 5.1.2.

5.3.1 Collimation depth and collimator aperture

The purpose of the first skew sextupole is to increase the vertical spot size at the spoiler, and from
Eqs. (4.8), (4.13) and (4.14) we can rewrite the latter as
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Table 5.8: Matrix elements for the dispersion up to third order for the CLIC Final Focus system
(FFS) and Collimation System (CS) separately, and the Beam Delivery System (BDS): CS + FFS.

FFS CS BDS
R16 [m] −6. × 10−6 0. −6. × 10−6

R26 [rad] 1.818 × 10−3 0. 1.818 × 10−3

T166 [m] −0.183 × 10−2 0.457 0.114 × 10−2

T266 [rad] 0.195 × 10−2 0.273 × 10−2 -0.607
U1666 [m] 0. -6.735 0.598
U2666 [rad] 0. 0.246 20.382

σy '
1
2R34KsD

2
x,s

√
〈δ4〉 − 〈δ2〉2 , (5.2)

In a similar way, from Eqs. (4.7), (4.11) and (4.12) the horizontal spot size at the spoiler takes the
form

σx ' Dx,spσδ (1 +Cs)1/2 , (5.3)

where σδ =
√
〈δ2〉 − 〈δ〉2, and the nonlinear effect of the sextupole is given by

Cs = R2
12K2

s
D2

x,s

D2
x,sp

〈δ2〉
σ2
δ

〈y2
β,s〉 . (5.4)

Assuming Cs � 1, then we can approximate

σx ≈ Dx,spσδ +C′s , (5.5)

where Dx,spσδ is the linear dispersion component and

C′s =
1
2R2

12K2
s

D2
x,s

Dx,sp

〈δ2〉
σδ
〈y2
β,s〉 (5.6)

the sextupolar effect. This term will be small compared with Dx,spσδ (we recall that we have
assumed the betatronic component yβ,s to be much smaller than the energy dispersion term Dx,sδ

at the sextupole position). Therefore, the effect of the skew sextupole can be neglected in the
horizontal plane.

The increase of the transverse spot sizes at the spoiler translates into a the decrease of the
transverse energy density (ρE ∝ 1/σxσy). This increases the probability for spoiler survival in case
of full beam impact, which will be studied in section 5.4.1.

Recognizing that the energy collimation depth is set by the failure modes in the linac to a
value in the range ±1–1.5 % [112], in this thesis we have tightened the energy collimation depth to
∆ = ±1.3 %. A vertical spoiler with half gap ay can be employed to intercept beams with average
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Figure 5.13: Horizontal (figure on the top) and vertical (figure on the bottom) IP spot sizes as a
function of the full beam energy spread from the tracking with Placet (black line), MAD (red line)
and SAD (blue line). The dashed line with red squared points indicates the number of particles with
MAD. In this case the synchrotron radiation is not considered. The results have been normalized to
the value given by Placet at 0 % energy spread without synchrotron radiation.

energy off-set |δ0| & |∆|, giving a relation between ay, ∆ and the skew sextupole strength:
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Figure 5.14: Horizontal (figure on the top) and vertical (figure on the bottom) IP spot sizes as a
function of the full beam energy spread from the tracking with Placet (black line), MAD (red line)
and SAD (blue line). The dashed line with red squared points indicates the number of particles with
MAD. In this case the synchrotron radiation is considered. The results have been normalized to the
value given by Placet at 0 % energy spread without synchrotron radiation.

ay '
1
2R34KsD

2
x,s∆

2 . (5.7)
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Figure 5.15: Luminosity as a function of the beam energy spread from the tracking with Placet
(red line), MAD (green line) and SAD (blue line). Figure on the top corresponds to the case without
synchrotron radiation. Figure on the bottom corresponds to the case with synchrotron radiation.
The results have been normalized to the value given by Placet at 0 % energy spread without
synchrotron radiation.

Alternatively, we can use the linear optics for energy collimation if a horizontal spoiler is set to the
half gap
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ax ' Dx,sp∆ . (5.8)

5.3.2 Optics layout solution

Various optics designs for nonlinear energy collimation at CLIC were developed by using the code
MAD. Table 5.9 lists the optics parameters for the different optics designs: the total length of the
nonlinear energy collimation section; the betatron functions βx,s and βy,s at the skew sextupoles;
the betatron functions βx,sp and βy,sp at the momentum spoiler; the absolute value of the horizontal
dispersion |Dx,s| at the skew sextupoles; the horizontal dispersion Dx,sp at the momentum spoiler;
the value of the dipole angle θb at the nonlinear energy collimation section; and the synchrotron
radiation integral I5 calculated along the nonlinear energy collimation lattice. The main features of
those optics are:

• The dispersion Dx,s at the first skew sextupole and the skew sextupole strength Ks were
chosen so as increase the vertical spot size at the spoiler enough to guarantee the scraper or
spoiler survival in case of full beam impact. This issue will be studied with some detail in
section 5.4.1.

• The stronger effect of the first skew sextupole is in the vertical spot size, which will be
increased at the spoiler, in this way decreasing the transverse energy density at the spoiler.
The sextupolar effect on the horizontal beam size will be small compared with the first order
linear dispersive term (see Eq. (5.5)).

• We have maximized the overall fraction of the system occupied by bends and decreased the
bending angle θb to a point where the effect of synchrotron radiation became reasonably
small. At the same time the dispersion at the sextupole position, Dx,s, was maximized as
much as possible for good collimation effectiveness.

• One could think to increase Dx,s and decrease the SR effects with a big bending angle θb
and using larger dipole length lb, since the energy spread due to SR is proportional to θ3

b/l
2
b.

However, an important constraint is the length of the total system, which should be as short as
possible if we take into account the considerable cost of the tunnel construction per km [113].
Therefore the length of the system was adjusted to the reasonable value for which emittance
growth due to SR does not degrade the collider performance. The bending angles were
adjusted accordingly to minimize the emittance growth due to the synchrotron radiation.

From Eq. (4.30) a value of the radiation integral I5 = 10−19 m−1 corresponds to a normalized
emittance growth ∆(γεx) ' 0.047 µm, i.e. about 7 %, for CLIC at center-of-mass energy of
3 TeV. We have taken the value I5 = 10−19 m−1 as constraint for the dispersion function, so
that the value of emittance growth is restricted by ∆(γεx) < fγεx with f ' 0.07.



CHAPTER 5: Alternative Nonlinear Energy Collimation System with Skew Sextupole Pair for
CLIC at 1.5 TeV 90

• The transformation matrix −I between the skew sextupoles was chosen in order to cancel the
geometric aberrations.

• No bends were installed between the skew sextupoles, i.e., Rs1→s2
16 = 0 (where Rs1→s2

16 denotes
the optical transport matrix element between the two skew sextupoles). Hence the dispersion
will propagate between the skew sextupoles exactly like a betatron oscillation. In this con-
dition, the dispersion at each sextupole has the opposite sign and same absolute value which
cancels the first order chromatic aberrations, reducing thus the luminosity degradation.

• Very strong skew sextupoles may introduce important third, fourth and higher order optics
aberrations, which may dramatically degrade the luminosity at the IP. The criterion for se-
lecting the sextupole strength was a trade-off between the minimum beam peak density at
the scraper and the maximum luminosity. In the next section we will carefully discuss this
issue presenting results from multiparticle tracking studies.

Table 5.9: Summary of some parameters for the different optics solutions of a nonlinear energy
collimation system for CLIC.

parameters optics #1 optics #2 optics #3 optics #4 optics #5
length [m] 2536.0 1717.035 2036.0 1730.763 1730.763
βx,s [m] 896.046 369.433 540.012 436.603 436.603
βy,s [m] 266.001 110.184 160.697 110.184 110.184
βx,sp [m] 650.0 650.0 650.0 65.0 550.0 550.0
βy,sp [m] 65.0 65.0 65.0 65.0 65.0
|Dx,s| [m] 0.085 0.097 0.094 0.097 0.078
Dx,sp [m] 0.085 0.097 0.094 0.097 0.078
θb [rad] 1.4 × 10−4 2.5 × 10−4 2.0 × 10−4 2.5 × 10−4 2.0 × 10−4

I5 [m−1] 1.643 × 10−21 4.87 × 10−20 1.261 × 10−20 4.71 × 10−20 1.543 × 10−20

Table 5.10 compiles the beam, optics and collimation parameters for the nonlinear collimation
system #4. For this system the betatron functions and the horizontal dispersion as a function of the
longitudinal variable s are shown in Fig. 5.16. The betatron functions and the dispersion versus s,
for the total CLIC BDS at 3 TeV using the nonlinear collimation system #4, are plotted in Fig. 5.17.
We have considered β0

x = 65 m, β0
y = 18 m and Dx = 0 m at the entrance of the BDS. The twiss

parameters at the IP are exactly the same as for the BDS with linear collimation, i.e. β∗x = 7 mm,
β∗y = 0.09 mm and Dx = 0 m.

5.3.3 Optics optimization

The luminosity drops as the strength of the skew sextupole excitation increases. The arrangement
of the skew sextupoles from Fig 4.3 allows the cancellation of first order geometric and chro-
matic aberrations. However, there are remanent higher order aberrations which may cause a strong
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Table 5.10: Beam, optics and collimation parameters for the nonlinear collimation system #4

variable symbol value units
Beam energy E 1500 GeV
Energy spread full width δflat 0.01
(uniform distribution)
rms momentum spread σδ 2.8 × 10−3

Hor. normalized emittance γεx 680 nm
Ver. normalized emittance γεy 10 nm
Total length lt 1730.763 m
Dipole angle θb 2.5 × 10−4 rad
Skew sextupole strength Ks 20.8 m−2

Hor. beta function at entrance β0
x 65.0 m

Ver. beta function at entrance β0
y 18.0 m

Hor. phase advance from sext. to spo. µx 0.25 2π
Ver. phase advance from sext. to spo. µy 0.25 2π
Transport matrix from sext. to spo. R12 490.032 m
Transport matrix from sext. to spo. R34 84.628 m
Hor. dispersion function at sext. Dx,s 0.097 m
Ver. dispersion function at spo. Dx,sp 0.097 m
SR integral I5 4.71 × 10−20 m−1

Energy collimation depth ∆ 0.013
Hor. spoiler half gap ax 1.266 (112.552) mm (σβ,x)
Ver. spoiler half gap ay 1.414 (3008.681) mm (σβ,y)
Transverse energy beam density limit ρE,max 11.156 kJ mm−2 per bunch
(beryllium spoiler survival)

degradation of the luminosity. For the CLIC nonlinear collimation system we have dominant high
chromatic aberrations of second, third and fourth order.

Two additional thin multipoles (one skew octupole and one normal sextupole) have been added
behind the second skew sextupole, such as shown in Fig. 5.18, in order to locally cancel the higher
order aberrations. This minimization of aberrations was computed using a Phython based code
called MAPCLASS [125]. This optimization algorithm takes as figure of merit the rms beam sizes
at the end of the beam line, calculated from the coefficients of the transfer map up to an arbitrary
order, i.e. [126]

σ2
f =

∑

jk`mn
j′k′`′m′n′

C jk`mnC j′k′`′m′n′

∫
x j+ j′

i pk+k′
xi y`+`

′

i pm+m′
yi δn+n′

i ρi dvi , (5.9)

where xi, px,i, yi and pyi represent the initial transverse phase space coordinates and δi the initial
average energy offset. The coefficients C jk`mn are the map coefficients of the corresponding final
state, and can be obtained by MADX–PTC [127] up to any order. dvi represents the differential volume
of the initial phase space, and ρi the initial transverse beam density. Assuming that the transfer map
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Figure 5.16: Twiss functions of the nonlinear energy collimation optics #4 proposed for CLIC at
3 TeV.

is symplectic ρidvi = ρ f dv f , where the subindex i denotes the initial phase space and the subindex
f the final phase space.

The minimization of the transverse spot sizes σ f at the end of the nonlinear collimation system
is done by the Simplex method implemented in MAPCLASS. For reasons of computing time we
limited the optimization considering the transfer map up to fourth order. Assuming an integrated
sextupole strength of 20.8 m−2, the minimum spot size at the end of the collimation lattice was
found for the following strengths of the added multipole magnets: Ko,skew = −5445 m−3 (skew
octupole) and Ks,normal = −0.675 m−2 (normal sextupole). Fig. 5.19 shows the result from this
optimization for the nonlinear collimation optics #4, comparing the transverse rms beam sizes as
function of the maximum order considered in the map before and after the optimization. There is
clearly a significant reduction of the second, third and fourth order contributions to the horizontal
and vertical beam sizes.
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Figure 5.18: Schematic of a linear collimation system using a pair of skew sextupoles and adding
a skew octupole and a normal sextupole for local correction of high order geometric and chromatic
aberrations.

5.4 Tracking studies

Multiparticle tracking studies were done in order to study the performance of the various collima-
tion systems proposed in this thesis (see Table 5.9). These studies allow us to choose the optics
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collimation system #4 as function of the maximum order considered in the transfer map. Both the
initial case before optimization and the optimized case using MAPCLASS [125] are compared.

that best fulfils the nonlinear collimation requirements listed above, and the obtained preliminary
results can guide the further optics improvement.

The codes MAD [114] and Placet [119] were used for the tracking (see section 5.2 for code
comparison). From the tracking results, we have computed, on one hand, the luminosity and, on
the other hand, the transverse rms beam sizes and the transverse beam energy density at the spoiler.

The output files from the tracking simulations with the above codes are used as input beam
particle distributions to compute the luminosity with the beam-beam interaction code GuineaPig
[86].

Both the luminosity at the IP and the beam energy density at the spoiler were calculated for
different scenarios, i.e. for different skew sextupole strengths. The goal is to find the most favorable
scenario, i.e. the optimum trade-off between maximum luminosity and minimum transverse beam
energy density at the spoiler.

5.4.1 Performance

Luminosity

Multiparticle tracking studies were done from the entrance of the BDS to the IP using the different
nonlinear energy collimation systems from Table 5.9. We have assumed an initial Gaussian distri-



95 5.4 Tracking studies

bution in transverse phase space of 40000 macro-particles with an uniform flat energy distribution
of δflat = 1 % (full width energy spread) centered at the nominal beam energy E0 = 1500 GeV.

The luminosity was computed using Guinea-Pig as a function of the integrated strength of the
skew sextupoles. The luminosity is degraded with higher skew sextupole excitation. The results
before and after optimization are registered in Table 5.11 for the different nonlinear collimation op-
tics solutions considering a skew sextupole strength Ks = 20.8 m−2. Two curves of the luminosity,
namely without and with optimization, versus the skew sextupole strength have been compared in
Fig. 5.20 for the candidate solution #1 and in Fig. 5.21 for the candidate #4. Assuming an inte-
grated skew sextupole strength Ks = 20.8 m−2 for optics #1, the luminosity increases approximately
a factor 3 after optimization, and for optics #4 approximately a factor 2.

Table 5.11: Results using the different optics for nonlinear collimation with an integrated skew
sextupole strength of Ks ' 20.8 m−2: luminosity, L; luminosity after optimization, Lopt.

Optics L Lopt
# [×1034 cm−2s−1] [×1034 cm−2s−1]
1 2.579 6.193
2 2.475 5.364
3 2.544 5.2
4 2.560 5.144
5 3.499 6.174

Optical bandwidth

We have studied the IP bandwidth of the system by means of multiparticle tracking using the code
Placet. Transverse Gaussian initial distributions of 40000 macro-particles were tracked along
the CLIC BDS. A flat energy distribution with δflat = 1 % (full width energy spread) has been
considered. The tracking was performed for different centroid energies within ±1 % of the nominal
beam energy.

We have evaluated the rms transverse spot sizes and the luminosity at the IP. The results have
been normalized to the values obtained at 0 % centroid energy offset. The IP bandwidth before and
after optimization is compared in Fig. 5.22 for the optics #4. Here the transverse rms normalized
beam sizes at the IP and the normalized luminosity are plotted as a function of the beam centroid
energy offset. After optimization the figure shows a significantly wider bandwidth, which is ap-
proximately comparable to the performance of the linear collimation system, whose bandwidth is
shown in Fig. 5.23.
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Figure 5.20: Top: luminosity versus integrated skew sextupole strength for the optics solutions #1;
curves without optics optimization and with optics optimization are shown. Bottom: beam peak
density at the spoiler versus integrated skew sextupole strength for the optics solutions #1; we show
the cases for beams with average energy offset δ0 = 0.0, 0.005, 0.01 and 0.015. For all the cases an
uniform energy distribution of 1 % full width energy spread has been considered in the simulations.
The limit for spoiler survival ρE,max corresponds to a collimator made of Be.

Transverse beam spot size at the spoiler

Sets of 10000 macro-particles were tracked in order to study the chromatic properties of the particle
distribution at the spoiler position. Initial particle distributions with δflat = 1 % were considered,
and the beam centroid energy was taken as a variable.

In addition, the rms horizontal and vertical beam sizes can analytically be calculated from
Eqs. (4.18) and (4.19), respectively, up to first order. Both the tracking result and the analytical
result of the rms transverse beam sizes as a function of the average beam energy offset δ0 are
compared in Fig. 5.24. These results have been obtained for Ks = 20.8 m−2.

The rms horizontal beam size at the spoiler σx,sp from tracking is in good agreement with the
analytical expression only if the second order dispersion T166 is taken into account, i.e.
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Figure 5.21: Top: luminosity versus integrated skew sextupole strength for the optics solutions #4;
curves without optics optimization and with optics optimization are shown. Bottom: beam peak
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(See Appendix C for detailed calculation).
In Fig. 5.25 the transverse particle density is presented for optics #4. In this case an initital

particle distribution with δflat = 1 % and δ0 = 1 % has been used for the tracking. The goal
is to study the effect of the skew sextupole on the transverse particle distribution for off-energy
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Figure 5.24: Horizontal (top) and vertical (bottom) beam sizes at the spoiler as a function of the
average beam energy offset δ0, for the optics #4. The blue solid squares represent the rms beam
size computed from the multiparticle tracking results using the code MAD. The lines represent the
analytical results. The dotted blue line is the first order calculation and the red solid line is the
calculation introducing also the second order dispersion T166 for the case of the horizontal beam
size.

beams. Different cases are compared: with skew sextupole switched off (Ks = 0.0 m−2), with skew
sextupole switched on (Ks = 20.8 m−2), without spoiler, with horizontal spoiler (ax = 1.266 mm)
and with vertical spoiler (ay = 1.414 mm). In this study the spoilers are treated as perfect “hard-
edges”, i.e. all particles hitting a spoiler were stopped, generating no secondary particles. The
spoiler half gaps were set to the values given by Eqs. (5.7) and (5.8), and calculated in Table 5.10.
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In the horizontal plane the effect of the skew sextupole is very weak as expected. In this case
the horizontal particle distribution may be cut as for linear collimation by jaws set at location
ax = ±Dx,sp∆. On the other hand, the vertical plane suffers a strong kick from the sextupole. For an
initial particle distribution with δflat = 1 % and δ0 = 1 %, the vertical beam density is approximately
reduced by a factor 103 and the vertical beam average position acquires a nonzero value of order
1 mm. It is possible to see in Fig. 5.25 that, using nonlinear collimation, the vertical jaws play a
similar role as the horizontal jaws.

Another example of transverse beam densities is shown in Fig. 5.26 for the case δflat = 1 % and
δ0 = 1.5 %.

Beam energy peak density at the spoiler

In case of full beam impact in the spoiler, a smallest safe beam size σr,min was defined in sec-
tion 4.2.1. This beam size is the rms cross-sectioned beam area for onset of mechanical fracture of
the collimator surface. Hence one can establish σx,spσy,sp & σ

2
r,min as an approximative criterium

for spoiler protection. Assuming transverse Gaussian beams, the limit σr,min has beam computed in
Ref. [87] for CLIC at 1.5 TeV beam energy. The boundaries limiting the spoiler damage onset for
a full bunch train impact are shown in Fig. 5.27, where we have also compared the rms transverse
beam size at the energy spoiler of the nonlinear system with beam centroid energy errors δ0 = 0 %
and δ0 = 1.5 %. It is possible to see that for an errant beam with δ0 = 1.5 %, the rms transverse
beam size σr =

√
σx,spσy,sp is outside the critical regions, taking the boundaries for the following

materials: Cu, Ti, Be, C and no conducting C.
However, since it is the beam energy loss in the material which matters for spoiler survival, a

better criterium may be the comparison of the transverse energy peak density at the spoiler. The
maximum acceptable transverse energy density was given in Eq. (4.10), which we rewrite below in
units of Joule:

ρE,max =
N

2πσ2
r,min

E0

(GeV)1.6 × 10−10 J , (5.11)

The values of ρE,max are given in Table 5.12 for different materials. The values σr,min have been
taking from Ref. [87] and the following CLIC beam parameters have been assumed: number of
electrons per bunch N = 4.2 × 109 and nominal energy E0 = 1500 GeV.

From multiparticle tracking results using MAD we have evaluated the 2-D transverse energy
density at the spoiler, ρE(x, y) and compared it with ρE,max. For spoiler survival one should have
max(ρE(x, y)) . ρE,max, i.e. the maximum peak of transverse energy density at the spoiler should
be lower than the value calculated from Eq. (5.11) depending on the spoiler material. The peak
energy density ρE(x, y) is given in Fig. 5.28 as a function of the average off-set of energy δ0 for the
different nonlinear collimation optics considered in Table 5.9. When an energy error δ0 & 1.3 %
is considered and the nonlinear collimation lattices (#1, #2, #3, #4 and #5) are used, the peak
energy density at the spoiler is lower than for the linear collimation case. This is desired in order to
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Table 5.12: Minimum rms transverse beam size σr,min, maximum trasverse beam density of parti-
cles ρe,max and maximum transverse beam density of energy at the spoiler position, calculated for
several materials: conducting and no conducting graphite (C), beryllium (Be), Titanium (Ti) and
tungsten (W). These values correspond to the onset of the melting process of the spoiler surface
bacause of beam impact.

Material σr,min ρe,max ρE,max
[µm] [×109 p/(mm2 bunch)] [kJ/(mm2 bunch)]

C (conducting) 58 198.707 47.755
C (no conducting) 32 652.784 156.884
Be 120 46.42 11.156
Ti 100 66.845 16.065
Cu 200 16.711 4.016
W 270 9.169 2.204

increase the spoiler survival probability. Fig. 5.29 shows the evolution of the peak energy density
versus the skew sextupole strength Ks and the centroid beam energy offset δ0 for the case of the
nonlinear lattice #4.

The 2-D histogram of the transverse density of energy ρE(x, y) at the spoiler position for the
linear system is shown in Fig. 5.30 from multiparticle tracking from the entrance of the BDS to
the energy spoiler. An initial transverse Gaussian beam of 10000 macro-particles with a full width
energy spread of 1 % and an average energy offset of 1.5 % has been used for such a tracking.
Note that this beam is not gaussian any more when it arrives at the spoiler position. Similarly,
Fig. 5.31 shows the 2-D histogram of ρE(x, y) for a beam with the same initial conditions as before,
which is tracked from the entrance to the energy spoiler of the nonlinear system #4. In this case
the maximum peak density has been reduced by a factor 1/2 with respect to the linear collimation,
and the strong vertical deflection is clearly visible.

Table 5.13 summarizes the performance parameters corresponding to the different optics for
nonlinear collimation with an integrated skew sextupole strength of Ks ' 20.8 m−2: horizon-
tal root mean square beam size at the spoiler, σx,rms, from tracking result using the code MAD;
vertical root mean square beam size at the spoiler, σy,rms, from tracking result using the code
MAD; horizontal beam size at the spoiler, σx,theory, from analytical calculation; vertical beam size
at the spoiler, σy,theory, from analytical calculation; σr,rms =

√
σx,rmsσx,rms from tracking result;

σr,theory =
√
σx,theoryσx,theory from analytical calculation; transverse particle peak density of parti-

cles at the spoiler, ρe, from tracking result using the code MAD and transverse energy peak density
at the spoiler, ρE , from tracking result using the code MAD. We have considered an initial uniform
particle energy distribution of 1 % full width with an average energy beam offset of 1.5 %.
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Table 5.13: Performance of the different optics studied for nonlinear collimation in CLIC.

parameters optics #1 optics #2 optics #3 optics #4 optics #5
σx,rms [µm] 266.213 304.687 294.793 304.541 243.829
σx,theory [µm] 263.196 304.354 294.403 304.354 242.519
σy,rms [µm] 841.457 711.963 804.102 712.026 455.955
σy,theory [µm] 947.975 727.480 821.173 727.480 465.59
σr,rms [µm] 473.293 465.753 486.871 465.662 333.429
σr,theory [µm] 499.503 470.544 491.687 470.544 336.027
max(ρe(x, y)) [109 p/(mm2 bunch)] 35.209 53.713 41.732 52.206 88.8
max(ρE(x, y)) [kJ/(mm2 bunch)] 8.542 13.036 10.141 12.659 21.538

5.4.2 Cleaning efficiency

Machine protection

In order to study the machine protection function and the cleaning efficiency of the energy collima-
tion system we have chosen the nonlinear collimation system #4, because of its trade-off between
high luminosity and relative short lattice length.

The goal is to spoil the mis-steered or errant beams coming from the linac with large absolute
momentum error (& 1.3 %). For this study we have tracked initial Gaussian distributions of 105

macro-particles along the CLIC BDS lattice by using the code Placet. These initial distributions
were generated with a flat square energy distribution with δflat = 1 % full width energy spread and
varying the average energy offset δ0. It is also important to mention that in our simulations the
spoilers have been treated as perfect ‘hard-edges’, i.e., all particles hitting a spoiler were stopped,
generating no secondary particles.

Figure 5.32 shows the simulated relative losses versus the beam centroid energy error. The
relative losses are higher in the nonlinear system than in the baseline linear system, as we expected.
In the case of the nonlinear system, considering an errant beam with δ0 = 1.5 % about 68 % of the
initial beam is intercepted by the energy spoiler, and only 26 % of the initial beam is stopped at the
vertical betatron spoilers YSP1 and YSP3. On the other hand, in the case of the linear system, and
for the same initial errant beam distribution, about 63 % of the initial beam is stopped at the energy
spoiler ENGYSP and about 24 % at the horizontal betatron spoilers XSP1, XSP2 and XSP3. The
corresponding loss maps along the beam line are shown in Fig. 5.33 and Fig. 5.34 for the cases
with δ0 = 0.5 % and δ0 = 1.5 %, respectively.

At this point, it is necessary to stress that in the case of δ0 = 0 % (well centered beam), one
would expect the core beam to pass through the collimation section without interacting with the
spoilers, but this is not the case observed in our results. Instead, from an initial beam with δ0 = 0 %
tracked along the linear lattice a total of ≈ 5.5 % of the initial macro-particles is lost: 0.85 % at
the energy spoiler ENGYSP and about 4.7 % at the betatron spoilers XSP1, XSP2 and XSP3. By
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contrast, for the nonlinear lattice, a total of about 19 % is lost in the collimation section: 1 % at
the energy spoiler and 18 % at the vertical betatron spoilers. This situation of losses from the beam
core is not convenient in terms of background increase in the detectors located at the interaction
region. Muons may be generated at a rate of about 10−4 per lost electron or positron [16, 128]. For
this reason, in order to avoid or at least, to reduce the losses during normal operation (0 % centroid
energy error), we have decided to increase the half gap of the vertical betatron collimators in the
nonlinear system. For instance, for a new vertical half gap ay = 150 µm (note that the previous
value was ay = 102 µm, see Table 5.4), a total of about 13 % of the initial halo is lost when
δ0 = 0 %, which is still an unacceptable number of losses for a normal operation.

Here, we have only considered the rough approximation of ‘hard-edges’ spoilers and hence all
particles hitting a spoiler have been taken to be lost in the simulation. Nevertheless, in a more
realistic case, a big proportion of those interacting particles would reenter the beam pipe after
multiple Coulomb scattering in the spoiler, and then these particles would either contribute to the
halo repopulation or be absorbed at the downstreem absorbers. Therefore, in order to perform more
realistic studies of the cleaning efficiency, details of the beam-spoiler scattering processes need to
be considered.

Betatron cleaning

The effectiveness of the collimation system can be quantified in terms of the number of halo parti-
cles that lie outside the collimation depth when they reach the final doublet. In the case of CLIC,
the dimensions of the transverse window for collimation, defined by the final doublet aperture, are:
AFD

x = 14 σx and AFD
y = 83 σy.

In order to study the betatron cleaning efficiency of the system, one can define a cleaning
inefficiency ηl for linear colliders, given by

ηl =
N

(
Ax,y > AFD

x,y

)

Nab
, (5.12)

where N
(
Ax,y > AFD

x,y

)
is the number of halo particles with initial amplitude Ax,y which reach the

final doublet with higher amplitude than AFD
x,y (the collimation depth limits), and Nab is the total

number of absorbed particles by the collimation section.
A toy halo model has been used for the tracking studies. Initial particles are distributed in el-

lipses with different transverse amplitude. The horizontal and vertical plane are separately treated,
i.e. without initial coupling. Each ellipse contains a number of 105 macro-particles. Fig. 5.35
shows the initial transverse distribution at the entrance of the CLIC BDS.

These sets of ellipses are tracked along the CLIC BDS using the code Placet. The following
cases have been considered:

• Initial ellipses with a Gaussian energy distribution of σδ = 0.5 % width energy spread,
in order to take into account the chromatic effects. The ratio Nsurvival/Ninitial halo, i.e. the
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surviving particles (which reach the final doublet) divided by the initial number, and the
cleaning inefficiency (such as defined in Eq. (5.12)) have been computed as a function of the
initial amplitude of the ellipse.

On one hand the results are compared in Fig. 5.36 using the horizontal ellipses for both
the linear and the nonlinear case. A similar ratio Nsurvival/Ninitial halo is found for both the
linear and the nonlinear system. At Ax = 14 σx about 10 % of the initial halo survives the
collimation, and ηl ≈ 5 × 10−3. If we compare Nsurvival/Ninitial halo with ηl(Ax) as function
of the horizontal amplitude Ax, one can observe that for Ax . 11 σx (linear case) and for
Ax . 12.5 σx (nonlinear case) the inefficiency is ηl . 10−5, which means that practically
all the surviving particles are inside the collimation limits. The particles inside these limits
are not potentially dangerous in terms of SR emission. The number of particles which are
outside these limits increase with the rise of the initial amplitude Ax.

On the other hand, using the vertical ellipses (see Fig. 5.37), the ratio Nsurvival/Ninitial halo

is equal to 70 % for the nonlinear system and 30 % for the linear one at Ay = 80 σy. If
Ay & 109 σy, for the nonlinear case Nsurvival/Ninitial halo is smaller than for the linear case. For
instance, at Ay = 110 σy about a 3 % of the initial vertical halo survives for the nonlinear
case and about a 5 % for the linear one.

We have obtained ηl > 10−2 for the nonlinear system in the interval Ay ∈ [80 σy, 110 σy], in
comparison with ηl ≈ 10−4 obtained for the linear system.

• Monochromatic initial ellipses (σδ = 0 % energy spread) with nominal energy E0 =

1500 GeV. For this case the results are shown in Fig. 5.38 for horizontal ellipses and in
Fig. 5.39 for vertical ellipses.

Taking the horizontal halo (monochromatic ellipses of 105 particles in the horizontal phase
space x–x′) at Ax = 14 σx the values Nsurvival/Ninitial halo ' 3 % and 6 % are obtained for the
nonlinear and the linear case, respectively. It is worthwhile to mention that in the nonlinear
case, Nsurvival/Ninitial halo drops quikly for Ax & 13.5 σx.

The cleaning inefficiency ηl(Ax) as a function of the initial amplitude of the horizontal el-
lipses is practically zero for Ax . 12.5 σx in the nonlinear case and for Ax . 13.5 σx in the
linear case.

Similarly, taking the vertical halo (monochromatic ellipses in the vertical phase space y–y′),
at Ay = 110σy we obtaine Nsurvival/Ninitial halo ' 0.4 % and 5 % for the nonlinear and the linear
case, respectively. In the nonlinear case, Nsurvival/Ninitial halo drops quikly for Ay & 105 σy

compared with the linear case, whose slope is smoother.

The cleaning inefficiency ηl(Ay) as a function of the initial amplitude of the vertical ellipses
is found to be zero for Ay ∈ [80 σy, 110 σy] in the case of the linear collimation system.
However, ηl(Ay) > 10−3 for Ay ∈ [84 σy, 110 σy] in the case of the nonlinear collimation
system.
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Concerning collimation efficiency, one can conclude from these studies that the betatron clean-
ing efficiency in the horizontal phase space (x–x′) is roughly similar for both linear and nonlinear
systems. However, in the vertical phase space (y–y′) the nonlinear system shows a higher colli-
mation inefficiency (ηl(Ay) & 10−3) than the linear one. This means that a big number of high
vertical amplitude particles are not absorbed by the nonlinear collimation system and are outside
the collimation window at the FD. This may be basically caused by non cancelled geometric high
order aberration terms introduced by the nonlinear elements. We have to take into account that
the vertical amplitude are highly sensitive to the sextupolar effects as we have shown in previous
sections.

5.4.3 Collimator wakefield considerations

In chapter 3, section 3.3.3, we saw that for near-center beams, the transverse centroid deflection,
because of collimator wakefields, is linearly proportional to the beam centroid position through a
total kick factor κ⊥ ≡ 〈w⊥〉, with w⊥ the transverse wake function.

• In the case of collimators placed where Dx = 0, we can rewrite the Eq. (3.72) as

ñy′

√
εy

βy
=

Nre

γ
κ⊥ñy

√
βyεy , (5.13)

where ñy′ = 〈∆y′〉/
√
εy/βy and ñy = ∆yc/

√
βyεy are normalized amplitudes.

Here the figure of merit is the so-called jitter amplification factor, which can be evaluated
from Eq. (5.13) as

Aβ ≡
ñy′

ñy
=

Nre

γ
κ⊥βy , (5.14)

and gives information about the amplification of the overall incoming jitter by the collimator
wakefield effect.

• In the case of a collimator which is placed where Dx , 0, the generated transverse jitter is
proportional to the energy jitter:

ñy′

√
εy

βy
=

Nre

γ
κ⊥Dxδ0 , (5.15)

and the jitter enhancement factor is then given by

Aδ = Aβ
Dxδ0√
βyεy

. (5.16)
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We have calculated the wakefield jitter enhancement paramenters, Aβ and Aδ from the above ex-
pressions for the CLIC collimators. The factor Aδ has been calculated for a centroid energy off-
set δ0 = 1 %. The results are shown in Table 5.14 for the different kinds of CLIC collimators.
‘Nonlinear-E-SP’ denotes the energy spoiler of the nonlinear collimation system #4. This spoiler is
composed by vertical jaws, while the energy spoiler in the linear collimation system is horizontal.
From the table we can see that the jitter factor Aβ for the nonlinear system is lower than for the
linear one. Nevertheless, since the beam is flat, σy � σx, the vertical amplitude is more sensitive
to the wakefields effects.

According to the limits for the different regimes (see section 3.3.3), the energy spoilers EN-
GYSP (linear system) and Nonlinear-E-SP (nonlinear system) are in a diffractive regime for the
geometric wakefields, the betatronic spoilers are in a intermediate regime, and the betatronic ab-
sorbers (round absorbers) are in an inductive regime.

Table 5.14: Wakefield jitter amplification factors for CLIC collimators.

Collimator Plane Aβ Aδ
geometric Ω taper Ω flat Total δ0 = 1 %

ENGYSP (lineal CS) X 0.000438 6.68 × 10−5 0. 0.000505 0.0668
ENGYAB (lineal CS) X 0.000423 0.000034 0.000122 0.000579 0.0888
Nonlinear-E-SP Y 0.000125 0.000019 0. 0.000144 0.298
βy spoilers Y 0.178 0.0272 0. 0.2052 0.
βx spoilers X 0.162 0.0247 0. 0.1867 0.
βy absorbers Y 0.0169 0.000121 0.00234 0.0194 0.
βx absorbers X 0.0169 0.0000676 0.00131 0.0183 0.

Recently in Ref. [129] the collimator wakefields effects in the luminosity of CLIC (using the
baseline linear collimation system) have been computed. A module for particle tracking along
the BDS including the effect of wakefields was implemented in Placet. For more details see
Refs. [129, 130]. We have used such a version of the code Placet to compute the luminosity
degradation due to the misalignment of each collimator.

The impact of the wakefields on the luminosity has been computed assuming a perfect centered
beam and collimator misalignments. This study has been made using the tracking code Placet,
introducing wakefield effects. Fig. 5.40 shows the evolution of the normalized luminosity with the
misalignment of each horizontal collimator respect to the nominal trajectory. Similarly, Fig. 5.41
shows the evolution of the normalized luminosity with the misalignment of each vertical collimator.
The nonlinear collimation system presents a similar behavior and misalignment acceptance as the
linear system in the horizontal plane. In the Fig. 5.41 (top) the misalignment acceptance in the
vertical plane for the nonlinear system is better than that for the linear one (bottom), because in this
case the half gap of βy-collimators has been open up to 150 µm, while for the linear system this
half gap is 102 µm.
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Figure 5.25: Horizontal particle density (top), vertical particle density (middle) and energy par-
ticle density (bottom) at the spoiler using the optics #4 and an initial particle distribution with
δflat = 1 % and δ0 = 1 %. Different cases are compared: with skew sextupole switched off
(Ks = 0.0 m−2), with skew sextupole switched on (Ks = 20.8 m−2), without spoiler, with horizontal
spoiler (ax = 1.266 mm) and with vertical spoiler (ay = 1.414 mm). The particle distributions have
been normalized to a number of 4 × 109 particles per bunch.
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Figure 5.26: Horizontal particle density (top), vertical particle density (middle) and energy particle
density (bottom) at the spoiler using the optics #4 and an initial particle distribution with δflat =
1 % and δ0 = 1.5 %. Different cases are compared: with skew sextupole switched off (Ks =
0.0 m−2), with skew sextupole switched on (Ks = 20.8 m−2), without spoiler, with horizontal
spoiler (ax = 1.266 mm) and with vertical spoiler (ay = 1.414 mm). The particle distributions have
been normalized to a number of 4 × 109 particles per bunch.
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Linear CS

Nonlinear CS (δ =0%)

Nonlinear CS (δ =1.5%)0

0

Figure 5.27: Vertical vs. horizontal beam size required for spoiler survival with different spoiler
materials [87], and the values at the energy spoiler locations computed for the design beta functions,
emittances and a beam energy spread δflat = 1 %. The cases of beam centroid energy errors
δ0 = 0 % and δ0 = 1.5 % in the nonlinear energy collimation system are compared with the case of
the linear energy collimation system.
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Figure 5.28: Peak energy density at the spoiler as function of the average beam energy offset δ0 for
the different optics solutions studied, using an integrated skew sextupole strength of Ks = 20.8 m−2.
The results are compared with that from the linear collimation system (solid red line with open
squared points), and with the density limit for spoiler survival in case of full beam impact for
beryllium, ρE,max (solid black line).
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Figure 5.29: Evolution of the energy peak density max(ρE(x, y)) at the spoiler as a function of the
skew sextupole strength Ks and of the beam energy error δ0 in the nonlinear collimation lattice #4.
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Figure 5.30: Transverse energy density at the energy spoiler position versus the plane x–y, from
tracking of an initial transverse Gaussian distribution of 10000 particles with a uniform energy
distribution, and a full width energy spread of 1 % and a centroid energy offset of 1.5 %, for the
case of the linear collimation lattice. The result is normalized to 4.0 × 109 particles per bunch.
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Figure 5.31: Transverse energy density at the energy spoiler position versus the plane x–y, from
tracking of an initial transverse Gaussian distribution of 10000 particles with a uniform energy
distribution, and a full width energy spread of 1 % and a centroid energy offset of 1.5 %, for the
case of the nonlinear collimation lattice. The result is normalized to 4.0 × 109 particles per bunch.
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Figure 5.32: Relative particle loss of errant beams as a function of the average energy offset δ0,
such as obtained from simulations with the tracking code Placet. The losses at the energy spoiler
and in the total collimation system are compared for both linear and nonlinear collimation systems.
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Figure 5.33: Number of particles lost along the BDS using the linear collimation lattice (top) and
the nonlinear collimation lattice (bottom). The tracking has been done by using the code Placet
and an initial Gaussian distribution of 105 particles with δflat = 1 % full width energy spread and
δ0 = 0.5 % average energy offset.
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Figure 5.34: Number of particles lost along the BDS using the linear collimation lattice (top) and
the nonlinear collimation lattice (bottom). The tracking has been done by using the code Placet
and an initial Gaussian distribution of 105 particles with δflat = 1 % full width energy spread and
δ0 = 1.5 % average energy offset.



117 5.4 Tracking studies

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-60 -40 -20  0  20  40  60

x’
 [

µr
ad

]

x [µm]

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-30 -20 -10  0  10  20  30

y’
 [

µr
ad

]

y [µm]

Figure 5.35: Sets of particle distributions in the horizontal (on the left) and the vertical (on the
right) phase space at the entrance of the CLIC BDS. Each set contains 105 particles distributed
in a ellipse. In the figure on the left, the following horizontal amplitudes are considered: 10 σx,
10.5 σx, 11 σx, 11.5 σx, 12 σx, 12.5 σx, 13 σx, 13.5 σx and 14 σx. In the figure on the right, the
following vertical amplitudes are considered: 80 σy, 84 σy, 88 σy, 92 σy, 96 σy, 100 σy, 104 σy,
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Figure 5.36: Number of particles which are not collimated and reach the final doublet divided by
the initial population of the halo versus the initial horizontal amplitude Ax of the ellipse (top). The
corresponding cleaning inefficiency ηl, such as defined in Eq. (5.12), versus Ax (bottom). The cases
with nonlinear collimation (solid and red curve) and with linear collimation (dotted and blue curve)
are compared. Here ellipses with a Gaussian distribution in energy of σδ = 0.5 % (energy spread)
have been used as a toy initial halo.
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Figure 5.37: Number of particles which are not collimated and reach the final doublet divided by
the initial population of the halo versus the initial vertical amplitude Ay of the ellipse (top). The
corresponding cleaning inefficiency ηl, such as defined in Eq. (5.12), versus Ay (bottom). The cases
with nonlinear collimation (solid and red curve) and with linear collimation (dotted and blue curve)
are compared. Here ellipses with a Gaussian distribution in energy of σδ = 0.5 % (energy spread)
have been used as a toy initial halo.
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Figure 5.38: Number of particles which are not collimated and reach the final doublet divided by
the initial population of the halo versus the initial horizontal amplitude Ax of the ellipse (top). The
corresponding cleaning inefficiency ηl, such as defined in Eq. (5.12), versus Ax (bottom). The cases
with nonlinear collimation (solid and red curve) and with linear collimation (dotted and blue curve)
are compared. Here, unlike Fig. 5.36, monochromatic ellipses (σδ = 0.0 %) have been used as a
toy initial halo.
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Figure 5.39: Number of particles which are not collimated and reach the final doublet divided by
the initial population of the halo versus the initial vertical amplitude Ay of the ellipse (top). The
corresponding cleaning inefficiency ηl, such as defined in Eq. (5.12), versus Ay (bottom). The cases
with nonlinear collimation (solid and red curve) and with linear collimation (dotted and blue curve)
are compared. Here, unlike Fig. 5.37, monochromatic ellipses (σδ = 0.0 %) have been used as a
toy initial halo.
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Figure 5.40: CLIC Luminosity as a function of the horizontal collimator offset when the nonlinear
collimator system is used (at the top) and when the linear collimation system is used (at the bottom)
in the simulations.
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collimator system is used (on the top) and when the linear collimation system is used (on the
bottom) in the simulations.
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Chapter 6
Alternative Nonlinear Cleaning
Betatron Insertion with Skew
Sextupole Pair for the LHC at 7 TeV

6.1 Introduction to the LHC accelerator

In this section a brief overview of the LHC is given. For more details the reader is invited to see
Ref. [1].

The LHC, presently under construction at CERN, is a superconducting proton and ion collider
with design luminosity of ∼ 1034 cm−2 s−1, nominal beam intensity of 3 × 1014 protons and beam
energies ranging from 450 GeV (at injection) and 7 TeV (at collision). This machine is being
installed in the 27.7 km long tunnel of its predecessor, the CERN Large Electron Positron collider
(LEP) [6].

The LHC consists of 2 rings divided in 8 octants or regions, such as it is shown in Fig. 6.1. The
rings cross in four of those interaction regions dedicated to high energy particles experiments: the
Interaction Region 1 (IR1) containing the called ATLAS detector; the Interaction Region 2 (IR2)
containing the called ALICE detector; the Interaction Region 5 (IR5) the CMS detector; and the
Interaction Region 8 (IR8) the LHC-B detector. ATLAS and CMS will be experiments with high
luminosity, while ALICE and LHC-B will be experiments with low luminosity.

The energy stored in each LHC beam exceeds by more than 2 orders of magnitude that of any
existing machine: 360 MJ stored/each beam (3× 1014 protons at 7 TeV), and the transverse energy
density is even a factor 1000 higher that of the other existing machines in the world. This makes the
LHC beams highly destructive. Therefore, the high intensity LHC beams and the associated high
loss rates of protons requires a powerful collimation system, allowing a peak loss of 1 % of the
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Figure 6.1: Schematic of the LHC ring.

beam within 10 s, a peak power load of 500 kW must be handled at 7 TeV [8]. At the same time,
the maximum allowed energy deposition into the super-conducting magnets before quenching is
8.5 W/m. The interaction points 3 and 7 (IR3 and IR7) are dedicated to beam halo cleaning.

6.1.1 The baseline linear collimation system of LHC Phase-I

The design of the LHC collimation system is based on the concept of a phased approach. It relies
on the fact that difficulties and performance goals for the LHC are distributed in time. This means
that the collimation system will be improved into different phases in order to reach the necessary
robustness and cleaning efficiency without compromising the nominal performance goals.

The first phase of LHC collimation focus the effort on the robustness and flexibility of the sys-
tem against the specified regular beam losses and accident scenarios [131]. It includes two specific
insertions: the IR7 insertion dedicated to betatron collimation, and the IR3 insertion dedicated
to momentum collimation. This insertions are based in a multi-stage cleaning system, including
primary, secondary and tertiary (absorber) collimators. The collimator database at collision can be
found in the tables of the Appendix D. To name the collimators, the following notation is used [1,8]:
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• Primary collimators (TCP): for intercepting protons from the primary halo. These collima-
tors are made of two carbon-based jaws with a length 1 of 60 cm. The interacting halo is
converted into a secondary off-momentum halo with larger divergence.

• Secondary collimators (TCSG): made of carbon with a length of 1 m. Their function is to
stop the almost totality of protons from the secondary halo. The number of protons that
escape this second stage collimation forms the tertiary halo.

• Tertiary collimators or absorbers (type TCLA): made of Tungsten (W) that are located at the
end of the cleaning insertions (IR3 and IR7) for protecting the superconducting arcs.

• Special collimators or absorbers (type TCT): made of Tungsten (W) for local protection and
cleaning at the triplets in the experimental insertions.

In addition, the LHC collimation system includes several other collimators for local protection
during injection and for dump problems [132]: special injection protection collimators in IR2/IR8
protecting the main ring from injection kicker magnets faults; beam abort protection collimators
in IR6 protecting the machine from errors of beam dump kicker magnets. Furthermore, there are
also collision debris collimators protecting the machine from particle showerings coming from the
IR1/IR5 experimental insertions.

Because of its high robustness to resist beam impacts, the graphite was chosen as the material to
make the primary and secondary collimators of Phase-I. However, this material is a poor conductor,
and a high conductivity would be desired to reduce impedance. Calculations have shown that the
total LHC impedance is strongly dominated by this kind of collimators [133,134]. This is expected
to limit the total intensity to about 30–40 % of its nominal value.

For future upgrades of the system to reach the nominal machine performance, a Phase-II
LHC collimation system has been planned. Different solutions are being studied, for example
low impedance hybrid material for the secondary jaws and consumable collimators with Cu-based
jaws (see Chapter 1). It is worth mentioning that a rotating consumable collimator will be con-
structed and tested at CERN for the LHC Phase-II collimation, under the auspicious of the LARP
project [20], a task force collaboration between CERN and laboratories in the USA (SLAC, BNL,
Fermilab).

The LHC linear betatron cleaning insertion

The Fig. 6.2 shows the longitudinal distribution of primary and secondary collimators in the LHC
linear betatron cleaning insertion IR7. The space reserved for the future secondary collimators of
Phase-II is marked in the figure (see key “Secondary coll. (phase2)”). The system also includes
other space ‘reservoir’, marked as placeholders, for location of new collimators in the future system
upgrades. The features of the collimators are shown in the list of Table D.2 (Appendix D). The

1These lengths refer to the effective length of material, i.e. the one ‘seen’ by the incoming beam
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nominal half gaps in the linear betatron cleaning system are set to 6 σ and 7 σ for primary and
secondary collimators, respectively, and 10 σ for the absorbers.

The collimators are placed in warm regions, i.e. in regions with normal conducting dipole mag-
nets. Unlike the superconducting magnets, warm magnets can tolerate higher local beam losses.
Moreover, the warm magnets can redirect the secondary halo out of the machine aperture close to
the collimation region, thus limiting the propagation of losses into the downstream arc.

The optics considered in this section for the IR7 is the LHC version 6.5 [1]. The corresponding
betatron and dispersion functions as a function of the longitudinal coordinate are shown in Fig. 6.3.
The performance of this linear collimation system will be compared with our proposed nonlinear
collimation section.
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Figure 6.2: Longitudinal layout for the betatron cleaning insertion in IR7 [1].

6.2 An alternative nonlinear betatron collimation system

For e+e− linear colliders designed to operate at center-of-mass energy of the order of TeV, the
collimation requirements are similar to those for the LHC. It is thus a close thought to apply a
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Phase-I.

similar nonlinear collimation scheme as that designed for CLIC. The main differences from CLIC
are the following:

• the LHC momentum spread is almost two orders of magnitude smaller, and, hence, cannot
be exploited for widening the beam during collimation;

• emittance growth from synchrotron radiation is insignificant, and does not constrain the de-
sign of the collimation system;

• the geometric vertical emittance is about 3 orders of magnitude larger than in CLIC.

In this chapter we present a nonlinear collimation system for betatron cleaning in the LHC at
collision energy (7 TeV). This system could be a possible solution to the difficult trade-off between
cleaning efficiency, collimator robustness and collimator impedance.

We will discuss an optics based on a skew sextupole pair as shown in the schematic of Fig-
ure 6.4, which represents the long straight section LSS7 of the LHC IR7 region, adapted for non-
linear betatron cleaning. In this lattice, the spoilers or primary collimators are placed at (or near) the
interaction point IP7. The first skew sextupole blows up the particle amplitudes, thereby allowing
larger collimator gaps which may avoid an unacceptable high transverse resistive wall impedance
from the collimator material. A skew sextupole downstream of the spoiler, and at π phase advance
from the first sextupole, cancels the geometric aberrations induced by the former.
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After placing secondary collimators downstream of the primary collimators, we will analyze the
beam losses and calculate the so-called cleaning inefficiency of the system from tracking studies.

Finally, the impedance of the proposed design will also be studied. The results are compared
with those of the conventional linear collimation system of Phase-I [1].

K K
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π / 2 π / 2
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Figure 6.4: Schematic of a nonlinear collimation layout for the LHC.

6.2.1 Optics Layout

Collimation depth and collimator apertures

The Eqs. (4.37), (4.38) and (4.39) provide the relation between the collimation depth in units of the
rms beam size and the spoiler (primary collimator) aperture as function of the optics parameters.

A vertical aperture ny2 of the spoiler at IP7 will collimate halo particles located in the horizontal
and vertical planes, while a horizontal spoiler aperture nx2 can be adjusted to improve the collima-
tion of halo particles with amplitude offsets in both transverse planes, as we already mentioned in
section 4.2.3.

In order to approximate a circular collimation aperture in the normalized x–y plane we can
choose βx,s = βy,s at the skew sextupoles and R12 ' R34. In this case, from the system of Eqs. (4.37),
(4.38) and (4.39), we have nx2 = 2ny2. Taking into account that the collimation depth for the LHC
is established at nx = ny = 6 [1], we have looked for optics solutions that allow the setting of the
vertical and horizontal spoiler jaws with half gaps ny2 = 8 and nx2 = 2ny2 = 16, respectively.

Optics solution

The optics for the betatronic cleaning insertion IR7 in LHC optics version 6.5 has been matched to
fulfil the nonlinear collimation requirements. The matching was done without affecting the optics
of the other LHC insertions, and involved only existing quadrupole magnets.

Different optics solutions were found. They differ in the beta functions at the skew sextupoles
and in the R12, R34 matrix elements between the first skew sextupole and the spoiler. To elucidate
which of the different optics solutions is best suited for our application, we can choose a number
of criteria:

• minimize the normalized sextupole strength Ks,
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• minimize the product of normalized sextupole strength and the larger of the two beta func-
tions at the skew sextupole (which is equivalent to minimizing the sextupole pole-tip field),

• minimize the nonlinear aberrations introduced by the first skew sextupole, which scale as
β3/2

y,s Ks and as βy,sβ
1/2
x,s Ks (and in our case βx,s = βy,s ≡ βs).

The histogram of Fig. 6.5 compares the values of Ks and βsKs for the different optics solutions.
From the 12 obtained candidate solutions, we have selected an optics for which both the sextupole
strength and the product of sextupole strength and beta function at the sextupole are minimum.
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Figure 6.5: Comparative histogram for the values of the quantities Ks and 10−2βsKs in the 12
optics candidates solutions found for a nonlinear LHC collimation system. The solution OPTICS
7 gives the minimum values both for Ks and for the product Ksβs. For all optics solutions shown
βx,s = βy,s ≡ βs.

Fig. 6.6 shows the betatron functions and dispersion as function of the longitudinal coordinate
s for the optimum optics solution OPTICS 7. Table 6.1 summarizes the main parameters of this
optics.

6.2.2 Collimation boundaries

From the collimator apertures nx2 = 16 and ny2 = 8 and using the optics parameters of Table 6.1,
we can compute the collimation contours, given by the equations:



CHAPTER 6: Alternative Nonlinear Cleaning Betatron Insertion with Skew Sextupole Pair for
the LHC at 7 TeV 132

0.0 200. 400. 600. 800. 1000. 1200.

s (m)

0.0

100.

200.

300.

400.

500.

600.

 

x
(m

),
 y

(m
)

-0.50

-0.25

0.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

D
x

(m
)

 x  yDx

β
β β β

skew sextupolespoilerskew sextupole

IP 7

Figure 6.6: Betatron functions and dispersion versus the longitudinal coordinate (s) for LHC IR7
with a nonlinear section based on two skew sextupoles.

Table 6.1: Optics parameters for a nonlinear collimation section in IR7 of LHC.

variable value
beta functions (x, y) at skew sext. 200.0, 200.0 m
product of skew sextupole pole-tip
field and length (BT ls) 8.1823 T·m
skew sextupole aperture as 10 mm
skew sextupole strength Ks 7.0063 m−2

R12, R34 from sext. to spoiler 124.403, 124.404 m
beta functions (x, y) at spoiler 77.381, 77.381 m
rms spot size (x, y) at spoiler 215.89, 263.96 µm

nx2 =
βx,sε√
βx,spε

R12KsXY , (6.1)

ny2 =
βx,sε√
βx,spε

1
2R34Ks(X2 − Y2) , (6.2)
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expressed in normalized coordinates (in units of X = x/
√
βxεx and Y = y/

√
βyεy ).

Figure 6.7 shows the resulting collimation boundaries. Particles incoming at the sextupole with
amplitude offsets & 6σ will be deflected and, in the ideal case, lost in the downstream collimators.
Note that the boundaries here shown refer to vanishing initial slopes, and they would be modified
for trayectories with initial x′ or y′ unequal zero.
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Figure 6.7: Collimation boundaries for x′ = y′ = 0, with nx = 6, ny = 6, ny2 = 8 and nx2 = 2ny2.

6.2.3 Spoiler protection

In Chaper 4 we pointed out that the condition σx,spσy,sp & σ
2
r,min could be established as a possible

criterium for avoiding the spoiler damage in case of full beam impact. In the case of the LHC
primary collimators (made of graphite), a minimum rms beam size σr,min of about 200 µm has
been estimated [141].

The above condition can be rewritten using the Eqs. (4.35) and (4.36), with βx,s = βy,s and
εx = εy ≡ ε, as

(K2
s R2

12β
2
x,sε + βx,sp)(K2

s R2
34β

2
x,sε + βy,sp)ε2 & σ4

r,min . (6.3)

From Eq. (4.39) we have

βx,s =


n2

x2βx,sp

K2
s R2

12n4
xε


1/2

. (6.4)

Combining Eq. (6.3) and Eq. (6.4), one obtains the spoiler survival condition in terms of the colli-
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mation depth nx and of the collimator aperture nx2, i.e.


n2

x2
n4

x
+ 1



βy,sp

βx,sp
+

R2
34n2

x2

R2
12n4

x

 β2
x,spε

2
& σ4

r,min , (6.5)

and in the particular case of our optics solution, where βy,sp = βx,sp and R34 ' R12, then one has


n2

x2
n4

x
+ 1


2

β2
x,spε

2
& σ4

r,min . (6.6)

Figure 6.8 shows the product σx,spσy,sp in units of σ2
r,min as a function of nx and nx2. The quadratic

behavior of nx2 versus nx is shown in Figure 6.9, where the working point here considered (nx = 6,
nx2 = 16) is compared with the limit for spoiler survival.
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Figure 6.8: Surface σxσy/σ
2
r,min as function of nx and nx2. The point represents the working point

nx = 6, nx2 = 2ny2 = 16 and σxσy/σ
2
r,min = 1.158. The solid line in the plane nx2 vs. nx represents

the limit σxσy/σ
2
r,min = 1 for spoiler survival when nx2 = 2ny2.

At this point, it is necessary to warn that in the interaction of the protons, unlike for elec-
tron interactions, at the collision energy of 7 TeV per beam not only electromagnetic cascades of
electron-positron pairs and photons occur, but also inelastic nuclear interactions with production of
muons and hadronic matter, such as pions, kaons or neutrons. In addition, the secondary particles
can give rise to new interactions. Therefore, in order to study the energy deposition in the collima-
tors by protons, detailed numerical simulations are necessary. These would allow establish a more
accurate limit for the collimator damage. Related to this topic see for example [142, 143].
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survival when nx2 = 2ny2. In this thesis the point nx = 6 and nx2 = 2ny2 = 16 is considered.

6.2.4 Two-Stage Collimation

Until now we have only considered spoilers or primary collimators located at IP7. However, pro-
tons which are not absorbed can be scattered elastically off the jaw, thus generating a secondary
halo which can induce quenches of the superconducting magnets. Therefore, secondary collima-
tors are necessary to intercept the secondary halo. The gaps of the existing collimators in the
IR7 insertion of the LHC [8] were set to the required apertures for nonlinear collimation. A total
of 12 secondary collimators are retained downstream the primary collimators. Notably a vertical
collimator is located at the optimum phase advance ∆µ0 ' 0.476 rad from IP7, calculated from
∆µ0 = ±arcos(ny2/n′y2) [18], assuming a primary vertical aperture ny2 = 8 and a secondary vertical
aperture n′y2 = 9. The other possible solutions ∆µ0 = 0.476 + π rad and ∆µ0 = π − 0.476 rad have
been rejected, since at these phase advances one is in the arc downstream of the collimation region,
where superconducting dipoles are located.

Information on the selection and setting of the primary and secondary collimators for the non-
linear system is compiled in Table 6.2. The secondary collimators between IP7 and the second
skew sextupole have been set with a radial aperture of 9σ, and those downstream of the second
skew sextupole with a 7σ aperture. See the schematic of Figure 6.10.

Figure 6.11 compares the half gap of the collimators for the linear and the alternative nonlinear
collimation systems. The total number of active collimators in IR7 is 14 for the nonlinear system
and 19 for the linear system (Phase-I system). The empty space in the histogram of Figure 6.11 in-
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dicates the space reserve for future system upgrades. For the nonlinear collimation system we have
eliminated the collimators #1 to #11, which are in front of the nonlinear system’s spoilers/primary
collimators. Moreover, we have added the secondary collimators #14, #15 and #17 using that
existing space reserve.

Table 6.2: Data of primary and secondary collimators in the proposed two-stage nonlinear collima-
tion insertion IR7: reference number in cleaning insertion, name of the collimator (maintaining the
same nomenclature as in Phase-I), collimator material, collimator length, distance from IP7 taken
as a reference point, skew angle in x–y space (0. corresponding to a horizontal collimator), and
half gaps in units of σ. The names with the superindex (∗) indicate additional collimators, which
are not present in the baseline linear collimation system of Phase-I.

# Name Material Length Distance from IP7 Azimuth Half gap
[m] [m] [rad] [σβ]
Primary

12 TCSG.A4L7.B1 C 0.6 -3. 0. 16
13 TCSG.A4R7.B1 C 0.6 1. 1.571 8

Secondary
14 TCSG.B4R7.B1(∗) C 1.0 53.190 1.571 9
15 TCSG.A5R7.B1(∗) C 1.0 88.256 0.651 9
16 TCSG.B5R7.B1 C 1.0 92.256 2.47 9
17 TCSG.C5R7.B1(∗) C 1.0 104.256 1.571 9
18 TCSG.D5R7.B1 C 1.0 108.256 0.897 9
19 TCSG.E5R7.B1 C 1.0 112.256 2.277 9
20 TCSG.6R7.B1 C 1.0 146.861 0.009 9
21 TCLA.A6R7.B1 W 1.0 153.927 1.571 9
22 TCLA.C6R7.B1 W 1.0 184.801 0. 9
23 TCLA.E6R7.B1 W 1.0 218.352 1.571 7
24 TCLA.F6R7.B1 W 1.0 220.351 0. 7
25 TCLA.A7R7.B1 W 1.0 237.698 0. 7

IP 7

− I

8 σ 9 σ
ARC ARC 

π 2 π 2

7σ

Figure 6.10: Schematic of a two-stage nonlinear collimation layout for the LHC. The primary
collimator is drawn with blue colour, and the secondary collimators are drawn with green colour.
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6.2.5 Cleaning Efficiency

Tracking studies have been performed for the nonlinear and linear collimation systems by using a
modified version of the tracking code SixTrack [144, 145]. This tool allows us to calculate the
cleaning inefficiency of the collimation system and to save the particles trajectories for an off-line
analysis of beam losses. For example, Fig. 6.12 compares the trajectory of a halo particle in the
case of linear and nonlinear optics. For the nonlinear optics, the first sextupole gives a kick which
increases the transversal amplitude in the region where the collimators are located. The second
sextupole cancels the effect induced by the former.

The cleaning inefficiency ηc(A0) of the collimation system is defined by [144]

ηc(A0) =
Np(A > A0)

Nabs
, (6.7)

with Np(A > A0) the number of beam protons with amplitude above A0 and Nabs the total number
of absorbed protons in the cleaning insertion.

Sample beam halos have been generated by tracking initial distributions of Np ' 5×106 protons
for 200 turns. At first, initial horizontal and vertical halos were separately considered. The initial
horizontal distribution in normalized phase space is an annulus with radii Ax =

√
X2 + X′2 = 6.003

and Ay =
√

Y + Y ′2 = 0 and thickness δσ = 0.0015σ (see Fig. 6.13). Similarly, for the vertical
halo we used Ax = 0 and Ay = 6.003. In a second step, a square particle distribution (see Fig. 6.14)
with diagonal amplitude Ar =

√
A2

x + A2
y = 8.503 (Ax = Ay ' 6) has been considered to study the

skew halo components.
The resulting inefficiency ηc(A0) for the nonlinear collimation system compared with the linear
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Figure 6.12: trajectory of a halo particle in LHC IR7 for the case of the linear optics (blue curve)
and the optics with the sextupole pair (green curve).
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Figure 6.13: Example of an input vertical halo model for tracking with Sixtrack.

one is shown in Figure 6.15. The nonlinear system presents a better cleaning efficiency (lower
cleaning inefficiency) for A0 ∈ [6σ, 7.4σ] and A0 ∈ [9.5σ, 15σ] for the vertical halo. In the range
(7.4σ, 9.5σ) the linear system is more efficient by less than a factor 2. However, for a horizontal
halo, the inefficiency of the nonlinear system in the range [7.5σ, 15σ] is higher by approximately
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Figure 6.14: Example of an input radial halo model for tracking with Sixtrack.

a factor 10. In the case of a radial halo, the present version of the nonlinear system is less efficient
by a factor 3.

The number of impacts and absorptions at every collimator of the nonlinear and linear systems
is displayed in Figure 6.16 for the vertical halo, Figure 6.17 for the horizontal halo and Figure 6.18
for the radial halo. Unlike the linear system, that registers the peak of impacts and absorptions at
the begining of the insertion, the nonlinear system registers the peak at the collimator #13, located
close to the IP7.

6.2.6 Decreasing the LHC Impedance

Coherent coupled-bunch tune shifts because of collimator impedances

Most of the LHC collimators in Phase-I will be made of graphite. This material is a poor conductor
(its electrical conductivity is 1.7 × 10−3 that of copper). In addition, the collimator jaws of Phase-
I will be located close to the beam (a ∼ 6σ). These conditions will contribute to a dramatic
increase of the machine impedance. Calculations [133, 134] have shown that the achievable LHC
beam intensity, and therefore the luminosity, will be limited by the impedances introduced by the
collimators.

A nonlinear collimation system, allowing larger aperture for most of the collimators, could be
a cure overcoming the performance limitations associated with the collimator impedances.

The transverse impedance of each collimator has been calculated by using the Burov-Lebedev
theory [146, 147]. The contribution from the collimators rotated by an azimuthal angle α has been
considered applying the corresponding matrix rotation to a diagonal 2× 2 tensor impedance. More
details are given in the Appendix F. The resistive-wall tranverse impedance can generate coherent
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Figure 6.15: Cleaning inefficiency, ηc(A0), as a function of the radial amplitude A0 for the nonlinear
collimation system (red solid line), compared with ηc(A0) for the conventional linear system (dotted
blue line) considering a vertical halo (top), a horizontal halo (middle) and a radial halo (bottom) at
7 TeV.

coupled-bunch tune shifts, which can be written in terms of an effective impedance Zeff
⊥ as [148]
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Figure 6.16: Number of particle impacts and absorptions in the collimators of the LHC insertion
IR7 for nonlinear collimation (top) and for linear collimation (bottom), considering a vertical halo
at 7 TeV.

∆Q⊥(ωk − ωξ) = −i
NbNeω0β⊥

8π2E

Γ
(
m + 1

2

)

2mm! Zeff
⊥ (ωk − ωξ), (6.8)

where N is the bunch population, Nb the number of equi-distant bunches and E the beam energy.
It is important to stress the dependence on the frequency ωk = ωβ + kω0 + mωs, depending on the
following oscillation modes: the head-tail mode, characterized by the number m, and the coupled-
bunch mode, characterized by the number l = k−Nbk′ with −∞ ≤ k′ ≤ +∞ and 0 ≤ l ≤ Nb−1. The
frequencyωβ = Qβω0 denotes the betatron frequency as a function of the unperturbed betatron tune
Qβ and the revolution frequency of the particles ω0; ωs denotes the synchrotron angular frequency
andωξ = ξωβ/η is the chromatic frequency depending on the chromaticity ξ and the slippage factor
η. The expression for the effective impedance Zeff

⊥ can be found in the Appendix F. By definition
the effective impedance measures the degree at which the impedance overlaps the mode spectrum.
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Figure 6.17: Number of particle impacts and absorptions in the collimators of the LHC insertion
IR7 for nonlinear collimation (top) and for linear collimation (bottom), considering a horizontal
halo at 7 TeV.

We have computed, using Mathematica [149], the total coherent tune shift for both cases,
namely the baseline linear system of Phase-I and the nonlinear system proposed in this chapter. In
a first step, we added exclusively the contribution of the collimators belonging to the IR7 insertion
(for both cases linear and nonlinear system). In a second step, we also included the contribution
from the total list of collimators, including the insertions IR7, IR3 (momentum collimation) and
the tertiary collimators for local protection and cleaning at the triplets in IR1, IR2, IR5 and IR8
(experimental insertions), and IR6 (dump insertion). Other contributions such as the broad-band
(BB) impedance and the resistive wall (RW) impedance for the rest of the ring without collimators
have also been considered.

In order to select the most unstable case, we have computed the tune shift versus the coupled-
bunch modes. The most critical mode is generally that which gives the maximum modulus of the
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Figure 6.18: Number of particle impacts and absorptions in the collimators of the LHC insertion
IR7 for nonlinear collimation (top) and for linear collimation (bottom), considering a radial halo at
7 TeV.

tune shifts. Figure 6.19 shows the modulus of the horizontal and vertical tunes shifts as a function
of the mode number l for the case of the nonlinear IR7. A similar scan is presented in Figure 6.20
for the linear IR7. The maximum values of |∆Q⊥| are found at l = 0 or l = 3564. The corresponding
imaginary part of the tune shift is plotted in Figure 6.21.

For all calculations we have taken the head-tail mode m = 0, related to rigid dipole oscillations,
zero chromaticity and the LHC parameters of Table 6.3. In order to consider a pessimistic case,
and since the theory assumes equi-distant bunches, we have used Nb = 3564 instead of the nominal
number of bunches Nb = 2808. Results of Zeff

⊥=x,y and ∆Q⊥=x,y are summarized in Table 6.4 for each
of the different contributions.

It is worthwide to point out that when the nonlinear IR7 insertion is used, |Zeff
x | is reduced by

about a factor 2 and |Zeff
y | by about a factor 3 with respect to the linear IR7 insertion of Phase-I.
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Figure 6.19: Module of the horizontal and the vertical coherent coupled-bunch tune shifts (|∆Qx|
and |∆Qy| respectively) as a function of the coupled-bunch mode l for the case of the nonlinear IR7.
The figure on the top shows a zoom of the region l ∈ [3400, 3575]. The maxima are found at l = 0
and l = 3564. The results have been obtained assuming m = 0 and ξ = 0.
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Figure 6.20: Module of the horizontal and the vertical coherent coupled-bunch tune shifts (|∆Qx|
and |∆Qy| respectively) as a function of the coupled-bunch mode l for the case of the linear IR7.
The figure on the top shows a zoom of the region l ∈ [3400, 3575]. The maxima are found at l = 0
and l = 3564. The results have been obtained assuming m = 0 and ξ = 0.

Transverse stability diagrams

Landau damping [150] of the coherent beam oscillation modes due to the tune spread provides a
possible cure against instabilities. Because of Landau damping, coherent modes which are present
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Figure 6.21: Imaginary part of the horizontal and the vertical coherent coupled-bunch tune shifts
(Im(∆Qx) and Im(∆Qy) respectively) as a function of the coupled-bunch mode l, for the case of
the nonlinear IR7 (top) and the case of the linear IR7 (bottom). The results have been obtained
assuming m = 0 and ξ = 0.

Table 6.3: LHC nominal parameters used in the tune shift calculation.

parameter value
proton energy (at collision): E [TeV] 7.
bunch length: σz [mm] 75.5
bunch population: N 1.15 × 1011

number of bunches: Nb 2808
bunch spacing: ∆tb [ns] 25
revolution frequency: ω0 = 2π f0 [kHz] 70.6544
betatron tune: Qβ 65.32
machine slippage factor: η 3.22 × 10−4

when there is no incoherent tune shift may be absent when such a shift exists. In this way, Landau
damping can be considered as a bridge between incoherent and coherent beam collective effects.

In the LHC arcs there are two families of magnetic octupoles which control betatron detun-
ing and provide Landau damping of coherent beam oscillation modes [1]. Potentially unstable



CHAPTER 6: Alternative Nonlinear Cleaning Betatron Insertion with Skew Sextupole Pair for
the LHC at 7 TeV 146

Table 6.4: Transverse effective collimator impedance Zeff
x,y and transverse coherent coupled-bunch

tune shift ∆Qx,y for the IR7 Phase-I (linear), for our proposed nonlinear IR7, and for other ad-
ditional contributions from: IR3 (momentum collimation insertion), other tertiary collimators for
local protection (in IR1, IR2, IR5, IR6 and IR8), broad-band (BB) impedance and resistive wall
(RW) impedance without collimators. These results have been obtained considering the most un-
stable case m = 0, l = 0 and ξ = 0.

Zeff
x (m = 0, l = 0, ξ = 0) [MΩ/m] Zeff

y (m = 0, l = 0, ξ = 0) [MΩ/m]
IR7 Phase-I (linear) 9.309 − 272.321i 8.795 − 303.901i

IR7 (nonlinear) 9.068 − 120.62i 7.084 − 113.64i

IR3 1.955 − 38.841i 1.089 − 19.917i
Others (tertiary) 10.059 − 58.508i 9.19 − 47.8i

RW (w/o collimators) 41.272− 8.334i 56.994 − 11.508i
BB (w/o collimators) 9.237 × 10−6 − 2945.66i

∆Qx(m = 0, l = 0, ξ = 0) ∆Qy(m = 0, l = 0, ξ = 0)
IR7 Phase-I (linear) −(6.637 + 0.197i) × 10−4 −(5.127 + 0.146i) × 10−4

IR7 (nonlinear) −(2.662 + 0.174i) × 10−4 −(2.512 + 0.223i) × 10−4

IR3 −(0.2729 + 0.0217i)× 10−4 −(0.973 + 0.0375i) × 10−4

Others (tertiary) −(1.259 + 0.222i) × 10−4 −(1.208 + 0.185i) × 10−4

RW (w/o collimators) −(0.0867+ 0.43i) × 10−4 −(0.12 + 0.593i) × 10−4

BB (w/o collimators) −(0.438 + 0.i) × 10−4

oscillation modes with negative imaginary tune shifts can be stabilized by this method.
In order to compare the complex transverse coherent tune shift generated by the collimator

impedances from the nonlinear and the linear collimation system, we use the so-called stability
diagrams, introduced first by J. S. Berg and F. Ruggiero [151]. This kind of diagrams represents
the limits of the stable beam area in the [−Im(∆Q⊥)]–[Re(∆Q⊥)] plane (or equivalently in the
[Re(Z⊥)]–[Im(Z⊥)] plane), granted by the octupole system.

Figure 6.22 compares the complex tune shift due to the impedances of the nonlinear IR7 and
the linear IR7 systems with the Landau damping stability curves, assuming maximum available
octupolar strength. The stable area is below the two curves in the figure. Figure 6.22 shows that the
nonlinear system reduces the coherent tune shift by a factor 2–3, compared with the linear system.

Similarly, Figure 6.23 compares the tune shifts introduced by the nonlinear and linear IR7
plus the contribution of the IR3 insertion (momentum collimation) and other tertiary collimators in
IR1, IR2, IR5, IR6 and IR8 for local protection. The contributions from BB impedance and RW
impedance without collimators have also been added. Including all these contributions the nominal
LHC beam may be unstable for both the linear and the nonlinear collimation systems in IR7 though
in the latter case it is closer to the stability border.

The largest contribution to the real part of the remaining tune shift comes from the tertiary
collimators and from resistive wall (see Table 6.4). Extending the nonlinear scheme and adding
further nonlinear elements close to those tertiary collimators might move the maximum coherent
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tune shift into the stable area for the nominal beam.
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Figure 6.22: The transverse stability diagram in LHC at 7 TeV, with the nominal bunch population
N = 1.15 × 1011 protons. The horizontal and vertical axes represent the real part and the negative
imaginary part of the transverse tune shift respectively (horizontal on the top and vertical on the
bottom). The points for the nonlinear and linear collimation system are compared. The dashed
(blue) curve is the stability for maximum Landau octupole current with negative anharmonicity;
the slid (red) curve with positive anharmonicity.
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Chapter 7
First Experimental Test on Nonlinear
Collimation in the SPS

7.1 Introduction

The Super Proton Synchrotron (SPS) is the second biggest accelerator at CERN. The largest one
will be the LHC, which will be supplied by a chain of proton accelerators (see Fig. 7.1). The SPS
receives the proton beam from the PS (CERN Proton Synchrotron) at a energy of 26 GeV and
will accelerate the beam up to 450 GeV in order to inject it into the LHC. Currently the SPS is
an important experimental test bed for beam physics. It allows testing most of the beam design
features which will later be required in the LHC.

A first experimental test of nonlinear collimation has been performed in the SPS at CERN on
8th November 2006. The aim of this chapter is to show some preliminary results from the analysis
of the data recorded during this pioneering experiment.

7.2 Experimental setup

In order to demonstrate the required functionalities of the LHC collimator design, a prototype LHC
Phase-I secondary collimator was installed in the SPS by the LHC Collimation Team in 2004 [152].
This collimator is still available for collimation related experiments in the SPS, and it has been used
in the present test.

The extraction sextupoles of the SPS, which in normal operation are employed for the slow or
resonant extraction of the beam, have been used to create nonlinear bumps in a region upstream of
the collimator. Table 7.1 lists some relevant data for the SPS extraction sextupoles.

The main goal of this experiment was to study the sextupolar effect on the beam loss pattern

149
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Figure 7.1: Accelerator complex in CERN.

Table 7.1: Relevant lattice parameters at the SPS extraction sextupoles. K2 is the integrated sex-
tupole strength.

Name s [m] βx [m] µx [2π] βy [m] µy [2π] K2 [m−2]
LSE.10602 190.313 97.761 0.737 21.775 0.729 0.13875
LSE.12402 766.272 97.718 2.955 21.827 2.942 0.13875
LSE.20602 1342.231 97.748 5.173 21.797 5.158 0.13875
LSE.22402 1918.189 97.754 7.390 21.812 7.371 0.13875
LSE.40602 3646.065 97.663 14.047 21.782 14.018 -0.1665
LSEN.42402 4222.023 97.764 16.265 21.864 16.233 -0.162
LSE.50602 4797.983 97.676 18.484 21.760 18.449 -0.111
LSE.52402 5373.941 97.780 20.703 21.866 20.664 -0.111
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along the lattice. The beam parameters for the test are compiled in Table 7.2.

Table 7.2: SPS beam parameters for the nonlinear collimation test.

parameter value
beam energy [GeV] 270
bunch population 1.1 × 1011

number of bunches 72
transverse norm. emittance [µm] ∼ 3
longitudinal emittance [eV·s] 0.35

7.2.1 Sextupolar bumps

Using the Campbell-Baker-Hausdorf theorem (see Appendix A), the one turn map of an accelerator
can be expressed asM = e:h:R, with h the Hamiltonian kick. This Hamiltonian can be expanded
in terms of Hamiltonian coefficients h jklm, containing the contributions from all the multipoles of
order n = j + k + l + m. The Hamiltonian coefficients coming from normal sextupoles are: h3000

and h2100.
Alternatively the so-called Normal Form can be used for analyzing circular accelerators. It

involves a change of coordinates that transforms the map into a simpler form. This change of
coordinates is accomplished by a transformation e−:F:e:h:Re:F:, where F is the generating function
for the transformation. This function can be expressed as an expansion in generating function terms
f jklm, which are related to h jklm via:

f jklm =
h jklm

1 − e−i2π[( j−k)Qx+(l−m)Qy ] , (7.1)

where Qx and Qy are the horizontal and the vertical tunes respectively. See for example [153] for a
detailed introduction to the Normal Form applied to accelerators.

The eight sextupoles of extraction, listed in Table 7.1, have been used to excite the resonance
terms f3000 and f2100. Figure 7.2 represents both of these sextupolar terms along the lattice. The
higher peaks correspond to f2100.

7.2.2 The Beam Loss Monitor (BLM) data acquisition system

A total number of 216 BLMs (one for each of the 36 quadrupoles of each SPS sextant) were
installed around the vacuum chamber along the lattice in order to measure and record the losses
of the circulating beam. The data from the BLMs’electronics are received by the control room
computers and processed by a real-time plotting software [154].
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Figure 7.2: Generating function terms f3000 and f2100 along the SPS lattice. Courtesy of R. Tomás.
The arrows indicate the positions of the extraction sextupoles.

7.2.3 Beam intensity during the test

The evolution of the beam current during the test is shown in Fig. 7.3. The upper horizontal axis in
the figure represents the Central European Time (CET) during the development of the experiment.
This started at approximately 4:18 h (CET), using an initial beam current of ≈ 76 × 1011 protons.
During a first part (4:18–4:29 h), the sextupoles were switched off. The jaws of the collimator were
then closed step by step in order to scrape the beam. Once the BLMs recorded a significant quantity
of losses, we opened the jaws to the initial point, until the losses stopped. During a second part
(from 4:29 h on), the sextupoles were switched on. Similar to before, the jaws were again moved
until large losses were observed.

We have compared the loss maps of the two cases, and looked for important pattern differences.

7.3 Preliminary results

Important differences in the beam loss pattern are observed between the two cases with sextupoles
switched-off and switched-on. It is worthwhile to mention that the same differences persisted at
different times of the test run. For the two cases, we have found the following patterns:

• Pattern of integrated beam loss maps with sextupoles OFF: one can clearly distinguish four
main loss peaks. The biggest one is located at the collimator position (∼ 5.2 km). The others
are registered upstream of the collimator position: at ∼ 0.6 km, ∼ 1.7 km and ∼ 2.6 km. It
is necessary to point out that this pattern was repetitive when meassured at different times
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Figure 7.3: Beam current as a function of time (central european time (CET)) during the experi-
ment, while the beam is being scraped with the collimator. The time intervals with sextupoles OFF
and with sextupoles ON are indicated. The CET time is shown on the upper horizontal axis.

during the experiment. Two samples from different times are displayed in Fig. 7.4.

• Pattern of integrated beam loss maps with sextupoles ON: the loss peaks are obserbed at
similar positions as in the previous case (with sextupoles OFF). Apart from this, additional
peaks appear at positions where the sextupolar resonance term f2100 is high, and therefore
they can be considered as peaks induced by the sextupolar effect. Fig. 7.5 and 7.6 show two
example loss patterns recorded at different times.
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Figure 7.4: Meassured loss map around the ring recorded by the BLMs at time 4:22:36 h (top).
Integrated loss map at time 4:23:34 h (bottom). The sextupoles are switched off.
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Figure 7.5: Meassured loss map around the ring recorded at time 4:33:38 h (bottom), when the
sextupoles were switched on. Note that extra loss peaks were registered at positions with large
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Figure 7.6: Meassured loss map around the ring recorded at time 4:35:05 h (bottom), when the
sextupoles were switched on. Note that extra loss peaks were registered at positions with large
resonance term f2100 (top).



Chapter 8
Summary and Conclusions

The beam collimation systems are an essential part of the high energy colliders operating at center-
of-mass energies around TeV, with high beam intensity and high luminosity. A collimation system
should reduce the detector background at the interaction point by cleaning the beam halo parti-
cles. Another important function of the beam collimation is the machine protection against failure
scenarios. Mis-steered or errant beams should be intercepted by the collimator system.

The mechanical and optics design of collimator systems is not simple, and they should fulfil
some often conflicting constraints and requirements: high cleaning efficiency, high mechanical
robustness, and low wakefields (impedances). Large wakefields effects and high optics aberrations
may compromise the beam stability, reducing thereby the luminosity.

The conventional collimation systems are generally based on linear optics. Nevertheless, sev-
eral alternative concepts of collimation have been proposed in the literature.

In this thesis report we have studied in detail nonlinear collimation systems for high energy
colliders. These are based on a scheme with pair of skew sextupoles. It is important to point
out that this nonlinear optics scheme is general, and it can be adapted to both linear and circular
colliders.

In particular we have designed a nonlinear energy collimation system for CLIC. Its performance
have been evaluated by means of tracking studies using the codes MAD, and Placet. The luminosity
has been computed using the beam-beam interaction code Guinea-Pig. This system fullfils the
function of machine protection against mis-steered or errant beams with energy offset & 1.5 %.
Other important feature of this system is the spoiler survival in case of direct beam impact of a
beam with a centroid energy error & 1.5 %. By the sextupolar effect the beam transverse energy
density is reduced at the energy spoiler, increasing thereby the spoiler survival probability.

The optics of the CLIC nonlinear collimation system has further been optimized by local cor-
rection of high order aberrations (2nd, 3rd and 4th order) using two additional nonlinear elements:
a skew octupole and a normal sextupole. In this way we got a luminosity and energy bandwidth
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comparable to those for the conventional linear optics.
The collimator wakefield effects on the luminosity due to the horizontal collimators misalign-

ment are very similar for both linear and nonlinear systems. In this case similar luminosity accep-
tance curves have been obtained. However, the wakefield effects due to the vertical collimators
misalignment are lower for the nonlinear collimator system, because of its higher betatronic colli-
mator apertures.

Table 8.1 summarizes and compares the performance for both linear and nonlinear collimation
systems.

Table 8.1: Summary of the performance of the nonlinear collimation system #4 versus the linear
collimation system for CLIC.

nonlinear collimation #4 linear collimation
Length [km] 2.0 2.0
Luminosity [×1034 cm−2s−1] 5.1 7.0
Energy bandwidth −0.5 % . δ0 . +0.5 % −0.5 % . δ0 . +0.5 %
Transverse beam spot size
at spoiler (δ0 = 1.5 %)
σr,rms =

√
σx,spσy,sp [µm] 470.544 150.241

Transverse energy density
at spoiler (δ0 = 1.5 %)
max(ρE(x, y)) [KJ/(mm2 bunch)] 12.659 30.08
Cleaning inefficiency ηl

for horizontal halo 10−5
. ηl . 10−2 10−5

. ηl . 10−2

Cleaning inefficiency ηl

for vertical halo 10−2
. ηl . 10−1 ∼ 10−4

Wakefield jitter
amplification Aβ 0.000144 (vertical) 0.000505 (horizontal)
Wakefield jitter
amplification Aδ (δ0 = 1 %) 0.298 (vertical) 0.0668 (horizontal)

Since the collimation requirements for linear colliders designed to operate at center-of-mass
energy around TeV are similar to those for the LHC, it is thus a close thought to apply a similar LHC
nonlinear collimation scheme as that designed for CLIC. We have explored this possibility, and
have presented an alternative nonlinear system for the Phase-II betatronic cleaning in the LHC. Its
performance and cleaning efficiency have been studied by tracking using the code Sixtrack. By
adjusting optics and collimator settings, we obtained a considerable improvement of the cleaning
efficiency up to the level of the linear system for the vertical direction. However, a careful study is
still necessary to further optimize the orientation and positions of secondary collimators to achieve
the same level of efficiency as the linear system (ηc . 10−4) for the cleaning of the horizontal and
radial halo components.

A nonlinear collimation system allows larger aperture for the mechanical jaws and thereby



159

reduces the collimator impedance. We have shown how the module of the horizontal effective
impedance is reduced about a factor 2 and the vertical one about a factor 3 compared to the Phase-I
IR7 insertion. Consequently, using the nonlinear collimation system, the coherent tune shift for the
most critical coupled bunch mode has been reduced by about a factor 2 with respect to the Phase-I
IR7 insertion.

A comparison of the features of the nonlinear collimation system IR7 and the linear collimation
system IR7 of the LHC is summarized in Table 8.2.

Table 8.2: Summary of the performance of the nonlinear IR7 and the linear IR7 for the LHC.

nonlinear IR7 linear IR7
Vertical primary collimator
half gap ny [σy] 8 6
Horizontal primary collimator
half gap nx [σx] 16 6
Cleaning inefficiency ηc

for vertical halo ≈ 10−4 ≈ 2.5 × 10−4

Cleaning inefficiency ηc

for horizontal halo ≈ 2 × 10−3 ≈ 2 × 10−4

Cleaning inefficiency ηc

for radial halo ≈ 4.5 × 10−4 ≈ 1.5 × 10−4

Hor. effective collimator
impedance |Zeff

x | [MΩ/m] 120.960 272.48
Vert. effective collimator
impedance |Zeff

y | [MΩ/m] 113.861 304.028
Hor. coherent coupled-bunch
tune shift |∆Qx| 2.668 × 10−4 6.64 × 10−4

Vert. coherent coupled-bunch
tune shift |∆Qy| 2.522 × 10−4 5.129 × 10−4

According to the results obtained for CLIC and LHC, we can conclude that a nonlinear col-
limation system using skew sextupoles for the case of linear and circular colliders appears to be
competitive with the corresponding linear systems.

Finally, a first experimental test of nonlinear collimation has been performed in the SPS at
CERN. For this experiment the SPS extraction sextupoles have been employed to create nonlinear
bumps in a region upstream of a collimator. The goal has been to study the sextupolar effect
in the pattern loss along the machine. Notable differences in the beam loss pattern have been
observed between the two cases with sextupoles switched off and on. In the two cases, loss peaks
are observed at similar positions. However, in the case with sextupoles switched on, additional
peaks appear at positions where the created sextupolar resonances are large. Another goal of this
experiment has been to inspire new ideas for performing more sophisticate tests in the future.
These should be focused on the improvement of collimator cleaning efficiency using the extraction
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sextupoles and a larger collimator aperture.



Appendix A
Maps in accelerators

A.1 Reference system

ρ

y

s

x
reference trajectory

Figure A.1: Schematic of the coordinate system used to measure the particle positions.

Let z be a vector of six phase space variables,

z = (x, x′, y, y′, t, δ) , (A.1)

which describes the particle motion in an accelerator. The coordinate system shown in Figure A.1
is generally used by convention for accelerators. The longitudinal coordinate s gives the particle
location along the lattice and the local tangent to s points in the direction of the beam line. The
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coordinates x and y measure the transverse horizontal and vertical (respectively) particle deviation
from the ideal particle trajectory. The value t is the temporal coordinate and δ the deviation of
particle energy E with respect to the nominal energy E0, δ ≡ (E − E0)/E0 . Variations in slope of
particle trajectories are denoted as x′ ≡ dx/ds and y′ ≡ dy/ds.

The beam transport between an initial lattice location zi and a final lattice location z f can be
formally expressed through a transfer mapM,

z f =Mzi . (A.2)

A.2 Taylor maps

The transfer mapM has a Taylor representation [155]

z f
j =

∑

k

R jkzi
k +

∑

k`

T jk`z
i
kzi
` +

∑

k`m

U jk`mzi
kzi
`z

i
m +

∑

k`mn

V jk`mnzi
kzi
`z

i
mzi

n + · · · . (A.3)

The coefficients R jk ( j, k = 1, 2, . . . , 6) are called first order matrix elements corresponding to the
linear optics, which is composed of drifts, quadrupoles and dipoles. The quantities T jk`, U jk`m,
V jk`mn, etc., are called higher order transfer matrix elements, and contain the information about the
optics aberrations of the lattice. For example, the second order matrix elements T jk` describe the
sextupole effects.

When a mapM has a jacobian matrix M that is symplectic at all points, the map itself is said
to be a symplectic map, i.e., M satisfies the matrix relations [156]

M̃(zi)JM(zi) = J , (A.4)

where M̃ denotes the transpose of M and J is a 2n × 2n matrix defined by the equation

J =


0 I

−I 0

 , (A.5)

with I the n × n identity matrix (n = 3 in our case), and all other entries zero. A symplectic map is
equivalent to a canonical transformation.

The truncated Taylor series has the disadvantage that it violates the symplectic condition [157,
158]. This violation is usually not important for studying single-pass systems such as final focus
systems of linear collider, where have been shown that fourth order maps are usually sufficient
[159]. However, it can be important for long-term particle tracking simulations such as following
106 to 108 turns in a storage ring [157].
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A.3 Lie algebra and symplectic maps

The map methods and the Lie algebra provide an extension of linear concepts into the nonlinear
optics, including multipolar magnetics effects. See for example [157, 158, 161] for more details.

A symplectic mapM can be expressed by

M = e: f : , (A.6)

where : f (z) : is a Lie operator defined by its action on a phase space function g(z),

: f (z) : g(z) = [ f (z), g(z)] . (A.7)

The expression [ f (z), g(z)] denotes the Poisson brackets of the functions f and g, i.e.,

[ f (z), g(z)] =
3∑

i=1

∂ f
∂qi

∂g
∂pi
− ∂ f
∂pi

∂g
∂qi
, (A.8)

Here the phase space variables z = (x, x′, y, y′, t, δ) ≡ (q1, p1, q2, p2, q3, p3) have been considered.
If : f :, : g : and : h : are Lie operators, they satisfy the following relations:

• Antisymmetry:

[: f :, : g :] = −[: g :, : f :] . (A.9)

• Jacobi condition:

[: f :, [: g :, : h :]] + [: g :, [: h :, : f :]] + [: h :, [: f :, : g :]] = 0 . (A.10)

Then the Lie operators form a Lie algebra and the Poisson bracket operation can be viewed as the
Lie product of this Lie algebra. Complementary rules can be found for example in Ref. [160].

The exponential e: f : is called the Lie transformation associated with the generator function f .
The Lie transformation is also an operator and is formally defined by the exponential series:

e: f : =

∞∑

n=0

: f :n
n! . (A.11)

The action of e: f : on any function g is given by

e: f :g = g + [ f , g] + 1
2[ f , [ f , g]] + · · · . (A.12)

Two remarkable properties of the Lie transformation are the exchange rule,

e: f :e:g: = e:g:e:e:−g: f : , (A.13)
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and the Baker-Campbell-Hausdorff theorem,

e: f :e:g: = e: f :+:g:+ 1
2 :[ f ,g]:+ 1

12 :[ f ,[ f ,g]]:+··· . (A.14)

Using the Dragt-Finn factorization theorem (which is well explained in Ref. [160]), M can be
factorized as

M = e: f1:e: f2:e: f3: · · · e: f n: · · · , (A.15)

where the functions fm are homogeneous polynomials of degree m in the variables of the vector z,

fm = f (qm
i , p

m
j , q

m
i pm−n

j , q
m−n
i pn

j) , (A.16)

with n < m and i, j = 1, 2, 3.
On a physical interpretation, the factor e: f1: reproduces a translation in phase space as those

produced by magnet misplacement errors and dipole powering errors; the factor e: f2: produces
linear transformation describing linear transport in drifts, quadrupoles and dipoles; the factor e: f3:

produces second and higher order aberrations terms describing the sextupole magnets effects; e: f4:

produces third and higher order aberrations describing the octupole magnets effects, etc. In general,
the polynomials fm describe aberrations of order (m − 1).

If we does not consider the translation in phase space, the symplectic mapM can be factorized
in a dynamic linear part and a nonlinear part:

M = Re: f 3: · · · e: fn: · · · . (A.17)

Here R represents the linear matrix of elements Ri j (i, j = 1, 2, . . . , 6) and the infinite product of
Lie transformations e: fm: (m = 3, 4, . . . ) represents the nonlinear part.

Unlike Taylor series, the factorized product of Eq. (A.17) can be truncated at any point while
remaining symplectic. In relation to the Taylor map of Eq. (A.3), e: f2: generates coefficients Ri j;
e: f3: generates coefficients T jk`, U jk`m, etc.; e: f4: generates U jk`m, etc. The coefficients Ri j, T jk`, etc.
are strongly interrelated by a large number of nonlinear conditions, while the polynomials fm are
all independent.

It is easy to demonstrate that

[qn
i , q j] = 0 , (A.18)

[pn
i , p j] = 0 , (A.19)

[qn
i , p j] = nqn−1

i δi j (A.20)

[pn
i , q j] = −npn−1

i δi j (A.21)

Taking into account the dependence of the functions fn (see Eq. (A.16)), these expressions are
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useful to evaluate easily the action of the Lie operator : fn : on the phase space variables qi and pi .

A.3.1 Examples

• Drift:

Consider the polynomial function f2 = −l/2p2, with l a parameter and p = x′, y′ the conju-
gated variables of q = x, y respectively. If we evaluate the transformation z f = Mzi, using
Eqs. (A.12), (A.18), (A.19), (A.20) and (A.21) one finds:

q f = e−
l
2 :p2 :qi = qi − l

2[p2, qi] = qi + lpi , (A.22)

p f = e−
l
2 :p2 : pi = pi − l

2[p2, pi] = pi . (A.23)

This result corresponds to the transfer map for a drift of length l.

• Quadrupole:

Consider f2 = −k/2q2, with k a parameter. Similarly, evaluating the transformation z f =

Mzi, we find

q f = e−
k
2 :q2:qi = qi − k

2[q2, qi] = qi , (A.24)

p f = e−
k
2 :q2: pi = pi − k

2[q2, pi] = pi − kq . (A.25)

In this case, this corresponds to the transfer map for a quadrupole magnet of strength k.

• Sextupole:

Consider f3 = ks/3q3, with ks a parameter. One finds the following result:

q f = e
ks
3 :q3:qi = qi +

ks

3 [q3, qi] = qi , (A.26)

p f = e
ks
3 :q3: pi = pi +

ks

3 [q3, pi] = pi + ksq
2 , (A.27)

which corresponds to the action of a sextupole magnet of strength ks in the thin lens kick
approximation.
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Appendix B
Material properties

Table B.1: Table of material properties at room temperature: % is the material density, C the specific
heat, K the thermal conductivity, and σ the electrical conductivity. Data obtained from [?, ?, ?, 48].

Material % [gm−3] C [Jg−1K−1] K [Wm−1K−1] σ [Ω−1m−1]
Be 1.84 × 106 1.825 200 1.67 × 107

C 2.26 × 106 0.709 119-165 7.27 × 104

Ti 4.54 × 106 0.523 30.7 2.0 × 106

Cu 8.96 × 106 0.385 401 6.0 × 107

W 19.3 × 106 0.132 173 1.81 × 107

Table B.2: Table of material properties: Lrad is the radiation length, Lrad · (dE/dz)min the minimum
energy deposition for ionization per radiation length, and Tmelt the melting point temperature. Data
obtained from [48].

Material Lrad [m] Lrad · (dE/dz)min [MeV] Tmelt [K]
Be 0.353 103.98 1560
C 0.188 74.38 3800
Ti 0.036 23.87 1941
Cu 0.014 18.04 1358
W 0.0035 7.74 3695
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Appendix C
Horizontal beam size at the spoiler
considering up to third order dispersion

In the next calculation we assume that the first order dispersion Dx is much higher than the trans-
verse betatronic amplitudes xβ and yβ (additionally flat beams are assumed, i.e. xβ � yβ) at the
sextupoles and spoiler positions. If the second and third order dispersion, T166 and U1666 respec-
tively in the transport notation of appendix A, then the horizontal mean squared position of particles
is given by

〈x2
sp〉 ' D2

x,sp〈δ2〉 + R2
12K2

s D2
x,s〈δ2〉〈x2

β,s〉 + T 2
166〈δ4〉 + U2

1666〈δ6〉
+2T166U1666〈δ5〉 + 2T166Dx,sp〈δ3〉 + 2U1666Dx,sp〈δ4〉 , (C.1)

and the average horizontal beam offset is given by

〈xsp〉 ' Dx,sp〈δ〉 + T166〈δ2〉 + U1666〈δ3〉 . (C.2)

The angled brackets 〈〉 indicate an average (or expectation) value. Let consider an arbitrary momen-
tum distribution P(δ). From statistics we know that the raw moment of nth order can be computed
by the integral

〈δn〉 =
∫ ∞

−∞
δnP(δ) dδ , (C.3)

For instance, considering a Gaussian distribution with a width σδ and with an average momentum
offset δ0,
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P(δ) = 1
√

2πσδ
e
−1/2

(
δ−δ0
σδ

)2

, (C.4)

the six first raw moments are

〈δ〉 = δ0 , (C.5)

〈δ2〉 = σ2
δ + δ0 , (C.6)

〈δ3〉 = 3σ2
δδ0 + δ

3
0 , (C.7)
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Next, using the expressions (C.1) and (C.2) and the above raw moments from expressions (C.5)–
(C.6) we obtain the following horizontal rms beam size at the spoiler:
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If we consider an uniform distribution

P(δ) =



0 for δ < − δflat
2 + δ0

1
δflat

for − δflat
2 + δ0 < δ <

δflat
2 + δ0

0 for δ > δflat
2 + δ0 ,

the raw moments of the distribution up to 6th order are
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〈δ〉 = δ0 , (C.12)
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In this case we obtain the following horizontal rms beam size at the spoiler:
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Appendix D
Baseline Phase-I Collimation Database
at Collision (7 TeV)

Table D.1: Parameters of the collimators installed on the linear momentum collimation insertion
IR3 of the Beam line 1 at collision energy (7 TeV).

Name Material Length Azimuth Half gap Half gap βx βy

[m] [rad] [mm] [σ] [m] [m]
Primary

TCP.6L3.B1 C 0.6 0.000 3.862 15.0 133 142
Secondary

TCSG.5L3.B1 C 1.0 0.000 2.986 18.0 55 295
TCSG.4R3.B1 C 1.0 0.000 2.066 18.0 26 403
TCSG.A5R3.B1 C 1.0 2.980 2.672 18.0 36 350
TCSG.B5R3.B1 C 1.0 0.189 2.995 18.0 46 318

Tertiary
TCLA.A5R3.B1 W 1.0 1.571 5.959 20.0 144 179
TCLA.B5R3.B1 W 1.0 0.000 5.529 20.0 153 172
TCLA.6R3.B1 W 1.0 0.000 5.105 20.0 130 167
TCLA.7R3.B1 W 1.0 0.000 3.649 20.0 66 93
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Table D.2: Parameters of the collimators installed on the linear betatron collimation insertion IR7
of the Beam line 1 at collision energy (7 TeV).

# Name Material Length Azimuth Half gap Half gap βx βy

[m] [rad] [mm] [σ] [m] [m]
Primary

1 TCP.D6L7.B1 C 0.6 1.571 1.178 6.0 169 73
2 TCP.C6L7.B1 C 0.6 0.000 1.668 6.0 160 78
3 TCP.B6L7.B1 C 0.6 2.225 1.394 6.0 152 82

Secondary
6 TCSG.A6L7.B1 C 1.0 2.463 1.669 7.0 43 217
7 TCSG.B5L7.B1 C 1.0 2.504 1.981 7.0 147 163
8 TCSG.A5L7.B1 C 1.0 0.710 2.022 7.0 171 143
9 TCSG.D4L7.B1 C 1.0 1.571 1.307 7.0 307 70

11 TCSG.B4L7.B1 C 1.0 0.000 1.837 7.0 131 139
12 TCSG.A4L7.B1 C 1.0 2.349 1.824 7.0 121 149
13 TCSG.A4R7.B1 C 1.0 0.808 1.832 7.0 112 160
16 TCSG.B5R7.B1 C 1.0 2.470 2.107 7.0 131 273
18 TCSG.D5R7.B1 C 1.0 0.897 2.115 7.0 228 160
19 TCSG.E5R7.B1 C 1.0 2.277 2.118 7.0 257 137
20 TCSG.6R7.B1 C 1.0 0.009 2.897 7.0 353 45

Tertiary
21 TCLA.A6R7.B1 W 1.0 1.571 1.539 10.0 312 45
22 TCLA.C6R7.B1 W 1.0 0.000 2.841 10.0 164 73
23 TCLA.E6R7.B1 W 1.0 1.571 2.772 10.0 66 151
24 TCLA.F6R7.B1 W 1.0 0.000 1.791 10.0 63 158
25 TCLA.A7R7.B1 W 1.0 0.000 1.763 10.0 60 149
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Table D.3: Parameters of the collimators installed for local protection and cleaning at the low–β
triplets in the experimental insertions of the Beam line 1 at collision energy (7 TeV).

Name Material Length Azimuth Half gap Half gap βx βy

[m] [rad] [mm] [σ] [m] [m]
IR1

TCL.5R1.B1 Cu 1.0 0.000 2.894 10.0 132 926
TCTH.4L1.B1 W 1.0 0.000 7.551 8.3 1649 625
TCTV.4L1.B1 W 1.0 1.571 4.775 8.3 1654 659

IR2
TCTH.4L2.B1 W 1.0 0.000 1.326 8.3 51 50
TDI.4L2 C 4.0 1.571 142.2 900.0 113 50
TCTV.4L2.B1 W 1.0 1.571 1.413 8.3 133 58
TCLIA.4R2 C 1.0 1.571 227.1 900.0 55 127
TCLIB.6R2 C 1.0 1.571 112.1 900.0 272 31

IR5
TCTH.4L5.B1 W 1.0 0.000 7.551 8.3 1646 624
TCTV.4L5.B1 W 1.0 1.571 4.774 8.3 1652 658
TCL.5R5.B1 Cu 1.0 0.000 2.898 10.0 129 908

IR6
TCDQA.4R6.B1 C 3.0 0.000 3.924 8.0 481 161
TCDQB.4R6.B1 C 3.0 0.000 3.968 8.0 492 165
TCSG.4R6.B1 C 1.0 0.000 3.766 7.5 504 169

IR8
TCTH.4L8.B1 W 1.0 0.000 1.279 8.3 47 48
TCTV.4L8.B1 W 1.0 1.571 1.352 8.3 129 53
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Appendix E
Nonlinear Collimation IR7 Database at
Collision (7 TeV)

Table E.1: Parameters of the collimators installed on the nonlinear betatron collimation insertion
IR7 of the Beam line 1 at collision energy (7 TeV).

# Name Material Length Azimuth Half gap Half gap βx βy

[m] [rad] [mm] [σ] [m] [m]
Primary

12 TCSG.A4L7.B1 C 0.6 0.000 3.318 16.0 86 73
13 TCSG.A4R7.B1 C 0.6 1.571 1.58 8.0 81 78

Secondary
14 TCSG.B4R7.B1 C 1.0 1.571 2.796 9.0 66 193
15 TCSG.A5R7.B1 C 1.0 0.651 2.649 9.0 167 184
16 TCSG.B5R7.B1 C 1.0 2.47 2.737 9.0 195 169
17 TCSG.C5R7.B1 C 1.0 1.571 2.286 9.0 292 129
18 TCSG.D5R7.B1 C 1.0 0.897 2.843 9.0 329 117
19 TCSG.E5R7.B1 C 1.0 2.277 2.96 9.0 368 106
20 TCSG.6R7.B1 C 1.0 0.009 4.464 9.0 492 83
21 TCLA.A6R7.B1 W 1.0 1.571 1.972 9.0 434 96
22 TCLA.C6R7.B1 W 1.0 0.000 3.019 9.0 225 179
23 TCLA.E6R7.B1 W 1.0 1.571 2.778 7.0 82 315
24 TCLA.F6R7.B1 W 1.0 0.000 1.373 7.0 77 325
25 TCLA.A7R7.B1 W 1.0 0.000 1.222 7.0 61 276
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Appendix F
Coherent coupled-bunch head-tail tune
shift

F.1 Burov-Lebedev theory of linear resistive-wall wake field

In [146,147] Burov and Lebedev (BL) calculated the linear resistive-wall impedance including the
effect of the finite chamber thickness. They assumed that the beam wave length is large compared
to the beam pipe inner aperture (c/ω � a), that the structure is long compared to the aperture
(L � a), and also the relativistic limit βvγ � 1 (here βv is the relativistic ratio v/c, with v the
particle velocity and c the speed of light). From the BL theory for a flat chamber (flat collimator)
of thickness d with inner aperture a at an arbitrary transverse plane (1), surrounding by vacuum
extending to infinity, the transverse resistive-wall impedance can be approximated by [146]

Zflat
⊥(1)(ωk) ' −i

π2

12
Z0

2πa2
1

1 + τ/2 , (F.1)

with an accuracy better than 5 % for arbitrary 0 ≤ τ ≤ ∞, where τ = κa tanh(κd), and |κ|a � 1 is
assumed. The value of κ is obtained from

κ = (i + sgn(ωk))
√
µ0σ|ωk|

2 . (F.2)

The frequency ωk is given by ωk = ωβ + kω0 + mωs, with −∞ ≤ k ≤ +∞ for a single bunch
beam, and k = l + Nbk′ with −∞ ≤ k′ ≤ +∞ for a multi-bunch beam (such as in the case of
the LHC). Here, ωβ = Qβω0, with Qβ the unperturbed betatron tune and ω0 = 2π f0 the average
revolution frequency of the particles andωs = 2π fs the synchrotron angular frequency. The number
m = −∞, . . . ,−1, 0, 1, . . . ,+∞ is called the head-tail mode number, l = 0, 1, . . . ,Nb−1 the coupled-

bunch mode and Nb the number of equi-populated equi-spaced bunches.
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The impedance in a plane (2), orthogonal to the plane (1), can be obtained from the Yokoya
prescription [162] Zflat

⊥(2) = (1/2)Zflat
⊥(1), i.e.,

Zflat
⊥(2) ' −i

π2

24
Z0

2πa2
1

1 + τ/2 . (F.3)

On the other hand, the transverse impedance of a round chamber (round collimator) can be obtained
by dividing the expressions (F.1) and (F.3) with the factor π2/12 and π2/24 respectively [162], i.e.,

Zflat
⊥(1) =

π2

12Zround
⊥ , Zflat

⊥(2) =
π2

24Zround
⊥ . (F.4)

F.2 Coherent tune shift

Questions such as what modes are more critically excited by the impedance and the corresponding
tune shift of these modes can be more directly addressed using the so-called effective impedance
[148, 163], defined as

Zeff
⊥ (m, l, ξ) ≡

+∞∑

k′=−∞
Z⊥(ωkl)hm(ωkl − ωξ)

+∞∑

k′=−∞
hm(ωkl − ωξ)

, (F.5)

where the transverse impedance Z⊥ is essentially weighted by the beam power spectrum hm for a
head-tail mode number m. The frequencyωkl is given byωkl = ωβ+(l+Nbk′)ω0+mωs. The variable
ωξ = ξωβ/η is the transverse chromatic frequency, which is a function of the chromaticity ξ, the
betatron frequency ωβ and the slippage factor η = (∆T/T0)(∆p/p0), with T and p the revolution
period and the momentum of the particle respectively . In the case of a gaussian beam,

hm(ω) =
(
ωσz

c

)2m
e−ω

2σ2
z /c

2
. (F.6)

Figure F.1 shows the power spectrum of a gaussian beam for the first three head-tail modes m = 0, 1
and 2 depending on the coupled-bunch mode l

The transverse coherent tune shift because of the collimator impedances can be calculated in
terms of the effective impedance (F.5) by using the following expression [148]:

∆Q⊥(m, l, ξ) = −i
NbNeω0β⊥

8π2E

Γ
(
m + 1

2

)

2mm! Zeff(m, l, ξ) , (F.7)

where N is the number of particles per bunch and E the nominal beam energy.
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Figure F.1: Transverse power spectrum for the first three head-tail modes m = 0 (blue), m = 1 (red)
and m = 2 (green), assuming ξ = 0 and p = 0, versus the coupled-bunch mode number l.

F.3 Tilted collimator contribution

F.3.1 The transverse tensor impedance

In order to calculate the impedance contribution from a skew collimator, rotated by an angle α
around the longitudinal axis z, we use the tensor impedance [164]

Z⊥ = R−1Z′⊥R =


Zx Zxy

Zyx Zy

 , (F.8)

with the following matrix elements:

Zx = Z⊥(1) cos2 α + Z⊥(2) sin2 α , (F.9)

Zy = Z⊥(2) cos2 α + Z⊥(1) sin2 α , (F.10)

Zxy ≡ Zyx = (Z⊥(1) − Z⊥(2)) sinα cosα . (F.11)

Here, Z′⊥ is the tensor impedance diagonalized in a frame rotated by angle α around the axis z, i.e.,

Z′⊥ =


Z⊥(1) 0

0 Z⊥(2)

 , (F.12)

and R is the usual 2 × 2 rotation matrix

R =


cosα sinα
− sinα cosα

 . (F.13)

For instance, for a horizontal collimator (α = 0) one has Z⊥(α = 0) = Z′⊥, and for a vertical
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collimator Z′⊥(α = π/2) = adj{Z′⊥}.

F.3.2 The tensor tune shift

The corresponding tune shift tensor is given by

∆Q⊥ = −i
NbNeω0

8π2E
β1/2
⊥ Z⊥β

1/2
⊥ , (F.14)

where

β⊥ =


βx 0
0 βy

 (F.15)

defines the diagonal matrix of the betatron functions, βx and βy for the horizontal and vertical plane
respectively.

If we consider a collimator in an arbitrary plane (1), whose impedance contribution is Z⊥(1),
using the same prescription [162] as in Eq. (F.3), the collimator impedance at the corresponding
orthogonal plane (2) can be obtained from the relation Z⊥(2) = (1/2)Z⊥(1). Therefore, one can
calculate the transverse coherent tune shift contribution from a collimator rotated an arbitrary angle
α using the following expression:

∆Q⊥ =


∆Qx ∆Qxy

∆Qyx ∆Qy

 , (F.16)

with the following matrix elements:

∆Qx = −i
NbNeω0

8π2E
βx(cos2 α +

1
2 sin2 α) Z⊥(1) , (F.17)

∆Qy = −i
NbNeω0

8π2E
βy(1

2 cos2 α + sin2 α) Z⊥(1) , (F.18)

∆Qxy = −i
NbNeω0

8π2E

√
βxβy

2 sinα cosα Z⊥(1) . (F.19)

The non-diagonal element ∆Qxy ≡ ∆Qyx corresponds to a coupling term, which would be compen-
sated by the incoherent tune shift [164].

It is worthwhile to notice that in Eqs. (F.17), (F.18) and (F.19) the impedance Z⊥(1) can be
replaced by a more general effective impedance for an arbitrary head-tail mode m, adding a nor-
malization factor Γ(m + 1/2)/(2mm!), such as in Eqs. (F.5) and (F.7).
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