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ABSTRACT

Human Immunodeficiency Virus (HIV) is the cause of Acquired Immune Deficiency Syndrome
(AIDS) and has killed over 25 million people since the disease was first recognized in 1981. As of
2007, 33 million people globally are infected with HIV and this number is growing.1 HIV infects and
depletes CD4+ helper T cells, affecting the ability of the immune system to defend the host against
common infections. While anti-retroviral therapy has decreased morbidity and mortality, these drugs
are not curative. In addition, they are beyond the financial reach of many HIV infected patients. Thus,
the development of strategies to control HIV spread is a high priority. The most relevant animal
model for studying HIV is the Simian Immunodeficiency Virus (SIV) - infected rhesus monkey.

While HIV research has focused on studying peripheral blood specimens, mucosal sites have recently
been identified as a focal point for HIV replication and tissue destruction. They are usually the sites
of primary infection in the setting of sexual transmission and they are also important sites of immune
depletion. If methods for controlling the replication of the virus early after infection in mucosal sites
are available, it may be possible to eliminate the virus prior to systemic spread.

While strategies for generating strong neutralizing antibody responses have not yet been developed,
emerging data suggest that CD8+ cytotoxic T cells can contribute substantially to early virus control.
It is important to study CD8+ T cells in the setting of SIV infection in rhesus monkeys, particularly
in mucosal sites, using functional as well as transcriptional assays. One of the challenges in studying
mucosal cellular immunity is the limited number of cells available in biopsies, making traditional
assay systems such as flow cytometry very difficult to employ. Here, technologies for isolating rare
cell populations and extracting RNA from these cells for gene expression analysis were developed.
These technologies were then applied to peripheral blood specimens, looking at gene expression
differences between virus-specific CD8+ T cells in Mamu-A*01+ and Mamu-A*02+ monkeys. The
ultimate goal of these studies is to gain a better understanding of SIV immunopathogenesis (as a
model for HIV immunopathogenesis) and to find a way to control or eliminate the virus.

Thesis Supervisor: Norman L. Letvin
Title: Professor of Medicine
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CHAPTER 1: Introduction

Human Immunodeficiency Virus (HIV) is the cause of Acquired Immune Deficiency Syndrome

(AIDS) and has killed over 25 million people since the disease was first recognized in 1981. As

of 2007, 33 million people globally are infected with HIV and this number is growing.' HIV

infects and depletes CD4+ helper T cells, affecting the ability of the immune system to defend

the host against common infections. While anti-retroviral therapy has decreased morbidity and

mortality, these drugs are not curative. In addition, they are beyond the financial reach of many

HIV patients. Thus, the development of strategies to control HIV spread is a high priority.

Understanding of the biology underlying HIV disease progression is essential for developing

effective therapies and an effective vaccine. Part of the challenge in clarifying AIDS

pathogenesis lies in the lack of adequate assay systems to probe the questions we need to answer.

In the space of cellular immunity, one of the challenges lies in the limited amount of information

that can be obtained by traditional assays such as ELISPOT and intracellular cytokine staining

(ICS). In addition, cell number limitations in particular anatomical compartments such as mucosa,

make it very difficult to employ traditional assay systems, which typically require millions of

cells. Development of novel technologies for studying cellular immunity in limited numbers of

cells in the setting of SIV infection can help us gain a better understanding of SIV

immunopathogenesis (as a model for HIV immunopathogenesis) and to find a way to control or

eliminate it.



HIV Background

HIV is a retrovirus and is a member of the lentivirus family. Due to its low-fidelity replication,

viral mutants are rapidly created, causing a viral swarm or quasi-species inside the host.2-4 This

ability to mutate allows HIV to adapt to and evade host immune responses and also makes it

extremely difficult to contain.5 ,6

Structure

HIV has two copies of single-stranded RNA, enclosed by a conical shell composed of the viral

capsid protein. Each strand of RNA is tightly encapsulated by nucleocapsid proteins that protect

the RNA from nucleases. 7' 8 Reverse transcriptase and integrase are encoded by the RNA and are

integral for development and replication of the virion. 9 Matrix proteins surround the viral capsid,

ensuring the integrity of the virion. Virions are formed when capsid buds off from the host cells,

taking along some of the membrane containing the viral envelope glycoproteins gp120 and gp41.

Genome

HIV contains major genes that are common to all retroviruses: gag, env, and pol. Gag is a

structural gene that encodes for a number of proteins that are necessary for the infrastructure of

the virus. Env encodes for the glycoproteins gpl20 and gp41 which are embedded in viral

envelope and are required for viral entry into host cells. Pol encodes for viral enzymes needed

for replication, including reverse transcriptase, integrase, and protease. Other accessory genes

such as tat, vpr, rev, nef vif and vpu enhance HIV replication and likely contribute to viral

pathogenicity.



Primate SIV model

Simian Immunodeficiency Virus (SIV) has become the model of choice for studying the

pathogenesis and transmission of HIV because the SIV infection of rhesus monkeys (Macaca

Mulatta) shares many of the same pathogenic features of HIV-1 infection in humans." The

primate SIV model has enabled researchers to prospectively design vaccine and challenge

experiments, something that is impossible in humans.

Immune responses to HIV

Both the innate and the adaptive immune responses will likely be important in the control of HIV

replication and pathogenesis. The innate immune response is the earliest response and can kill

infected cells through cytolytic mechanisms or can amplify the immune response through

cytokines and chemokines. The adaptive immune response consists of the humoral arm and the

cellular arm. The humoral immune response works by directing antibodies against viral Env to

potentially inactivate or clear the virus. The cellular immune response targets HIV indirectly by

killing cells that harbor the virus.

Innate immune response

The innate immune response can act rapidly because it uses extant cells and mediators." Natural

killer cells (NK), granulocytes, and possibly y6-T cells provide the initial line of defense upon

stimulation by chemical signals at the site of infection. 12-15 NK cells and y6-T cells can kill

infected cells through cytolytic mechanisms while neutrophils release antimicrobial defensins.12

15 Host macrophages and dendritic cells also play a large role at an early stage after infection by

presenting viral antigens and by secreting cytokines and chemokines to amplify the immune

response. There is still much that is not known about the power of the innate immune system to



control HIV. However, with time, the innate immune response gives way to the adaptive immune

response, which requires presentation of viral antigens on cell surface MHC molecules.

Humoral immune response

While many viruses are controlled by host antibodies, the natural antibody response to HIV is

too late, too weak, and not protective. The humoral immune response takes several weeks after

infection to develop, which is much too late to be effective in controlling HIV spread." The

importance of the humoral response, however, is evident in the number of ways HIV has evolved

to evade host antibodies. 16 For example, the Env proteins gpl20 and gp41, which are most

accessible to antibody binding, are heavily glycosylated and can form trimeric complexes that

prevent antibody access to vulnerable domains of the envelope.16-18 The more vulnerable variable

loops of gpl20 should be prime targets for neutralizing antibodies but, unfortunately, the loops

are too variable to be recognized by the highly focused neutralizing antibodies that develop

following infection. Increasing the effectiveness of the humoral response to HIV will require

tremendous innovation in immunogen design, a clear and logical method for evaluating

immunogens, and thorough structural and molecular analyses of current neutralizing antibodies

and Env proteins. 16' 19 The current inability of the humoral immune response to neutralize HIV

suggests that the burden of HIV control lies with the cellular arm of the immune system and that

for a vaccine to be successful, a focus on improving the cellular immune response may be

necessary.



Cellular immune response

The cellular arm of the immune system is active at an early stage (approximately one week post-

infection) and plays a major role in fighting many viral infections. In HIV, studies have shown

that CD8+ cytotoxic T lymphocytes (CTLs) play a large role in the control of HIV replication

and spread. 20 Soon after the discovery of HIV, CD8+ T cells were found to inhibit viral

replication in autologous CD4+ T lymphocytes. 21 CTL effector molecules include perforin,

granzyme and Fas, as well as soluble factors such as beta-chemokines (RANTES, MIP-la and

MIP-10) and other poorly defined factors. 11,22 The emergence of virus-specific CTL response

correlates temporally with a decrease in viral loads and poor CTL response is associated with

poor viral control.23,24 Depletion of CD8+ lymphocytes in an SIV primate model results in high

viral loads and development of lethal SIV infection. 25-27 However, clearance of HIV is always

incomplete, even in the presence of a robust CD8+ T cell response. Some have attributed the

failure for viral control to the ineffective response of virus-specific CD4+ T cells. 28,29 Others

have suggested that the continuous state of immune activation fuels viral persistence, leading to

CTL dysfunction or exhaustion.30-32 New findings also suggest that viral escape, MHC

polymorphisms, and the kinetics of cell killing are other factors contributing to failure in

controlling HIV replication and pathogenesis. 33 While the cellular immune response to HIV is

the most intensely studied part of the immune response to HIV, there is still much we do not

understand about why the CTL response is not sufficient to control HIV replication. With the

development of new technologies, such as gene expression profiling and bioinformatics, we have

a chance to probe more intensely the underlying host-virus biology with the hope of finding

ways to augment the cellular immune response. However, while the cellular immune response

thus far provides the best control of HIV, CD8+ T cells probably do not account for all HIV



containment. 34 There may therefore be other mechanisms contributing to virus control. A vaccine

that engages all aspects of the immune system will likely provide the best protection against HIV.

HIV as a mucosal pathogen

While most HIV researchers have focused on studying peripheral blood specimens, mucosal sites

have recently been identified as focal points for HIV replication and tissue destruction. They are

usually the sites of primary infection in the setting of sexual transmission and they are also sites

of immune depletion.35 In nonhuman primates, simian immunodeficiency virus (SIV) can be

transmitted without epithelial damage. This may also be true of HIV in humans. There is a need

to study HIV at the mucosal level because it is the site of first infection and also the site of most

significant CD4+ T cell depletion. 36 For a vaccine to be effective, it may need to act at the

mucosal level.37 -40 Antigen-specific CD8+ T lymphocytes are the predominant cellular defense

against viral infections including HIV and SIV.24'41 From these observations, it is evident that a

study of antigen-specific CD8+ T lymphocytes in mucosal compartments in the setting of SIV

infection will be essential for understanding the underlying biology of HIV infection. If methods

for controlling the replication of the virus early after infection in mucosal sites are available, it

may be possible to eliminate the virus prior to systemic spread.

Technologies used to study cellular immune responses

Standard methods for studying cellular immune responses include enzyme-linked

immunosorbent spot (ELISPOT) and intracellular cytokine staining (ICS).

The ELISPOT assay is based on the ELISA immunoassay and can be used to identify and

enumerate cytokine-producing cells. In HIV-infected individuals, the IFN-gamma ELISPOT



assay has been used to identify HIV-specific CD8+ T cells. ELISPOT is attractive as an assay

because it is rapid, inexpensive, easy to use, and sensitive. However, there are several limitations,

including a need for large cell numbers for each evaluated sample and the uncertainty of whether

all HIV-specific CD8+ T cells can be identified based on their IFN-gamma production following

peptide stimulation.42

ICS is an assay that can detect single cell expression of cytokines following stimulation with

specific antigens.43 ICS allows for simultaneous detection, quantification, and phenotypic

characterization of each cell.43 Cells are first permeabilized and then stained with cytokine

antibodies. Flow cytometric analysis is used to determine the amount of cytokine produced or

accumulated. The major advantage of ICS over the ELISPOT assay is the ability to measure

multiple parameters in the same cell. However, there are limitations in this assay technology,

including a need for large cell numbers per sample, and the difficulty in performing ICS on

mucosal samples due to the chronic activation of the cells in these tissues.

Challenges of Studying Mucosal T Cell Immunity

One of the major challenges in the study of mucosal T lymphocyte immunity is the limitation in

the number of antigen-specific T lymphocytes that can be extracted from mucosal biopsies.

Traditional methods of studying lymphocytes, such as ICS and ELISPOT, require large cell

samples (millions of cells), which are impossible to obtain from the small biopsy specimens that

can be sampled from mucosal compartments. In addition, these assay systems only extract

limited information from the cells (ie. presence of cell surface receptors and production of a

handful of cytokines).



Therefore, it is important, both for research purposes and for clinical trial applications, to

develop appropriate assay systems designed for working with small numbers of cells in an easy

and reproducible fashion and that would allow for additional information to be gathered from the

cells, including gene expression data.

Gene Expression profiling as a new tool to study cell biology

The identity and abundance of mRNA species within a cell dictate, to a large extent, the

biological potential of that cell.44 While post-transcriptional mechanisms modify protein

expression in many ways, most cellular changes begin from changes in gene transcription.

Recent advent of microarray technology has made it possible to assess the global mRNA profile

of cells.

The use of miniaturized microarrays for gene expression profiling was first described in 1995 by

Schena et al using a microtiter plate containing 48 cDNA probes.45 Since then, this tool has been

developed extensively and can now probe tens of thousands of genes in parallel and can process

multiple samples at a time on a single chip. Microarrays consist of an arrayed series of

thousands of microscopic spots of DNA oligonucleotides, containing picomoles of a specific

DNA sequence. These oligonucleotides act as probes to hybridize a cDNA or aRNA sample

(target). Probe-target hybridization is then detected and quantified by detection of fluorophore-,

silver-, or chemiluminescence-labeled targets to determine relative abundance of nucleic acid

sequences in the target. In standard microarrays, the probes are attached to a solid surface, which

can be glass or silicon, via a covalent bond. Other microarray platforms (such as Illumina), use

microscopic beads. DNA Microarrays can be used to measure changes in expression levels, to



detect single nucleotide polymorphisms (SNPs), in genotyping or in resequencing mutant

genomes.

Over the past 15 years, microarrays have been used extensively to help scientists take a global

view of biological systems. While unable to assess aspects of cellular regulation, such as

translational control or intracellular compartmentalization, the evaluating of coding mRNA

provides a direct representation of transcriptional and post-transcriptional regulation.46 For

immunologists, this technology has allowed a glimpse into the "immunological genome" defined

as the inventory of genes expressed in different immune system cells and the ways in which

those transcripts are connected in regulatory networks and vary during differentiation and

immune responses. 46 Microarrays have been used to explore perturbations associated with

specific immunological diseases in order to identify key cellular or molecular pathways active in

the setting of those diseases. 47-50 Studies have attempted to identify gene 'signatures' associated

with various hematopoietic cell subpopulations, 5 human leukocytes, 52 and an assortment of

tissues representing the mouse immune system.53 The Novartis Symatlas project analyzed over

60 organs in humans and mice, some of which corresponded to sorted cell populations. 54 The

Genentech IRIS project analyzed the gene profile for a number of immune cell subpopulations

including CD4 T cells, CD8 T cells, NK cells, DCs, and neutrophils.5 5

The first study in HIV using DNA microarrays was done by Geiss et al in 2000 and looked at

host cell gene expression following infection of a CEM cell line with HIV.56 Since then,

microarray studies in human immune cells have helped to reveal novel potential mechanisms of

HIV-mediated pathogenesis. Studies have addressed gene modulation associated with immune

dysregulation, susceptibility to apoptosis, virus replication and viral persistence. 57



Microarray studies on HIV-infected PBMCs in vitro have shown that viral envelope facilitate

virus replication by upregulating proviral cytokines, chemokines, and transcription factors with

long-terminal repeat (LTR) expression. 58' 59 Greater activation of p38 MAPK pathway genes

associated with R5 gpl20 versus X4 gpl20 indicated a potential mechanism for favoring R5

virus replication. 59-6 1 The HIV viral protein R (vpr) has been implicated in down-modulation of

immune-response genes required for accessory cell function and cell cycle genes. 6 2-64 In vivo

PBMC microarray studies have elucidated gene correlates of viremia such as low IL-7 receptor a

expression and high perforin expression in viremic patient PBMCs and not in 12 aviremic,

untreated patients. 65 Genes involved in immature T lymphocyte differentiation, apoptosis, HIV

replication, and homeostasis have been shown in PBMCs to be correlated with clinical status and

disease progression. 66 Microarray studies in CD4+ T cells have confirmed previously suggested

pro-apoptotic mechanisms of CD4+ T-cell induced cell death as well as the role of Nef in

enhancing virus replication in CD4+ T cells through a Nef-mediated cholesterol biosynthesis

pathway.57,67-71 In vivo CD4+ T cells studies have shown up-regulation of genes required for

virus production, assembly, and release, including genes associated with transcriptional

modulation, RNA processing, and protein modification/trafficking. 72

Microarray studies looking at HIV-mediated latency have revealed several candidate

mechanisms contributing to latency in vitro and may possibly act in vivo such as transcriptional

quiescence, up-regulation of transcriptional repressors, inhibition of RNA metabolism and

processing, down-regulation of surface receptors to evade immune recognition, and up-

regulation of virus entry receptors and translation machinery. 56



Microarray studies of HIV infection and replication in macrophages have confirmed the pro-

inflammatory gene commitment thought to enhance virus replication and persistence. HIV-

infected macrophages up-regulate IFN/NF-KB-responsive chemokines and cytokines thought to

enhance virus dissemination by promoting recruitment of CD4+ T cells and other macrophages

to the infection site.58,73 Up-regulation of cytoskeletal reorganization genes has been identified to

enhance virus fusion to host cell membranes.58 Proviral transcription factors are also up-

regulated when macrophages are stimulated with gpl20, indicating a potential for envelope

interactions to mediate activation independent of infection. 74

Microarray studies have also uncovered a gene-to-function relationship between anti-apoptotic

genes and greater cell survival.75 Finally, microarrays have been used to obtain genetic

correlates of immune modulation pre-and post-ART treatment or associated with vaccine trials.

While the use of microarrays in studying HIV infection seems to be ubiquitous, microarray

studies using whole tissues from HIV-infected individuals have been limited.57 Often, mixed

populations of cells have to be assayed from PBMCs and mucosa due to cell number and

technology limitation. Development of tools to allow for microarray studies to be conducted on

small focused subpopulations of cells will be extremely useful.



CHAPTER 2: Cell capture and release of epitope-specific
CD8+ T lymphocytes

Introduction

The study of virus-specific CD8+ T cells in the setting of HIV or SIV infection may potentially

reveal important mechanisms in viral pathogenesis and lead to new strategies for viral

containment. A challenge in studying these small populations of cells lies in the lack of

appropriate assay systems for evaluating small cell numbers. Traditional methods of studying

lymphocytes, such as ELISPOT and intracellular cytokine staining (ICS), require large cell

samples (millions of cells), which are impossible to obtain from the small biopsy specimens that

can be sampled from mucosal compartments. In addition, these assay systems are capable of

extracting only a limited amount of information from the cells, namely a handful of cell surface

receptors and the production of a few cytokines.

Gene expression analysis using microarray technology is a powerful tool for probing host

immune responses and disease pathogenesis in the setting of HIV or SIV infection. With the

development of appropriate assays for working with small cell numbers, virus-specific CD8+ T

cell populations in human or primate models can be probed at the transcriptional level.

With gene expression analysis of virus-specific CD8+ T cells being the final goal, there are two

challenges that must be addressed. The first challenge is to capture the virus-specific CD8+ T

cells and separate them from the total lymphocyte population. The captured population needs to

be >95% pure and the assay system should not result in substantial cell loss. The second



challenge is to extract high quality RNA from the isolated virus-specific CD8+ T cells and

amplify the RNA if necessary. The first challenged will be addressed in this chapter and the

second one will be addressed in the following chapter.

There are three different methods of cell capture that can potentially be used to isolate virus-

specific CD8+ T cells. The first is immuno-magnetic separation using beads. The second is to

develop a microfluidic system that will use an ELISA-like surface chemistry. The last is

fluorescence-activated cell sorting (FACS).

Immuno-magnetic cell separation

Immuno-magnetic separation has been used for isolating cells for a number of biological

applications. 76-80 This method relies on having monoclonal antibodies that can help distinguish

between cell types to be separated. There are two basic methods for performing immuno-

magnetic separation: the tube-based method and the column-based method. The tube-based

method uses micron-sized beads that can be selected using a magnet and the column-based

method uses nano-sized particles that must pass through a ferromagnetic spheres column to

increase cell capture capacity. 80

The two most commonly used magnetic beads systems are the MACS microbeads and the Dynal

dynabeads. MACS microbeads are superparamagnetic particles 50 nm in diameter and

composed of dextran and iron oxide.80  These beads need to pass through a ferromagnetic

spheres column to increase cell capture capacity and various columns are available through

Miltenyi Biotec. In general, two types of Miltenyi columns, 'MS' and 'LS' columns are



optimized for positive selection and two others, 'LD' and 'CS' columns are optimized for

depletion. Dynabeads are polystyrene spherical beads with a core of iron oxide. 8° They are

2.8 um in diameter and usually need to be removed from the cell surface before further analysis

of isolated cell populations.

To isolate virus epitope-specific CD8+ T lymphocytes from a total lymphocyte population, these

cells can be labeled via their T cell receptors with the appropriate MHC class I tetramer

conjugated to phycoerythrin (PE) or other fluorescent dyes. There is a MACS anti-PE bead that

can bind to the PE-labeled tetramer associated with the epitope-specific CD8+ T cells and

facilitate isolation of this rare cell population. There is no anti-PE Dynabead and therefore, a

secondary anti-PE antibody would have to be used in combination with the Dynal mouse IgG

cleavable bead system to do this cell isolation. Both methods have their advantages and

disadvantages. The MACS system has the advantage of using beads that are directly linked to

the PE labeled tetramer positive cells and FACS can be employed on these labeled cells without

need to remove the beads. This system, however, has the disadvantage of using smaller (50 nm)

beads that may not have enough mass to successfully retain cells. In addition, a column

separation can result in heavy cell loss. Dynabeads have the advantage of having a greater

surface area for interacting with cells than the MACS beads and could potentially retain the

bead-cell conjugates better. However, there are several disadvantages to the system. There are

no anti-PE dynabeads and therefore attachment would have to occur through the use of a

secondary antibody. Second, the anti-mouse IgG antibody on the bead can potentially bind to

exposed Fc portions of cell surface receptors of mouse antigen presenting cells. One way to

circumvent this problem is by blocking the beads with mouse anti-FcRY after incubation with



the secondary antibody. Lastly, dynabeads are too large for FACS and need to be removed

before sorting via DNase treatment, adding another level of complexity and contributing to

additional cell loss. It is unclear which system would work better and, therefore, both will be

tried.

Integrated Microfluidic Devices

Because they employ small volumes and are amenable to automation, microfluidic devices

provide a potentially important platform for studying small populations of cells in a high

throughput fashion. Microfluidic devices offer other advantages, including reproducibility of

data because of limited user manipulations, rapid processing time, ease of use, infrequent

contamination, and ability to integrate multiple components. Microfluidic devices have been

developed for a variety of biological applications, including cell capture,81-84 PCR,85-91 chemical

cytometry,92 and microarray analysis. 9 3 -9 5 In addition, significant advances in polymers and

substrates used to create these microfluidic devices have been made. 96-99

However, most of the microfluidic systems developed to date do not meet the requirements of a

device for purifying small numbers of specific cells and carrying out RNA analysis on large

numbers of specimens. They either require complicated accessory equipment,84 allow for

specific cell capture but not release,100-104 allow for cell capture and release but in an equipment

intensive and non-high-throughput manner,' 0 5 or perform cell concentrating but not specific cell

sorting. 82,106 The development of a microfluidic system that is inexpensive, easy to use, and can

both capture specific immune cell populations and release them for subsequent applications such

as RNA analysis is needed to study virus-specific CD8+ T lymphocyte populations.



Poly dimethyl siloxane (PDMS) - based microfluidic systems, pioneered in George Whitesides'

laboratory at Harvard University, can be high throughput, rapid, specific, amenable for use under

sterile conditions and can be associated with less cell loss than traditional FACS because of their

small size.' 07 PDMS has advantages over other substrates such as glass and silicon because of its

low cost and ease of processing. 10 8 Surface chemistry that enables specific binding of PE-labeled

tetramer bound cells can be created. Depending on chamber shape and dimensions, a design that

minimizes cell loss but maximizes sorting efficiency (as measured by sorting time and purity of

sorted population) can be developed. The speed of introducing the cells into the chamber,

washing conditions, collection conditions, tubing preparation, and magnet strength are all critical

parameters to consider. The purity of the collected cells can be analyzed by flow cytometric

analysis or fluorescent microscopy.

Fluorescent-activated cell sorting (FACS)

FACS is a vital tool in biological research and clinical diagnostics, and particularly in stem cell

research.109-115 A heterogeneous population of cells can be purified into fractions containing a

single cell type based on a combination of user-defined parameters. Cells in suspension and

labeled with fluorescent tags are pressurized into a narrow and directed fluid stream. 116 The cells

file in a single line past an analysis point at which one or more laser beams are directed. Any

fluorescent tags on the cells are excited by the laser and this signal is collected by an array of

photo-detectors and optical filters. These signals indicate to the computer how to divert the

droplets of cells that file past the analysis point.



FACS has become a powerful tool in biotechnology, facilitating research and development in

areas such as drug screening, protein engineering, and cell signal profiling." 17 FACS has some

disadvantages. Because particles are analyzed individually, the process of cell sorting is slow.

Top high-speed flow cytometers perform at approximately 1x105 drops per second. 116 In addition,

cell loss is high. However, the factor that is most critical to gene expression analysis is high

purity (>95%) of the assayed cell population and FACS provides this.



Materials and Methods

Mice and immunization

Six- to eight-week-old female BALB/c mice were purchased from Charles River Laboratories

(Wilmington, MA) and maintained under specific-pathogen-free conditions. Research on mice

was approved by the Beth Israel Deaconess Institutional Animal Care and Use Committee.

Groups of mice were immunized either intraperitoneally with rVac-gpl60 (2 x 107 PFU) or

intramuscularly with rAd-gpl40 (2 x 107 particles) or DNA-gpl20 (50 pg of DNA in a 100 tpl

total injection volume; 50 ptl was delivered into each quadriceps muscle). Ten weeks after the

first immunization, mice were boosted with both homologous and heterologous combinations of

immunogens using the previously mentioned vectors via the same route and with the same

quantity as described for the priming immunization." 8

Rhesus monkeys

Three Mamu-A*01+ Indian-origin rhesus monkeys (Macaca mulatta), chronically infected with

SIVmac251, were used for experiments. These animals were maintained in accordance with the

guidelines of the Committee on Animals for the Harvard Medical School and the Guide for the

Careand Use of Laboratory Animals.

Antibodies, tetramers, and peptides

Tetrameric H-2Dd complexes folded with gpl20 p18 epitope peptide (RGPGRAFVTI) were

prepared as previously described,1 19 and conjugated to Streptavidin-PE (DAKO). The antibodies

used in this study were directly coupled phycoerythrin (PE), and allophycocyanin (APC). The



following anti-mouse monoclonal antibodies were used: anti-CD8a (clone 53-6.7; eBiosciences),

and rat anti-mouse Fc Block (clone 2.4G2; BD Pharmingen).

Immunomagnetic Separation

Spleens from BALB/c mice were harvested in RPMI 1640 medium containing 40 U of heparin

per ml. Splenocytes or lymphocytes were isolated from individual mice and peripheral blood

mononuclear cells were isolated using Lympholyte-M (Cedarlane). RBCs were lysed by using

ACK buffer (0.15 M NH4Cl, 1 mM KHOC3, and 0.1 mM disodium EDTA) when indicated by

the experiment. The cells were then washed with PBS/2%FBS and counted.

Dynal CELLection Pan Mouse IgG Kit selection of CD8+ T cells

Cleavable IgG dynabeads (Invitrogen) were added to mouse anti-PE (Biolegend; Clone PE001)

at a concentration of 25 ul of beads to 1 ul of 0.5 mg/ml anti-PE. The beads were incubated with

the anti-PE for 30 min at 4oC, rocking, and then washed twice and resuspended in 25 ul of

PBS/0.5%BSA. Mouse PBMCs were isolated as described above and were blocked with 2 ul rat

anti-mouse Fc Block (clone 2.4G2; BD Pharmingen) for every 106 PBMCs, and incubated for 15

min at 4oC. The cells were then stained with PE-conjugated anti-CD8 (clone 53-6.7;

eBiosciences) and incubated for 15 min at RT and washed twice. The dynabeads coated with

anti-PE were added to the cells at a concentration of 5 ul beads/anti-PE to 107 cells. In addition,

2 ul of rat anti-mouse Fc Block (clone 2.4G2; BD Pharmingen) was added and the mixture was

rocked for 30 min at 40C. The cell and bead mixture was then washed and resuspended in media

according to manufacturer (Invitrogen) specifications. DNase I was added to the samples

according to manufacturer (Invitrogen) instructions, cleaving off the dynabeads, leaving free



CD8+ T cells behind. The beads were separated from the cells using a magnet and the cells

were spun down at 6,700 rpm for 5 min to remove free cleaved antibodies. The collected cell

pellet was fixed with PBS-l% formaldehyde. Samples were collected on an LSR II instrument

(BD Biosciences) and analyzed using the FlowJo software (TreeStar).

Dynal CELLection Pan Mouse IgG Kit selection of epitope-specific CD8+ T cells

Mouse PBMCs were isolated as described above. CD8+ T lymphocytes were purified with

negative selection using the CD8a+ T cell isolation kit for mouse (Miltenyi Biotec). The cells

were stained with PE-conjugated tetramer (H-2Dd/pl8) and anti-PE coated dynabeads (as

described above) were incubated with the cells, along with 2 ul of rat anti-mouse Fc Block (clone

2.4G2; BD Pharmingen). The cells/beads were washed and the dynabeads were cleaved off

according to manufacturer specifications (Invitrogen). The cells were then stained with APC-

conjugated anti-CD8 (clone 53-6.7; eBiosciences) and fixed with PBS-l% formaldehyde.

Samples were collected on an LSR II instrument (BD Biosciences) and analyzed using the

FlowJo software (TreeStar).

Miltenyi immuno-magnetic isolation of epitope-specific CD8+ T cells

Mouse PBMCs were isolated as described above. CD8+ T lymphocytes were purified with

negative selection using the CD8a+ T cell isolation kit for mouse (Miltenyi Biotec) or CD8+ T

cell isolation kit for non-human primates (Miltenyi Biotec). Epitope-specific CD8+ T cells were

then isolated by staining the cells with PE-conjugated tetramer (H-2Dd/pl8 for mice cells or

Gag-pl ic for monkey cells) for 15 min at 40 C, washing with PBS/2%FBS and incubating with

20 ul Anti-PE Microbeads (Miltenyi Biotec) per 107 cells for 15 min at 40C, washing with PBS



pH 7.2, 0.5% BSA and 2 mM EDTA and applying the sample to the Miltenyi manual MS

columns, Automacs, or Multimacs. The collected positive fraction was fixed with PBS-1%

formaldehyde. Samples were collected on an LSR II instrument (BD Biosciences) and analyzed

using the FlowJo software (TreeStar).

Design of microfluidic channels

Microfluidic channels were made by curing a prepolymer of polydimethylsiloxane (PDMS) upon

a master, which was fabricated by standard photolithography. 07 In brief, negative photoresist

was spun upon a silicon wafer to a specified height. A particular pattern of interest was designed

and printed upon a transparency to mask off regions of the photoresist. The photoresist was

exposed to ultraviolet light (UV), which crosslinked regions exposed to UV. Those regions

masked by the patterned transparency remained uncrosslinked. The uncrosslinked photoresist

was removed and the wafer was silanized.

A prepolymer of PDMS (1:10 curing agent : base) was poured upon the silanized wafer and the

masters were baked for at least 4 hours at 70C. To ease in the removal of PDMS, ethanol was

added to the master as the PDMS was peeled away from the master. Holes were punched at the

inlets and outlets of the PDMS mold with a syringe. With a plasma sealer, the glass and PDMS

was exposed to 1 min of plasma and the two surfaces were immediately brought together,

resulting in a permanent seal. The channels were placed upon a 1200 C hotplate for at least 30

min to ensure a seal and sterilize the channels.



Patterning of the microfluidic channel with antibodies using the cross-linker GMBS

The glass was silanized within 15 min after plasma-sealing the PDMS to glass. The channel was

rinsed with ethanol before injecting in 4% (v/v) 3-mercaptopropyltrimethoxysilane (in

ethanol). The channels were incubated with silane for 1 hr at room temperature, then rinsed with

ethanol to remove excess silane. To activate the silane, 0.28% v/v 4-Maleimidobutyric acid

sulfo-N-succinimidyl ester (GMBS; in ethanol) was added for 15 min at room

temperature. Again, the channel was rinsed thoroughly with ethanol to remove excess

reagent. After drying the channels with a stream of nitrogen, phosphate-buffered saline (PBS)

was added.

Functionalization of the surface of the microfluidic channels

Channels consisting of stamps of a clear polymer, polydimethylsiloxane (PDMS), enabled

visualization of the cells within the channel. These stamps of PDMS were sealed to cleaned

glass microscope slides to enable imaging with an inverted microscope. Prior to loading cells

into the microfluidic channel, the surface of the channel was functionalized to bind tetramer-

positive CD8+ T cells. In brief, the surface was coated with 3-mercaptopropyltrimethoxysilane

for 1 h, and activated the silane with 0.28% v/v 4-Maleimidobutyric acid sulfo-N-succinimidyl

ester (GMBS). In the case of direct binding of antibody to GMBS, anti-phycoerythrin (Anti-PE)

antibody (Biolegend) was then added at a concentration of 0.15 mg/ml in PBS and bound to the

GMBS. For the chemisty involving a neutravidin and biotin interaction, after the GMBS

coverage and wash, neutravidin was then injected into the channel at a concentration of

10 ug/ml in PBS and incubated for 2 hours at 40C, followed by a rinse with PBS. Anti-PE

(Biolegend) was biotinylated in-house according to the protocol in the Molecular Probes



Handbook and was added to the channels at a concentration of 10ug/ml and incubated overnight

at 4oC. The channels were then blocked with 1-10% bovine serum albumin (BSA) in phosphate-

buffered saline (PBS) for one hour at room temperature to prevent non-specific binding of

tetramer-negative cells to the functionalized surface of the microfluidic channel. This blocking

was crucial to prevent significant background since the percentage of tetramer-positive T cells is

low (-1%).

Loading of cells into channels

A purified population of CD8+ T cells was obtained using the CD8+ T cell isolation kit (mouse

or monkey) as described above. Prior to loading the CD8+ T cells into the channels, the cells

were stained with PE-conjugated H-2Dd/pl8 tetramer for 15 min at 40 C then washed with

PBS/2%BSA. The cells were then resuspended in PBS at a concentration of 8,300 cells/ul

according to previous titrations. Using a syringe pump to obtain a slow and steady flow in the

channel, a volume of cells equivalent to the volume of the channels was loaded. The cells were

incubated in the channels for 5 min at room temperature to allow the cells to bind to the surface.

The entire device was kept in the dark to prevent photobleaching of the PE-labeled

tetramers. After 5 min, we used a syringe pump to rinse the channels with buffer (PBS/i%BSA)

to remove any non-specific cells from the channel.

Testing antibody coverage of microfluidic channels containing biotin-avidin chemistry

Anti-PE (Biolegend) was biotinylated (Invitrogen) according to the protocol in the Molecular

Probes Handbook. 50 ul of 10 ug/ml biotinylated anti-PE was incubated in the channels coated

with neutravidin (described above) at 4oC for 18 hours. The channels were then washed twice



with filtered and degassed PBS/l%BSA/0.09%Azide (wash buffer) then blocked with 100 ul of

PBS/5% BSA for 2 hours at room temperature. The channels were washed twice with 100 ul of

wash buffer. Free phycoerythrin (PE) at a molar ratio of 2:1 to the biotinylated anti-PE was

added and incubated in the dark for 20 min at room temperature. The channels were then

washed twice with 100 ul of wash buffer and placed in 4oC until imaging.

Counting total cells bound

Microfluidic channels were sealed to the microscopy slides in order to mount the channels upon

a standard-sized, microscope stage. After binding the tetramer-positive cells to the channel and

removing the unbound cells, each region of the channel was imaged and the number of

fluorescent PE-labeled tetramer positive cells was counted. By counting the total number of

fluorescent cells and comparing it to the total number of cells injected into the channel, the

percentage of tetramer positive CD8+ T cells bound was determined.



Results

A number of approaches for isolating epitope-specific CD8+ T lymphocytes were explored,

including immuno-magnetic separation, microfluidic cell sorting, and fluorescence-activated cell

sorting (FACS). Each method was optimized and the methods were compared for their ability to

isolate pure cell populations.

Immuno-magnetic cell separation

Two immuno-magnetic cell separation systems were investigated: Dynal and Miltenyi. In both

systems, experiments showed that a two-round purification procedure was necessary to obtain

the highest purity of epitope-specific CD8+ T cells. A first round was done to select for CD8+ T

cell and a second round of purification was used to select for epitope-specific CD8+ T cells.

Using the Dynal CELLection Pan Mouse IgG Kit with an anti-PE secondary antibody, CD8+ T

cells were isolated with 96.4+0.9% purity (Fig. 2.1). However, the Dynal system was not able

to purify epitope-specific CD8+ T cells, using tetramers, yielding purities of less than 20% (data

not shown) and with substantial cell losses.
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Figure 2.1. Murine CD8+ T cell isolation with Dynabeads. The two plots were generated in

two separate experiments.

The Miltenyi system was explored as another option for a two-round purification of epitope-

specific CD8+ T cells. One can perform a negative selection with the Miltenyi CD8+ T cell

isolation kit followed by positive selection of the epitope-specific CD8+ T cells with Miltenyi

anti-PE microbeads.

Using the Miltenyi CD8+ T cell isolation kit followed by positive selection of epitope-specific

CD8+ T cells with Miltenyi anti-PE microbeads, a 36-fold enrichment of epitope-specific CD8+

T cells (initial 2.7% to final 96.8%) in the murine system (Fig. 2.2) and a 38-fold enrichment

(initial 2.34% to final 89.5%) in the nonhuman primate system was achieved (Fig. 2.3). These

experiments were performed with either the Miltenyi manual MS columns or the Miltenyi

Automacs.
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Figure 2.2. Positive selection of murine epitope-specific CD8+ T lymphocytes (p18+) with

Miltenyi Microbeads using a two-step purification protocol. (A) Total cell population before

two-step purification. (B) Gating strategy (C) Purified epitope-specific CD8+ T cell population.
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Figure 2.3. Positive selection of rhesus monkey epitope-specific CD8+ T lymphocytes

(pllC+) with Miltenyi Microbeads using a two-step purification protocol. (A) Total cell

population before two-step purification. (B) Gating strategy. (C) Purified epitope-specific CD8+

T cell population.



However, repeated experiments showed that neither the manual columns nor the Automacs

consistently provided epitope-specific CD8+ T cell purities above 80%. For gene expression

analysis, purities should be greater than 95%. The manual columns and Automacs are also not

optimal because they are not high-throughput.

In collaboration with Miltenyi Biotec, we tested a Multi-Macs cell sorter under development in

their R&D laboratories. This cell sorter was similar to the Miltenyi Automacs but could process

24 samples in parallel. Upon testing our application with this sorter, however, we found that cell

purities were inconsistent in repeated experiments, varying between 10% and 80% purity using

similar experimental conditions (Fig. 2.4).
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Figure 2.4. Isolation of epitope-specific CD8+ T lymphocytes using Miltenyi Multimacs

with microbeads. All three samples were processed similarly.

We attempted to optimize the system by varying the amount of antibody-coated microbeads used

and by lysing red blood cells to eliminate them from the final lymphocyte population. While

lysing red blood cells improved CD8+ T cell purity, the final purity of epitope-specific CD8+



lymphocytes did not improve (Fig. 2.5). Decreasing amounts of microbeads that were used also

did not improve the purity of the final cell populations (Fig. 2.6).
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Figure 2.5. Difference in purity of CD8+ T cells and epitope-specific CD8+ T cells with and

without lysis of red blood cells (RBCs).
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Figure 2.6. Difference in purity of epitope-specific CD8+ T cells with decreased amounts of

Miltenyi anti-phycoerythrin (anti-PE) microbeads. The standard protocol according to the

manufacturer (Miltenyi Biotec) indicates 20ul microbeads for every 107 cells.

Microfluidic cell sorter

A poly dimethyl siloxane (PDMS)-based microfluidic system for cell sorting was developed as

described in the Materials and Methods section of this chapter. The system was first tested for

isolation of epitope-specific CD8+ T cells using cleavable dynabeads (CELLection Pan Mouse

IgG Kit) combined with an APC conjugated anti-phycoerythrin (PE) antibody adsorbed onto the

PDMS surface. This method yielded very low epitope-specific CD8+ T cell purity (<10%) and

was associated with high cell losses. In this system, the dynabeads had to be cleaved off before

the cells could pass through the flow cytometer for analysis. These results suggested that this

cleavage did not operate efficiently and, as a result, led to high cell losses as well as low cell

purities.



The use of microbeads for this procedure was then explored. Miltenyi anti-PE Microbeads are

small and do not need to be removed prior to flow cytometric analysis. Microfluidic channels

were prepared as described in the Materials and Methods section of this chapter and the channels

were incubated overnight with anti-PE, allowing the antibody to attach to the surface through the

use of a cross-linker (GMBS). A number of different anti-PE antibodies (Biolegend, Sigma, and

Stemsep) were tested. Different BSA concentrations in the blocking buffer were also tested.

Channel design was also varied by adding posts to increase surface area for cell-antibody

interaction (Fig. 2.7). In addition, other variables such as duration of incubation, flow rates and

wash volumes were manipulated to select the optimal conditions for epitope-specific CD8+ T

cell isolation.
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Figure 2.7. Mask and schematic of diamond-shaped microfluidic chamber with poles.

The highest purity of epitope-specific CD8+ T cells obtained was 63% (3632 tetramer-specific

cells/ 5298 total cells in the whole field) (Fig. 2.8). Few T cells were captured in a control non-

coated chamber (0 tetramer binding cells /111-131 total cells). This was achieved using the
coated chamber (0 tetramer binding cells /111-131 total cells). This was achieved using the



Biolegend anti-PE antibody with 10% BSA block, incubation time of 20 min, and 80 ul of wash

buffer at flow rates of 10-20 ul/min.
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Figure 2.8. Capture of epitope-specific CD8+ T lymphocytes using anti-phycoerythrin (PE)

antibodies and PDMS-based microfluidic system. (A) Microfluidic chambers are coated with

anti-PE and total cells stained with PE-tetramer are flowed through the chambers. (B) Tetramer

positive cells are visualized with red fluorescence (indicated by arrow). A purity of 63% was

achieved.

It was not possible to obtain epitope-specific CD8+ cells with greater than 63% purity using this

this particular chemistry. Therefore, other approaches were investigated.

In a different approach, the strong biotin-avidin interaction (Kd=10-13M) was utilized to maintain

the anti-PE antibody on the surface of the chamber. The Biolegend anti-PE was biotinylated as

described in the Materials and Methods section of this chapter and we attached neutravidin to the

silanized glass surface of the chambers by way of a cross-linker (GMBS). The channels were



then incubated with the biotinylated anti-PE. The shape of the channel was also changed to a

rectangular one with rounded edges because diamond-shaped design trapped cells in its corners

(Fig. 2.9).
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Figure 2.9. Rectangular microfluidic cell sorter with biotin-avidin chemistry. (A) Chambers

are rectangular with rounded edges with and without posts. (B) Biotinylated anti-PE is linked to

the surface through a neutravidin-biotin interaction.

Using this new microfluidic design, anti-PE coverage of the surface was evaluated by incubating

the chambers with free phycoerythrin. Coverage was complete and uniform in the channels with

the posts, showing no non-specific binding in the negative control (Fig. 2.10). The areas around

the posts showed the greatest fluorescence because the posts allow for stacking of antibody all

along its length and when visualized from above, exhibits high fluorescence intensity. In

between the posts, the antibody is collected only in one layer and therefore in contrast, looks

dark. The chambers without the post also showed uniform coverage of free phycoerythrin (data

not shown). Since the posts provide greater surface area for cell-antibody interaction, they will

likely be the best for cell sorting.
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Figure 2.10. Biotinylated anti-PE coverage of microfluidic chamber surface. Chambers are

incubated with free PE and visualized with a fluorescent microscope. (A) Bright field view

shows snapshot of chamber with posts. (B) Fluorescent view shows biotin-anti-PE coating

visualized as bright circles around the posts. (C) Negative control chamber

To understand dynamic cell attachment behavior at different shear rates, a Hele-Shaw device can

be used (Fig. 2.11).104 This device can be used to optimize flow rates so that the greatest number

of epitope-specific CD8+ T cell are captured with the lowest amount of non-specific binding.

These experimental results are pending.
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Figure 2.11. Hele-Shaw Device. Shear stress varies along the length of the device and by

observing where antigen-specific CD8+ T cells attach, the optimal flow rate for greatest specific

cell capture and smallest non-specific attachment can be determined.

Fluorescence-Activated Cell Sorting (FACS)

While a microfluidic cell sorter is being developed, a fluorescence-activated cell sorter (FACS)

will be used for isolation of epitope-specific CD8+ T cells. FACS consistently provides greater

than 99% pure populations of epitope-specific CD8+ T cells. While FACS is time-consuming

and is associated with high cell loss (approximately 50%), the purity of the cells that are obtained

is unsurpassed.



Discussion

Dynabeads facilitated the isolation of CD8+ T cells from total PBMCs to a high purity as shown

in Figure 2.1. However, they were not capable of isolating virus epitope-specific CD8+ T

cells. This suggests that these beads are more useful for sorting large populations but not rare

cell populations such as epitope-specific CD8+ T cells, which can comprise only 1-2% of a total

cell population. It is possible that the cleavage process, which involves rigorous pipetting and

shaking, may disturb the tetramer binding to the cells, since this is not nearly as high affinity an

interaction as the one between the CD8 molecule and an anti-CD8 antibody.

Miltenyi beads had an advantage over dynabeads in that they did not need to be removed before

an analysis of the cells isolated using the beads. This quality may have contributed to the

superiority of their capabilities in isolating virus epitope-specific CD8+ T cells. In addition, the

Miltenyi system does not require a secondary antibody and is therefore simpler. Instead, the

anti-PE was linked directly to the microbeads and was added to PE labeled tetramer positive

cells without an intermediate linker. However, results from our studies suggest that even this

system is not able to consistently isolate highly purified populations of virus epitope-specific

CD8+ T cells. Immuno-magnetic separation using the Multimacs, the manual MS columns, or

the Automacs did not yield cells of high enough purity for our needs. Virus epitope-specific

cells can represent a very small percentage of total mononuclear cells, especially in the setting of

chronic infection. While immuno-magnetic separation is practical for isolation of large

subpopulations of cells, it is neither strong enough nor specific enough to isolate subpopulations



that represent only 1-2% of a cell population. A more stringent system is therefore needed to

capture and separate these rare cell populations.

Microfluidic channels represent a potentially useful alternative to immuno-magnetic separation

because it involves limited user manipulations, rapid processing time, ease of use, reduction in

contamination, and can integrate multiple components. However, this technology will take more

time to reach maturity. Upon successful capture and release of virus epitope-specific cells from

a larger total cell population, one can imagine integrating a module for downstream RNA

extraction that can be used for gene expression analysis. A chamber with multiple inlets would

allow the introduction of lysis buffer and other reagents into a compartment with the cells. The

RNA could be collected on silicon coated columns built into the chamber or on beads packed in

the chamber. Initially, the collected RNA could be release through an outlet into an eppendorf

for macroscale RNA processing. Based on work by other laboratories, 120 it is feasible to design

an addition process for cDNA amplification via solid phase reaction on beads or columns. A

heating element would need to be attached to the device as well as inlets for reaction buffers and

dNTPs. For each of the inlets, microvalves and micropumps could be engineered, 120, 12 1 and the

timing could be controlled by a computer-run system. The ultimate result would be an integrated

device capable of sorting virus epitope-specific CD8+ T cells from a total lymphocyte population

and could perform downstream RNA extraction and cDNA amplification for gene expression

analysis.

Since these technologies do not yet exist, fluorescence-activated cell sorter (FACS) is the best

available technology to use to isolate virus epitope-specific CD8+ T cells. FACS provides a very



high purity of isolated cell subpopulations. For gene expression analysis, purity of the cell

population to be studied is of utmost importance so that one can be certain that the expression

levels seen on an array originate from the cells being studied. However, FACS does have

disadvantages, namely high cell loss (30-50%) and long processing time. The processing of

cells from PBMC extraction to cell isolation using FACS may induce changes in the biology of

the cells that are distinct from the changes associated with the biologic events being studied.

However, since cells are processed the same way, comparison of gene expression profiles should

reveal differences associated with biologic events and not sample processing.



CHAPTER 3: Development of techniques for RNA extraction,
amplification, and gene expression analysis using limited
numbers of cells

Introduction

The validity of gene expression data is dependent on using good quality RNA. While adequate

amounts of high integrity RNA can be obtained from millions of cells, it is difficult to obtain

high integrity RNA from limited numbers of cells. However, often, as is in the case of studying

virus epitope-specific CD8+ T cells, the cell population of interest is small. Therefore, the

development of techniques for extraction of high yield and high quality RNA and subsequent

amplification and gene expression analysis is of tremendous importance.

RNA Integrity

RNA can be rapidly digested by nearly ubiquitous RNase enzymes, compromising its analysis.

RNA integrity has been evaluated using agarose gel electrophoresis stained with ethidium

bromide, producing two bands comprising the 28S and 18S ribosomal RNA species.122 RNA is

considered to be of high quality if the ratio of 28S:18S bands is about 2.0 or higher. However,

this method is highly subjective, requiring human interpretation of gel images. A newer and

more automated method for evaluating the quality of extracted RNA uses the concept of the

RNA Integrity Number (RIN) calculated by the Agilent Bioanalyzer using a Bayesian

approach. 122,123 The RIN is calculated using a combination of a number of different features to

allow for robust measurement. These features include the total RNA ratio (fraction of area in

18S and 28S regions compared to total area under the curve), the height of the 28S peak, the fast



area ratio, and the marker height. 12 2 RNA with a RIN of 7 or greater is adequate for downstream

applications such as RT-PCR, amplification, and gene expression analysis.

RNA Isolation

There are two characteristics to consider in RNA isolation: quality and quantity. When working

with limited number of cells, very few RNA isolation methods are capable of yielding

measurable quantities of high integrity RNA. Individual eukaryotic cells contain on the order of

1-10 pg of total RNA, varying based on organism, species, tissue type, and viability of the

cells." 15 While several studies have been published comparing RNA yield and quality from

different extraction methods, varying results are suggested by different scientists and often

results contradict each other.12 4 -12 9 RNA extraction is a very sensitive procedure and can yield

different results in different hands. For example, for one group, the Trizol method provided

poor quality RNA and low yields, 124 while for another group, it proved to be superior to any

other methods. 128 In many instances, the type of tissue or cell in question as well as the nature of

downstream applications is pertinent to the choice of RNA extraction method.

There are three basic types of methods for extraction of RNA: a tube-based phase separation

extraction method (ie. Trizol), 130,131 a silica-gel membrane-based spin-column method (ie.

RNeasy Micro-Kit or Arcturus PicoPure Kit), and a paramagnetic oligo(d)T-bead method (ie.

gMACS). Column methods often have the advantage of very high purity, since the sample is

passed through a mesh filter, but have the disadvantage of high RNA loss. Tube-based phase

separation methods can result in high yields because there is no column, but there is the potential

of contaminants in the final RNA sample.



RNA Amplification

Microarray analysis require a minimum of 25 ng of unamplified aRNA or 1.5 ug of amplified

poly(A)+ RNA for the Illumina platform, and 2-5 ug of unamplified poly(A)+ RNA for the

Affymetrix platform. It is often not possible to obtain this much RNA from sorted cell

populations from mucosal biopsies and peripheral blood. Therefore, amplification techniques

are essential for studies involving microarray analysis of cellular subpopulations. Most

amplification techniques are based on the work of Eberwine, which uses in vitro transcription of

RNA to achieve linear increases of RNA concentration. 132 The first strand cDNA is synthesized

by an RNA-dependent reverse transcriptase, and is primed by a phage promoter (T7, T3, or SP6)

linked oligo-dT primer that binds to the poly(A)+ tail of mRNA. 133 The second strand cDNA is

then synthesized with a DNA polymerase I followed by aRNA synthesis from the cDNA

template using an RNA polymerase corresponding with the promoter sequence (T7, T3, or

SP6)." 5 The second round of amplification is similar to the first except first strand cDNA

synthesis is primed using random primers and a T7, T3, or SP6 promoter-linked oligo-dT primer

is used for second strand synthesis." 5 aRNA products are biased toward the 3' end of the

transcript because of the initial priming at the poly(A)+ tail. 134 However, this bias exists for all

amplified aRNA products and relative levels of gene expression can be compared. 134 The

optimized Eberwine RNA amplification method can amplify mRNA up to 103-fold after one

round and up to 105-fold after two rounds of amplification. 135-137 Therefore, approximately 10 ng

of input total RNA is necessary for successful microarray hybridization. 138 The number of cycles

of amplification can be increased to raise yield and it has been reported that a linear relationship

between transcript abundances is maintained after five cycles of RNA amplification. 139 Recently,



however, optimized methods based on the Eberwine method have been developed by a number

of different companies that have allowed for starting RNA amount in the picogram range.140-14 5

Another method of amplifying RNA uses the polymerase chain reaction (PCR). This has

potential for high yield and simpler experimental procedures. 115 A number of different groups

have tried to amplify RNA this way.134,146-153 However, PCR-based amplification methods can

skew the original quantitative relationships between genes from an initial population.134 Some

groups have attempted to combine PCR and IVT to increase fidelity because only a limited

number of PCR cycles are used. 154 The suitability of PCR RNA amplification for microarry

analysis depends on a number of factors, including: 1) degree of fidelity 2) degree of coverage

by microarrays and 3) polarity of probes. 115

While most RNA amplification methods require purified total input RNA, it has been shown that

cell lysates can be directly amplified successfully.' 55 The use of cell lysates has the advantage of

not risking the loss of RNA during purification and, therefore, is amenable to amplifying RNA

from very limited numbers of cells.

Gene expression analysis

Two microarray platforms are available for studying virus epitope-specific CD8+ T cells from

rhesus monkeys. The first is the Illumina Beadchip platform, which consists of microscopic

beads with hundreds of thousands copies of 50-mer probes. The human BeadChips target more

than 25,000 annotated genes with more than 48,000 probes covering the RefSeq (Build 36.2, Rel

22) and the UniGene (Build 99) databases. Anywhere from 6 to 12 arrays can be run



simultaneously on the same BeadChip and starting unamplified RNA requirements are between

50 ng and 100 ng. The second platform is the Affymetrix GeneChip platform, which consists of

1.3 million oligonucleotides synthesized using photolithography on a glass substrate.

Affymetrix recently developed a Rhesus Macaque Genome Array with 52,024 probes sets of 25-

mer probes that query 47,000 rhesus monkey transcripts. Microgram amounts of starting RNA

are required for the Affymetrix arrays.



Materials and Methods

Animals

All animals used in this study were Indian-origin rhesus monkeys (Macaca mulatta). The

monkeys were all chronically infected with SIVmac251 for over ten years. These animals were

maintained in accordance with the guidelines of the Committee on Animals for the Harvard

Medical School and the Guide for the Care and Use of Laboratory Animals.

Antibodies, tetramers, and peptides

Mamu-A*01/pllC,C-M/B2m (SIVmac Gag) tetramer complexes were prepared as previously

described. 156' ,1 7 Streptavidin-PE (ProZyme) was mixed stepwise with biotinylated Mamu-

A*01/peptide at a molar ratio of 1:4 to produce the tetrameric complexes. Conjugated antibodies

used in this study included anti-human anti-CD3 APC (Clone SP34.2; BD-Pharmingen). The

anti-human anti-CD8 (clone SKI; BD-Pharmingen) monoclonal antibody was directly coupled to

fluorescein isothiocyanate (FITC). A live/dead fixable blue amine dye (UV excitation;

Invitrogen) was used to differentiate between live and dead cells on the flow cytometer.

Peripheral blood mononuclear cell (PBMC) preparation

Peripheral blood was collected from rhesus monkeys, and PBMCs were recovered by standard

Ficoll density-gradient centrifugation. The recovered cells were then washed twice with PBS

containing 2% FBS. Cells were stained with Mamu-A*01/pl C,C-M/B2m tetramer for 15 min

at 4oC in the dark. Cells were then stained with a mixture of anti-CD3 and anti-CD8 Abs for 10

min at 4oC in the dark. The cells were washed with PBS/2%FBS and resuspended in 1 ml of



cold PBS for every 107 cells. The pl 1C+ CD8+ T cells were sorted using the FACS-Vantage

Flow Cytometer/Cell Sorter (Becton-Dickinson) and collected in RNAprotect (Qiagen).

Cell extraction from Gastrointestinal Tract biopsies

Pinch biopsies (8-10 pieces) were taken from the duodenum and distal colon of anesthetized

monkeys at the New England Primate Center. The biopsies were shipped on ice in 40 ml RPMI

containing 10% FBS and were processed the same day. The biopsies were pelleted at 1,500 rpm

for 7 min. The supernatant was discarded and the biopsies were dissected further into smaller

sections before being resuspended in 40 ml warm RPMI/10%FBS containing 300 U/ml

Collagenase II and 30 U/ml DNAse I. The mixture was shaken well and placed in a shaking

37oC water bath for exactly 45 min, with manual shaking every 15 min. The digested biopsies

were then spun down at 1,500 rpm for 7 min, the supernatant was discarded, and 5ml of cold

RPMI/10%FBS was added to the sample. The tissue was disrupted through an 18G animal

feeding needle (Fisher Scientific) several times to release the cells and transferred through a

70 tm cell strainer into a clean 50 ml conical. The cell strainer was washed with an additional

45 ml of RPMI/10%FBS. The cells were spun down at 2,000 rpm for 5 min, the supernatant was

discarded, and the cells were resuspended in 10 ml RPMI/10%FBS. The cell mixture was

layered gently over a percoll gradient consisting of 2 ml of 35% isotonic Percoll underlaid with 2

ml of 60% isotonic Percoll (Sigma). Isotonic Percoll was made by adding 50 ml 10X PBS to

450 ml Percoll. The cells were centrifuged for 25 min at 1,800 rpm and the lymphocytes were

collected from the layer between the 35% and 60% Percoll layers and transferred to a fresh tube.

The collected lymphocytes were washed twice in cold PBS2%FBS at 2,000 rpm for 5 min and

counted. The cells were stained with a live/dead fixable blue amine dye (Invitrogen), incubated



for 15 min at 4oC in the dark. After washing with PBS/2%/FBS, the cells were then stained with

Mamu-A*01/pl 1C,C-M/B2m tetramer for 15 min at 4oC in the dark. They were washed once

with PBS2%FBS and then stained with a mixture of anti-CD3 and anti-CD8 Abs for 10 min at

4oC in the dark. The cells were washed with PBS/2%FBS and resuspended in 1 ml of cold PBS

for every 107 cells. The pllC+ CD8+ T cells were sorted using the FACS-Vantage Flow

Cytometer/Cell Sorter (Becton-Dickinson) and collected in RNAprotect (Qiagen) if the RNA

was to be extracted immediately. For cells that would be frozen immediately for freeze/thaw

lysis direct into RNA amplification, the cells were collected in 100 ul PBS in 96 well plates and

transferred to eppendorf tubes to be frozen at -800 C.

Cell extraction from bronchoalveolar lavage (BAL)

Bronchoalveolar lavage on rhesus monkeys was performed under anesthesia at the New England

Primate center. The samples were shipped on ice and processed the same day. PBMCs were

recovered by standard Ficoll density-gradient centrifugation. The recovered cells were then

washed twice with PBS containing 2% FBS and counted. The cells were stained with a live/dead

fixable blue amine dye (Invitrogen), and incubated for 15 min at 4C in the dark. After washing

with PBS/2%/FBS, the cells were stained with Mamu-A*01/pl 1C,C-M/B2m tetramer for 15 min

at 4C in the dark. They were washed once with PBS2%FBS and then stained with a mixture of

anti-CD3 and anti-CD8 Abs for 10 min at 40C in the dark. The cells were washed with

PBS/2%FBS and resuspended in 1 ml of cold PBS for every 107 cells. The pl 1C+ CD8+ T cells

were sorted using the FACS-Vantage Flow Cytometer/Cell Sorter (Becton-Dickinson) and

collected in RNAprotect (Qiagen) if the RNA was to be extracted immediately. For cells that



would be frozen immediately for freeze/thaw lysis direct into RNA amplification, the cells were

collected in 100 ul PBS in 96 well plates and transferred to eppendorf tubes to be frozen at -80'C.

RNA Extraction

Cells collected in RNAprotect (Qiagen) were spun down at 800 g for 10 min, discarding the

supernatant. Cells collected in PBS were spun down 1,500 rpm for 7 min, discarding the

supernatant. The appropriate lysis buffer was immediately added. RNA was extracted from the

cells according to manufacturer instructions for the Arcturus PicoPure Kit (MDS Analytical

Technologies), the RNeasy Micro Kit (Qiagen), or Trizol (Invitrogen).

Briefly, using the Arcturus PicoPure Kit, 100 ul of Extraction Buffer was added to the cells and

incubated at 42oC for 30 min. The cells were spun down and the supernatant was transferred to a

new tube. Equal volume of 70% ethanol was added and the mixture was transferred to a

purification column. Two wash buffers were used to wash through the column, along with a 15

min Dnase treatment step at room temperature. The RNA was then eluted with 11 ul of Elution

Buffer and stored at -80'C.

Using the RNeasy Micro Kit, 350 ul RLT Buffer containing 10 ul/ml of B-Mercaptoethanol was

added to the cells. The lysate was spun through a Qiashredder and then mixed with 70% ethanol

and placed in an RNeasy MinElute spin column. The column was washed with Buffer RW1,

followed by a Dnase I treatment for 15 min at room temperature. The column was washed with

buffer RW1, Buffer RPE, and 80% ethanol before the RNA was eluted in 14 ul of RNase-free

water. The RNA was stored at -800C.



Using the Trizol procedure, 1 ml of Trizol was added to the cell pellet and incubated for 5 min at

room temperature. Two hundred microliters of chloroform was added and shaken vigorously by

hand for 15 seconds, and incubated at room temperature for 2-3 min. The samples were then

centrifuged at 13,000 rpm for 15 min at 40C. The colorless upper aqueous phase was carefully

transferred to a new tube, and 2 ul of linear acrylamide was added and mixed in. An equal

volume of isopropyl alcohol was then added and mixed. The mixture was incubated at room

temperature for 10 min and centrifuged at 13,000 rpm for 10 min at 40C. The supernatant was

removed and the RNA was washed with 1 ml of 70% ethanol and centrifuged at 10,500 rpm for

5 min at 40C. The supernatant was completely removed and the RNA pellet was allowed to

airdry. The RNA was then resuspended in RNase-free water and stored at -800C.

RNA Amplification

RNA was amplified from purified total RNA or cell lysates using the TargetAmp 2-Round

Biotin-aRNA Amplification Kit 3.0 (Epicentre Biotechnologies) or the MessageAmp II aRNA

Amplification Kit (Ambion). For cell lysates, the frozen cells post-FACS sort were thawed

rapidly and then a portion of the lysate was input into the amplification procedure. Briefly, both

methods go through two rounds of cDNA synthesis and in vitro transcription (IVT). Both prime

the first strand cDNA synthesis with a T7-Oligo(dT) primer. For the Epicentre method, the first

strand cDNA synthesis is catalyzed by either Superscript II or III Reverse Transcriptase

(Invitrogen). The double stranded cDNA is synthesized by a DNA polymerase and the IVT is

catalyzed by a T7 polymerase. The first round IVT runs for 4 hours and the 2 nd round IVT

rounds for 9 hours, with biotin-UTP added in the 2nd IVT. RNA purification is performed using



the Zymo RNA Clean and Concentrator (Zymo Research) between the first and second rounds of

amplification and the RNeasy MinElute Cleanup Kit (Qiagen) after the second round of

amplification. For the Ambion MessageAmp Kit, the first strand cDNA synthesis is catalyzed by

ArrayScript (Ambion). Both IVT reactions last for 14 hours, with the biotin-NTPs added in the

2"d round IVT. In addition to the RNA purifications between rounds and after the final IVT,

there are also two cDNA purification steps after 2n d strand cDNA synthesis for each round.

Microarray processing

Amplified aRNA was hybridized to the Illumina HumanWG-6 v3.0, HumanRef-8 v3.0, or

HumanHT-12 Expression BeadChips according to the manufacturer's instructions (Illumina, San

Diego, CA, USA). The HumanWG-6 v3.0 BeadChip assays 48,000 transcripts and profiles six

samples simultaneously. The HumanRef-8 BeadChip targets approximately 24,500 well-

annotated RefSeq transcripts profiles eight samples in parallel. The HumanHT-12 BeadChip has

the same panel of probes as the HumanWG-6 v3.0 BeadChip but can process 12 samples in

parallel. The Beadchips contain content derived from the National Center for Biotechnology

Information Reference Sequence (NCBI RefSeq) database (Build 36.2, Release 22). Arrays

were scanned with an Illumina bead array reader confocal scanner, according to the

manufacturer's instructions. Array data processing was performed using Illumina BeadStudio

software.

Bioinformatic analysis comparing amplification protocols

The goal of this study was to compare the effects of these methods on the variability of the

results. Human Brain RNA (Ambion) in different starting amounts was amplified using either



TargetAmp 2-Round Biotin-aRNA Amplfication Kit 3.0 (Epicentre Biotechnologies) or the

MessageAmp II aRNA Amplification Kit (Ambion). Triplicates of each sample were provided

and the aRNA was hybridized to the Illumina HumanHT-12 BeadChip. The total number of

probes is large (nearly 50,000) and there is the danger of having the noise overwhelm the signal

if all the probes are compared at the same time. Therefore, a subset of probes (30 at a time) was

sampled to identify differences in the variability of the methods. To compare the variability, a

regression model was constructed. This model broke down the gene expression into two

components: the average contribution from each gene, and the average contribution from each

method. If the two amplification methods are quite different, the difference between their

contributions can be expected to be large. The p value is determined using a t-test. This sampling

is repeated and the procedure is tested 1,000 times, giving 1,000 p-values. From these p-values,

the overall p-value for the difference can be estimated. To assess the overall p-value, the median

p-value is taken to get a robust summary measure. To test the difference in amplifications, arrays

402, 403, and 461 were used to represent the Ambion amplification, and arrays 407, 408, 412,

and 413 were used to represent the Epicentre amplification (Fig. 3.3). These arrays all used

aRNA amplified from 100 pg of starting RNA.



Results

Selection of gene expression platform

Two gene expression platforms were investigated: the Affymetrix GeneChip Rhesus Macaque

Genome Array and the Illumina Human Beadchip. The two platforms were tested for sensitivity

and reproducibility for assessing gene expression levels in rhesus monkey lymphocytes. Using

RNA samples derived from peripheral blood mononuclear cells of 2 normal rhesus monkeys, the

Illumina Human BeadChip had better reproducibility than the Affymetrix GeneChip. The

reproducibility between the two samples was 46% for the Affymetrix GeneChip and 98% for the

Illumina Human BeadChip. Illumina Human BeadChips also required less starting RNA,

needing only 50 ng according to manufacturer specifications. Affymetrix technology requires

microgram levels of starting RNA.

The divergence of the human and rhesus genomes did not present a problem in the use of the

Illumina technology for this application. There is significant homology between the human and

rhesus genome, so differences at the protein or exonic DNA level should be small. In fact, a

pilot experiment hybridizing human samples on the Illumina Human BeadChip resulted in the

detection of 10,000-11,000 expressed genes while a rhesus monkey sample on the Illumina

Human BeadChip resulted in the detection of 7-8,000 expressed genes. The same rhesus

monkey sample placed on the Affymetrix Rhesus GeneChip also resulted in the detection of

7,000 expressed genes. For the reasons of superior reproducibility, less required starting RNA,

and adequate homology, the Illumina Human BeadChip was chosen as the gene expression

platform for future studies.



RNA requirement for Illumina platform

To determine the minimum amount of unamplified total RNA required for the Illumina Beadchip

to generate clear and reproducible data, limiting dilutions of total RNA were tested on the

Illumina Beadchip (all done on Human-8 v2 Beadchip except for the 100ng sample which was

run on the Human-6 v2 chip). R squared values as well as numbers of genes present are shown

for different starting quantities of RNA (Table 3.1).

Table 3.1. Numbers of genes detected and R squared values for limiting dilutions of total

RNA on Illumina Human BeadChip. All samples were hybridized to Illumina Human-8 v2

Beadchips except for the 100 ng sample which was hybridized to the Human-6 v2 chip.

RNA Amount (ng) Genes Detected R Squared
100 8000 0.998
50 6000 0.995
25 6000 0.995
10 4900 0.99
5 4300 0.97

The results show that as low as 25 ng of starting unamplified RNA can be used on the Illumina

Human BeadChip without a significant decline in R squared values.

RNA Extraction from limited cell numbers

With 25 ng of total RNA as a target, methods for extracting high yield and high integrity RNA

from epitope-specific CD8+ T lymphocytes were investigated. A number of protocols were

tested, including the Qiagen RNeasy Micro Kit, the Arcturus PicoPure Kit, and the traditional

phenol/chloroform Trizol procedure. Our results showed that the Trizol method consistently

provided the highest RNA yield and the RNeasy Micro Kit provided the highest RNA integrity.

While high integrity RNA is of paramount importance for down-stream chip analysis, we have



never been able to extract detectable RNA from fewer than 10,000 epitope-specific CD8+ T cells

using RNeasy Micro Kit. From mucosal samples, 100 to 600 epitope-specific CD8+ T

lymphocytes are typically isolated, well below the limit for the Rneasy Micro kit. Therefore, it

was decided that the Trizol method was the best available option. The Trizol procedure was

therefore optimized further to obtain detectable and high integrity RNA.

Extraction of RNA from small numbers of cells was successfully achieved using the Trizol

method. From blood-derived epitope-specific (pl 1C+) CD8+ T lymphocytes, RNA with a high

RNA integrity number (RIN>7) as measured by Agilent Bioanalyzer was obtained from 10,000,

1,000, 800 and 600 FACS-sorted p1 1C+ CD8+ T lymphocytes (Fig. 3.1).
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Figure 3.1. Quantity and RNA integrity of Trizol extracted RNA from limiting dilutions of

FACS sorted pllC+ CD8+ T cells. All cells were resuspended in 10 ul RNase-free water. (A)

10,000 pl 1C+ cells (B) 1,000 pll 1C+ cells (C) 800 pl1 C+ cells (D) 600 pl 1C+ cells.

However, regardless of extraction method, 25 ng of purified RNA is more than can be obtained

from fewer than 500 epitope-specific CD8+ T lymphocytes. Therefore, RNA amplification is

necessary to obtain sufficient amounts of RNA for Illumina Beadchip analysis.
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Selection of RNA amplification method

In order to be compatible with the Illumina platform, total RNA must be amplified and

transformed to aRNA (antisense RNA). There are two commercially available kits that provide

two rounds of RNA amplification with a transformation to biotin-aRNA during the second

amplification. They are the Epicentre TargetAmp 2-Round Biotin-aRNA Amplification Kit 3.0

and the Ambion MessageAmp II aRNA Amplification Kit.

The Epicentre Kit can amplify from a minimum of 10 pg of starting RNA to a maximum of

500 pg of starting RNA. The reaction is primed from a T7-Oligo(dT) primer and goes through

two separate rounds of cDNA synthesis and in vitro transcription. The Ambion MessageAmp

Kit works with a minimum of 100 pg and a maximum of 100 ng starting RNA for the 2-round

amplification. Like the Epicentre Kit, the RNA is also primed from a T7-Oligo(dT) primer and

goes through two rounds of cDNA synthesis and in vitro transcription. Some of the enzymes and

reagents are different between the two kits as well as some of the manipulations.

The Epicentre and Ambion kits were first compared for aRNA yield and quality. Yield was

determined using the Nanodrop ND1000 and RNA quality was determined with both the Agilent

Bioanalyzer and Illumina Human Beadchip analysis, looking at the RNA Integrity Number

(RIN) in the former and the number of expressed genes and hybridization controls in the latter.

Both methods yielded similar amounts of aRNA from 100 pg of starting RNA (Table 3.2). Both

amplification protocols also produced aRNA of appropriate and similar lengths (250-5000 nt in

length; data not shown).



Table 3.2. aRNA yields from Ambion Message Amp II aRNA Amplification Kit (with 2

rounds) and Epicentre 2 Round Amplification Kit. Ambion human brain control RNA was

used.

Starting RNA amount aRNA Yields
(nanogram) Ambion Kit Epicentre Kit

100 548ug N/A
0.5 N/A 31ug
0.1 6.5ug 8.8ug

No RNA control 648 ng 617ng

To investigate the hybridization quality and gene expression signal of aRNA products amplified

by the two different methods, triplicates of amplified aRNA were processed from each starting

RNA amount. For the Ambion MessageAmp Kit, we used the recommended amount of starting

RNA (100 ng) as well as the minimum amount of starting RNA (100 pg). For the Epicentre kit,

we used the maximum allowed amount of starting RNA (500 pg) as well as 100 pg starting RNA

to match the set amplified by the Ambion Kit. All the samples, as well as negative controls

(containing no starting RNA), were hybridized to Illumina Human-12 BeadChips and analyzed

as described in the methods section.

Comparing the 100 pg triplicates amplified using the Ambion or Epicentre methods, there was

no statistically significant difference between the two methods, giving a p value of 0.37 (Fig.

3.2).
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Figure 3.2. Histogram of p-values comparing Ambion versus Epicentre amplified aRNA. P

value is 0.37.

The values for the samples were highly correlated (Fig. 3.3). The identification numbers along

the diagonal in Fig. 3.3 are described by the key to the left of the figure: 398, 455, and 458 are all

Ambion amplified samples from a starting RNA amount of 100 ng, and so on. Correlation

within platforms for final RNA quantities starting with the same RNA amounts was consistently

above 0.9, with the exception of sample 461. This outlier value possibly represents an error

during processing. The correlations among arrays 398, 455, and 458 (all Ambion amplified from

100ng starting RNA) were nearly perfect (0.99 to 1). This suggests that as the starting RNA

amount increases, the reproducibility of gene expression profiles across samples should increase.

Comparing across amplification methods, but with the same starting RNA amount (100 pg), the

correlation is still fairly strong with values between 0.86 and 0.88 (with the exception of sample

461). Lastly, comparing within the same amplification method but between different starting

RNA amounts, the correlation is also fairly robust, with values greater than 0.9 for most pairs.Og
RNA amounts, the correlation is also fairly robust, with values greater than 0.9 for most pairs.
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Figure 3.3. Scatterplots and correlation coefficients of pairs of aRNA samples amplified

with the Ambion or Epicentre methods and starting from different RNA amounts. Sample

identification numbers lie on the diagonal and are described by the key to the left of the figure.

These results are further corroborated by the profile of the number of genes expressed in each

sample (Fig. 3.4). Sample 461 is again an outlier with many fewer expressed genes than the

other samples. The number of expressed genes also decreases modestly as the starting RNA

amount decreases.
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From the above analysis, it is apparent that the two amplification methods provide equivalent

data. There is, however, a time advantage to using the Epicentre Kit, since it takes one day less

to process the samples. Therefore, the decision was made to use the Epicentre TargetAmp 2-

Round Biotin-aRNA Amplification Kit 3.0 for amplifying future RNA samples.



Purified RNA versus cell lysates for amplification

Obtaining high quality purified RNA from limited cell numbers (less than 1,000 cells) remains a

challenge. Measurable high quality RNA cannot be obtained from less than 1,000 cells

consistently. Therefore, the possibility of using cell lysates without RNA purification in the

amplification process is being investigated. A preliminary experiment to check the feasibility of

using cell lysates was conducted.

One thousand monkey peripheral blood mononuclear cells (PBMCs) were frozen at -80'C in

20 ul of phosphate buffered saline (PBS) and then lysed by quick thaw at room temperature with

an addition of 1 ul of RNase Inhibitor. One microliter of the thawed cell lysate was then input

into the Epicentre 2-round amplification procedure. At the end of two rounds of amplification,

10.3 ug of aRNA was obtained. The aRNA had good Nanodrop ratios (A260/A280 between 1.8

and 2), and good Agilent Bioanalyzer readouts (product lengths corresponding to between 250 nt

and 5000 nt) (Fig. 3.5 and 3.6). A purified RNA sample (Hela control) was amplified for

comparison.
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Figure 3.5. Nanodrop reading for amplified aRNA from Hela control and 1 ul of lysate

from 1,000 normal monkey peripheral blood mononuclear cells (PBMCs). The aRNA

samples were resuspended in 40 ul of Rnase-free water.
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Figure 3.6. Agilent Bioanalyzer readouts for amplified aRNA for Hela control and 1 ul of

cell lysate from 1,000 monkey PBMCs.

A SYBR Green-based real time quantification of GAPDH was then performed on the aRNA

from both the cell lysate and the Hela control and showed successful detection of GAPDH after



17 cycles for the cell lysate derived aRNA and after 21 cycles for the Hela control aRNA (Fig.

3.7).
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Figure 3.7. SYBR Green QPCR of GAPDH on amplified cell lysate from monkey PBMCs

as well as Hela and control RNAs. (A) Amplification curves for GAPDH gene. (B)

Dissociation curves for GAPDH gene.

Given these initial positive results, the feasibility of amplifying lysates from sorted cells was

assessed. Epitope-specific (pl1 C+) CD8+ T cells from monkey peripheral blood and mucosal

biopsies were collected by FACS sorting and the cells were either lysed directly or the RNA was

extracted from them using Trizol. From mucosal cells, only lysates of pl1 C+ CD8+ T cells

were tested due to limiting cell numbers. Adequate yields of aRNA were obtained from both the

purified RNA and the cell lysates (Table 3.3 and Fig. 3.8), with lysates giving higher yields than

purified RNA at higher cell numbers and purified RNA giving higher yields than lysates at lower

cell numbers.
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Table 3.3. Comparison of aRNA yield from purified RNA and cell lysate from mucosal and

blood pllC+ CD8+ T lymphocytes. (P) = Purified RNA. (L) = Cell lysate.

ID Sample Description aRNA amount (ug)
1 Hela control 77
4 Duodenum (L) 18
8 Colon (L) 13
6 1000 Blood cells (P) 15
2 1000 Blood cells (L) 32
7 800 Blood cells (P) 15
9 800 Blood cells (L) 10
3 600 Blood cells (P) 24

5 600 Blood cells (L) 17
10 No RNA Control 0.2
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Figure 3.8. Comparison of aRNA yield from purified RNA and cell lysate from mucosal

and blood pllC+ CD8+ T lymphocytes. The numbers along the curves correspond to the ID

numbers in Table 3.3.

However, simply looking at yield is not sufficient. The most important consideration is how

well the samples perform on the Illumina Human BeadChip. To create enough statistical power,



to make this evaluation useful, two biological replicates (PBMCs from 2 chronically SIV-

infected rhesus monkeys), and triplicates of purified RNA or cell lysates at limiting cell number

dilutions were generated. All samples were amplified using the Epicentre TargetAmp 2-Round

Biotin-aRNA Amplification Kit 3.0 and hybridized to the Illumina Human BeadChip. Once a

reproducibility and repeatability analysis can be conducted, the feasibility of using cell lysates

for amplification and gene expression analysis will be assessed. The experimental results are

pending. Once the decision is made, the entire gene expression assay will be complete (Fig. 3.9).
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Figure 3.9. Schematic of gene expression profiling assay for epitope-specific CD8+ T

lymphocytes.



Discussion

The Trizol method gave higher yields of purified RNA from limiting numbers of cells than the

RNeasy Micro Kit, or the Arcturus PicoPure Kit. Trizol extracted RNA was also of high

integrity (Fig 3.1) and can be amplified successfully using the Epicentre TargetAmp 2-Round

Biotin-aRNA Amplification Kit 3.0 (Fig. 3.8). The Trizol method does not employ a column,

which enhances the final RNA yield. This method may lead to contamination with organics that

can be detrimental to the assays that will be employed to analyze the RNA. Therefore, this

method requires careful attention to avoid contaminants in the isolated RNA.

The Epicentre TargetAmp 2-Round Biotin-aRNA Amplification Kit 3.0 and the Ambion

MessageAmp II aRNA Amplification Kit yielded comparable quantities of high quality aRNA.

These kits had comparable reproducibility and generated comparable gene expression analyses

(Figs. 3.2 and 3.3). While amplification is necessary to investigate the gene expression profile of

rare cell populations, the process of amplification can also bias the profile. The linear

amplification methods used by both Epicentre and Ambion minimize bias. Nevertheless,

amplified samples can only be compared with other similarly amplified samples and not with

unamplified samples.

The direct amplification of cell lysates can be used for gene expression analysis of as few as tens

of cells. However, the mRNA in lysates of cells contains contaminants and therefore, the

amplification efficiency will not be perfect. An oligo-dT primer must sift through a large

quantity of cellular matter to bind the mRNA. Because of this, it is possible that some of the



mRNA in those cells will be 'lost in the mix' and will not be amplified. Therefore, there is a

chance that the gene expression profile generated will be limited. In addition, there are proteases

in the cellular matter, including RNases. It is essential that any RNases be eliminated

immediately upon thawing the cells. Otherwise, as noted previously, some of the mRNA will be

degraded and therefore not available for amplification.

The Illumina Human BeadChip platform is precise, reproducible, and cost effective, and can run

many samples in parallel. However, the BeadChip is a human chip and therefore, will not have

identical homology to the rhesus monkey genome. While homology is great enough for our uses,

looking forward, it may be worthwhile to custom design an Illumina BeadChip to match the

rhesus monkey genome.



CHAPTER 4: Gene expression profile of peripheral blood SIV
Gag epitope-specific CD8+ T lymphocytes during primary SIV
infection in Mamu-A*01+ and Mamu-A*02+ rhesus monkeys

Introduction

Emerging data suggest that CD8+ cytotoxic T cells can contribute substantially to early virus

control. Kuroda et al. showed that the emergence of SIV-specific CD8+ cytotoxic T cells

coincides with a decrease in viral loads.24 Schmitz et al. showed that upon depletion of CD8+

cytotoxic T cells, early control of SIV fails.25 Viral loads also increase in chronic SIV infection

upon CD8+ T cell depletion. 26'27 In addition, the evolution of viral mutants in vivo is

characterized by mutations that cause the virus to evade recognition by CD8+ cytotoxic T cells. 3

Previous studies have indicated an association between the expression of the MHC class I allele

Mamu-A*01 and a reduction in plasma virus RNA levels in monkeys infected with

SIVmac239158'159 and SIVmac251,16'0,161 and lower lymph node-associated virus concentrations

in SHIV-89.6P infections.162 SIV-infected A*01+ rhesus monkeys have one or more logs lower

plasma virus RNA levels than A*01- monkeys. Because A*01 is a class I MHC molecule, CD8+

T cells likely play a role in the control of viremia in these monkeys.To test this hypothesis,

blood-derived SIV-specific CD8+ T cells from A*01+ (A*02-) and A*02+ (A*01-) monkeys can

be studied temporally using different functional and genomic assays.

Previous studies have also shown that Mamu-B*17 and Mamu-B*08 are associated with superior

SIV viral control. 159',163 164 To abrogate the possible confounding effects of these two alleles,



monkeys will be chosen based on their B*08- B*17 status. Several virus epitope-specific CD8+

T lymphocyte populations can be sorted and analyzed specifically, including the dominant Gag-

pl1 C and Tat-TL8 specific CD8+ T cells and the subdominant Env p54AS (or Env TL9) specific

CD8+ T cells from A*01+ monkeys and the dominant Nef-p199RY specific CD8+ T cells from

A*02+ monkeys.
2'156,165-

170

While virus-specific CD8+ memory T lymphocyte differentiation in the setting of viral infections

has been intensively studied in murine models,171-174 limited work has been done in this area in

non-human primate/SIV models. HIV-1 and its non-human primate counterpart SIV are different

from other chronic infections because of the persistence of viremia and loss of CD4+ T cell help.

Therefore, we might expect the evolution of CD8+ T lymphocytes to differ in the setting of SIV

infections from that of other chronic persistent viral infections.

Gene expression studies of T cells have evaluated naive, effector, and memory T cells, resting

versus activated T cells, and T cells undergoing homeostatic proliferation.44,46' 174-178 Results

suggest a coordinated progression of lymphocyte gene expression changes following activation

and suggest that trafficking of T cells is inhibited early during T cell activation." The genetic

program of naive, effector, and memory T cell specific for LCMV in mice was studied by several

groups.172-174 Looking primarily at genes involved in effector and regulatory functions, in cell

cycle control, and in susceptibility to apoptosis, naive CD8+ T cells had a gene signature of high

levels of lung Kruppel-like factor (LKLF) and the cyclin-dependent kinase inhibitor (CDKi) p27,

moderate levels of the anti-apoptotic Bcl-2 and pro-apoptotic Bax, and low levels of perforin,

IFN-,y, FasL, pro-apototic Bad, anti-apoptotic Bcl-xL, and the CDKi p21.173,175 Following



infection with LCMV, the cells changed to an effector phenotype and their genetic signature

evolved as well, exhibiting high levels of IFN-y, perforin, FasL, granzymes A,B, D, and K, and

RANTES, moderate levels of Bcl-2, and low levels of Bad, Bax, and Bcl-xL,. LKLF, p27, and

p21 levels decreased initially but increased again by day 8 following infection. 173 ,174 Genes

encoding chemotactic proteins, cell adhesion proteins, and P-selectin ligand were increased in

effector CD8+ T cells while lymph node homing proteins were reduced. 174 Signal transduction

genes involved in TCR signaling, intracellular Ca2+ signaling, and cytokine signaling were

expressed at higher levels. To counteract that with negative regulations of TCR and cytokine

signaling, PEP phosphatase and SOCS-5 expression was increased and IL-4, IL-7, and IFN-y

receptor a chain expression was decreased. 174 Genes regulating actin polymerization showed

increased expression, which can lead to increased cell motility and signaling, while genes

involved in protein translation showed decreased expression, which can contribute to effector

cell apoptosis. 174 After viral clearance, the antigen-specific CD8+ T cells entered the memory

phase and the genotype changed to one of high levels of IFN-y, Bcl-2, Bax, RANTES, MIP-113,

granzymes B, K, M, and LKLF, and decreased levels of Bcl-x p27 and p21.173 There were

mixed results on perforin and FasL, where one study showed lower expressionl 73 in memory T

cells, while another study showed higher levels. 174 This discrepancy may be due to differences in

the experimental conditions and differences between total CD8+ T cell populations' 74 versus the

focused antigen-specific CD8+ T cell population. 173 In addition, CXCR4 was selectively up-

regulated in memory CD8+ T cell, as were the GPI-linked proteins Ly-6C and Ly-6A/E,

members of the p38 and JNK signaling pathways, cyclin El, E2, and B1, and the IL-16Ra

chain. 174 In summary, approximately 350 genes were differentially expressed at least 1.7-fold in

either effector or memory CD8+ T cells as compared to naive cells, of which 30% were up-



regulated in both effector and memory CD8+ T cells. 174 This suggests that many of the

regulatory gene changes that occurred during the transition from naive to effector CD8+ T cell

were maintained in memory cells. 174 However, there were subsets of genes that were

differentially expressed between effector and memory CD8+ T cells, suggesting that they are two

distinct cell populations. 174 Temporal gene expression studies showed memory cell qualities

were acquired between days 8 and 22 post-infection. 174

The development of gene microarrays have provided investigators with a tool to measure subtle

changes in mRNA levels. 177 Affymetric gene array analysis of superantigen-activated T cells

showed expression of many genes associated with cycling cells such as those of the cyclins,

cyclin dependent kinases, and DNA polymerases, while resting T cells expressed a number of

cytokine receptor genes and genes thought to suppress cell division.' 75 Results also suggested

that the MAP kinase signaling pathway may be significantly dampened in activated T cells. 175

Activation, while changing the spectrum of genes expressed, did not change the diversity of

genes expressed. 175 Shortly after T cell activation, genes for interferon receptors and for Statl are

repressed. 177

Several studies have shown that cytotoxic T cells are impaired in function in the setting of

persistent viral infection, 179-181 while others have countered this by describing the preservation of

CTL function in chronic persistent viral infections, including HIV. 179,182 ,183 Gene expression

analysis of the virus-specific CD8+ T lymphocytes will shed new light on this question and

uncover mechanisms to explain the functional and phenotypic observations.



During chronic viral infections, CD8+ T cell responses often become dysfunctional and

sometimes virus-specific CD8+ T cells fail to differentiate into memory CD8+ T cell. 184,185

During chronic LCMV infection, virus-specific CD8+ T cells gradually lose effector functions,

whereby IL-2, cytotoxity, and proliferation function are lost early and IFN-y persists longer. 186

If the virus load is high and CD4+ T cell help is absent, virus-specific CD8+ T cells can lose all

effector functions. 186,187 An important microarray study looking at gene expression profile

differences between CD8+ T cells in chronic viral infection versus acute viral infection in a

mouse LCMV model showed that exhausted CD8+ T cells over-expressed a number of

inhibitory receptors such as PD-1, LAG-3, and 2B4, down-regulated genes associated with TCR

signaling and cytokine receptors such as IL-7 and IL-15, and displayed altered expression of

genes involved in chemotaxis, adhesion, and migration. 8",1 85 There appeared to be perturbations

in the signaling apparatus available to communicate extracellular information via both the TCR

and cytokine receptors to the nucleus. 185 Exhausted CD8 T cells had many translational,

metabolic and bioenergetic deficiencies and also expressed a distinct set of transcription

factors. 185 There appeared to be perturbations in the signaling apparatus available to

communicate extracellular information via both the TCR and cytokine receptors to the

nucleus.' 85 This model of exhaustion may well apply to HIV-1 and SIV infections where the

virus persists and CD8+ T cell dysfunction develops. 3 -32,188



Materials and Methods

Animals

Six Mamu-A*01+ Mamu-A*02- Indian-origin rhesus monkeys (Macaca mulatta) and 6 Mamu-

A*02+Mamu-A*1O rhesus monkeys, all B*08- and B*17-, were selected for the study after PCR-

based MHC typing. They were challenged intra-rectally with 4.65 log RNA copies of

SIVmac251. These animals were maintained in accordance with the guidelines of the

Committee on Animals for the Harvard Medical School and the Guide for the Care and Use of

Laboratory Animals.

Antibodies, tetramers, and peptides

Mamu-A*01/pllC,C-M/B2m (SIVmac Gag), Mamu-A*01/TL8/B2m (SIVmac Tat), Mamu-

A*01/p54AS/B2m (SIVmac Env), Mamu-A*02/pl99RY/B2m (SIVmac Nef) tetramer

complexes were prepared as previously described. 15 6,157,165 Streptavidin-PE (ProZyme),

streptavidin-APC (ProZyme), and streptavidin-QDot655 (Invitrogen) were mixed stepwise with

biotinylated Mamu-A*01/peptide or Mamu-A*02/peptide complexes at a molar ratio of 1:4 to

produce the tetrameric complexes. Conjugated antibodies used in this study included anti-

CD247 Alexa488 (Clone K25-407.69; BD Product No. 558486), anti-phosphotyrosine PE (Clone

PY20; BD Product No. 558008), anti-CD3 APC (Clone SP34.2; BD-Pharmingen). The rest of

the antibodies used in this study were directly coupled to phycoerythrin (PE), allophycocyanin

(APC), fluorescein isothiocyanate (FITC), peridinin chlorophyll protein-Cy5.5 (PerCpCy5.5),

allophycocyanin-Cy7, ECD, and PECy7. The following monoclonal antibodies were used: anti-

CD8a (clone SKI; BD-Pharmingen), anti-CD3 (Clones SP34; BD-Pharmingen), anti-CD4



(Clone 19Thy5D7; in house production), anti-CD4 (Clone L200; BD-Pharmingen), anti-CD28

(Clone CD28.2; eBioscience), and anti-CD95 (Clone DX2; BD-Pharmingen).

Blood processing and cell staining

Peripheral blood was collected from the 12 rhesus monkeys at weekly intervals post-SIVmac251

challenge. In addition, blood was collected a week prior to infection and on the day of infection

(day 0) to establish baseline complete blood count (CBC) using the ADVIA 120 Hematology

System (Bayer) and expression profile measurements on total or naive CD8+ T cells in addition

to a baseline tetramer staining. For each timepoint, 10 ml of blood with EDTA was collected

and 850 ul of whole blood was saved for CBC analysis. The blood was then layered over 4ml of

Ficoll and spun at 3,000 rpm for 20 min. Plasma from the top layer was collected in 5 aliquots of

500 ul each and frozen at -80'C. Viral RNA was routinely isolated from 200 ul or 400 ul of cell-

free blood plasma following manufacturer's protocol. Using a qRT-PCR based method, viral

load was determined by comparing against a SIV RNA standard harboring the first 731 bp of the

SIVmac239-Gag Gene. PBMCs were recovered from the buffy layer and were washed twice

with PBS containing 2% FBS. For baseline measurements (pre-infection), cells were stained for

10 min at 4oC with a mixture of anti-CD4, anti-CD3, anti-CD8, anti-CD28, and anti-CD95

antibodies to stain for naive CD8+ T cells and a mixture of anti-CD4, anti-CD3, and anti-CD8 to

stain for total CD8+ T cells. On day 0 and weekly post-infection, cells were stained with Mamu-

A*01/pllC,C-M/B2m, Mamu-A*01/TL8/B2m, and Mamu-A*01/p54AS/B2m, or Mamu-

A*02/p199RY/B2m tetramers for 15 min at 40C. Cells were then stained with a mixture of anti-

CD3 and anti-CD8 Abs for 10 min at 40C. The cells were washed with PBS/2%FBS and

resuspended in 1 ml of cold PBS per every 107 cells. The pllC+ CD8+ T cells were sorted



using the FACS-Vantage Flow Cytometer/Cell Sorter (Becton-Dickinson) and collected in

RNAprotect (Qiagen).

RNA Extraction

RNA was extracted from the cell pellet using Trizol (Invitrogen). Briefly, 1 ml of Trizol was

added to the cell pellet and incubated for 5 min at room temperature. Two hundred microliters of

chloroform was added and shaken vigorously by hand for 15 seconds, and incubated at room

temperature for 2-3 min. The samples were then centrifuged at 13,000 rpm for 15 min at 40C.

The colorless upper aqueous phase was carefully transferred to a new tube, and 2ul of linear

acrylamide was added and mixed in. An equal volume of isopropyl alcohol was then added and

mixed. The mixture was incubated at room temperature for 10min and centrifuged at 13,000

rpm for 10 min at 40C. The supernatant was removed and the RNA was washed with lml of

70% ethanol and centrifuged at 10,500rpm for 5 min at 40C. The supernatant was completely

removed and the RNA pellet was allowed to airdry. The RNA was then resuspended in RNase-

free water and stored at -800C. To check for RNA integrity, 1 ul of the sample was tested using

an Agilent Bioanalyer.

RNA Amplification

RNA was amplified from Trizol extracted total RNA using the TargetAmp 2-Round Biotin-

aRNA Amplfication Kit 3.0 (Epicentre Biotechnologies). The amplification process provides

two rounds of cDNA synthesis and in vitro transcription (IVT). The first strand cDNA synthesis

is primed with a T7-Oligo(dT) primer and the first strand cDNA synthesis is catalyzed by either

Superscript II or II Reverse Transcriptase (Invitrogen). The double stranded cDNA is



synthesized by a DNA polymerase and the IVT is catalyzed by a T7 polymerase. The first round

IVT runs for 4 hours and the 2nd round IVT rounds for 9 hours, with biotin-UTP added in the 2 nd

IVT. RNA purification is performed using the Zymo RNA Clean and Concentrator (Zymo

Research) between the first and second rounds of amplification and the RNeasy MinElute

Cleanup Kit (Qiagen) after the second round of amplification. Amplified aRNA is resuspended

in RNase-free water and stored at -80'C. Samples that only need to be amplified one round were

amplified with the Illumina(R) TotalPrep(TM) RNA Amplification Kit (Ambion). Nanodrop

ND-1000 is used to determine RNA concentration and an Agilent Bioanalyzer is used to

determine aRNA integrity.

Microarray processing

Amplified RNA was hybridized to Illumina HumanHT-12 Expression BeadChips according to

the manufacturer's instructions (Illumina, San Diego, CA, USA). The HumanHT-12 BeadChip

has the same panel of probes as the Illumina HumanWG-6 v3.0 BeadChip, which assays 48,000

transcripts, but can process 12 samples in parallel. The BeadChips contain content derived from

the National Center for Biotechnology Information Reference Sequence (NCBI RefSeq) database

(Build 36.2, Release 22). Arrays were scanned with an Illumina bead array reader confocal

scanner, according to the manufacturer's instructions. Array data processing was performed using

Illumina BeadStudio software.



Results

Testing early activation after Mamu-A*01/p11C tetramer staining before and after sorting

In order to isolate virus epitope-specific CD8+ T cells, MHC class I tetramers are used to label

the cells and identify them for sorting. It is, however, possible that the tetramers may induce

TCR activation, which can alter the gene expression profiles of these cells. To test this, cells

were stained with antibodies specific for phosphorylation sites on the CD3 molecule (CD3 ) as

well as with Mamu-A*01/pl IC (SIVmac Gag) tetramer under various temperature conditions

and for varying incubation times. Figure 4.1 shows that long-term incubation on ice does not

appear to have any effect on phosphorylation of CD3 . However, Figures 4.2 and 4.3 show that

sorted cells that had been stained with tetramer exhibited high amounts of CD3 phosphorylation,

and thus activation. Simply staining the cells with tetramer on ice or at 37C did not induce as

much phosphorylation. Staining on ice induced the least amount of activation.
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Figure 4.1. Effect of long-term incubation of tetramer-stained cells on ice on

phosphorylation of CD3 . PBMCs were isolated using Ficoll density gradient. The positive

control was stimulated with anti-CD3 and anti-CD28, fixed, and stained for anti-pCD3 (light

green histogram to the far right). Unstimulated cells that were only stained with anti-pCD3

were also used as a negative control (orange histogram). A population of cells were not labeled

with tetramer and simply passed through the sorter (thick blue line to the far left). The remainder

of the cells were stained with Mamu-A*01/pllC on ice for varying amounts of times ranging

from 10 min to 2 hrs before fixing with BD Fix Buffer I and staining with anti-pCD3 .
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Figure 4.2. Staining with anti-phosporylated CD3 and fixing at 37°C. PBMCs from a

Mamu-A*01+ rhesus monkey were isolated by Ficoll density gradient. All samples were

fixed in BD Fix Buffer I (4% formaldehyde) at 37C for 10 min. The positive control

was stimulated with anti-CD3 and anti-CD28, fixed, and stained for anti-pCD3 (Blue

histogram). Alexa488 FMO was used as a negative control (Red histogram). Unstimulated

cells that were only stained with anti-pCD3 were also used as a negative control (Brown

histogram). Experimental cells were incubated with Mamu-A*01/pl C for either 3 min on

ice (orange histogram) or at 37oC (green histogram) and then fixed and permeabilized with BD

Fix Buffer I and stained with anti-pCD3 . The pl1C-sorted cells were stained with Mamu-

A*01/pllC for 15 min at 4oC, sorted by FACS Vantage, and fixed and permeabilized with BD

Fix Buffer I and stained with anti-pCD3 (Pink histogram).
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Figure 4.3. Staining with anti-phosporylated CD3 and fixing on ice. PBMCs from a

Mamu-A*01+ rhesus monkey were isolated by Ficoll density gradient. All samples with

the exception of the negative control (Alexa488 FMO) were fixed in BD Fix Buffer I (4%

formaldehyde) on ice for 1 hr. The positive control was stimulated with anti-CD3 and

anti-CD28, fixed, and stained for anti-pCD34 (dark green histogram). Alexa488 FMO was

used as a negative control (Red histogram). Unstimulated cells that were only stained with anti-

pCD3 were also used as a negative control (light green histogram). Experimental cells

were incubated with Mamu-A*0l/pllC for either 3 min on ice (light blue histogram) or at

37oC (dark blue histogram) and then fixed and permeabilized with BD Fix Buffer I and stained

with anti-pCD3 . The pllC-sorted cells were stained with Mamu-A*0l/pllC for 15 min at

4°C, sorted by FACS Vantage, and fixed and permeabilized with BD Fix Buffer I and stained

with anti-pCD3 (brown histogram).



CD8+ T cell isolation from peripheral blood and RNA extraction for baseline

measurements

For use as baseline comparators, total CD8+ T cells and naive CD8+ T cells were

isolated one week prior to challenge and on the day of challenge pre-infection from

peripheral blood using FACS. The sorting schematic is shown in Figure 4.4 using a

representative set of Mamu-A*01+ and Mamu-A*02+ monkeys.
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Figure 4.4. Schematic for sorting total and naive CD8+ T cells for baseline measurements.

From A*01+ Mm107-2006, 150,000 naive CD8+ T cells and 280,000 total CD8+ T cells

were collected. From A*02+ Mm337-2008, 900,000 naive CD8+ T cells and 1,145,000

total CD8+ T cells were collected.
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From the FACS isolated total and naive CD8+ T cells, high quality RNA with RNA

Integrity Numbers (RIN) greater than seven as measured by an Agilent Bioanalyzer were

extracted using the Trizol method (Fig. 4.5).
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Figure 4.5. RNA integrity and quantity from baseline total and naive CD8+

Mm107-20076 (A*01+) and Mm337-2008 (A*02+) pre-challenge on Day 0.

extracted using the Trizol method. Analysis was done by Agilent Bioanalyzer and

were resuspended in 10 ul RNase-free water.

T cells for

RNA was

all samples

Isolation of SIV Gag epitope-specific CD8+ T cells from peripheral blood and RNA

extraction

Weekly following SIVmac251 intra-rectal challenge, 10 ml of blood was obtained from each

monkey and virus epitope-specific CD8+ T cells were isolated using FACS. From the Mamu-

A*01+ monkeys, Mamu-A*01/pllC, Mamu-A*01/TL8, and Mamu-A*01/p54AS were isolated

and collected in RNAprotect. From the Mamu-A*02+ monkeys, Mamu-A*02/pl99RY tetramer

positive cells were collected. The sorting schematic used is shown in Figures 4.6 and 4.7.
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Figure 4.6. Tetramer cell sorting for Mm107-2006 (A*01+) on Day 14 post SIVmac251

intra-rectal challenge. Gating schematic is shown above, selecting for singlets, then

lymphocytes, then CD3+CD8+ T cells. Mamu-A*01/pllC, Mamu-A*01/TL8, Mamu-

A*01/p54AS, Mamu-A*02/pl99RY tetramer positive cells were sorted in parallel into FACS

tubes filled with RNAprotect Reagent. A total of 89,000 pl 1C+ cells, 270,000 TL8+ cells, and

1,000 p54AS+ cells were collected.
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Figure 4.7. Tetramer cell sorting for Mm337-2008 (A*02+) on Day 14 post SIVmac251

intra-rectal challenge. Gating schematic is shown above, selecting for singlets, then

lymphocytes, then CD3+CD8+ T cells. Mamu-A*02/pl99RY tetramer positive cells were sorted

in parallel into FACS tubes filled with RNAprotect Reagent. A total of 33,000 pl99RY+ cells

were collected.

RNA was extracted from sorted virus epitope-specific CD8+ T cells using the Trizol method and

the RNA integrity was measured by an Agilent Bioanalyzer (Fig. 4.8).
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Figure 4.8. RNA integrity and quantity from tetramer positive cells on Day 14 post

SIVmac251 challenge for Mm107-2006 (A*01+) and Mm337-2008 (A*02+). The A01

restricted epitopes are pl 1C, TL8, and p54AS. The A*02 restricted epitope is p199RY. The

RNA was extracted using the Trizol method and integrity analysis was performed by Agilent

Bioanalyzer and all samples were resuspended in 5 ul RNase-free water.

For each sample that was collected at each timepoint, 500 pg of RNA was taken and

amplified using the TargetAmp 2-Round Biotin-aRNA Amplfication Kit 3.0 (Epicentre

Biotechnologies) to produce biotin-aRNA to be hybridized to the Illumina HumanHT-12

Expression Beadchip. A total of 1.5 ug of biotin-aRNA is required for hybridization. Table 4.1

and Figure 4.9 show a representative amplification from 500 pg of starting CD8+ T cell total

RNA.



Table 4.1 Amplified biotin-aRNA from total CD8+ T cells from Mm107-2006 (A*01+) and

Mm337-2008 (A*02+). Total RNA in the amount of 500 pg was amplified using the TargetAmp

2-Round Biotin-aRNA Amplification Kit 3.0 (Epicentre Biotechnologies) and resuspended in 40

ul RNase-free water. These samples were obtained 14 and 21 days before challenge to establish

baseline as well as to verify procedure. The No RNA Control was included as a negative control.

aRNA concentration (ng/ul) Total aRNA amt (ug)

107-2006 Total CD8 -21DPI 2543 101.72
337-2008 Total CD8 -21DPI 2467 98.68
107-2006 Total CD8 -14DPI 1804 72.16
337-2008 Total CD8 -14DPI 2079 83.16

No RNA control 30 1.2

70.30

5.00 _ * 107-2006 Total CD8 -21 DPI

5600 2 008 Total CD 21DRI

60.00

46.00 A

4000 \- 7
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Figure 4.9. Amplified biotin-aRNA from total CD8+ T cells from Mm107-2006 (A*01+)

and Mm337-2008 (A*02+). Total RNA in the amount of 500 pg was amplified using the

TargetAmp 2-Round Biotin-aRNA Amplification Kit 3.0 (Epicentre Biotechnologies) and

resuspended in 40ul RNase-free water and measured on Nanodrop ND-1000. These samples

were obtained 14 and 21 days before challenge to establish the baseline as well as to verify the

procedure.



For some of the samples, enough total RNA was extracted from the cells to allow for one round

of amplification. For these samples, the remaining RNA that was not used for the two-round

amplification was amplified one-round with the Illumina(R) TotalPrep(TM) RNA Amplification

Kit (Ambion) and hybridized to the Illumina HumanHT-12 Expression Beadchip.

Tetramer responses

Weekly following SIVmac251 intra-rectal challenge, 10 ml of blood was obtained from 6

Mamu-A*01+ and 6 Mamu-A*02+ rhesus monkeys. PBMCs from Mamu-A*01+ rhesus

monkeys were stained with Mamu-A*01/pl 1C, Mamu-A*01/TL8, and Mamu-A*01/p54AS, and

PBMCs from Mamu-A*02+ rhesus monkeys were stained with Mamu-A*02/pl99RY tetramer.

Gating on CD3+CD8+ lymphocytes, tetramer-binding cells were detected by week 2 post-

infection (Fig. 4.10), consistent with previous reports.' 89 In some animals, the tetramer response

was already detectable by week one post-infection. Tat TL8-specific CD8+ T lymphocyte

responses peaked by 2 wk, and then rapidly declined. Gag pl 1C-specific CD8+ T lymphocyte

responses developed more slowly, were of lesser magnitude than the Tat TL8-specific responses,

and had more gradual increases and decreases. The Gag p11 C-specific CD8+ T lymphocyte

responses in monkeys 107-2006 and 112-2006 were bimodal. The subdominant Env p54AS-

specific CD8+ T lymphocyte response was much lesser than the dominant Gag pl1 C and Tat

TL8 responses and in monkey 125-2008, it was undetectable.
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Figure 4.10. Mamu-A*01-restricted, SIV epitope-specific T lymphocyte responses in

SIVmac251-infected Mamu-A*01+ rhesus monkeys. Shown are three of six monkeys intra-

rectally infected with SIVmac251. The development of T lymphocyte responses specific for the

Mamu-A* 01-restricted epitope Gag p1 1C, Tat TL8, and Env p54AS was monitored by tetramer

staining of PBMCs. Shown are the percentages of cells gated on the lymphocyte population that

stained positively for CD3, CD8a, and a soluble tetramer complex containing Mamu-A*01 and

the indicated epitope peptide. For monkeys 112-2006 and 125-2006, tetramer responses for later

timepoints are pending.
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Figure 4.11. Mamu-A*02-restricted, SIV epitope-specific T lymphocyte responses in

SIVmac251-infected Mamu-A*02+ rhesus monkeys. Shown are data from 3 or 6 monkeys

intra-rectally infected with SIVmac251. The development of T lymphocyte responses specific

for the Mamu-A*02-restricted epitope Nef p199RY was monitored by tetramer staining of

PBMCs. Shown are the percentages of cells gated on the lymphocyte population that stained

positively for CD3, CD8a, and a soluble tetramer complex containing Mamu-A*02 and p199RY.

For monkeys 116-2006 and 135-2006, tetramer responses for later timepoints are pending.

In the Mamu-A*02+ monkeys, Nef p199RY tetramer-binding CD8+ T lymphocytes were

detected by 2 wk post-infection and peaked by 2 or 3 wk post-infection (Fig. 4.11). The

magnitude of the tetramer response differed among animals with peak tetramer percentages of



CD8+ T lymphocytes ranging from 1.7% to 6%. This variability has also been seen in previous

studies. 189

Plasma Viral Loads

Plasma virus RNA levels were assessed over time in all experimental animals. Plasma viral

RNA levels are shown for 3 of the 6 pairs of A*01+ and A*02+ animals in Figure 4.12. The time

to peak viremia and magnitude of peak viremia was comparable between the groups of monkeys.

Virus RNA levels were consistent with tetramer CD8+ T lymphocyte responses (Fig. 4.10 and

4.11), showing the development of tetramer responses shortly after peak viremia.
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Figure 4.12. SIV viral load kinetics and magnitude for Mamu-A*01+ (A) and Mamu-

A*02+ (B) rhesus monkeys. Viral loads are given for 3 of the 6 pairs of A*01+ and A*02+

rhesus monkeys. For monkeys 112-2006, 125-2006, 116-2006, and 135-2006, viral loads for

later timepoints are pending.



Discussion

While results from this study are pending, there are two possible expected outcomes. One

possibility is that there is a difference between the Mamu-A*01 and Mamu-A*02 positive

monkeys that lies within the RNA transcripts of their respective virus epitope-specific CD8+ T

cells. Gene expression profiling will uncover any such differences and from there, the particular

gene targets can be validated by quantitative PCR, and various pathways can be explored with

the hope of elucidating underlying mechanisms of action. The other possible outcome is that

there is no difference in biology at the transcript level between the A*01 restricted CTLs and the

A*02 restricted CTLs. If that proves to be the case, we must look elsewhere for explanations for

the difference in viral control between the Mamu-A*01+ and Mamu-A*02+ monkeys.

There are factors that cannot be explored by gene expression profiling that may contribute to

differences in SIV control between Mamu-A*01 and Mamu-A*02 positive monkeys. For

example, recent studies in HIV-infected individuals have shown that the functional avidity of

HIV-specific CD8+ T cells are consistently higher and the tetramer dissociation rates

consistently lower in early infection as compared to chronic infection. 190 Further in vivo studies

have suggested that the functional avidity of CD8+ T cells is linked to their antiviral activity.

These data suggest that high-avidity HIV-specific CD8+ T cells recruited during early infection

might significantly contribute to the dramatic decline of HIV viremia during early infection.' 90

In converse, the loss of functional avidity by HIV-specific CD8+ T cells during chronic infection

may contribute to viral persistence and disease progression. 190 Extending these findings to our



current study, it is possible that there may be a difference in CTL TCR affinity for viral peptides

in association with MHC class I molecules in the Mamu-A*01+ and Mamu-A*02+ monkeys.

Another potential explanation for differences in SIV control between the Mamu-A*01+ and

Mamu-A*02+ monkeys is difference in mutation rates in the immunodominant epitopes. Due to

both the high replication rate of SIV and HIV and the high error rate of the RT encoded by HIV

and SIV, viral mutations are generated rapidly in a setting of significant immune selection

pressure conferred by the CTLs. Evidence of viral escape from CTL recognition has been shown

in both chronic and acute HIV infection, occurring as early as day 50 post-infection for the HLA-

B44-restricted epitope of gpl60 or the HLA-B8-restricted epitope of Nef.191'192 Mutations in

CTL epitopes have also been seen in both acute and chronic infection in SIV Nef, Env, Tat, and

Gag. 193 However, certain CTL epitopes are more restricted in their ability to tolerate amino acid

substitutions while other are more permissive for substitutions. 19 3 Studies by other groups have

shown a rapid emergence of Tat SL8 epitope variants 2 and slow emergence of Gag pl1 C epitope

variants. 3',194 -196 In a study of Mamu-A*01+ and Mamu-A*02+ animals infected with SIVmac251,

an increase in frequency of mutation in the immunodominant Nef p199RY epitopel 65 was shown,

where 78-100% of the virus in each monkey had mutations, and 26% of these mutations were in

the residues of the peptide that are most important for binding to Mamu-A*02.189,197' 198

Explanations for the variations in frequency of immunodominant epitope mutations include

differences in protein expression kinetics, CTL avidity, and structural constraints on the virus.' 93

The structural constraints explanation, however, is perhaps the most compelling. Viral escape

from CTL epitopes located within constrained regions of viral structural proteins may require

multiple compensatory mutations to facilitate assembly of viable virus. 193 The generation of



such compensatory mutations may occur infrequently during infection. 193 Unlike Tat, Nef, and

Env proteins, which can retain function with numerous mutations and even large deletions, the

structural Gag protein has limited tolerance for mutations. 199 Successful SIV/HIV escape from

CTL recognition likely requires a balance between the selection pressures exerted by CTL and

the maintenance of viral structural competency. The Gag p11C epitope is located in a highly

conserved region of the capsid protein, which has been shown by various groups to play a critical

role in SIV/HIV replication.200' 201 Mutations within the Gag pl1 C epitope are likely to interfere

with virus assembly, and therefore compensatory mutations are necessary to maintain a viable

virus. 193,202 The fitness costs of mutations in the Gag p1iC epitope limit viral escape from

CTLs. 20 3 The limited ability of SIV to escape from CTL at that dominant Gag epitope may

contribute to the superior control of SIV in the Mamu-A*01+ monkeys. The requirement for

coincident compensatory mutations may also explain why viral mutations in this epitope occur

more infrequently than they do in other epitopes. 193



CHAPTER 5: DISCUSSION

The work presented here paves the way for the study of rare cell populations in both peripheral

blood and mucosal tissues. The evolution of virus-specific CD8+ T lymphocytes in mucosal

compartments in the setting of primary SIV infection is not well understood. Most studies of

CD8+ T cells that have been carried out to date only evaluate peripheral blood or unfractionated

lymphocyte populations from mucosal specimens.24 4-206 While the present study is an analysis

of the evolution of virus-specific CD8+ T cells in the blood, one can build on this knowledge by

performing a similar study of virus-specific CD8+ T cells from mucosal compartments such as

the duodenum, distal colon, and from bronchoalveolar lavage specimens, using peripheral blood

virus-specific CD8+ T cells as a comparator. One can then ask the question if the biology or the

temporal evolution of virus-specific CD8+ T cells differ at the transcript level between the blood

and mucosa and between different mucosal compartments. The strategies presented in Chapters

2 and 3 can also be used to assess the evolution during primary infection of various other cell

populations, such as B cells, NK cells, and dendritic cells. While the majority of studies in the

HIV and SIV literature have focused on adaptive cellular immunity, the role of the innate

immune system has recently been implicated in HIV pathogenesis.207-21 3 A study of the evolution

of gene expression in innate immune cells in the setting of HIV or SIV infection should be very

useful to further our understanding of AIDS pathogenesis.

While immune responses to HIV or SIV depend on the expression of cellular genes,

understanding the entire picture of the immune response requires a more integrated approach.

While functional genomics strives to identify the role of genes in cellular processes by way of

hybridizing mRNA to complementary DNA, functional immunomics aim to identify roles of



chemical/biological targets involved in immunological processes by examining specific cellular

and humoral immune responses elicited by antigens presented to the immune system. 1' 10 2'214' 215

For example, antibody microarrays might be used to probe post-translational functional

genomics, since there has been some evidence of poor correlations between concentrations of

mRNAs and their corresponding proteins.216' 21 7 Other immunomic microarrays include those that

focus on peptide, cell, serum, and peptide-MHC. 218 Whereas DNA microarrays can only assay

one parameter (the level of transcription of each gene), immunomic microarrays can measure

several parameters pertaining to the immune responses against a single epitope. 218 For example,

in peptide-MHC arrays, not only can one assay binding to individual peptide-MHC complexes,

one can also assay the quantity and quality of the cytokine responses to these complexes. 218 The

complexity of statistical analyses for immunomic microarrays is significantly greater than for

DNA microarrays. While there are roughly 30,000 genes in humans, the number of different T

cell receptors generated by somatic recombination is estimated to be on the order of 107 to 1015.

In addition, DNA is composed of combinations of four different bases (A, T, C, G), while

peptide epitopes are composed of combinations of up to 20 different amino acids. While there

are many challenges, immunomics may eventually be an additional tool one can use to study T

cell immune responses to SIV or HIV.

Another technology that can be useful for studying immune responses in SIV and HIV infection

is the new generation of gene sequencing. Sequencing technologies such as 454 sequencing

technology, Illumina/Solexa, and ABI/SoLiD have had a tremendous impact on genomics

research. 2 19 These technologies can perform thousands of reactions in parallel and are more

cost-effective than traditional Sanger sequencing, and also replace troublesome in vivo cloning
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with in vitro clonal amplification using emulsion PCR or bridge amplification on solid

surfaces.219 The downside to these new sequencing methods is the shorter read lengths (35bp for

Solexa and ABI/SOLiD and 300bp for 454). 2 19  However, there are applications such as

sequence census that can benefit from short reads. The sequence census approach uses short

reads to establish the site of origin of the read instead of the whole sequence. 2  A novel use of

the sequence census approach identifies protein binding sites on the DNA using chromatin

immunoprecipitation followed by next-generation sequencing (ChIP-Seq). 2 19 This has been

applied to identification of transcription factor binding sites as well as histone modifications on a

genome-wide scale.219 The use of next generation sequencing technology for transcriptome

sequencing can provide insight into the level of gene expression, the structure of the genomic

loci, sequence variation present at loci, and profiling of noncoding RNA (e.g. tRNA, rRNA,

miRNA, and siRNA). 219-221

Lastly, single cell PCR, which was first described over a decade ago, has reached new levels of

accuracy and efficiency. Single cell PCR was first used in the area of fetal diagnostics,

researchers have increasingly used this technology for a number of different applications.222

Single cell PCR has been used in the analysis of TCR repertoires of CD8+ T cells in response to

antigenic challenge.22 3 Single-cell RT-PCR has enabled gene expression analysis of single cells.

This is powerful technology that can potentially allow for a complete analysis of very small

subpopulations of cells and even individual cells within a subpopulation. Single cells can be

obtained by laser mediated micromanipulation systems (e.g. laser capture microdissection) and

then assayed for mRNA expression.222 Combining single cell PCR with array analysis can
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provide a true analysis of the heterogeneity of the immune response in particular cell

subpopulations and can lead to new insights into cell-cell interactions and cellular dynamics.

There is much that is still unknown about the immune response following SIV and HIV infection.

However, new tools are currently being developed that in the coming years will provide new

ways of studying the immune response and lead to an increasingly better understanding of SIV

and HIV pathogenesis.
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