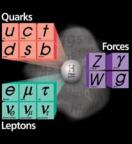
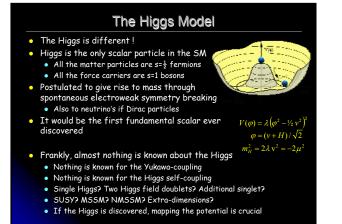
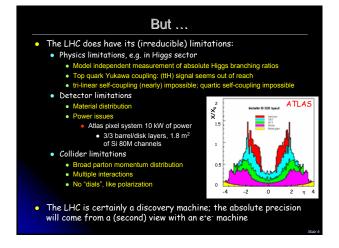
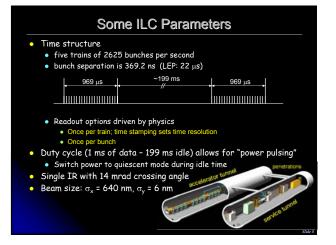

ILC Detector R&D Marcel DEMARTEAU FERMILAB, Batavia, USA - demarteau@fnal.gov

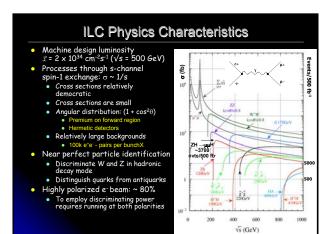

ILC Related Talks at this Meeting Significant fraction of presentations related to the ILC Talk ulio Villani: A MAPS based readout for Tera-Pixel EM calorimeter at the ILC usuo Arai: Electronics and Sensor Study with the OKI SOI process bert Wieland: 3D System Integration for high density interconnects instaina Kreidi: Steering and Readout chips for DEPFET sensor matrices ter Murray: Development of an ASIC for readout of CCD's at the vertex detector of e 11 C arrillon: MAROC, Multi-Anode Readout Chip he de la Taille: HARDROC, Hadronic RPC detector readout chip ançois Genat: A 130nm CMOS evaluation digitizer chip for Si strip readout at LC Göttlicher: System aspects of the ILC electronics and power pulsing Weber: Power distribution for sLHC trackers: challenges and solutions Villani: Serial powering of silicon sensors

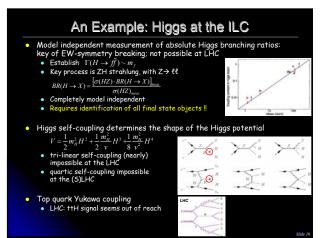

- rs: David Cuss l Cussans: A simple test beam trigger and event tagging unit for ILC test beams eric Dulocq: Digital part of SiPM integrated readout chip asic for ILC hadronic
- co Pozzati: MAPS in 130nm and 90nm triple well CMOS technologies for HEP cotions
- applications Ludovic Raux: SPIROC, dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiM readout Julien Fleury: SKIROC, a front-end chip to readout the imaging Si-W calorimeter for the ILC

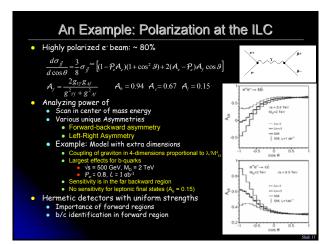

- But, the theoretical calculations are valid only with an ingredient that has not yet been observed — the notorious Higgs boson
- One of the central issue is the Higgs mechanism

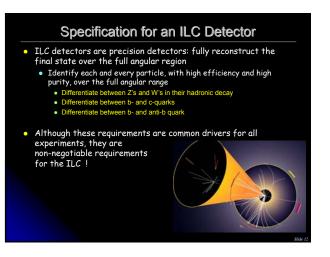
•

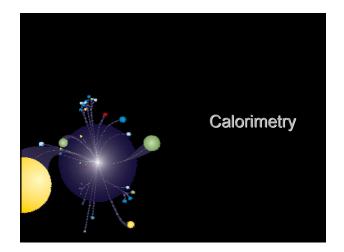


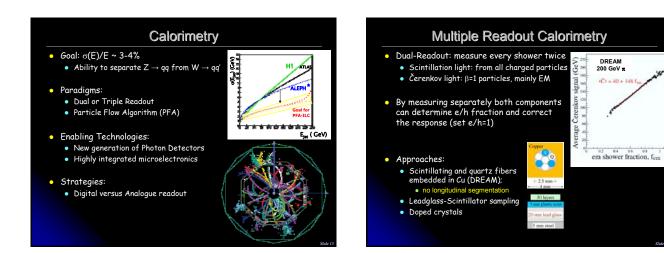




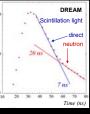


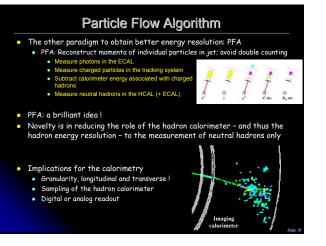




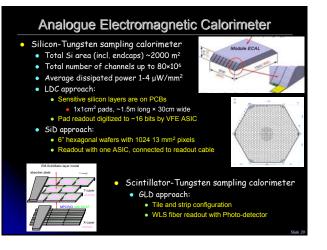


	The ILC Concept Detectors								
4	LDC			GLD	SiD	-			
Detector	Premise	Vertex Detector	Tracking	EM calorimeter	Hadron calorimeter	Sole- noid	Muon System		
LDC	PFA	5-layer pixels	TPC Gaseous	Silicon- Tungsten	Analog- scintillator	4 Tesla	Instrumented flux return		
GLD	PFA	6-layer fine pixel ccd	TPC Gaseous	Scintillator- Tungsten	Digital/Analog Pb-scintillator	3 Tesla	Instrumented flux return		
SiD	PFA	5-layer silicon pixel	Silicon strips	Silicon- Tungsten	Digital Steel - RPC	5 Tesla	Instrumented flux return		
4 th	Dual Readout	5-layer silicon pixel	TPC Gaseous	2/3-readouts Crystal	2/3-readouts Tungsten-fiber	3.5 Tesla	Iron free dual solenoid		
• Requi	rements	 Moment 	t paramet itum resol ergy reso		n: $\sigma_{r\phi} \approx \sigma_{rz} \approx 56$ $\sigma(1/p_T) = 5 \times 1$ $\sigma_E/E = (3-4)$	0 ⁻⁵ (GeV			



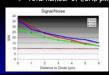

- Traditional" compensating calorimetry
 Suppress EM component (high Z absorber •
 - Par lly recover invisible ha
 - Capture slow neutrons in ²³⁸U, emit low energy γ's
 Collisions processes with hydrogen in scintillator
- Use timing information of pulse formation
- ns have
- Also exploit

•


- PID though difference Scint. and Č light
- R&D pursued by:
 DREAM collaboration

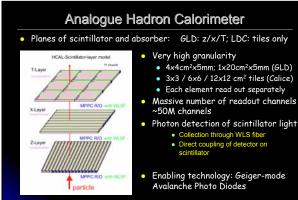
 - Fermilab / Italian groups
 University of Washington

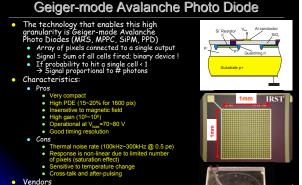
Calorimeter Architectures								
 One of the main drivers for imaging calorimeters is granular Need to separate energy deposits from different particles 								
	Electron	nagnetic	Hadronic					
Active element	Analogue	Digital	Analogue	Digital				
Silicon	kPIX SKIRoc Cells ~0.5x0.5 cm ²	MAPS Cells ~50x50 µm ²²	Too expensive	Too expensive				
Scintillator	PPD readout	-	PPD readout Cells ~3x3cm ²	-				
Gas	-	-	-	RPC GEM MicroMegas _{Cells ~1x1 cm²}				

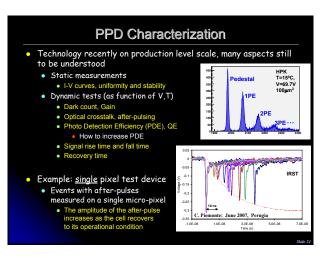


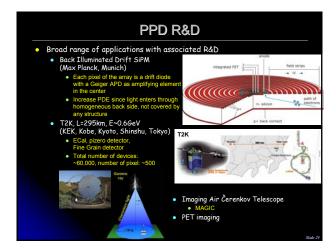
Digital Electromagnetic Calorimeter

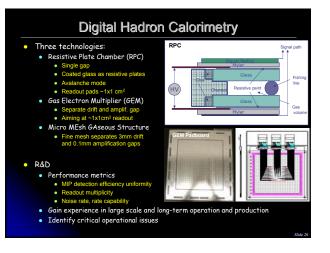
- EM calorimeter based on Monolithic Active Pixel Sensors
- Intrinsic high granularity through wafer processing
 CMOS process cheaper than high resistivity pure silicon
 ECAL MAPS design
- Binary readout, threshold adjustment for each pixel
 Pixels 50µm×50µm, 4 diodes for Charge Collection

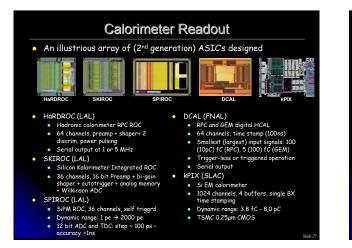


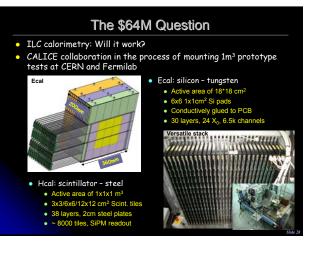

- Capability to mask individual pixels Total number of ECAL pixels around 8×10¹¹: Terapixels

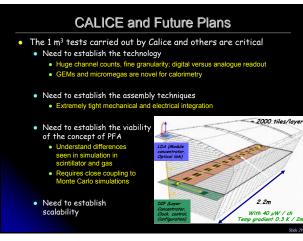

- Device being simulated
 Signal to Noise > 15 for 1.8 μm Diode Size Critical issue for Terapixel system

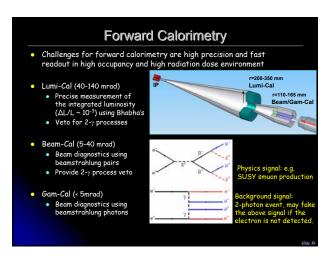

50 µm

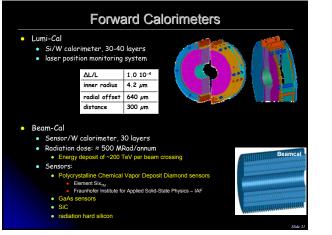


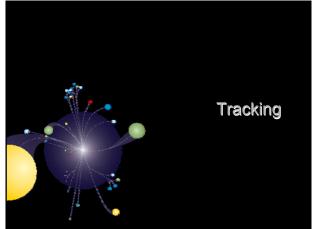


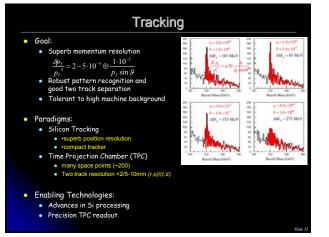

Hamamatsu, SensL, IRST, Mephi, Pulsar, CPTA/Photonique, Dubna/Mikron, Kotura,

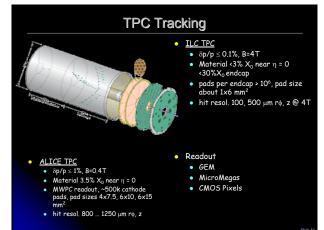


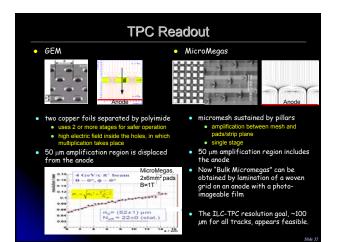


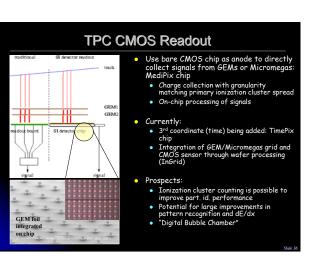


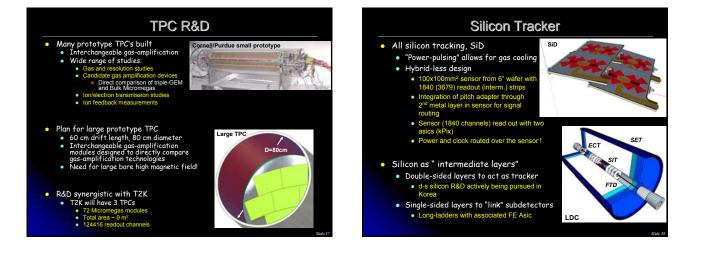


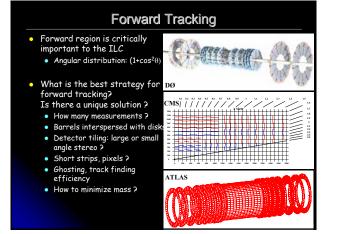


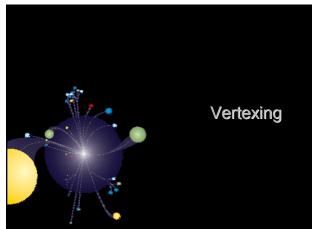


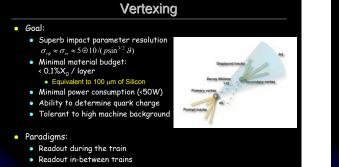


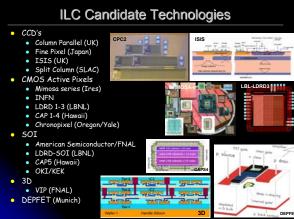


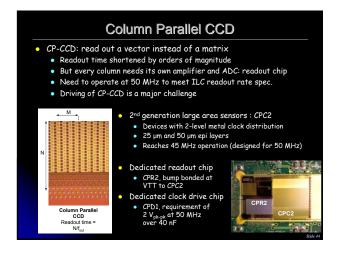


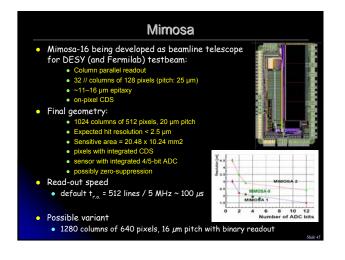


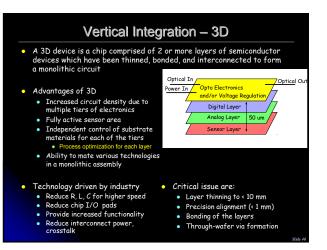


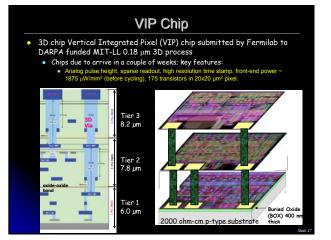


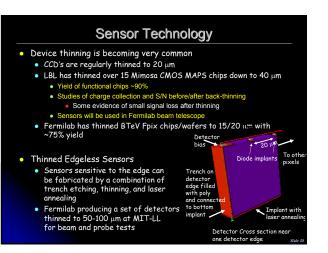


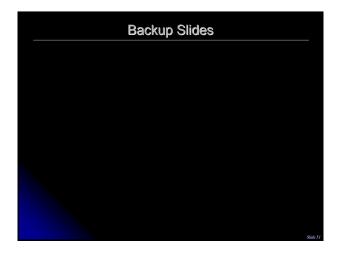


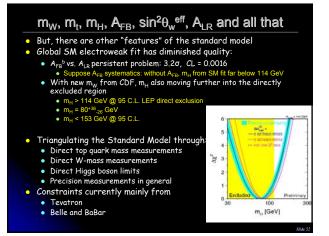

Sensor Architectures

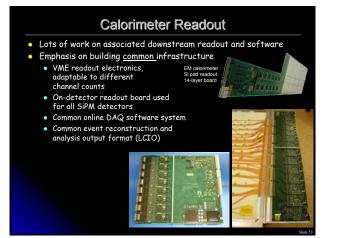

 An incomplete attempt at listing some of the current architectures design for ILC pixel detectors

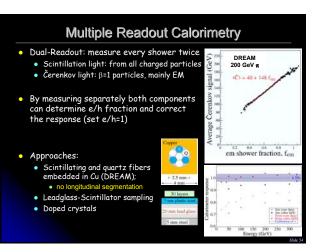

	CMOS MAPS	CCD	DEPFET	SOI	3D
Rolling Shutter	Mimosa 1-N LDRD 1,2	Normal CCD		LDRD-SOI	
Column Parallel	Mimosa 8 LDRD3	CP-CCD SC-CCD	DEPFET/ CURO		
Pipelined Storage	Mimosa-12 CAP	ISIS		CAP-5	
Time Stamp	Chronopixel			ASI SBIR	VIP-1


• With apologies to all other technologies, I will only mention three: CP-CCD, Mimosa, 3D




What is in a 3-letter Acronym?


- ILC HLC: acronym is different by one letter adjacent in the alphabet (and a permutation)
- Is R&D really that specific? Sure, but ...
- If R&D is of high enough caliber, it is to a large extent 'generic', i.e. it will find its way into any new experiment
- There's a premium on Communication and Collaboration
 - $\bullet\,$ LHC solutions will find wide application and conversely ILC solutions will be applicable to the LHC
 - Funding agencies (at least in the USA) are also looking towards more overall coordination


Concluding Remarks and Observations

- My apologies to all projects not mentioned
- LHC will break new territory, but it will take time
 - Data_{publ}= $\varepsilon * \delta * \gamma * \beta * \alpha * Data_{deliver}$; $t_{publ} = \gamma_5 * \gamma_4 * \gamma_3 * \gamma_2 * \gamma_1 * \gamma_0 * t_0$ publ. calibrated qualified anal. rec. • It will find a SM-like Higgs if it's there
- We can engineer detectors in ways we never could before; this is mostly driven by advances in the semiconductor industry, making it economically possible
- The ILC detector systems have a lot of synergies with other projects
- Coordination and communications will allow more rapid progress with the limited resources that are available

