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Abstract

The problem of keyword spotting in audio data has been explored for many years.
Typically researchers use supervised methods to train statistical models to detect key-
word instances. However, such supervised methods require large quantities of anno-
tated data that is unlikely to be available for the majority of languages in the world.
This thesis addresses this lack-of-annotation problem and presents two completely
unsupervised spoken keyword spotting systems that do not require any transcribed
data.

In the first system, a Gaussian Mixture Model is trained to label speech frames
with a Gaussian posteriorgram, without any transcription information. Given several
spoken samples of a keyword, a segmental dynamic time warping is used to compare
the Gaussian posteriorgrams between keyword samples and test utterances. The
keyword detection result is then obtained by ranking the distortion scores of all the
test utterances.

In the second system, to avoid the need for spoken samples, a Joint-Multigram
model is used to build a mapping from the keyword text samples to the Gaussian
component indices. A keyword instance in the test data can be detected by calculating
the similarity score of the Gaussian component index sequences between keyword
samples and test utterances.

The proposed two systems are evaluated on the TIMIT and MIT Lecture corpus.
The result demonstrates the viability and effectiveness of the two systems. Further-
more, encouraged by the success of using unsupervised methods to perform keyword
spotting, we present some preliminary investigation on the unsupervised detection of
acoustically meaningful units in speech.

Thesis Supervisor: James R. Glass
Title: Principle Research Scientist
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Chapter 1

Introduction

Automatic speech recognition (ASR) technology typically requires large quantities of

language-specific speech and text data in order to train complex statistical acoustic

and language models [4]. Unfortunately, such valuable linguistic resources are unlikely

to be available for the majority of languages in the world, especially for less frequently

used languages. For example, commercial ASR engines typically support 50-100 (or

fewer) languages [1]. Despite substantial development efforts to create annotated

linguistic resources that can be used to support ASR development [2], the results fall

dramatically short of covering the nearly 7,000 human languages spoken around the

globe [3]. For this reason, there is a need to explore ASR training methods which

require significantly less language-specific data than conventional methods.

The problem of keyword spotting in audio data has been explored for many years,

and researchers typically use ASR technology to detect instances of particular key-

words in a speech corpus [33]. Although large-vocabulary ASR methods have been

shown to be very effective [42], a popular method incorporates parallel filler or back-

ground acoustic models to compete with keyword hypotheses [44, 27]. These keyword

spotting methods typically require large amounts of transcribed data for training the

acoustic model. For instance, the classic filler model requires hundreds of minutes of

speech data transcribed at the word level [27], while in the phonetic lattice match-

ing based approaches [39, 21], the training of a phonetic recognizer needs detailed

transcription at the phone level. The required annotation work is not only time con-



suming, it also requires linguistic expertise for providing the necessary annotations

which can be a barrier to new languages.

In this thesis, we focus on investigating techniques to perform the keyword spotting

task without any transcribed data. Two completely unsupervised keyword spotting

systems are presented and carefully evaluated on the TIMIT and MIT Lecture corpus.

The results demonstrate the feasibility and effectiveness of our unsupervised learning

framework for the task of keyword spotting.

1.1 Motivation

As we enter an era where digital media can be created and accumulated at a rate

that far exceeds our ability to annotate it, it is natural to question how much can

be learned from the speech data alone, without any supervised input. A related

question is what techniques can be performed well using unsupervised techniques in

comparison to more conventional supervised training methods. These two questions

are the fundamental motivation of our research.

Specifically, the idea of investigating unsupervised learning of speech-related tasks

is motivated by the recent trends in data driven methods towards unsupervised large-

scale speech data processing. As mentioned, the speed of the speech data production

is much faster than data transcription can be performed. We need to find new ways of

dealing with untranscribed data instead of waiting until enough transcription work is

done. Transcription work is not only time consuming, but also requires some linguistic

knowledge. Finally, hiring linguistic professionals to perform these tasks can be very

expensive.

The idea of building an unsupervised keyword spotting system is motivated by

the trend towards finding useful information from data in multi-media formats. For

example, many state-of-the-art search engines provide keyword search interfaces for

videos. But most of them generate the index based on the title of the video or the

text information accompanying the video, which might not always reflect the true

content of the video. With spoken keyword spotting, we can build an index based on



the true content of the audio in order to provide more accurate search results.

Taking these motivations one step further, we are also interested in the self-

learning ability of machines. In the case of unsupervised learning, since there is

not enough labeled data to guide the model's behavior, the modeling result may vary

dramatically based on the learning strategies. Due to various statistical constraints,

it is worth investigating the unsupervised modeling results to see how much machines

can learn from data, and whether there are some post-processing techniques that

can compensate for the missing information brought by the unsupervised modeling

methods.

1.2 Overview of Chapters

The remainder of this thesis is organized as follows:

Chapter 2 gives an overview of the related research, including unsupervised learn-

ing methods in speech processing, supervised spoken keyword spotting systems and

some recent unsupervised spoken keyword spotting systems.

Chapter 3 presents an unsupervised keyword spotting system using Gaussian pos-

teriorgrams. The evaluation results on the TIMIT and MIT Lecture corpus are re-

ported and discussed.

Chapter 4 gives a detailed description of another unsupervised keyword spotting

system that does not require any spoken keyword samples. The evaluation results

on the TIMIT corpus and the performance comparison with the previous system are

reported and analyzed.

Chapter 5 further explores some preliminary investigation on detecting acousti-

cally meaningful units in the speech data without any supervised help. Experimental

results on the TIMIT corpus are presented and discussed.

Chapter 6 concludes with a discussion of the potential improvements of the pro-

posed two keyword spotting systems and the future work needed in the unsupervised

discovery of acoustically meaningful units.
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Chapter 2

Related Work

In this chapter, we give an overview of related research. The organization is as

follows. First, we focus on some conventional supervised keyword spotting systems.

We divide these systems into two categories and select several representative systems

to discuss. Then, we discuss three recently developed unsupervised keyword spotting

systems. Finally, we briefly review some research work in unsupervised learning in

speech processing.

2.1 Supervised Keyword Spotting Systems

Supervised keyword spotting systems can be categorized into two classes [35]. One is

based on HMM learning [25], focusing on detecting keywords at the model level. The

other one is based on the post-processing of recognized results, focusing on detecting

keywords at the transcription level. The main difference between these two methods is

the training requirement. In the HMM-based methods, since a whole-word or phonetic

HMM is built for each keyword, the training data must contain enough examples

of each keyword. In an unbalanced dataset, the detection performance may vary

depending on the number of keyword instances. In contrast, in the post-processing

based methods, a universal phonetic HMM can be trained using a large amount of

data in which no keyword examples need to be included. After recognizing the test

data, a sophisticated phonetic label matching algorithm is performed to find a match



Al \r A2

Figure 2-1: This figure illustrates the structure of the HMM-based keyword spotting
system. A1 and A 2 are two auxiliary states in order to provide a self-looping structure.
Keyword 1 to N represents keyword HMMs. The filler and background HMMs are
used to bypass keyword unrelated speech content and background noise.

for the given keyword. The disadvantage is that since a keyword can potentially be

pronounced in many different ways depending on the context, a keyword should be

given multiple pronunciation labels in order to let the matching algorithm capture all

possible occurrences of that keyword.

2.1.1 HMM Based Methods

Several HMM-based keyword spotting systems have been proposed [27, 43, 37, 26].

The basic architecture of a HMM-based keyword spotting system is shown in Figure

2-1. Each keyword is modeled by one or more HMMs. The filler model is used to

cover the speech signal which is unrelated to the keyword. In some systems [45, 44],

a background model is used to bypass the possible background noise and silence.

A1 and A 2 denote two auxiliary states that are used for the self-looping structure.

In another system [34], a phonetic HMM is used to build the keyword HMM. Since

a keyword may have multiple pronunciations, a confusion network based phonetic

HMM structure is used to capture the pronunciation variance.



For keyword detection, speech signals are sent into the HMM set and the decoding

process is similar to conventional speech recognition. After decoding, a sequence of

keyword, filler or background labels is produced, such as

Speech Signal -- B 1B1B 2F1 FK 1 F2FK 2B 2 B1 B1

where Bi denotes background labels, F denotes filler labels and K, denotes keyword

labels.

2.1.2 Lattice Alignment Based Methods

In post-processing based methods, lattice alignment is the most widely used technique

[7, 15, 39, 20, 21]. The basic idea is that for each test utterance, a lattice recognition

result is given by the acoustic model. Then, for each keyword, forced-alignment is

used to find a small lattice representing only that keyword. The detection decision is

made by looking for a sub-matching for the keyword lattice in the utterance lattice.

The illustration of these two lattices is shown in Figure 2-2. Based on the keyword

lattice, the matching algorithm looks for all possible sub-graph matching in utterance

lattices.

Since a lattice is often represented by a directed graph, finding a sub-match in a big

directed graph is not an easy problem and can be very time-consuming. But reducing

the size of the recognition lattice may lower the resolution of the recognition as well as

the keyword detection performance. Therefore, a time alignment method is applied

to both the utterance lattice and keyword lattice to first obtain a confusion network.

The matching is then performed on the confusion network which is a directed graph

with a very constraining structure [20]. Many efficient matching algorithms can be

found on this kind of direct graph.



Utterance lattice

Keyword lattice

Figure 2-2: This figure illustrates the basic concept of the lattice based keyword

spotting system. The top figure is the utterance lattice, while the bottom one is

the keyword lattice. Lattice based keyword spotting is performed by looking for a

sub-matching of the keyword lattice in the utterance lattice.

2.2 Unsupervised Keyword Spotting Systems

The above two supervised methods can achieve good detection performance when the

testing environment is not very different from the training data. But a key problem

is that these supervised methods require a large amount of labeled data. It generally

is on par with the data requirements for a standard speech recognition system. In

other words, good detection performance requires a great amount of human effort.

As mentioned previously, when moving to speech processing, unsupervised learning

becomes particularly difficult. But keyword spotting is an easier task than speech

recognition since it does not require the detection module to understand the entire

speech signal. Therefore, it would seem to be a promising task to explore unsupervised

methods. We focus on three recent works in the following sections.

2.2.1 Ergodic HMM

Li et al. [19] proposed a keyword spotting system that does not need any manually

labeled data for training the acoustic model, and only needs one training instance of a



keyword for detection. The idea is to use a 128-state ergodic HMM with 16 Gaussian

mixtures on each state to model speech signals. All of the Gaussian mixtures are

initialized by running the K-Means algorithm on the speech feature vectors. After

training, similar to supervised keyword spotting systems, the ergodic HMM serves as

the background, keyword and filler models.

In the keyword detection stage, they designed a two-pass algorithm. In the first

pass, they require a spoken instance of the keyword and use the ergodic HMM to

decode this instance into a series of HMM states. Then, they connect these HMM

states to form a conventional HMM to act like the keyword model. In the second

pass, each test utterance is decoded by the ergodic HMM and this keyword model. If

the keyword model gives a higher confidence score, an occurrence of the keyword is

found. Their system was evaluated on a Mandarin reading speech corpus. An equal

error rate (EER) of 25.9% was obtained on the short keywords and an EER of 7.2%

was obtained on long keywords.

2.2.2 Segmental GMM

Another recent work was proposed by Garcia et al. [11]. In this work, the authors

had a different modeling strategy for the unsupervised learning of speech signals.

Instead of directly modeling the speech signal, the authors first did some segmentation

analysis on the signal, and then used a Segmental Gaussian Mixture Model (SGMM)

to represent the signal. After modeling, each speech utterance can be decoded into a

series of GMM component sequences. By using the Joint Multigram Model (we will

discuss details in Chapter 4), a grapheme-to-GMM-component-sequence model can

be built to convert a keyword to its corresponding GMM component sequence. Then,

a string matching algorithm is used to locate the GMM component sequence of the

keyword in the test data.

Specifically, the modeling module consists of three components: the segmenter, the

clustering algorithm and the segmental GMM training. The segmenter takes a speech

utterance as input and outputs the segmentations based on the occurrence of spectral

discontinuities. Then, for each segmentation, a quadratic polynomial function is used



to map the time-varying cepstral features to a fixed length representation. Pair-wised

distance is calculated and used to run the clustering algorithm to cluster the similar

segmentations. Finally, each group of similar segmentations is modeled by a GMM.

There are two potential problems with this modeling strategy. First, the segmen-

tation performance highly affects the following operations. In other words, since the

segmenter makes hard decisions for segmentation, it likely brings segmentation errors

into the following processing. Second, the segmental GMM may suffer from the data

imbalance problem. The clustering algorithm produces similar segmentation groups,

but some groups may only have a small number of training instances. As a result,

the GMM trained on these groups may be under-trained, which affects the following

decoding performance.

2.2.3 Phonetic Posteriorgram Templates

The most recent work by Hazen et al. [14] showed a spoken keyword detection sys-

tem using phonetic posteriorgram templates. A phonetic posteriorgram is defined by

a probability vector representing the posterior probabilities of a set of pre-defined

phonetic classes for a speech frame. By using an independently trained phonetic

recognizer, each input speech frame can be converted to its corresponding posterior-

gram representation. Given a spoken sample of a keyword, the frames belonging to

the keyword are converted to a series of phonetic posteriorgrams by a full phonetic

recognition. Then, they use dynamic time warping to calculate the distortion scores

between the keyword posteriorgrams and the posteriorgrams of the test utterances.

The detection result is given by ranking the distortion scores.

Compared to the segmental GMM method, in order to generate phonetic posteri-

orgram templates, an independently trained phonetic recognizer and several spoken

examples of a keyword are required. In addition, while the phonetic recognizer can

be trained independently, it should be trained on the same language used by the

keyword spotting data. In summary, the ergodic HMM and segmental GMM method

require no transcription for the working data. While the ergodic HMM and phonetic

posteriorgram template methods require several spoken instances of a keyword, the



segmental GMM method needs a few transcribed word samples to train a multigram

model.

2.3 Unsupervised Learning in Speech

Unsupervised learning is a classic machine learning problem. It differs from super-

vised learning in that only unlabeled examples are given. Unsupervised learning is

commonly used to automatically extract hidden patterns from the data and explain

key features of the data. In speech processing, unsupervised learning is a relatively

new topic for two reasons. First, the basic goal of speech recognition is to translate

the speech signal into its corresponding phone and/or word labels. If no labels were

given during training, the recognition model would not know the mapping between

the learned signal patterns to the phone or word labels. Thus, it is difficult to fin-

ish the translation task without supervised feedback. Second, speech contains highly

variable hidden patterns. Current supervised methods still suffer from many critical

problems, such as noise robustness and out-of-vocabulary words. An unsupervised

learning framework usually has a less constrained model structure than supervised

methods, which makes it even harder for it to be used for speech processing. Although

it is difficult, there has been some recent promising research showing the possibility

of using unsupervised methods to do some simple speech related tasks.

2.3.1 Detection of Sub-word Units

While the Hidden Markov Model (HMM) [25] has been widely used in building speaker

independent acoustic models in the last several decades, there are still some remaining

problems with HMM modeling. One key problem is the HMM topology selection. The

current HMM learning algorithm can efficiently estimate HMM parameters once the

topology is given. But the initial topology is often defined by a speech scientist, such

as the well-known three states left-to-right HMM structure for tri-phones. This pre-

defined topology is based on empirical results that can be language dependent. For

example, in English, it is widely reasonable to have three states per phone, while in



Chinese some phones may need five states [4].

Due to the topology selection problem in HMMs, researchers have focused on

developing an unsupervised HMM training framework to let the HMM automati-

cally learn its topology from speech data. After learning the topology, the patterns

(sub-word units) in the speech data can be represented by the HMM parameters as

well as the corresponding state topology. Previous research generally falls into three

categories.

Bottom-up. The basic procedure is: 1) train a HMM from one state (or two states);

2) during the training, contextually or temporally split each state into several states;

and 3) re-estimate HMM parameters on these new states as well as the whole HMM.

Two major bottom-up approaches are the Li-Biswas method [18] and the ML-SSS

[31, 36]. The idea is illustrated in Figure 2-3 on the left.

Top-down. The basic procedure is: 1) initialize a HMM with a very large number

of states; 2) during the training, merge similar states by using direct comparison of

the Kullback-Leiber (KL) divergence [30] or the decision tree based testing [23]; 3)

re-train the merged HMM; and 4) re-do the second step until the resultant HMM

reaches an acceptable or pre-defined size. The idea is illustrated in Figure 2-3 on the

right.

Combing splitting and merging. Recent research [40] [29] proposed a combined

version of the top-down and bottom-up methods. The training is divided into two

stages. One stage is the parameter estimation in which a simultaneous temporal

and contextual state splitting is performed to expand the previously learned HMM

topology. The other stage is the model selection in which a maximum likelihood or

Bayesian Information criterion is used to choose a current best splitting topology.

Then, after the model selection, the model merges the similar states.

All of these methods were tested on a small speech dataset without transcription

and promising results were obtained [40]. Since there is no transcription, the learned

HMM is just a mapping from the speech signal to a set of HMM state sequences. By

providing some example utterances with transcription, we can use forced-alignment

techniques to build a mapping between the similar HMM state sequences to the



Figure 2-3: These figures illustrate two methods used to learn an HMM topology.
The method on the left used a bottom-up approach by iteratively splitting states.
The method on the right used a top-down approach by iteratively merging similar
states.

sub-word or phone labels in the transcription. In other words, acoustic meaningful

sub-word units can be found by grouping similar HMM state sequences. The results

were promising because unsupervised HMM learning shows the ability of extracting

sub-word units using only a few example utterances with transcription. If the example

utterances cover the entire sub-word or phone inventory, it becomes possible to build

a complete mapping between learned sub-word units and the actual phone or word

labels so that conventional speech recognition can be performed.
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Chapter 3

Unsupervised Keyword Spotting

via Segmental DTW on Gaussian

Posteriorgrams

3.1 Introduction

In this chapter, we present an unsupervised keyword spotting system using Gaussian

posteriorgrams. Without any transcription information, a Gaussian Mixture Model

is trained to label speech frames with a Gaussian posteriorgram. Given one or more

spoken examples of a keyword, we use segmental dynamic time warping to compare

the Gaussian posteriorgrams between keyword examples and test utterances. The

keyword detection result is then obtained by ranking the distortion scores of all the

test utterances. We examine the TIMIT corpus as a development set to tune the pa-

rameters in our system, and the MIT Lecture corpus for more substantial evaluation.

The results demonstrate the viability and effectiveness of this unsupervised learning

framework on the keyword spotting task.

The keyword spotting scenario discussed in this chapter assumes that a small

number of audio examples of a keyword are known by the user. The system then

searches the test utterances based on these known audio examples. In other words,



an example of the keyword query must appear in the training data.

The remainder of this chapter is organized as follows: the following section briefly

reviews three previous unsupervised keyword spotting systems; Section 3.3 describes

the detailed design of our system; experiments on the TIMIT and the MIT Lecture

corpus are presented in Section 3.4; and our work is summarized in Section 3.5.

3.2 System Design

Our approach is most similar to the research explored by Hazen et al. [14]. How-

ever, instead of using an independently trained phonetic recognizer, we directly model

the speech using a GMM without any supervision. As a result, the phonetic poste-

riorgram effectively becomes a Gaussian posteriorgram. Given spoken examples of

a keyword, we apply the segmental dynamic time warping (SDTW) that we have

explored previously [24] to compare the Gaussian posteriorgrams between keyword

examples and test utterances. We output the keyword detection result by ranking the

distortion scores of the most reliable warping paths. We give a detailed description

of each procedure in the following sections.

3.2.1 Gaussian Posteriorgram Definition

Posterior features have been widely used in template-based speech recognition [5, 6].

In a manner similar to the definition of the phonetic posteriorgram [14], a Gaussian

posteriorgram is a probability vector representing the posterior probabilities of a set

of Gaussian components for a speech frame. Formally, if we denote a speech utterance

with n frames as

S = (s), S21 ., Sn)

then the Gaussian posteriorgram (GP) is defined by:

GP(S) = (ql, q2, - - qn) (3.1)



Each qi vector can be calculated by

qi = (P(Cllsi), P(C2IS), . . , P(C18))

where Ci represents i-th Gaussian component of a GMM and m denotes the number of

Gaussian components. For example, if a GMM consists of 50 Gaussian components,

the dimension of the Gaussian posteriorgram vector should be 50. If the speech

utterance contains 200 frames, the Gaussian posteriorgram matrix should be 200x50.

3.2.2 Gaussian Posteriorgram Generation

The generation of a Gaussian posteriorgram is divided into two phases. In the first

phase, we train a GMM on all the training data and use this GMM to produce a

raw Gaussian posteriorgram vector for each speech frame. In the second phase, a

discounting based smoothing technique is applied to each posteriorgram vector.

The GMM training in the first phase is a critical step, since without any guidance,

it is easy to generate an unbalanced GMM. Specifically, it is possible to have a GMM

with a small number of Gaussian components that dominate the probability space,

with the remainder of the Gaussian components representing only a small number

of training examples. We found this to be particularly problematic for speech in the

presence of noise and other non-speech artifacts, due to their large variance. The

unfortunate result of such a condition was a posteriorgram that did not discrimi-

nate well between phonetic units. For example, some dimensions in the generated

posteriorgrams always control the larger probability mass (95%), while the remain-

ing dimensions only have a very small probability mass (5%). Approximation errors

would greatly affect the result in discriminating these posteriorgrams. Our initial

solution to this problem was to apply a speech/non-speech detector to extract speech

segments, and to only train the GMM on these segments.

After a GMM is trained, we use Equation (3.1) to calculate a raw Gaussian pos-

teriorgram vector for each speech frame and the given spoken keyword examples.

To avoid approximation errors, a probability floor threshold P,,n is set to eliminate



dimensions (i.e., set them to zero) with posterior probabilities less than Pi,. The

vector is re-normalized to set the summation of each dimension to one. Since this

threshold would create many zeros in the Gaussian posteriorgram vectors, we apply

a discounting based smoothing strategy to move a small portion of probability mass

from non-zero dimensions to zero dimensions. Formally, for each Gaussian posterior-

gram vector q, each zero dimension z, is assigned by

A.1
zi = Count(z)

where Count(z) denotes the number of zero dimensions. Each non-zero dimension v,

is changed to

v, = (1 - A)vi

3.2.3 Modified Segmental DTW Search

After extracting the Gaussian posteriorgram representation of the keyword examples

and all the test utterances, we perform a simplified version of the segmental dynamic

time warping (SDTW) to locate the possible occurrences of the keyword in the test

utterances.

SDTW has demonstrated its success in unsupervised word acquisition [24]. To

apply SDTW, we first define the difference between two Gaussian posterior vectors p

and q:

D(p, q)= -log(p- q)

Since both p and q are probability vectors, the dot product gives the probability of

these two vectors drawing from the same underlying distribution [14].

SDTW defines two constraints on the DTW search. The first one is the com-

monly used adjustment window condition [28]. In our case, formally, suppose we

have two Gaussian posteriorgram GPi = (Pl,P2,. ..' ,P m ) and GP, = (q, q2,' " qn),



the warping function w(-) defined on a m x n timing difference matrix is given as

w(k) = (ik, jk) where ik and jk denote the k-th coordinate of the warping path. Due

to the assumption that the duration fluctuation is usually small in speech [28], the

adjustment window condition requires that

lik - Jk < R

This constraint prevents the warping path from getting too far ahead or behind in

either GPi or GPj.

The second constraint is the step length of the start coordinates of the DTW

search. It is clear that if we fix the start coordinate of a warping path, the adjustment

window condition restricts not only the shape but also the ending coordinate of the

warping path. For example, if ii = 1 and j = 1, the ending coordinate will be

iend = m and jend E (1 + m - R, 1 + m + R). As a result, by applying different start

coordinates of the warping process, the difference matrix can be naturally divided

into several continuous diagonal regions with width 2R + 1, shown in Figure 3-1. In

order to avoid the redundant computation of the warping function as well as taking

into account warping paths across segmentation boundaries, we use an overlapped

sliding window moving strategy for the start coordinates (sl and s2 in the figure).

Specifically, with the adjustment window size R, every time we move R steps forward

for a new DTW search. Since the width of each segmentation is 2R+1, the overlapping

rate is 50%.

Note that in our case, since the keyword example is fixed, we only need to consider

the segment regions in the test utterances. For example, if GP, represents the keyword

posteriorgram vector and GP, is the test utterance, we only need to consider the

regions along the j axis. Formally, given the adjustment window size R and the

length of the test utterance n, the start coordinate is

(1,(k-1)-R+1), 1<k<n-
1R
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sl s2

Figure 3-1: This figure illustrates the basic idea of the segmental DTW algorithm.
sl and s2 are the first two start coordinates of the warping path with R = 2. The
pentagons are the segmentation determined by the corresponding start coordinate si
and the adjustment window condition R.

As we keep moving the start coordinate, for each keyword, we will have a total of

[n-1j warping paths, each of which represents a warping between the entire keyword

example and a portion of the test utterance.

3.2.4 Voting Based Score Merging and Ranking

After collecting all warping paths with their corresponding distortion scores for each

test utterance, we simply choose the warping region with the minimum distortion

score as the candidate region of the keyword occurrence for that utterance. However,

if multiple keyword examples are provided and each example provides a candidate

region with a distortion score, we need a scoring strategy to calculate a final score for

each test utterance, taking into account the contribution of all keyword examples.

In contrast to the direct merging method used [14], we considered the reliability

of each warping region on the test utterance. Given multiple keyword examples and a

test utterance, a reliable warping region on the test utterance is the region where most

of the minimum distortion warping paths of the keyword examples are aligned. In this

way a region with a smaller number of alignments to keyword examples is considered



to be less reliable than a region with a larger number of alignments. Therefore, for

each test utterance, we only take into account the warping paths pointing to a region

that contains alignments to multiple keyword examples.

An efficient binary range tree is used to count the number of overlapped alignment

regions on a test utterance. After counting, we consider all regions with only one

keyword example alignment to be unreliable, and thus the corresponding distortion

scores are discarded. We are then left with regions having two or more keyword

examples aligned. We then apply the same score fusion method [14]. Formally, if we

have k > 2 keyword examples s, aligned to a region rj, the final distortion score for

this region is:

1 lo k
S(r 3 ) = l o g  exp(-aS(s)) (3.2)

where varying a between 0 and 1 changes the averaging function from a geometric

mean to an arithmetic mean. Note that since one test utterance may have several

regions having more than two keyword alignments, we choose the one with the smallest

average distortion score. An extreme case is that some utterances may have no

warping regions with more than one keyword alignment (all regions are unreliable).

In this case we simply set the distortion score to a very big value.

After merging the scores, every test utterance should have a distortion score for

the given keyword. We rank all the test utterances by their distortion scores and

output the ranked list as the keyword spotting result.

3.3 Evaluation

We have evaluated this unsupervised keyword spotting framework on two different

corpora. We initially used the TIMIT corpus for developing and testing the ideas we

have described in the previous section. Once we were satisfied with the basic frame-

work, we performed more thorough large vocabulary keyword spotting experiments

on the MIT Lecture corpus [13]. In addition, we compared several keyword spotting

experiments against the learned acoustic units based system in Chapter 4.



Table 3.1: TIMIT 10 keyword list. "word" (a, b) represents the keyword "word"
occurs a times in the training set and b times in the test set.

age(3:8) warm(10:5) year(11:5) money(19:9)
artists(7:6) problem(22:13) children(18: 10) surface(3:8)
development(9:8) organizations(7:6)

The evaluation metrics that we report follow those suggested by [14]: 1) P',10 :

the average precision for the top 10 hits; 2) P@N : the average precision of the top N

hits, where N is equal to the number of occurrences of each keyword in the test data;

3) EER : the average equal error rate at which the false acceptance rate is equal to

the false rejection rate. Note that we define a putative hit to be correct if the system

proposes a keyword that occurs somewhere in an utterance transcript.

3.3.1 TIMIT Experiments

The TIMIT experiment was conducted on the standard 462 speaker training set

of 3,696 utterances and the common 118 speaker test set of 944 utterances. The

total size of the vocabulary was 5,851 words. Each utterance was segmented into

a series of 25 ms frames with a 10 ms frame rate (i.e., centi-second analysis); each

frame was represented by 13 Mel-Frequency Cepstral Coefficients (MFCCs). Since

the TIMIT data consists of read speech in quiet environments, we did not apply

the speech detection module for the TIMIT experiments. All MFCC frames in the

training set were used to train a GMM with 50 components. We then used the

GMM to decode both training and test frames to produce the Gaussian posteriorgram

representation. For testing, we randomly generated a 10-keyword set and made sure

that they contained a variety of numbers of syllables. Table 3.1 shows the 10 keywords

and their number of occurrences in both training and test sets (# training : # test).

We first examined the effect of changing the smoothing factor, A in the posterior-

gram representation when fixing the SDTW window size to 6 and the score weighting

factor a to 0.5, as illustrated in Figure 3-2. Since the smoothing factor ranges from

0.1 to 0.00001, we use a log scale on the x axis. Note that we do not plot the value
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Figure 3-2: This figure illustrates the effect of setting different smoothing factors.
Since in terms of EER (in red), the point -4 holds the best value and P@N is the
second best, we choose A = 0.0001 (the log base is 10) as the best setting for the
smoothing factor.

for P@10 because as we can see in Table 3.1, not all keywords occur more than ten

times in the test set. In the figure, A = 0.0001 was the best setting for the smoothing

factor mainly in terms of EER, so this value was used for all subsequent experiments.

As shown in Figure 3-3, we next investigated the effect of setting different adjust-

ment window sizes for the SDTW when fixing the smoothing factor to 0.0001 and the

score weighting factor ca to 0.5. The results shown in the figure confirmed our expec-

tation that an overly small DTW window size could overly restrict the warp match

between keyword references and test utterances, which could lower the performance.

An overly generous DTW window size could allow warping paths with an excessive

time difference, which could also affect the performance. Based on these experiments,

we found that a window size equal to 6 was the best considering both P@N and EER.

We also ran the keyword spotting experiments with different settings of the score

weighting factor a while fixing the smoothing factor to 0.0001 and SDTW window

size to 6. As shown in Figure 3-4, PAN basically prefers the arithmetic mean metric,

while the EER metric is relatively steady. By considering both metrics, we chose 0.5
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Figure 3-3: This figure illustrates the effect of setting different numbers of Gaussian
components. At windows size 6, the best EER and second best P@N can be obtained.

as the best setting for a.

The number of Gaussian components in the GMM is another key parameter in

our system. With fixed smoothing factor (0.0001), SDTW window size (6) and score

weighting factor (0.5), we ran several experiments with GMMs with different numbers

of Gaussian components, as illustrated in Figure 3-5. Due to the random initializa-

tion of the K-means algorithm for GMM training, we ran each setting five times and

reported the best number. The result indicated that the number of Gaussian compo-

nents in the GMM training has a key impact on the performance. When the number

of components is small, the GMM training may suffer from an underfitting problem,

which causes a low detection rate in P@N. In addition, the detection performance is

not monotonic with the number of Gaussian components. We think the reason is that

the number of Gaussian components should approximate the number of underlying

broad phone classes in the language. As a result, using too many Gaussian com-

ponents will cause the model to be very sensitive to variations in the training data,

which could result in generalization errors on the test data. Based on these results,

we chose 50 as the best number of GMM components.
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Figure 3-4: This figure illustrates the effect of setting different score weighting factors.
At a = 0.5, the best EER and P@N can be obtained.

3.3.2 MIT Lecture Experiments

The MIT Lecture corpus consists of more than 300 hours of speech data recorded

from eight different courses and over 80 general seminars [13]. In most cases, the

data is recorded in a classroom environment using a lapel microphone. For these

experiments we used a standard training set containing 57,351 utterances and a test

set with 7,375 utterances. The vocabulary size of both the training and the test set

is 27,431 words.

Since the data was recorded in a classroom environment, there are many non-

speech artifacts that occur such as background noise, filled pauses, laughter, etc.

As we mentioned in the GMM training section, this non-speech data could cause

serious problems in the unsupervised learning stage of our system. Therefore, prior

to GMM training, we first ran a speech detection module [12] to filter out non-speech

segments. GMM learning was performed on frames within speech segments. Note

that the speech detection module was trained independently from the Lecture data

and did not require any transcription of the Lecture data. 30 keywords were randomly

selected; all of them occur more than 10 times in both the training and test sets. In
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addition, all keywords occur less than 80 times in the test set to avoid using keywords

that are too common in the data. Table 3.2 shows all the keywords and the number

of occurrences in the training and test sets.

Table 3.3 shows keyword detection performance when different numbers of key-

word examples are given. As a result of the TIMIT experiments, we fixed the smooth-

ing factor to 0.0001, the SDTW window size to 6 and the score weighting factor to 0.5.

All of the three evaluation metrics improve dramatically from the case in which only

one keyword example is given to the case in which five examples are given. Beyond

five examples of a keyword, the trend of the performance improvement slows. We

believe the reason for this behavior is that the improvement from one example to five

examples is mainly caused by our voting-based, score-merging strategy. When going

from five examples to ten examples, we gain additional performance improvement,

but there are always some difficult keyword occurrences in the test data. Table 3.4

gives the list of 30 keywords ranked by EER in the 10-example experiment. We ob-

serve that the words with more syllables tended to have better performance than ones

with only two or three syllables.



Table 3.2: "word" (a, b) represents the keyword "word" occurs a times in the training
set and b times in the test set.

zero (247:77)
examples (137:29)
molecule (28:35)
minus (103:78)
situation (151:10)
parameters (21:50)
distance (58:56)
maximum (20:32)
likelihood (13:31)
membrane (19:27)

space (663:32)
performance (72:34)
pretty (403:34)
computer (397:43)
therefore (149:46)
negative (50:50)
algorithm (35:36)
responsible (92:10)
mathematical (37:15)
problems (270:23)

solutions (33:29)
matter (353:34)
results (121:35)
value (217:76))
important (832:47)
equation (98:61)
direction (214:37)
always (500:37)
never (495:21)
course (847:76)

Table 3.3: Effect of Different Numbers of Keyword Examples

# Examples P@10 P@N EER
1 27.00% 17.33% 27.02%
5 61.33% 32.99% 16.82%
10 68.33% 39.31% 15.76%

Since the data used in [14] is not yet publicly available, we are unable to perform

direct comparisons with their experiments. Nevertheless, we can make superficial

comparisons. For example, in the case of 5 keyword examples, the P@10 performance

(61.33%) of our system is competitive with their result (63.30%), while for the P@N

and EER metrics, we are lower than theirs (P@N : 32.99% vs. 52.8%, EER : 16.8%

vs. 10.4%). We suspect that one cause for the superior performance of their work is

their use of a well-trained phonetic recognizer. However, this will require additional

investigation before we can quantify this judgement.

3.4 Conclusion

In this chapter we have presented an unsupervised framework for spoken keyword

detection. Without any annotated corpus, a completely unsupervised GMM learning

framework is introduced to generate Gaussian posteriorgrams for keyword examples

and test utterances. A modified segmental DTW is used to compare the Gaussian



Table 3.4: 30 Keywords ranked by EER. The EER value is within parentheses.

responsible (0.23%)
situation (0.46%)
molecule (4.93%)
mathematical (6.66%)
maximum (7.50%)
solutions (8.13%)
important (8.50%)
performance (8.82%)
distance (8.96%)
results (9.27%)

direction (10.25%)
parameters (10.48%)
algorithm (11.26%)
course (11.40%)
space (13.75%)
problems (17.78%)
negative (18.00%)
value (19.35%)
likelihood (19.36%)
zero (22.65%)

matter (22.80%)
always (23.00%)
therefore (23.92%)
membrane (24.02%)
equation (24.85%)
computer (25.25%)
minus (25.65%)
examples (27.02%)
pretty (29.09%)
never (29.53%)

posteriorgrams between keyword examples and test utterances. After collecting the

warping paths from the comparison of every pair of the keyword example and the test

utterance, we use a voting-based, score-merging strategy to give a relevant score to

every test utterance for each keyword. The detection result is determined by ranking

all the test utterances with respect to their relevant scores. In the evaluation, due

to various system parameters, we first designed several experiments on the smaller

TIMIT dataset to have a basic understanding of appropriate parameter settings as

well as to verify the viability of our entire framework. We then conducted experiments

on the MIT Lecture corpus, which is a much larger vocabulary dataset, to further

examine the effectiveness of our system. The results were encouraging and were

somewhat comparable to other methods that require more supervised training [14].



Chapter 4

Unsupervised Keyword Spotting

Based on Multigram Modeling

4.1 Introduction

In the last chapter, we presented an unsupervised keyword spotting system based

on matching Gaussian posteriorgrams. When performing a keyword search, one or

a few audio samples of the keyword must be provided. In some scenarios, however,

audio samples of a keyword are not very easy to obtain. It is desirable to develop

an alternative method which only requires text input instead of audio based samples.

In this chapter, we will present an unsupervised keyword spotting system which only

requires time aligned text samples of a keyword. The basic idea is derived from the

system proposed in Chapter 3, but differs in the way it represents speech frames and

the use of a multigram model to enable text-based keyword search.

4.2 System Design

4.2.1 Overview

We first give an overview of the system. The inputs are untranscribed speech data

and a keyword. The output is a list of test utterances ranked by the probability



of containing the keyword. In Chapter 3, we have demonstrated how to use the

Gaussian posteriorgram to represent speech frames, while in this system, instead

of calculating the frame's posterior probability on every Gaussian component, we

simply label each speech frame by the Gaussian component with the highest posterior

probability. In other words, each frame is only represented by an index label. By

providing some time aligned example utterances, a Joint-Multigram model is then

trained to build a mapping between letters and Gaussian component indices. Then,

the multigram model is used to decode any given keyword into Gaussian component

indices. Keyword detection is done by comparing the decoded Gaussian component

indices with all the test speech frames also represented by the most probable Gaussian

component labels.

The core components of the system as well as their relationship are illustrated in

Figure 4-1. Detailed descriptions of each component is given in the following sections.

4.2.2 Unsupervised GMM Learning and Labeling

The unsupervised GMM training is exactly the same as what we did in Chapter 3.

After a GMM is trained, the posterior probability of each speech frame is calculated

on every Gaussian component. The label of the Gaussian component with the highest

posterior probability is then selected to represent that speech frame. After this step,

all speech frames from either training or test utterances are labeled frame-by-frame

by Gaussian component indices.

4.2.3 Clustering

Due to speaker variance, we only use the most probable Gaussian component index

to represent speech frames. Therefore, even for a single phone, it is common to

have different Gaussian component index labeling results. For example, frames in a

phone spoken by a female speaker could be labeled by Gaussian component 15, while

frames in the same phone spoken by a male speaker could be labeled by Gaussian

component 28. Since the keyword is directly represented by a series of Gaussian
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Figure 4-1: This figure illustrates the core components in the proposed unsupervised

keyword spotting system. The input is untranscribed speech data and a keyword.

GMM is used to learn and decode speech frames. A clustering algorithm is applied

to the learned GMM to produce Gaussian component clusters. Each speech frame

is then labeled by the Gaussian component cluster where it most likely belongs. A

keyword to symbol model is employed to translate the keyword input into several

possible Gaussian cluster index sequences. Keyword spotting is done by searching

the keyword generated Gaussian cluster index sequences in the test data.

component indices, the quality of representation plays a critical role in our system

design. To address this problem, a clustering algorithm is used to reduce the number

of Gaussian components based on their statistical similarity. After clustering, we

replace the Gaussian component label with the cluster label it belongs to. In the

previous example, if Gaussian component 15 and 28 are clustered together, a cluster

label is given to all the frames belonging to Gaussian component 15 and 28.

To cluster Gaussian components, we first define a similarity metric between two

components. There are several ways to measure the similarity between probability



distributions. The well-known Jensen-Shannon Divergence [30] is employed as the

measurement. The Jensen-Shannon Divergence (JSD) of two Gaussian components

is defined by

1 1
JSD(G |G2)= D(G, |Gm) + D(G2 |Gm) (4.1)2 2

where

Gm = (G + G2) (4.2)

and D is the standard Kullback-Leibler (KL) divergence

G (i)D(Gl|Gn) = Z G(i) log G(i) (4.3)

By using JSD, a pair-wised similarity matrix can be produced for all the learned

Gaussian components. Then, an unsupervised clustering algorithm can be employed

on this similarity matrix. Since it is difficult to determine the best number of clusters,

we used the Affinity Propagation [10] algorithm, which does not require a pre-defined

number of clusters, and also works well for poor initialization of cluster centers. This

algorithm has been shown to be able to find clusters with a lower error rate than other

popular methods [10]. Once the clustering is complete, we should have a reduced

number of Gaussian components. Each Gaussian component is then relabeled by its

corresponding representative cluster as well as the decoding results of the first stage.

4.2.4 Keyword to Symbol Sequence Modeling

In order to map Gaussian component indices to letters, some transcribed time aligned

keyword examples are needed. Two strategies are explored for building this mapping.

One is called flat modeling, and the other is called multigram modeling.

Note that this transcribed data can be a very small portion of the training data.

For example, the number of example utterances can range from a few seconds to

roughly 10 minutes in duration. Such a relatively small amount of labeling work is



Table 4.1: 4 examples of the word "artists." "60:2" represents the first two speech

frames are labeled by Gaussian component 60.

artists

1 60:2 42:13 14:5 48:1 14:1 41:11 26:1 13:13 26:1

13:2 26:1 41:1

2 42:10 41:4 48:1 28:2 19:1 26:1 13:5 26:1 41:8
13:9 26:3 13:6

3 42:20 41:9 13:9 41:1

4 14:1 42:1 14:15 48:1 28:1 48:1 41:1 48:2 14:1

48:3 41:2 26:1 13:15 26:1

affordable and can be done in a reasonable time.

Flat Modeling

The flat modeling approach collects all occurrences of an input keyword in the example

utterances. Each keyword instance provides an alternative instance of a keyword.

Thus, after word-level alignment, each example can provide a Gaussian component

sequence that corresponds to the input keyword. The fiat modeling collects these

sequences and builds a one-to-many mapping from the input keyword to these possible

Gaussian component sequences.

Table 4.1 shows an example of the keyword "artists" and its corresponding 4 ex-

ample utterances in TIMIT. Note that in this table, "42:10" means there are ten

occurrences of the Gaussian component "42." It is clear that these 4 Gaussian com-

ponent sequences are different from each other but share some similar segments such

as the beginning of the second and the third example.

Joint Multigram Modeling

The fiat model is straightforward, but it does not use the shared patterns among the

multiple example Gaussian component sequences. These shared patterns could be

useful because they indicate the reliable and consistent regions of the output of the

unsupervised GMM learning. By using these shared patterns, we can represent the

keyword by combining several patterns, which is expected to be a better generalization



of the training data example.

The basic idea is that instead of directly mapping a keyword to Gaussian com-

ponent sequences, we build a letter to Gaussian component sequence mapping that

can produce Gaussian component sequences at the letter level. Specifically, given

a word "word," flat modeling builds a mapping from "word" to Gaussian compo-

nent sequence "112233" and "11222333," while the new model builds three mappings

which are "w" to "11," "or" to "22" and "d" to "33." In the latter case, if we col-

lect enough mappings that cover all the letters (and their possible combinations) in

English. Then, when facing a new keyword, we can still produce a possible Gaussian

component sequence by combining mappings of the corresponding letters. We call

this model the Joint Multigram (JM) model [9]. The following paragraphs will give

a formal definition of this model.

The JM model tries to model two symbol sequences with hidden many-to-many

mapping structures. The model takes two symbol sequences as input, and outputs

the best joint segmentation of these two sequences using the maximum likelihood

criterion. Formally, if A = al ... an and B = b -... bm are two streams of symbols,

the JM model defines a likelihood function of joint cosegmentation L of the input

sequences A and B

L(A, B) = £(A, B, L) (4.4)
LE{L}

where L

L = a( ) a( 2)- a(,). (4.5)
b(tl) b(t2) " b(t)

is the set of all possible cosegmentations and L is the likelihood function. a(,) and

b(t,) defines one symbol or a combination of several symbols in sequence A and B.

Note that segmentations in each cosegmentation pair can have arbitrary length.

For example, the length of a(, 2) and b(t2 ) can be unequal. But to make this model

tractable, we usually define two maximum lengths (La, Lb) to constrain the maximum



Figure 4-2: This figure illustrates a cosegmentation of two string streams "abcd"
and "efg". A cosegmentation consists of two segments from the input two strings

respectively, e.g., ab and (

possible length of the segmentation of A and B. For instance, if we define a (2, 3)

joint multigram model, the maximum length of a(,,) is 2 and the maximum length

of b(s) is 3. Figure 4-2 gives an example of all possible cosegmentations of two

streams of symbols "abcd" and "efg." The left part of the figure shows the possible

cosegmentations of these two strings.

Then, we define the probability of a cosegmentation as

P(a(s,), b(,,) (4.6)

which means the probability of cosegmenting a(,) and b(,,) from the given symbol

sequences. Clearly, we have

E P(a(s,, b(sj) = 1 (4.7)
i,j

Therefore, a JM model JM can be represented by

JM = (La, Lb, Pc) (4.8)

where P, is the set of probabilities of all possible cosegmentations.



If we have a full estimation of Pc, by iterating all possible cosegmentations, the

most likely cosegmentation L' is given by

L' = arg max £(A, B, L) (4.9)
LE{L}

The estimation of Pc can be obtained by the standard EM algorithm and has

an efficient forward-backward implementation. We give a brief description of the

forward-backward algorithm and the update function.

We define a forward variable a(i, j) which represents the likelihood of all possible

cosegmentations up to position i in symbol sequence A and j in symbol sequence

B, and a backward variable 1 (i,j) which accounts for the likelihood of all possible

cosegmentations starting from i + 1 in A and j + 1 in B to the end. Formally, we

have

a(i,j) = L(A',B)

(i,j) = ( ,B l)

Then, we can calculate a recursively by

La Lb

(ij) (i - k, - )P( k+, +1
k=1l =1

where 0 < i < n and 0 < j < m. Similarly, we can calculate 0 as

La Lb

3(i, j) = E 1~3(i + k, + 1)P(Aj , B3 +1)
k=1 l=1

where 0 < i < n and 0 < j < m. Note that the initial conditions are a(0, 0) = 1 and

f(n, m) = 1.

Then, if we denote ar, fl and P' as the statistics in the r-th iteration, we can

derive the update function of the Pr+l(a(,,), b(sq)) as

pr+El(al b( )) n ar(i - k, j - )Pr(a(s,), b(,q))Jr(i,j)
S(a(p), b() ) =50

50



Figure 4-3: This figure illustrates an example of the JM Model learning. On the left,

there are several Gaussian component sequence samples of the word "form". After

the JM model learning, the maximum likelihood cosegmentations are shown on the

right. Each cosegmentation is assigned to a probability that is used in the decoding

phase.

where the segmentation a(sp) is with length k and the segmentation b(sq) is with length

1. With multiple training instances, this update function can be re-written by

+l(a(, b()) t =l  i =1 
E =1 a(i - k, - 1)Pr(a(S), b())/(i,j)

Et=l Ei=I X o(i,J*)/r(i,J*)

where T is the set of training instances.

Figure 4-3 gives an example of the JM model. In this example, a JM model for

letter sequence "f o r m" to Gaussian component indices sequence "19 17 34" is built.

The left side is a set of training instances and the right side is the modeling result.



4.2.5 N-best Decoding

The JM decoder takes a keyword as input, and outputs the best possible segments of

the keyword as well as the corresponding mapped sequences of Gaussian components.

Formally, given a keyword A, the most likely Gaussian component index sequence B'

can be calculated by

B' = arg max L(A, B, L') (4.10)
B

where L' denotes the best cosegmentation found for A and B. Note that this is for

maximum likelihood decoding. We can also apply a maximum a posterior (MAP)

decoder as

B' = arg max £(A, L' B)L£(B, L') (4.11)

where £(A, L'IB) accounts for the likelihood of the match between A and B, which

can be calculated by using the conditional probability P(a(1,), b(S)). The other term

is £(B, L') that defines a symbol language model for the output index sequence

according to the best cosegmentation L'. In the implementation, it can be a bi-gram

or tri-gram symbol language model.

Since our decoding quality directly affects the performance of the following sym-

bol sequence matching, we want to provide as much information as possible in the

decoding result. Thus, in addition to the one-best decoder, we developed a beam

search based n-best decoder. The beam width is adjustable and, in the current im-

plementation, the setting is 200 at each decoding step.

Table 4.2 shows the 5-best decoding results for the word "artists." Since the total

likelihood of the cosegmentations is a multiplicative probability, the decoder prefers

a smaller number of cosegmentations. In Table 4.1, we see that the beginning "42

41" is the shared pattern of two examples. Therefore, it accumulates more counts in

the maximum likelihood training. The decoding result (all top 5 begin with "42 41")

confirms this shared pattern.



Table 4.2: 5-best decoding result of the word "artists." "42:20" represents that the
Gaussian component 42 should be given to the first 20 frames of the keyword "artists".

artists

1 42:20 41:9 13:9 41:1
2 42:20 41:9 41:1 13:2 26:1 41:1
3 42:20 41:9 41:1 48:1 28:1 48:5
4 42:20 41:9 13:9 13:9 26:3 13:6
5 42:20 41:9 13:9 26:1 13:14 26:1

4.2.6 Sub-symbol-sequence Matching

After the n-best sequence of Gaussian components for an input keyword is obtained,

a symbol sequence matching algorithm is used to locate the possible regions in the

test utterances where the keyword appears. This goal requires two properties of the

matching algorithm. First, it should employ sub-sequence matching. Each n-best

result represents one alternative of the keyword. The matching algorithm should op-

erate with a sliding-window manner in order to locate a keyword in a test utterance

of continuous words. Second, the algorithm must be efficient. Since the test utter-

ance set may contain thousands of speech utterances, it is impractical for a keyword

spotting system to be computationally intensive.

Smith-Waterman Algorithm

Based on these two requirements, we chose to use the Smith-Waterman (SW) [32]

sub-string matching algorithm. Given two strings A and B with length m and n,

this algorithm is able to find the optimal local alignment between A and B using a

dynamic programming strategy. By back-tracing the scoring matrix, this algorithm

can output the matched local alignment.

Formally, given two strings A, B with length m, n, we define a scoring matrix H

as

H(i,O) = 0, O<i<m

H(O,j) = 0, O<j<n



Table 4.3: The scoring matrix of "aaabbb" and "aabbbb." In calculation of the H(i, j)
function, a matching is given 2 points, while an insertion, deletion and mismatch is
given -1 points.

a a a b b b
0000 0 0 0

a 0 2 2 2 1 0 0
a 0 2 4 4 3 2 1
b 0 1 3 3 6 5 4
b 002258 7
b 0 0 1 1 4 7 10
b 0 0 0 0 3 6 9

where H(i, j) is the maximum similarity score between the sub-string of A with length

i and the sub-string of B with length j. Then, the scoring matrix H can be recursively

calculated by

0 (1)

H(i,j) max (i- ,j - 1)+ w(Ai, B,) (2)

H(i - 1, )+ w(A,,-) (3)

H(i,j - 1)+ w(-, B,) (4)

where 1 < i < m and 1 < j < n. If string A is the reference string and string B is the

string for matching, four cases can be developed in this recursive calculation. Case

(1) ensures that all the values in this scoring matrix are positive. Case (2) represents

a match or mismatch by comparing the symbols A, and B,. The similarity function w

controls the amount of the reward (for a match) or the penalty (for a mismatch). Case

(3) denotes the deletion error which indicates the target string misses one symbol by

comparing with the reference string. Function w also controls how much penalty is

given in this case. Case (4) is the reverse case of Case (3). It is called insertion error

because this time the target string has other symbols that do not appear at the same

position in the reference string. Table 4.3 shows an example of the scoring matrix of

two strings "aaabbb" and "aabbbb."

After the scoring matrix H is calculated, the optimum local alignment is obtained



by starting from the highest value in the matrix. For instance, suppose we find the

highest value at H(i,j). Starting from here and at each step, we compare the values

in H(i-1, j), H(i -1, j-1), and H(i, j-1) to find the highest value as our next jump.

If there is a tie, the diagonal jump is preferred. We continue with this process until we

reach a matrix position with value zero or with coordinates (0, 0). By recording the

back-tracing steps, an interval where both string A and string B have an optimum

local alignment can be restored.

In terms of keyword spotting, the reference string becomes the decoding result

(Gaussian component sequences) and the target string becomes all the test data. By

running the SW algorithm throughout the test data, we can rank all the optimal local

alignments by their corresponding similarity score. The higher the score is, the more

likely that utterance has the input keyword.

Region Voting Scheme

In order to provide as much useful information as possible, we explored the voting of

n-best results for sequence matching.

N-best results are incorporated by letting each decoding result contribute a portion

of the similarity score to an utterance. Then, all similarity scores are collected for the

final ranking. Some local alignments may only correspond to a part of the keyword.

For instance, for the input keyword "keyword,", some optimal local alignments may

point to the second syllable (sub-word) "word," while other alignments may refer

to the first syllable (sub-word) "key." Therefore, it is not enough to only collect

the similarity score on an utterance-by-utterance basis. We need to consider every

possible region in an utterance. The basic idea is that for each utterance, if we find

several local alignments for the reference sequences corresponding to the same region

of an utterance, the similarity score collected for this region is reliable. We directly

sum up the similarity scores for this utterance. In contrast, if we find an utterance

with several local alignments, but they are all from non-overlapped regions, none of

these similarity scores are used in calculating the total score of that utterance.

The region voting idea is demonstrated in Figure 4-4. In this figure, E, denotes



a speech utterance

Figure 4-4: This figure illustrates a region voting example on a speech utterance. E,
denotes the similarity score contributed by the i-th keyword sample. In this example,
the third segment in the utterance accumulates three scores, while the last segment
only has one. Therefore, the scores on the third segment are more reliable than the
score on the last segment.

the similarity score contributed by the i-th example of the keyword. We can see that

the third region accumulates three similarity scores, while the last region only has

one. In this case, we use the similarity score of the third region to represent the

similarity score of the whole utterance. Note that in practice, since it is possible for

voted regions to overlap, the final region is calculated by merging similar overlapping

regions.

Specifically, the algorithm flow of the region voting scheme is as follows:

Step 1. Given a keyword, run a n-best decoder to get the set of decoding result

D.

Step 2. Pick an utterance Ui in the test data.

Step 3. Pick a decoding result Dy E D; run the SW algorithm SW(Ui, Dy) to find

an optimal local alignment au,.

Step 4. Mark the region in that utterance U with the similarity score from the

alignment aug.

Step 5. Go to Step 3 until we iterate through all the decoding results.

Step 6. Check all the marked regions and merge the overlapped regions as well as

their similarity scores.

Step 7. Find a region with the highest similarity score and use this score as the



final similarity score for the utterance U?.

Step 8. Go to Step 2 until we cycle through all the test utterances.

Efficiency is considered in each step. In steps 4, 6, and 7, an efficient binary range

tree is constructed for region merging and for searching for the highest similarity

score.

After obtaining the similarity scores for all test utterances, we rank them by their

similarity scores. The higher the rank is, the higher the probability the utterance

contains the input keyword.

4.3 Experiments

Keyword spotting tasks using the proposed framework were performed on the TIMIT

corpus. We give a brief overview of the experiment settings. For GMM training, a

GMM with 64 Gaussian mixtures is used. After clustering, 10 broad phone classes

are found. In the multigram training, a maximum of 20 iterations is used if the model

does not converge. The maximum likelihood decoder produces 20-best results and all

of the results are used for the following symbol matching. In the final matching result,

no thresholds are used but instead all test utterances are ranked by the possibility of

their containing the input keyword.

4.3.1 TIMIT Dataset

The TIMIT standard training set was used as untranscribed data, including 3,696

utterances. The test set contains 944 utterances. There are a total of 630 speakers.

The vocabulary size of both the training and testing sets is 5,851.

Some word statistics from the TIMIT dataset are shown in Figure 4-5. It is clear

that the word occurrence distribution follows the "long-tail" rule. The most frequent

words are usually not keywords, such as articles and prepositions. These kinds of

words can be viewed as stop words as in a text-based search system. According to

[16], the duration of the keyword is a strong clue in the detection performance. The

more syllables a keyword has, the higher the detection rate tends to be. In the TIMIT
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Table 4.4: 8 Keyword Set for TIMIT

Keyword # Occ in Training # Occ in Testing
problem 22 13

development 9 8
artists 7 6

informative 7 5
organizations 7 6

surface 3 8
otherwise 2 1
together 2 1

dataset, a large amount of words have 6-8 syllables, which is suitable for a typical

keyword spotting task.

4.3.2 Keyword Spotting Experiments

Based on the number of occurrences, eight keywords are randomly selected as the set

of testing keywords. The set consists of one popular word, four less popular words

and three rarely seen words in terms of the number of occurrences in the TIMIT

training set. A list of these keywords is given in Table 4.4. The spotting results are

represented by the Receiver Operating Characteristic (ROC) curve, shown in Figure

4-6 and Figure 4-7.

Based on the keyword spotting results, the following observations can be made:

High Top 1 Hit Rate. In 5 out of 8 cases, the precision of the detection is 100%

at the first choice of possible utterances containing the keyword. By looking at

the detailed results, this high top 1 hit rate benefits from our voting scheme. The

utterances containing the keyword are emphasized by each keyword example because

the regions that may have the keyword gradually accumulate a high similarity score.

More examples are better. More examples can cover more variances of how people

speak a keyword. Since the JM modeling uses the criterion of maximum likelihood in

estimating the parameters, the more training instances it has, the more accurate the

model can be. Having a better JM model, the decoding quality also improves. Since
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Figure 4-6: These four figures illustrate the ROC curves of four keyword spotting
results on the TIMIT dataset. It is clear that a high top 1 hit rate can be obtained,
while some keyword occurrences are difficult to detect.
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the symbol matching is a static process, the improved decoding result directly affects

the matching results.

Even if the training set contains only one or two examples, the system can still

have a hit. Although the last two keywords "otherwise" and "together" only appear

twice in the training set, the system still provides a detection precision of 20% and

50%. Note that in these cases, since there are not enough examples that can be used

to train the JM model, we directly use the training examples as the decoding result

(flat model) for the symbol matching.

Some examples are difficult to detected. In all cases, it is difficult to achieve a

high recall rate while maintaining a high precision, which indicates there are many

examples in the test data that cannot be discovered by only using the decoding results.

This is reasonable for the TIMIT dataset because 1) the speakers in the test set are

completely different from the speakers in the training set; and 2) the utterances used

in the test set are completely different from the training set. As mentioned before,

the pronunciation of a keyword depends on the speakers as well as the context. As a

result, these hard examples that cannot be easily detected may be caused by either or

both of these two issues. By looking at the detailed voting results, we find that some

hard examples are completely different from the training examples. For example,

in detection of the keyword "informative," we found an example whose last several

frames are all labeled with cluster 19, while all training examples end with cluster 48.

4.3.3 Performance Comparison

We also compared the detection performance for six keywords against the system

we proposed in Chapter 3. We plot the Receiver Operating Characteristic (ROC)

curve shown in Figure 4-8. The legend MG stands for the multigram based method,

while GP stands for the Gaussian posteriorgram based method. It is clear that each

keyword decreases in detection performance. Specifically, some keyword occurrences

appear to be extremely difficult for detection using the multigram method, while

they are easy to detect when providing audio samples, e.g., for the keyword "de-

velopment," "organizations" and "surface." This result is reasonable because the



Table 4.5: Top 5 errors for the keyword "problem," "development," "artists" and
"informative."

problem development artists informative
possible whole human a tissue untimely
downward dull gleam was stranded employment
accomplished predominantly economic at twilight
pond grow more meats test introduced
bonfire coincided with glistened important

Table 4.6: Top 5 errors for the
"together."

keyword "organizations," "surface," "otherwise" and

organizations surface otherwise together

sterilization substances all the while at gunpoint
musicians sadness others are expense
radiosterilization sometimes economic alligators
accusations experts other vocabulary
rehabilitation services always use time they're

multigram based method does not require any audio keyword samples and is much

harder than the Gaussian posterior based method. However, for some easy keyword

occurrence, multigram based method can still have a good detection rate.

4.3.4 Error Analysis

We performed an error analysis by looking at the ranking result of output of the

voting scheme. The top 5 errors for each keyword are listed in Table 4.5 and Table

4.6. There are two types of errors that can be found in these two lists:

1) Words or phrases with similar pronunciations. For example, the word "pos-

sible[pasabal]" is mistakenly identified as "problem[problam]," while the phrase "a

tissue[a tifu]" is identified as "artists[artists]." Furthermore, all of the top 5 errors for

the keyword "organizations" fall into this error category mainly caused by the suffix

"-ations." The voting scheme seems to be particularly sensitive to shared prefix or

suffix errors, because every keyword example may contribute to a similarity score to

the same region of the utterance, which accumulates the chance of that utterance
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containing that keyword.

2) Words or phrases containing similar broad phone classes. Since the Gaussian

component labeling is generally equivalent to assigning a broad phone class label to

every frame in an utterance, it is possible for two completely different words to have

similar sequences of broad phone class labels. For example, in the error list of the

keyword "problem," the word "accomplished" is picked because the part "-ccompli-

[28 19 26 14]" has the same broad phone class sequence with "proble-[28 19 26 14]."

It is the same for the word "vocabulary" in the error list of the keyword "together"

(the part "vocab[26 45 28]" and "toge[26 45 28]").

We can hypothesize that the main cause of these two types of errors is due to

limited acoustic model resolution. Specifically, the number of both error types can be

reduced by increasing the information contained in the broad phone class labels. If

we can model the broad phone classes in a more detailed way, it may be possible to

differentiate the words or phrases with similar pronunciations as well as broad phone

class representation. However, the modeling resolution problem is a double-edged

sword. Due to speaker variance, increasing model resolution could be used to model

the differences caused by different speaking styles. This may even increase the noise

in the symbol matching module because a keyword now can have many completely

different Gaussian component sequences, such as one sequence for male speakers and

one sequence for female speakers. Therefore, how to determine a suitable model

resolution has trade-offs, which may require further experiment and investigation.

4.4 Discussion

This chapter has presented an unsupervised framework to do keyword spotting in

speech data without keyword audio examples. The framework first trains a GMM

to label speech frames in an unsupervised way. Then, a clustering algorithm groups

similar GMM components to make a smaller set of representative GMM component

clusters. As a result, all speech utterances can be labeled in a frame-by-frame way by

cluster indices. Time aligned text based examples of keywords are given to build a



Joint-Multigram model that is used to find a mapping from letters in the keyword to

the clustered Gaussian component labels. A voting based symbol matching module is

then used to find the possible regions containing the input keyword in test utterances.

By running the experiments on the TIMIT dataset, we demonstrate the possibility of

using only text based samples to perform the keyword spotting task in a speaker in-

dependent environment. A good top 1 hit rate is achieved and the detection precision

is reasonably well even though there are only very few training examples. In the error

analysis, we find that the unsupervised modeling resolution might affect the keyword

detection performance. How to set the suitable resolution is a trade-off between the

detection recall rate and the amount of noise brought by the speaking variance of

speakers. In addition, theoretically the multigram model can be trained on any word

aligned data other than keyword examples. However, since it uses an EM training

strategy which requires a large amount of data, in the current implementation, we

only use the keyword examples to train a small multigram model. We will leave the

large scale multigram model training for future work.



Chapter 5

Unsupervised Learning of Acoustic

Units

5.1 Introduction

In the previous two chapters, unsupervised GMM learning played a critical role in

both of the keyword spotting systems. We are naturally interested to investigate

the underlying behavior of unsupervised GMM training. Since the success of the

keyword spotting task has demonstrated that the Gaussian posteriorgrams as well as

the Gaussian cluster representation can be used to label speech frames, it is helpful

to understand what acoustic patterns/events can be found by only providing speech

signals without any transcription.

In this chapter, we first develop a statistical method to investigate the learning

ability of unsupervised GMM training. A phonetic histogram analysis is applied

to extract acoustically meaningful information for each learned Gaussian component

cluster. The basic idea is to apply unsupervised GMM training to the TIMIT dataset.

After the training converges, a clustering algorithm is used to cluster the learned

Gaussian components. Each speech frame is then labeled by the most probable

Gaussian component cluster. Since the TIMIT dataset provides time aligned pho-

netic transcription, a phonetic histogram can be drawn for each Gaussian component

cluster. Specifically, each bar in a histogram represents a pre-defined phone. The



height of a bar represents the normalized portion of how many times the Gaussian

component cluster represents that phone. By looking at the histogram of a Gaus-

sian component cluster, we can hypothesize the broad acoustic class each Gaussian

component cluster may represent.

In the second part of this chapter, taking the phonetic histogram analysis one

step further, we explore some unsupervised methods to help determine broad acous-

tic classes without any phonetic transcription. We develop three acoustic feature

detectors for detecting voiced regions, sonorants as well as obstruents. The detection

results are used to give an acoustic label to each speech frame. The acoustic labels are

then combined with Gaussian component cluster labels to produce an acoustic feature

histogram for each Gaussian component cluster. Based on the resultant histograms,

a decision tree based method is used to infer the acoustic meanings of each acoustic

feature histogram as well as to hypothesize the broad acoustic class each histogram

represents. The evaluation was performed on the TIMIT dataset. The comparison of

the ground truth shows that the proposed unsupervised broad acoustic class modeling

framework can differentiate vowels, semi-vowels, fricatives, stops and closures.

5.2 Phonetic Histogram Analysis

5.2.1 GMM Training and Clustering

The same unsupervised GMM training and clustering strategy is used to give each

speech frame a Gaussian component cluster label. Specifically, all speech frames in

the TIMIT dataset are sent to unsupervised GMM training. The number of Gaussian

components is set to 64. After the GMM is trained, the Affinity Propagation algo-

rithm is used to cluster the Gaussian components. Then, each speech frame in both

the training and the test set is labeled by a cluster index. Since the TIMIT corpus

has time-aligned phonetic transcription, for each Gaussian component cluster and a

specific phone, we can calculate how many times each cluster represents a phone.

Based on the calculation, a histogram can be drawn for each Gaussian component
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Figure 5-1: This figure illustrates the histogram of the Gaussian component cluster
13. Each bar in the figure represents the portion of times that this cluster represents a
phone. The top sub-figure is the histogram of the training set, while the bottom sub-
figure is the histogram of the test set. It is clear that this cluster mainly represents
fricatives and affricates.

cluster.

5.2.2 Phonetic Histograms

Figure 5-1 shows the phonetic histogram of the Gaussian component cluster 13. Each

bar in the figure represents the portion of times that this cluster represents a phone.

The top sub-figure is the histogram of the training set, while the bottom sub-figure is

the histogram of the test set. It is clear that this cluster mainly represents fricatives

and affricates.



Figure 5-2 illustrates the phonetic histogram of another Gaussian component c(lus-

ter 41. Since most bars are labeled as vowels or semi-vowels, this cluster mainly

represents vowels and semi-vowels.

Figure 5-3 illustrates the phonetic histogram of the Gaussian component cluster

14. This cluster mainly represents retroflex.

Figure 5-4 illustrates the phonetic histogram of Gaussian component cluster 19.

This cluster mainly represents stop closures.

Figure 5-5 illustrates the phonetic histogram of the Gaussian component cluster

26. This cluster mainly represents fricatives, some stops and their closures.

Figure 5-6 illustrates the phonetic histogram of the Gaussian component cluster

28. This cluster mainly represents stop closures and nasals.

Figure 5-7 illustrates the phonetic histogram of the Gaussian component cluster

42. This cluster mainly represents low vowels.

Figure 5-8 illustrates the phonetic histogram of Gaussian component cluster 45.

This cluster mainly represents high vowels.

Figure 5-9 illustrates the phonetic histogram of the Gaussian component cluster

48. This cluster mainly represents nasals except for some vowels and retroflex.

Figure 5-10 illustrates the phonetic histogram of the Gaussian component cluster

60. This cluster mainly represents semi-vowels and low vowels.

After investigating all histograms, we find that each Gaussian component cluster

takes responsibility for a small set of phones. Phones in a set share similar acoustic

characteristics. Therefore, each phone set can be called a broad acoustic class. As a

result, with the help of phonetic transcription, the phonetic histogram analysis can

provide a way of determining the broad acoustic class that each Gaussian component

cluster represents.

This analysis also provides a fundamental viability of why the unsupervised key-

word spotting frameworks can work. Without any transcription, unsupervised GMM

training and clustering are able to automatically extract some acoustically meaningful

information from speech signals only. When the learned knowledge is used to label

speech frames, it can provide enough information for tasks such as keyword spotting.
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Figure 5-2: This figure illustrates the phonetic histogram of the Gaussian component
cluster 41. Each bar in the figure represents the portion of times that this cluster
represent a phone. The tob sub-figure is the histogram of the training set, while
the bottom sub-figure is the histogram of the test set. Since most bars are labeled
as vowels or semi-vowels, it is clear that this cluster mainly represents vowels and
semi-vowels.
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Figure 5-3: This figure illustrates the phonetic histogram of the Gaussian component
cluster 14. Each bar in the figure represents the portion of times that this cluster
represent a phone. The top sub-figure is the histogram on the training set, while the
bottom sub-figure is the histogram on the test set. This cluster mainly represents
retroflex.
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Figure 5-4: This figure illustrates the phonetic histogram of the Gaussian component

cluster 19. Each bar in the figure represents the portion of times that this cluster

represents a phone. The top sub-figure is the histogram of the training set, while the

bottom sub-figure is the histogram of the test set. This cluster mainly represents stop

closures.
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Figure 5-5: This figure illustrates the phonetic histogram of the Gaussian component
cluster 26. Each bar in the figure represents the portion of times that this cluster
represents a phone. The top sub-figure is the histogram of the training set, while
the bottom sub-figure is the histogram of the test set. This cluster mainly represents
fricatives, some stops and stop closures.
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Figure 5-6: This figure illustrates the phonetic histogram of the Gaussian component

cluster 28. Each bar in the figure represents the portion of times that this cluster

represents a phone. The top sub-figure is the histogram of the training set, while the

bottom sub-figure is the histogram of the test set. This cluster mainly represents stop

closures and nasals.
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Figure 5-7: This figure illustrates the phonetic histogram of the Gaussian component
cluster 42. Each bar in the figure represents the portion of times that this cluster
represents a phone. The top sub-figure is the histogram of the training set, while the
bottom sub-figure is the histogram of the test set. This cluster mainly represents low
vowels.
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Figure 5-8: This figure illustrates the phonetic histogram of the Gaussian component
cluster 45. Each bar in the figure represents the portion of times that this cluster
represents a phone. The top sub-figure is the histogram of the training set, while
the bottom sub-figure is the histogram of the test set. This cluster mainly represents
high vowels.
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Figure 5-9: This figure illustrates the phonetic histogram of the Gaussian component
cluster 48. Each bar in the figure represents the portion of times that this cluster
represents a phone. The top sub-figure is the histogram of the training set, while
the bottom sub-figure is the histogram of the test set. This cluster mainly represents
nasals except for some vowels and retroflex.
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Figure 5-10: This figure illustrates the phonetic histogram of the Gaussian component

cluster 60. Each bar in the figure represents the portion of times that this cluster

represents a phone. The top sub-figure is the histogram of the training set, while

the bottom sub-figure is the histogram of the test set. This cluster mainly represents

semi-vowels and low vowels.
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5.3 Unsupervised Broad Acoustic Class Modeling

As mentioned in the last section, unsupervised GMM training and clustering can

provide a broad acoustic class finding framework. However, understanding what

acoustic class each Gaussian component cluster represents still needs a time-aligned

phonetic transcription. It is natural to explore whether there is an unsupervised

way to hypothesize the broad acoustic class that each Gaussian component cluster

represents. In this section, we describe some preliminary work to address this problem.

5.3.1 Framework Overview

The unsupervised broad acoustic class modeling framework can be divided into three

steps. The first step labels each input speech frame with Gaussian cluster index. As

a result, a speech utterance is converted to a series of Gaussian cluster indices. In

the second step, three different acoustic feature detectors are applied to every speech

utterance. In the third step, we aggregate the acoustic feature labels with the Gaus-

sian component cluster labels and use a decision tree based method to hypothesize

the broad acoustic class that each Gaussian cluster represents. The overview of the

proposed system is shown in Figure 5-11.

5.3.2 Unsupervised Acoustic Feature Analysis

Since no transcription is provided, it is necessary to extract some acoustically mean-

ingful features directly from the speech signal. We designed three different acoustic

feature detection modules. These three acoustic detectors are employed to locate

three acoustic features on speech frames, including vowel centers, obstruents and

voicing regions. Each detector takes a speech utterance as input and outputs the

time points (for vowel center and obstruent detector) or time intervals (for voicing

detector). The reason why these features are selected is that they basically cover the

most reliable acoustic clues for determining a broad acoustic class. In the following

sections, we give a detailed description of the three detectors.
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Figure 5-11: This figure illustrates the overview of the broad acoustic class modeling

framework. The unsupervised broad acoustic class modeling framework can be di-

vided into three steps. The first step labels each input speech frame with Gaussian

cluster index. As a result, a speech utterance is converted to a series of Gaussian clus-

ter indices. In the second step, three different acoustic feature detectors are applied

to the input utterance. In the third step, we aggregate the acoustic feature labels

with the Gaussian component cluster labels and use a decision tree based method to

hypothesize the broad acoustic class each Gaussian cluster represents.

5.3.3 Vowel Center Detection

In vowel center detection, a speech rhythm guided syllable nuclei detection method is

employed [46]. The basic idea is to use rhythm information to locate syllable nuclei in

a non-parametric way. Since the rhythm based method requires no parameters, it is

a completely unsupervised process. No training data is needed. Since syllable nuclei

appear mainly around the center of vowels and semi-vowels, we can directly use this

syllable nuclei detection module to locate vowel centers.

Detection Algorithm Overview

The speech-rhythm guided syllable nuclei detection algorithm can be divided into two

main stages. In the first stage, we apply an envelope analysis to the input speech



Figure 5-12: This figure illustrates the algorithm flowchart for the rhythm based

syllable nuclei detection system. RG stands for our rhythm guided method. The
speech-rhythm guided syllable nuclei detection algorithm can be divided into two
main stages. In the first stage, we apply an envelope analysis to the input speech
signal. In the second stage, we estimate the speech rhythm on the signal envelope to

help with the syllable nuclei detection.

signal. In the second stage, we estimate the speech rhythm on the signal envelope

to help with the syllable nuclei detection. A flowchart of the proposed algorithm in

shown in Figure 5-12. Each of the stages is described in more detail in the following
three subsections.

Envelope Analysis

To filter out noise at diffrent fequency levels, the peripheral auditorythm based band-

pass filter has been widely used in analyzing speech signals. In our approach, we
use an e uivalent rectangular bandwidth filter (ERB) to first split the wave signal

into 20 channels [22]. The ERB filter can be viewed as a series of gammatone filters

operatin stag on the ERB rate scale. The output signal of the i-th ERB filter is

helpt) tm- exp(-2withtrbt) cos(2Cr)H(tsyllable nuclei) (5.1)

where w is the filter order din our implementation, we set m = ), b is the bandwidth,
where m is the filter order (in our implementation, we set m -- 4), bi is the bandwidth,



CF,nor is the center frequency converted from the ERB scale, and H(t) is the unit

step signal.

After band-pass filtering, we extract the envelope Ei(t) of each channel. Let x,(t)

be the signal in the i-th channel. To compute the envelope, we apply the Hilbert

transform on xi(t) to calculate the magnitude X(t) as

Xi(t) = xx(t) + i - -(x,(t)) (5.2)

where -(.) denotes the Hilbert transform. The envelope of the i-th channel can be

calculated by

E(t) = IX(t) (5.3)

In order to reinforce the energy agreement of each channel, we first normalize each

channel envelope and then sum them to have the total envelope representation Ei(t)

of the input speech signal

N

E(t) = E E(t) (5.4)
S1

where N is the number of channels.

Unlike some previous methods, we do not choose to do sub-band selection, and we

use direct summation instead of a sub-band temporal correlation of energy envelopes.

There are two main reasons for this. First, since we are using a two-stage method,

the more sub-bands we use to contribute to the total envelope, the more information

we can use for speech-rhythm estimation. Second, we noticed that with temporal

correlation, energy peaks may occur a little bit later than their actual location. The

amount of delay is dependent on the length of the correlation window. Although this

delay does not affect the total number of peaks, it does affect the accuracy of our

subsequent speech-rhythm estimate. Therefore, we chose not to perform a correlation

so as not to interfere with the second stage processing.



Rhythm Guided Peak Counting

A perfect peak counting algorithm would find all true positive peaks and make no

false predictions. In most peak picking methods, there are two important parameters

that determine peak selection [17]. The first is the ratio of the height of a peak

over the highest peak in the current working set. The other is the ratio of the

contrast of a peak with its immediate neighboring valleys. The first parameter uses

global information while the second parameter may vary on a case by case basis,

even within an utterance. In addition, due to the various sources of noise, it (an be

difficult to find parameter thresholds that avoid all spurious peaks while detecting all

correct peaks. Thus, we seek to use the speech rhythm information to avoid requiring

these two parameters in processing the spectral envelope. The basic procedure is to

use a conventional method to find the first two syllabic nuclei via envelope peaks;

then estimate the instantaneous speech rhythm based on these two nuclei; and then

subsequently predict intervals where the next syllable nucleus may appear; finally, we

use a simple slope based peak detection algorithm in each interval that avoids the

use of any parameters or thresholds. This simple peak detection and speech rhythm

estimation are performed repeatedly until the end of the utterance is reached.

To clearly and efficiently represent speech rhythm, we turn the speech rhythm

estimation into a sinusoid function fitting problem. Given a peak location set P, we

fit a sinusoid function Fk1,k2 , with frequency, k1, and phase offset, k2, of which peak

locations are matched to the peak locations in P. The target sinusoid function is

Fkl,k2 (x) = sin(ki - x + 2r -k2) (5.5)

By using a least mean squares fitting scheme, the objective function can be written

as

1
{kl, k2 } = arg min (1 - Fkk2 (5.6)

ki,k2 i 1p

where p, E P denotes the location of peak p, and k2 E [0, 1). Using these notations,

a stepwise description of the syllable nuclei detection method is as follows:



Step 1 After the i-th peak pi is found, add pi into P

Step 2 Based on the observed peaks in P, perform least mean squares fitting on

P to calculate the current best k and k'

Step 3 Align all the pi in P to the nearest xj and find xp, representing the sinusoid

peak location to which the newly found p, is assigned

Step 4 Calculate the smallest x, where Fk1,k (Xs) = 1 and x, > xp,

Step 5 Run slope based peak counting within the range [x, x, x+ ]. If we have

multiple peak candidates, pick the maximum one. Thus, we only allow one peak in

this range.

Step 6 If a peak is found, go to Step 1. If not, set xps = x8 and go to Step 5.

Repeat until reaching the end of the utterance.

Note that we need at least two peaks to estimate the first set of kl and k2. We

initialize k to be = 100ms to avoid the uninteresting solution of large kj. We tried

both the standard contrast based and simple slope based peak counting algorithms

and found that the selection of these two algorithms has little effect on the results,

especially when we consider the overall precision and recall. We illustrate the first

three steps in our algorithm on a TIMIT utterance in Figure 5-13. The blue curve

is the extracted Hilbert envelope; the red circles consist of the current peak location

set P. The sinusoid function, shown in magenta, is the fitted estimate of the current

speech rhythm. The black dotted lines correspond to vowel boundaries in the phonetic

transcription. From top to bottom, the figure shows the first three iterations of our

algorithm. In the top plot, the first two peaks corresponding to the vowels /eh/

and /ax/ have been found without rhythm. From their locations, a rhythm sinusoid

is estimated and extended into the future. In the middle plot, the next peak has

been identified in the /ao/ vowel, which corresponds to the maximum peak in the

interval under location (corresponding to 1.5 cycles of the rhythm sinusoid from the

last peak). The rhythm sinusoid is re-estimated and extended into the future. In the

bottom plot, the next peak has been located in the /ih/ vowel. This particular peak

could have been easily missed due to its small size.
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Figure 5-13: This figure illustrates an example of speech rhythm based detection
of syllable nuclei. The blue curve is the extracted Hilbert envelope; the red circles
consist of the current peak location set P. The sinusoid function, shown in magenta,
is the fitted estimate of the current speech rhythm. The black dotted lines correspond
to vowel boundaries in the phonetic transcription. From top to bottom, the figure
shows the first three iterations of our algorithm. In the top plot, the first two peaks

corresponding to the vowels /eh/ and /ax/ have been found without rhythm. From
their locations, a rhythm sinusoid is estimated and extended into the future. In the
middle plot, the next peak has been identified in the /ao/ vowel, which corresponds
to the maximum peak in the interval under location (corresponding to 1.5 cycles of
the rhythm sinusoid from the last peak). The rhythm sinusoid is re-estimated and
extended into the future. In the bottom plot, the next peak has been located in the

/ih/ vowel. This particular peak could have been easily missed due to its small size.

Pitch Verification

We observe that it is possible for our rhythm guided approach to find spurious peaks at

the beginning or end of an utterance, or it can place some peaks in utterance internal

pauses. Thus, pitch verification is used to remove spurious peaks in unvoiced regions.

For both methods after all peaks are detected, a removal operation is performed if

we find a peak being located in a highly likely unvoiced region.



5.3.4 Obstruent Detection

To have an accurate detection of obstruents, we also develop a multi-step algorithm.

There are five steps in processing a speech utterance. First, a speech signal is de-

composed into a band-pass filter with two channels. The lower channel ranges from

100Hz to 1500Hz, while the other, higher channel ranges from 4000Hz to 8000Hz.

Then, the Hilbert transform is applied to the signal in each channel to calculate the

magnitude X,(t) as

X, = xi(t) + i - (xi(t)) (5.7)

where i ranges from 1 to 2, xi is the signal in wave form, and 7(-) denotes the Hilbert

transform. Therefore, the envelope E of each channel can be directly calculated by

EI(t)= IX2(t)I (5.8)

The third step is to calculat the envelope ratio of the two channels. We denote channel

one as the channel with low frequency range and channel two as the channel with

high frequency range. The envelope ratio curve R(t) can be calculated as

E2(t)R(t) = (5.9)
E (t)

It should be pointed out that, due to the different energy scales in each channel, each

E,(t) should be normalized before calculating the envelope ratio.

The fourth step is to run the peak finding algorithm on the envelope ratio curve

R(t). As stated in the previous section, conventional peak finding algorithms tend to

be very sensitive to the parameter settings, and there is no universal guideline for how

to set parameters when facing a new dataset. In order to make all the components

unsupervised, a fixed and aggressive setting of the peak finding algorithm is used but

we add a fifth step to remove the noisy peaks.

In the fifth step, two additional sources of information are used to reinforce the

agreement that the peaks found in the fourth step are all located in regions where



obstruents may appear. The first source of information is from our vowel center de-

tector. After locating all the peaks in a rhythm guided way, we further extract the

immediately adjacent valleys of each selected peak because it is possible for obstru-

ents to appear in these regions. We collect the locations of vowel centers and their

corresponding valleys. The other source of information is from the voicing detection

(in the next section). Both the intervals that are voiced and intervals that are not

voiced are collected. Then, for each peak in the fourth step, these two additional

sources of information are used to score it. Specifically, each peak starts with score

zero. If a peak is located around a valley(peak) on the vowel center curve, one credit

adds to or subtracts from it. If a peak is located within an interval without(with)

voicing, one credit adds to or subtracts from it. Finally, all peaks with a score above

zero are selected as possible obstruents.

5.3.5 Voicing Detection

A pitch detection module is used to identify intervals that are voiced or not. This

module provides necessary information for the obstruent detection. In addition, the

rhythm guided vowel center detection approach also needs pitch verification to remove

spurious peaks in unvoiced regions, such as a short pause and the beginning or the

end of the utterance. In the current implementation, we use the ESPS pitch tracker

[38].

5.3.6 Decision Tree Based Inferring

Given phonetic transcription, broad acoustic classes can be obtained by investigating

the phonetic histograms generated from each Gaussian component cluster. Without

any transcription, we may still infer the broad acoustic classes by looking at the acous-

tic feature histogram generated by each Gaussian component cluster. Specifically, by

employing three acoustic feature detectors, each speech frame can be given a label

indicating whether the frame has an acoustic feature or not. These acoustic feature

labels can be viewed as phonetic transcriptions and can be used to produce acous-



tic feature histograms. The shape of a histogram provides important information to

determine the broad acoustic classes.

The inferring algorithm is given as follows. For each Gaussian component clus-

ter, we scan the entire input set of speech utterances and calculate the percentage

of occurrences that have a specific acoustic feature. For example, if the Gaussian

component cluster 1 appears 95 out of 100 times in a voiced region, we can infer that

the phones that this component represents are likely voiced. As a result, this class

will be given a feature label [+voicing]. If a speech frame appears within a 50 ms

window of a vowel center or an obstruent, the frame will be given a feature label

[+sonorant] or [+obstruent]. The set of feature labels are defined as [+/?/-voicing],

[-+/?/-sonorant] and [+/?/-obstruent]. A plus mark (+) means one frame has a par-

ticular feature, while a minus mark (-) means one frame not having that feature. A

question mark (?) represents uncertainty, which means some occurrences have this

feature while others do not. Each class will be assigned to these feature labels, and

then the acoustic characteristics of each class can be inferred from the decision tree

shown in Figure 5-14.

5.4 Experiments

In order to evaluate the broad acoustic class modeling framework, we designed two

sets of experiments to 1) examine the performance of the three acoustic detectors;

and 2) verify the broad acoustic class modeling framework. We use TIMIT as the

experiment dataset, which includes a total of 6300 phonetically-transcribed read-

speech utterances. In the first set of experiments, we mainly focused on examining the

performance of the vowel center detection. In the second set of experiments, without

any transcription, the broad acoustic class modeling framework was performed.
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Figure 5-14: This figure illustrates the decision tree used in the broad acoustic class
modeling framework. Plus mark means one speech frame having a particular feature,
while minus mark means one speech frame not having that feature. Question mark
represents uncertainty, which means some occurrences have this feature while others
do not. The leaves of this tree are the broad acoustic classes output.

5.4.1 Vowel Center Detection Performance

Syllable-Nuclei Intervals

In order to establish the merit of the speech rhythm idea we examined the durations

between nearby vowels in the TIMIT corpus, where vowels represented syllable nuclei.

We gathered statistics on all syllable pair and triple sequences, measuring the interval

between the first and the last vowel center of each sequence. As shown in the left

plot of Figure 5-15, we are thus effectively measuring the syllable nuclei intervals

(SNIs) of adjacent syllables (shown in blue), and of those separated by exactly one

syllable (shown in red). Note that from any given vowel center, the expected interval

to the next vowel center is approximately 200 ms, with an additional 200 ins to

the following vowel center. The plot clearly shows tremendous overlap in the two

distributions however, so that there is a range where either one or two syllabic nuclei

could occur. This observation explains why previous approaches to syllabic nuclei

detection often resorted to elaborate peak picking selection methods to decide where
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Figure 5-15: This figure illustrates the distribution of syllabel-nuclei intervals in the
TIMIT and their corresponding rhythm-scaled versions. The blue curve is the syllable
nuclei intervals (SNIs), while the blue curve is the syllable nuclei intervals separated by
exactly one syllable. From any given vowel center, the expected interval to the next
vowel center is approximately 200 ms, with an additional 200 ms to the following
vowel center. The plot clearly shows tremendous overlap in the two distributions
however, so that there is a range where either one or two syllabic nuclei could occur.
This observation explains why previous approaches to syllabic nuclei detection often
resorted to elaborate peak picking selection methods to decide where peaks could
occur.

peaks could occur.

In an ideal case, if we knew the regular speech rhythm of syllabic nuclei, we
would be able to better predict where the next syllable nucleus would occur. We

caFign approximate this rhythm concept with our computed sinusoid frequency ki and

use it to normalize the SNIs that were measured previously. Specifically, we scale

each interval by an utterance-specific factor of 3the syllabl, resultei ing in a dimensionless

quantity that is plotted on the right side of Figure 5-15. This plot shows that the

majority of SNIs for immediately adjacent syllables occur within an interval of 3/kollowing

of weanl existing syllabic nucleus (blue). It also shos much less overlap with SNIs

of following syllables (red). This result motivated our approach for syllabic nuclei

detection, alloraing us to avoid thresholds or parameters. The only parameter we

selected was the value of 3r./k.

The rhythm estinceptates used in Figure 5-15 were estimated over an entire utter-

anctitye. A plot computed with rhythm estimates computed iteratively shows similar

results. We have also found that the estimates for rhythm converge relatively quickly.
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Figure 5-16: This figure illustrates how the rhythm sinusoid periodicity (2w/ki)
changes over time as it is computed in a left-to-right fashion over an TIMIT utterance.
With each new peak detection (apart from the first two), shown in the upper plot of
the figure, the sinusoid is re-estimated, and the period is plotted in the lower part
of the figure. After several peaks have been located, the rhythm estimate becomes
fairly stable, although the detection region still allows the detection of closely spaced
syllable nuclei. Note that the default starting periodicity is 200 ms.

Figure 5-16 shows how the rhythm sinusoid periodicity (2r/ki), changes over time

as it is computed in a left-to-right fashion over an utterance. With each new peak

detection (apart from the first two), shown in the upper plot of the figure, the sinu-

soid is re-estimated, and the period is plotted in the lower part of the figure. After

several peaks have been located, the rhythm estimate becomes fairly stable, although

the detection region still allows the detection of closely spaced syllable nuclei. Note

that the default starting periodicity is 200 ms.

Performance Comparison

To demonstrate the performance of our rhythm-guided (RG) syllable nuclei detection

approach, we compared it against the state-of-the-art syllable nuclei based speaking



rate estimation method TCSSC (temporal correlation and selected sub-band correla-

tion) [41]. According to a recent comparative study paper of speaking rate [8], TCSSC

has the best performance out of eight different systems. In addition, since the RG

method and TCSSC have different signal processing modules, we built another sys-

tem (nRG) that applies the conventional contrast based peak counting algorithm to

the Hilbert envelope data without any rhythm guiding. Our intent was to quantify

the degree to which rhythm information can help with syllable nuclei detection. We

used the same ESPS pitch tracker [38] for both methods.

The results of our vowel detection experiments are reported in Table 5.1 in terms

of the best overall recall, precision, and F-measure that could be achieved with each

approach. A successful detection meant that there was exactly one syllabic peak

detected within a 50 ms window of an actual vowel.

Since the TCSSC and nRG method used conventional peak picking, we tested a

variety of different parameters to optimize performance. The only nRG parameter

that was used was the 37r/ki search interval, which was held fixed. All three methods

had signal processing parameters that were varied to optimize performance.

The results indicate that in the best case scenario the three methods can locate

between 80-87% of the vowels, and, in another best case scenario, can locate vowels

with very high precision of 99%. The TCSSC and RG methods can achieve almost

the same best recall performance, although the RG method requires significantly less

parameter tuning.

Adding rhythm-based information clearly helps with recall and overall F-measure,

although it seems to reduce best case precision over the nRG method. Overall, the

best case F-measure showed the RG method outperformed both TCSSC and nRG

methods. Given that TCSSC produced better recall results than nRG, it will be

interesting to explore hybrid methods that combine elements of both the TCSSC and

RG methods.



Table 5.1: The results of the TCSSC and nRG methods are obtained on the best
parameter settings in terms of each criterion, while all results of the RG method
is obtained by fixing the 3r/ki search interval. The TCSSC and RG methods can
achieve almost the same best recall performance, although the RG method requires
significantly less parameter tuning.

TCSSC nRG RG
Best Recall 0.8606 0.7997 0.8659

Best Precision 0.9969 0.9984 0.9886
Best F-measure 0.9021 0.8858 0.9207

5.4.2 Obstruent Detection Example

Figure 5-17 gives an example of the envelope ratio curve generated from a part of

a TIMIT utterance. The top sub-figure contains three energy envelopes. The blue

one is the envelope of the higher channel, while the red one is the envelope of the

lower channel. The green one is the envelope from the rhythm guided vowel center

detection. The red circles are the vowel centers found, and the plus marks denote

the corresponding valleys of each vowel centers. The bottom sub-figure is the energy

ratio envelope. Although three peaks are found on this envelope, by applying the

removal process discussed in the obstruent detection section, we do not pick up the

first peak because it is around a vowel center. Only the right two peaks (with square

mark) are selected.

Since the obstruent detection is still in development, we leave the evaluation and

comparison experiment for future work.

5.4.3 Broad Acoustic Class Modeling Result

We first give a brief overview of the parameters used in this experiment. The number

of Gaussian components is set to 64. To cluster Gaussian components, the Affinity

Propagation algorithm is performed 10 times to select the best clustering result using

the minimum squared distance criterion. The ESPS [38] pitch tracker is used with

all default parameter settings.

After clustering, 9 clusters are found. Table 5.2 gives the percentage of occurrence
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Figure 5-17: This figure illustrates an example of the envelope ratio curve generated
from a part of a TIIMT utterance. The top sub-figure contains three energy envelopes.
The blue one is the envelope of the higher channel, while the red one is the envelope
of the lower channel. The green one is the envelope from the rhythm guided vowel
center detection. The red circles are the vowel centers found, and the plus marks
denote the corresponding valleys of each vowel centers. The bottom sub-figure is the
energy ratio envelope. We can see that three peaks are found on this envelope. By
applying our removal process discussed in fricative detection section, we do not pick

up the first peak because it is around a vowel center. We select only the right two

peaks (with square mark).

of each cluster having the voicing/sonorant/obstruent feature.

From the table, strong acoustic clues for each cluster can be observed. For ex-

ample, com44 likely represents a broad acoustic class for vowels because most of its

occurrences are voiced and sonorant. In order to calculate the feature label, "+" is

set for a percentage larger than 70% and "-" is set for a percentage less than 10%.

The mark "?" is given for all values in between. Therefore, by applying the decision

rules, we can hypothesize the broad acoustic class that each cluster represents. Table

5.3 shows the result. Note that this part is currently the only supervised part in this

framework. However, by setting appropriate thresholds for generating acoustic fea-



Table 5.2: After clustering, 9 clusters are found. This table gives the percentage of
occurrence of each cluster having the voicing/sonorant/obstruent feature.

Cluster Voicing Sonorant Obstruent
com44 98.57% 83.26% 0.53%
com17 97.61% 44.92% 0.10%
com30 94.24% 61.05% 4.71%
coml6 90.94% 34.05% 0.25%
coml2 90.73% 9.67% 0.60%
coml8 60.93% 0.99% 1.73%
coml4 6.05% 7.54% 33.62%
com19 3.53% 1.11% 42.89%
com40 0.51% 25.83% 75.97%

ture labels and applying the automatic rule based induction, this part can be easily

converted into an unsupervised process.

To verify the correctness of our hypotheses, the corresponding phonetic transcrip-

tions were used to generate a more detailed ground truth of the learned broad acoustic

classes, shown in Table 5.4. The phonetic histograms are shown in Section 5.2.2 but

from another random start. Note that all the phone labels are from the standard

TIMIT 61 phone inventory. Compared to the data in Table 5.3, most hypotheses

are correct except for minor sub-category differences. Although the coml6 is incor-

rectly inferred because we do not include the retroflex class in our decision tree based

inferring scheme, it does show a promising ability for capturing very short phones.

5.5 Summary

This chapter first presented a statistical method to investigate the learning ability of

unsupervised GMM training. By examining the phonetic histograms generated from

each Gaussian cluster, we observed that each Gaussian cluster is able to represent

a set of phones (broad acoustic class) sharing similar acoustic characteristics. This

observation gives the root cause of the viability of the proposed keyword spotting

systems.

To model broad acoustic classes as well as hypothesize the acoustic meanings of



Table 5.3: From the statistics in Table 5.2, the feature labels "+", "-" and "?"
are assigned to each cluster. "v" stands for voicing, "s" denotes sonorant and "o"

represents obstruent. Based on the feature labels and the decision tree model, broad

acoustic class for each cluster can be inferred.

Cluster Feature Label Acoustic Class
coml [+v+s-o] vowels
com2 [+v?s-o] vowels/semi-vowels
com3 [+v?s-o] vowels/semi-vowels
com4 [+v?s-o] semi-vowels
com5 [+v-s-o] nasals
com6 [?v-s-o] closure/nasals
com7 [-v-s?o] fricatives/closure
com8 [-v-s?o] fricatives/closure
com9 [-v-s+o] fricatives

each broad acoustic class, we also presented an unsupervised framework to automati-

cally discover broad acoustic classes in unlabeled speech data. We developed a method

to aggregate multiple sources of information to hypothesize the acoustic meanings of

detected broad acoustic classes. We used the TIMIT dataset as the testbed and per-

formed a completely unsupervised experiment to do broad acoustic class discovery.

By comparing it with the underlying phonetic transcription, encouraging results are

obtained.



Table 5.4: Ground truth of the broad acoustic classes each cluster represents. This
result is based on the statistics on the TIMIT phonetic transcription.

Cluster Broad Phone Class
coml low vowels (aa ax au aw ow uw)
comn2 semi-vowels(l w) / low vowels (ax au ow uw)
com3 high vowels (ae ay eh ih iy ix)
com4 retroflex (axr er r)
com5 nasals (n in ng)
com6 stop closures (bcl tcl kcl dcl) / nasals (n m ng)
com7 fricatives (f s z th) / stops closures (t)
com8 closures (bcl dcl gcl pcl tcl kcl epi pau h#)
com9 fricatives (s sh ch jh z)



Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contributions of this thesis and discuss future

work.

6.1 Summary and Contributions

The work discussed in this thesis is motivated by the problem of finding useful infor-

mation in speech data in a completely unsupervised way. We first described the fact

that in many speech processing problems, transcribed data is difficult to obtain. Then,

we raised the problem of how much we can learn from the speech data without any

transcription. In the main part of the thesis, we presented 1) two unsupervised spoken

keyword spotting systems and 2) initial attempts of learning acoustically meaningful

units.

In Chapter 3, a completely unsupervised keyword spotting system was proposed.

Without any transcription information, a GMM model is trained to label speech

frames with Gaussian posteriorgrams. Given one or more spoken examples of a key-

word, a segmental dynamic time warping algorithm is used to compare the Gaussian

posteriorgrams between keyword samples and the entire set of test utterances. The

keyword detection result is then obtained by ranking the distortion scores of the test

utterances. In the evaluation, we examined the TIMIT dataset as a development

set to tune the parameters in our system, and the MIT Lecture corpus for a 30-



keyword set detection experiment. The results also demonstrated the viability and

effectiveness of our approach.

In Chapter 4, we developed an unsupervised keyword spotting system when only

text based samples are available. The system consists of five core components: the

GMM learning, the clustering, the Joint-Multigram (JM) modeling, the JM n-best

decoding and the symbol matching. The GMM learning part is the same as the system

used in Chapter 3 but the most probable Gaussian component index labeling is used

instead of Gaussian posteriorgrams. A clustering algorithm is then used to reduce

the number of learned Gaussian components. The JM modeling is applied to build

a mapping between a keyword and its corresponding Gaussian component indices.

The decoding component converts a keyword to an n-best list of possible sequences

of Gaussian component indices. The keyword spotting is done by symbol matching

component through a region voting scheme. In the evaluation, we performed eight

keyword spotting tasks on the TIMIT dataset. The results demonstrated the viability

of our idea when a text-based keyword is desired.

In Chapter 5, to understand the underlying knowledge learned by unsupervised

GMM, we investigated the phonetic histograms generated by each Gaussian cluster.

By examining the results, we observed that unsupervised GMM training is able to

group acoustically similar phones. Therefore, each Gaussian cluster can be used to

represent a broad acoustic class. This observation gives the fundamental reason why

the proposed keyword spotting systems can work in the unsupervised way. In ad-

dition, in order to develop a completely unsupervised broad acoustic class modeling

framework, we explored three acoustic feature detectors to label speech frames. By

combining the acoustic feature labels and GMM clustering labels, we developed a de-

cision tree based broad acoustic class inferring framework. Without any transcription,

not only can this framework output learned broad acoustic classes, but it can hypothe-

size the acoustic meanings of each class based on the acoustic feature histograms. The

performance of the three acoustic feature detectors and the broad acoustic modeling

framework were evaluated on the TIMIT dataset. The results are encouraging and

motivates us to consider more unsupervised GMM learning applications in speech.
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6.2 Future Work

Considering the problems addressed in this thesis, there is still much room for im-

provement for each of the three systems. We give detailed discussion in the following

sections.

6.2.1 Unsupervised Keyword Spotting

Gaussian Posteriorgram Based Keyword Spotting

While this system represents our first attempt to use unsupervised methods to solve

speech related problems such as spoken keyword spotting, there are still many issues

waiting for more investigation. Specifically, in the unsupervised GMM learning, the

current training method needs to manually set the number of Gaussian components.

Based on the experiment we presented on TIMIT, it is clear that a good choice for

the number of components can significantly improve performance. In the future we

hope this number can be found in an unsupervised way such as using ideas from suc-

cessive state splitting [31]. Since Gaussian posteriorgrams are probability vectors, it

is also possible to use principle component analysis to reduce the vector dimensions.

In the segmental DTW (SDTW) search, the current system requires a pre-set param-

eter R for adjustment window condition. By observation, changing this parameter

highly affects the detection performance. More statistical analysis is needed to clearly

understand the effect of this condition. Furthermore, since this framework is com-

pletely language independent and generic, we would like to examine its performance

on languages other than English as well as other signal processing pattern matching

tasks.

Multigram Based Keyword Spotting

Although the performance of the system only using text based keyword samples is not

as good as the system using Gaussian posteriorgrams, it gives us many new thoughts

on how to improve the post-processing techniques to compensate the information loss

when using unsupervised learning. Specifically, the JM modeling is a multiplicative
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process, which means the decoding result tends to prefer less segmentations. We find

that sometimes it does not actually reflect the true segmentation of a word. Some

smoothing techniques could potentially be used to solve this problem. In addition,

the current symbol matching algorithm calculates the exact similarity based on label

matching. A potential improvement is to use the distribution similarity between two

broad phone labels instead of direct matching. As a result, a more accurate similarity

score could be obtained.

6.2.2 Unsupervised Learning of Acoustic Units

In the broad acoustic class modeling framework, we have presented three acoustic

feature detectors. The experiments on the TIMIT dataset shows the lack of knowledge

in determining stops and nasals. Although we can infer these two kinds of phones

by considering the combined information, it is better to have an indicator to further

enhance our decision tree based inferring rules. Therefore, detectors for stops and

nasals could be a part of our future work for improving the modeling resolution of

broad acoustic classes. The obstruent detectors presented represents only our initial

investigation into the problem of detecting obstruents. The signal processing part

still needs further discussion and improvement.

Furthermore, more acoustic detectors can be used to model more detailed broad

acoustic classes, such as determining the strong or weak fricatives, retroflex and ap-

proximant. It is also interesting to investigate the possibility of using unsupervised

learning to automatically model and detect acoustic features. In our current frame

based labeling method, we only consider the label itself without any context in-

formation. Some acoustic features could be represented by the transition between

Gaussian component labels. For example, if the Gaussian component 5 represents

voiced phones, component 3 represents silences and component 9 represents stops, a

sequence of "5533399" can be used to determine a voiced stop by learning the possible

prevocalic transition "55333." Therefore, if a sequence mining algorithm is applied to

all speech utterances, some acoustically meaningful sequences can be learned, which

could also help us determine the broad acoustic classes more accurately.
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