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Abstract 
 

Dry-ice cleaning using the sublimation-impulse method removes particulate and film 

contaminations without any residues. The gases involved in this process, i.e. CO2 and N2 are 

chemically inert. Thus no negative impact on materials like niobium, copper, aluminium etc. 

used in a superconducting (s.c.) accelerator is expected. As high gradients in s.c. cavities 

require surfaces free of enhanced field emission, which is often caused by particulate 

contamination, the dry-ice cleaning process was applied to niobium samples and single-cell 

cavities. A dedicated cleaning apparatus for 1 – 3-cell cavities was constructed, commissioned 

and tested in the last years. 
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Introduction 
A jet of pure carbon dioxide snow loosens and removes different types of surface 

contaminations by its unique combination of mechanical, thermal and chemical effects. The 

cleaning process acts local, mild, dry, without residues requiring no additional cleaning agent. 

The spontaneous relaxation of liquid carbon dioxide leaving the nozzle results in a snow/gas 

mixture with 45 % snow and a temperature of 194.3 K (-78.9°C). This jet is surrounded by 

supersonic nitrogen, which firstly gives acceleration and focussing of the jet and secondly 

prevents the condensation of humidity at the cleaned object. The cleaning effect is based on 

thermo-mechanical and chemo-mechanical forces. The former are created by three effects: 

brittling the contamination as a result of rapid cooling (shock-freezing), the tough pressure 

and shearing forces due to the high momentum of the snow crystals hitting the surface and the 

powerful rinsing due to the 500 times increased volume after sublimation. Particles down to 

100 nm can be removed. Chemo-mechanical forces occur, when high momentum snow 

particles hitting the surface partially are melting at the point of impact. In its liquid phase 

carbon dioxide is a good solvent for non-polar chemicals, especially for hydrocarbons and 

silicones. The thermal effect of shock-freezing is thereby directly correlated with the snow 

intensity, while the mechanical effect however depends on the velocity and angle of the jet 

and the chemical effect depends on the momentum of the crystals. An optimal cleaning 

impact is achieved, if the thermal gradient between contamination and substrate is high. To 

avoid recontamination an effective and well-defined exhaust system is necessary. In summary 

the advantages of the carbon dioxide dry ice cleaning are:  

• dry cleaning process, 

• no cleaning agents, 

• removal of particulate and film contaminations, 

• no polluting residues. 

The basic cleaning parameters are shown in Table 1 : 

 

 

In order to achieve high gradients for future accelerators like XFEL, ILC, etc. without field 

emission loading advanced cleaning and handling procedures must be applied. Surface 

contaminations like particles, hydrocarbons, etc. and mechanical damages like scratches have 

been shown to cause enhanced field emission limiting the usable gradient of accelerating 

structures. Though high pressure rinsing with ultra pure water has been proven to be a 

powerful technique to reduce the enhanced field emission of cavities, dry–ice cleaning might 

have additional cleaning potential. Moreover it avoids a wet cavity surface with its enhanced 

sensitivity against recontamination. It should be applicable to ceramics (coupler windows) 

without loosing the gain of an earlier conditioning. Due to these properties dry-ice cleaning is 

considered as very attractive for the final treatment of horizontally assembled cavities with its 

power coupler.   
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Description of Work 
After successful pre-tests on samples and cavities in 2002 and 2003 using the facilities of 

Fraunhofer Institute IPA, Stuttgart, Germany in early 2004 the infrastructure installation at 

DESY started. An ultra pure gas supply system for both carbon dioxide and nitrogen was 

integrated and successfully tested in the existing clean room (Fig.1). End of 2004 / beginning 

of 2005 the CO2 cooler/purifier unit (Fig.1, 2) was ordered as an important component in 

order to filter, purify and liquefy the CO2.  

 

 

Figure 1: Schematic of the prototype set-up for dry-ice cleaning of monocell cavities  

 

As described in the introduction dry-ice cleaning should be well suited for horizontal cleaning 

of s.c. cavities. Therefore the set-up for cleaning of 1-3-cell cavities was designed for 

horizontal cleaning differing from the proposal for task 5.4. In 2005 the horizontal motion 

unit using the existing spraying cane and a new motion unit started operation (Fig 2). Due to 

man power problems caused by unexpected repair work at the DESY accelerator HERA the 

complex control system of the cleaning unit was delayed significantly. This delay could not 

be compensated until today.  

 

Figure 2: CO2- cooler/purifier unit (left) and horizontal motion unit with the spraying cane 

assembled on the linear drive (right) 
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The heat removal from the cavity during operation of the dry-ice jet makes it necessary to 

apply a heater system to avoid cooling and freezing of the cavity. Several options have been 

considered. With respect to cleanroom requirements and simple assembly a prototype of an IR 

heater system was tested. After first operational tests it turned out, that the heating power was 

insufficient. Furthermore the assembly procedure after cleaning of the integrated heating and 

exhaust box was to complicate. A new dedicated design of an optimized, high power IR 

heater (Fig 3, 4) had to be developed, constructed and installed. This caused a delay during 

commissioning of app. six months. The new heater system fully meets its requirements and 

allows continuous dry-ice cleaning nearly without freezing of the cavity. 

 

  
Figure 3: Dry-ice cleaning system with the new IR heater 

 

  
Figure 4: The new IR heater system in operation 
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To fulfil the requirements of personal safety for routine operation a gas alarm system was 

installed. During the installation phase the commissioning continued under special safety 

requirements. 

Recently new capillaries with lower diameter have been tested in order to reduce the cooling 

of the cavity and the consumption of CO2. The former is important to keep a high temperature 

gradient on the inner surface for an optimum cleaning efficiency (see Introduction). A 

reduced CO2 consumption enhances the usable time of one set of pressure bottles and is in 

general preferable with respect to safety aspects. A capillary with 12% reduced diameter is 

used since Nov 2006. Furthermore the assembly procedure of the cavity to its vacuum and rf 

connection (“antenna”) is improved by a simple, but effective new fixture. 

In 2005 and 2006 the commissioning of the dry-ice cleaning system was continued 

successfully (Fig. 5). Several cavities are cleaned both for system tests and for rf 

measurement of the cavity. Additional samples have been cleaned and tested (WP 6.3). The 

cleaning parameters and cavity results are discussed in the next chapter. 

 

 
  

 

 

Figure 5: Commissioning of the dry-ice system: Optical checks of the jet under different 

conditions 

Discussion of Work  

The dry-ice cleaning system is operable and a preliminary cleaning parameter set is fixed. 

With respect to the results still there is a contradiction between excellent cleaning results on 

samples (Tab.1 WP6.3.) compared to most of the cavity tests still suffering on field emission 

loading (Fig 6). The reason can be either the cleaning parameters or a contamination of the 

cavity during the final assembly after the dry-ice cleaning. After the recent modification of 

CO2 – capillary and assembly fixture an excellent cavity result with no field emission loading 

up to 33 MV/m was achieved (Fig. 7). The goal of the next tests will be the reproduction of 

this result. 

 

Treatments on Nb EP EP + HPR EP + HPR + Dry-ice 

Eonset (1 nA) 40 MV/m 60 MV/m 90 MV/m 

N @120 MV/m 30 / cm
2 

14 / cm
2 

< 2 / cm
2
 

β values (31-231) (17-167) (17- 80) 

Table 1: Improvements on EP Nb samples after HPR and DIC (WP 6.3) 

 

In spite of this good result the preparation of the construction of the nine-cell cleaning 

apparatus requires a careful re-investigation of the nozzle system and cleaning parameters 

together with the dry-ice cleaning experts of the Fraunhofer Institute for Manufacturing 

Engineering and Automation (Fraunhofer IPA, Stuttgart). This will take until mid of 2007. In 

addition further sample measurements on various niobium materials are on the way in close 

collaboration with WP 6.3.  
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Figure 6: Q0(Eacc)-performance of latest rf-tests after dry-ice cleaning 

 

Figure 7: Recent best Q0(Eacc)-performance after dry-ice cleaning with new capillary 

 

Conclusions and Future 
The dry-ice cleaning has shown its capability for successful cleaning of samples and SRF 

single-cell cavities. Nevertheless the results are not as reproducible as necessary for multicells 

applications. 

Next steps in the near future will be the above described evaluation of the cleaning parameters 

and the understanding of critical conditions during cavity cleaning. More cavity tests are 
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necessary in order to confirm and to optimize the preliminary cleaning parameter set. Though 

the multi-cell cleaning apparatus is significantly delayed, this is a necessary precondition for 

the successful construction of the next generation set-up. Reproducibility of the cavity 

cleaning is a must for the envisaged applications. 

Only minor technical modifications of the existing apparatus are planned. An additional 

heater of the gas pressure bottles will avoid the cool down of the bottles in order to stabilize 

the CO2 pressure during operation. 
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