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Abstract

In this work, I test the hypothesis that the 2-dimensional dependencies of a deter-
ministic model can be correctly recovered via hypothesis-enumeration and Bayesian
selection for a linear sequence, and what the degree of 'ignorance' or 'uncertainty' is
that Bayesian selection can tolerate concerning the properties of the model and data.
The experiment tests the data created by a number of rules of size 3 and compares
the implied dependency map to the (correct) dependencies of the various generating
rules, then extends it to a composition of 2 rules of total size 5. I found that 'causal'
belief networks do not map directly to the dependencies of actual causal structures.
For deterministic rules satisfying the condition of multiple involvement (two tails),
the correct model is not likely to be retrieved without augmenting the model selection
with a prior high enough to suggest that the desired dependency model is already
known - simply restricting the class of models to trees, and placing other restrictions

(such as ordering) is not sufficient. Second, the identified-model to correct-model map
is not 1 to 1 - in the rule cases where the correct model is identified, the identified
model could just as easily have been produced by a different rule. Third, I discovered
that uncertainty concerning identification of observations directly resulted in the loss
of existing information and made model selection the product of pure chance (such as
the last observation). How to read and identify observations had to be agreed upon
a-priori by both the rule and the learner to have any consistency in model identi-
fication. Finally, I discovered that it is not the rule-observations that discriminate
between models, but rather the noise, or uncaptured observations that govern the
identified model.

In analysis, I found that in enumeration of hypotheses (as dependency graphs) the
differentiating space is very small. With representations of conditional independence,
the equivalent factorizations of the graphs make the differentiating space even smaller.
As Bayesian model identification relies on convergence to the differentiating space, if
those spaces are diminishing in size (if the model size is allowed to grow) relative to
the observation sequence, then maximizing the likelihood of a particular hypothesis
may fail to converge on the correct one. Overall I found that if a learning mechanism



either does not know how to read observations or know the dependencies he is looking
for a-priori, then it is not likely to identify them probabilistically.

Finally, I also confirmed existing results - that model selection always prefers increas-
ingly connected models over independent models was confirmed, as was the knowledge
that several conditional-independence graphs have equivalent factorizations. Finally
Shannon's Asymptotic Equipartition Property was confirmed to apply both for novel
observations and for an increasing model/parameter space size.

These results are applicable to a number of domains: natural language processing and
language induction by statistical means, bioinformatics and statistical identification
and merging of ontologies, and induction of real-world causal dependencies.

Thesis Supervisor: Robert C. Berwick
Title: Professor

Thesis Supervisor: Whitman A. Richards
Title: Professor
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Chapter 1

Introduction

This thesis experimentally tests the idea that the causal dependencies of a deter-

ministic model, rule, or ontology (in the form of a 2-d graph) can be recovered via

probabilistic means and assumptions from a 1-d linearized stream. It differs from

existing work in that the deterministic rule is known beforehand - there is no un-

certainty as to what entails 'correct', and rules are tested progressively to identify

and understand where and why the probabilistic model selected from an enumeration

of models deviates from the correct model. It attempts to demonstrate what hap-

pens to overall correct model induction as complexity rises if probabilities are used

to represent uncertainty and justify relaxed correctness.

Unknown/
Cohere andom Stat

state observations
Identify Rule/ saeosr tinRule
dependency

New State

Learner World

Figure 1-1: A world in unknown, potentially random states, which are transformed
by deterministic rules into different states. State observations, consistent with the
rule are transmitted from the World to a Learner (or resolver), who attempts to
identify dependencies which cohere in some sense to the observations received and to

the world's transformation rules. The observation can also be made that the World
can be replaced by another agent.

It has become increasingly the case that the idea of inducting a real-world model



(for instance, a language model, an ontology, or a causal model) is equatable with

inferring a "probabilistic" model. For many, the probabilistic handling of uncertainty

is well-defined and can be relied upon to deliver stable results. But it is of interest

whether adopting such a method leads us to identify the correct model or if the

probabilistic model is increasingly likely to be incorrect.

From the start of learning to work with probabilities, most children find them to

be immediately distasteful. It quickly becomes clear to them that even when distribu-

tions are properly selected, they are not likely to correctly predict a new observation.

It takes many a while to master the notion that what is actually being "predicted"

is the distrzbution of possible observations. And even after that is learned, it takes

a substantial amount of study and subtlety to understand that the predicted distri-

bution is only from those observations that have been seen before. In other words,

the distribution does not a-priori account for any kind of exception, or "novel" ob-

servation - methods of adding a novel observation can require recomputation of the

entire history of prior observations (if the novel observation forces an increase pa-

rameter size). Clearly that is impossible for humans, computationally intractable for

computers, not productively useful for modeling the real world, and of philosophical

question whether enough events even exist in the real-world to enumerate all the

possible observation-combinations needed to prevent spareseness in the distributions.

In many fields, probabilities find justification under the wide umbrella of 'repre-

senting uncertainty'. But how far does probabilistic uncertainty or 'belief' go, and

to what extent is there uncertainty in nature? A little introspection suggests that

uncertainty is a human invention that describes the discrepancies between our inter-

nal predictive model and the actual of transformational rules of the real-world. From

that frame, 'uncertainty' may be more about incompleteness of predictive model and

a lack of observability, than it is about a collapsed, monotonic 'belief' or 'frequency'

function. In other words, probabilities: frequentist, belief, or otherwise, are used to

represent the lack of knowledge, or rather, a lack of consistency of evidence around

these two pieces of information.

Over time, this problem has seemingly been overcome by a number of intellectual



contributions that can be combined in the following (trivially illustrated) argument.

Laplace demonstrated that Bayes Rule can be used to select between two competing

hypotheses - the hypothesis that 'best captures' the evidence (or is 'most likely') will

eventually be converged to [27, 45]. Reichenbach contributed a mathematical ground

that several forms of induction resolve to "inductive enumeration" [32, 43]. Given

these observations, directed graphs are a convenient representation for transitional

probabilities and conditional probabilities. Perhaps it is the perception of transition,

along with the logical dependency implication of the arrow that completes the overall

picture that dependency models can be selected probabilistically.

Intuitively, the above argument is limited in the following respects: Bayesian se-

lection only works when the hypothesis subspaces do not overlap substantially for the

given evidence (there is some differentiating hypothesis range [52]), hypothesis enu-

meration can be always found to be incomplete when presented with novel evidence,

intersection between true dependency and a transition probability or independence

map is not clear, as will be shown in Chapter 2, and finally that some aspect of the

rule and world is random.

But if the world (and our internal representation of it) is deterministic, then science

is faced with a problem. By approaching the model identification probabilistically,

the observational (novel observations or inhibition from surfacing) and variational (of

generating model) uncertainties are flattened into a single measure, and inadequacies

of a predictive model are no longer considered on the basis of the type, location, or

reason for the shortcoming, but on the basis of how well the model 'performs' overall.

By analogy, as everyone who has taken exams knows, sometimes it is a lot easier

to achieve better performance by writing down a lot of random equations for partial

credit than it is to demonstrate mastery on one exam question. But random equations

are not mastery, and the more complex the problem, the less likely the student is to

have productive model adequate to the task.



1.1 Why is this problem important?

The assumption that the world and knowledge is in some way random has some sig-

nificant effects on the problem of dependency identification which surface in a number

of domains. Even the idea that the dependencies or determinitic rules may be sur-

rounded in some form of random noise has ramifications on dependency identification

that are not well studied.

Natural language, Ontologies in Life Sciences, Mathematics, and physical (Causal)

models of the world all are affected. In Natural Language, relaxing the constraint of

correctness in favor of uncertainty has led to increased reliance on statistical models

of language formation, which though mathematically elegant, are difficult to explain,

impoverished predictively, and make mistakes that children simply do not make [41].

In Life sciences, failure to identify dependencies (or identification of incorrect ones)

has a measurable and costly effect - drugs may end up further down the development

pipeline than they would have been had unwanted dependencies or effects been cor-

rectly identified. And finally, in causal models, incorrect dependency identification

may either trivially select the wrong knowledge structure for the path a leaf takes

falling (suggesting randomness), or may create the wrong dependency argument for a

country's involvement in terrorist events! In other words, the cost of wrong answers

can be extremely high!

The problem of dependency and rule identification is at the heart of all productive

knowledge discovery. When dependencies have been identified correctly, connecting

up new knowledge structures grants even greater predictive power into the future,

and explanatory power into the past.

Nonetheless, researchers have continued to advance the art of randomness, sug-

gesting that unobserved distributions can be inferred from observed ones, and then

that the models that transform our world are merely distributions with a conditional

'dependency' structure that can be inferred just as readily as the unobserved dis-

tributions can be inferred. They've suggested that probabilistic or 'degree of belief'

knowledge is just as valid - if not more so - than 'certain' knowledge, and have ad-



vocated data driven, rather than knowledge driven analyses. For example, in fMRI

analysis, the 'perceived success' of probabilistic methods has been observed to lead

to a relaxing of experimental constraints which establish causal relations [30].

I contend however, that what knowledge affords to operators in their domain is

certainty, and the counter-proof is simple:

If knowledge does not necessarzly afford certainty, even in probabilistic

domains, then one should not place certainty in knowledge such as Bayes

Rule, which transforms distrbutons, but instead believe that there is some

probability (or have some degree of belief) that Bayes Rule does not work

for the current class of distributions. Certainty in Bayes Rule itself re-

quires an infinite amount of existing evidence for the current distributions

to approach a likelihood of p = 1.0, against which there would be no test

of correctness, rendering its use unproductive.

This counter-example does not assert that Bayes Rule is unproductive, just that the

idea that knowledge itself is probabilistically uncertain is self-contradictory. Even the

operators on which probabilities depend require certainty to be applied.

Without certainty, there is no knowledge, no prediction, and possibly most im-

portantly, no way to extend scientific models given additional evidence. This is not

to say that certainty of knowledge always yields correctness, but what it does yield is

immediate certainty of some incorrectness (i.e. Popper's falsifiability [40]).

Finally, two processes are at work: there are an increasing crossover between

disciplines, a greater number of researchers (or students) not formally trained in their

domain seek to make contributions, and a large increase in the production of data by

different parties. Probabilistic model selection provides a tool by which the researchers

can remain ignorant about the underlying physical processes, and turn to 'parameter

tweaking' of the size, utility functions, or priors of their model to maximize what

it captures (without having a background-prior on the models), without knowing or

understanding if there are particular conditions or properties of the domain where the

right model is unlikely to be retrieved. The vast production of data greatly increases



the chance of inconsistency and a probabilistic analysis is increasingly expensive.

1.2 What makes this problem hard?

Mapping statistical models to real-world models (trees or otherwise) is difficult to

lay out and understand [6]. In the real world, no two events are truly independent,

much less conditionally independent even the traditional coin flip example is non-

probabilistically dependent on millions of external variables: wind speed, starting

side, initial force and directions, etc. Even if one assumes that two separate events

are truly independent, it is unclear whether the independence is one of state, disrup-

tive cause, or transformational model. Consider the example that two separate rocks

are at the very peak of two separate mountains on opposite sides of the Earth. Simul-

taneously, one rock is disrupted by the wind, the other by a butterfly. It is arguable

that these two events and their states are sufficiently independent to imply that their

transformational models & outcomes should be as well. And yet, the two completely

independent, partitioned graphs of the rocks follow the same transformational pro-

cess, and the rocks roll down the mountains according to the rules of gravity. The

models and graph structures are not independent.

Beyond that, statistical models have an innate "stateless" or locally exchangeable

property, and require "complete" observation information (that we have completely

enumerated all variables), which are fixed at the start of analysis. While there is

something disquieting about fixing the model at the outset of an analysis that implies

substantial a-priori knowledge (despite some Bayesians' assertions to the contrary),

the assumptions of exchangeability and "complete observations" have special ramifi-

cation to the problem of tree induction and any process consisting of transformational

rules.

And it is easy to confuse the idea of selecting observations from a bucket of

those seen before with a "predictive" model. In some sense, human knowledge comes

from what has been seen before, and the human faculty for model discovery and

alignment is unparalleled. But probabilistic methods produce models and structures



(in language for instance) that humans do not produce. In fact, it is almost trivial

to come up with "real world" situations where a statistical model for learning and

induction would yield certain death for a human.

This idea may fly somewhat in the face of the notion of convergence, but according

to Salmon, "Any value of the relative frequency in an observed initial section [sequence

of observations] of any length is compatible with any value for the limit. [...] and

we cannot be sure that such [non-converging] sequences do not occur in nature" [46],

which is effectively a statement about the probabilistic admissability of any generating

rules.

Finally, even supposing that the map from statistical models to real-world models

was clear, the problem of model identification still contains the graph-matching and

resolution problem, both on the nodes and the relations which define the edges, which

for bipartite matching is a combinatorial optimization problem - polynomial in size

(the Hungarian method [20]).

1.3 Background

Though probabilities are used sometimes to "account" for more observations than

we have models for, or to "justify" an existing set of relations, I do not want to

reduce the importance of probabilities or of treating the observations as a sample

space. These assumptions allow us to analyze observations in terms of the capacity

necessary to "carry" them [50]. When no relational model is known and capacity (or

"focus") is limited, knowing the characteristics of the observations can insure that the

majority are transmitted by excluding those not likely to be important. In terms of

tree identification, this could be useful for excluding superfluous or noisy information.

But a question of equal importance, is what (if any) properties or features are lost by

treating observations in that manner.

The suggestion that an underlying model may not be recoverable probabilistically

exists in a number of forms. Most notably, in the famous debates between Einstein

and Heisenberg and in the innate existence of some kind of physical "uncertainty".



Einstein et al. attempted to quantify "certainty" [13] in terms of a 1-1 relation

between observables and hidden nodes, but the question of what uncertainty itself is,

within the frame of complete determinism, has not been adequately addressed.

Karl Popper often attacked probabilistic interpretations of uncertainty directly,

both at a quantum-mechanical level and at a logical level. He did so quite com-

pellingly, but most arguments against him take the form that predictive uncertainty

and incomplete observation from the past are identical.

According to him, probabilistic uncertainty, as a class of random sample spaces in

probability theory, and then the subclass "subjective uncertainty" [40] or the "gradi-

ent middle" [59] between categorical points, has taken over, despite the fundamental

work in that area which suggests otherwise. It is not explicitly stated, but careful

reading of a proof of the Strong Law of large numbers [16] suggests that there are

cases where divergence not convergence is guaranteed: for finite data sets in a single

sample space, or as I believe, when the number of sought "representations" (i.e. re-

lations between multiple sample spaces) grows faster than the convergence rate from

additional observations.

Kolmogorov complexity, while not computable for real data [26], also suggests

it - given that the minimal program needed to compress a random number is also

infinite, the existence of a model or transformational rule implies the existence of a

minimal program [37, 8]. Tree representations imply multiple levels of compression

and abstraction, and allow the simplest representations of ideas or laws [19].

Even Chomsky addresses the idea that an n-th order statistical approximation

of English "will exclude (as more and more improbable) an ever-increasing num-

ber of grammatical sentences" [9], which is an application of Shannon's Asymptotic

Equipartition Property [50]. Chomsky also captures, without explicitly linking it to a

divergence of probabilistic description, that every n-order approximation of sentences

is a finite state Markov grammar, which cannot generate or "predict" additional cor-

rect observation sequences and will contain (or carry) a large number of incorrect

ones [9].

In the same vein, Wolfram provides an elegant demonstration that the appearance



of randomness combined with limited observability, can be derived from deterministic

laws [57].

If probabilities are thus abandoned, the problem of identification of data consistent

structures is extremely hard - represented by an automaton Gold found to be NP-

complete given a finite source of observations (& polynomial in the limit) [23]. This

alone might be seen as a reason to employ probabilities - to prefer searching one set

of transitions over another.

There is substantial evidence that "good" results can be achieved with probabil-

ities. One of the most notable came from the introduction of the Lyapounov, which

seems to leverage commutativity of operations across a phase space to show that

stochastic processes can result in a deterministic long-term outcome [34].

In fact, the field of machine learning is full of methods designed to capture hidden

variables and structure (HMMs, SVMs, Bayesian, MDL, etc.) [29, 45, 28, 26, 37]

Probabilistic methods are applied in new ways frequently to recover the underlying

form (or at least provide a "plausible account" [14] of data and variation [59]), for

instance Optimality Theory in generative grammars, Bayesian statistics for syntactic

structure [15], or Bayesian networks for ontology alignment [54]. MDL is generally

accepted to provide good, or at least 'well founded' results, where a composition

chosen models to describe a sequence is of the shortest length - while still providing

a good fit - conceptually similar to Occam's Razor [26].

The gold model may be carried within the most probable model, and I would like to

find out to what extent. It also may be that recent unique approaches, such as Eisner's

[15] may have a chance to posit the correct heirarchy by restricting model formation to

first-order "triangles", but may possibly still be susceptible to incorrect dependency

direction which would propagate throughout the hierarchy. In this experiment, I

am primarily concerned with correct identification of dependencies, which as Pearl

notes, if one has access to the dependency structure, then one can perform structured

equation modeling (sem) to recover individual paramaters of 'causal' change [39] (it

is of note that the 'parameters' are of functions of change in expectations).



1.4 Thesis Overview

This thesis proceeds by discussing why the assumptions are chosen the way they are,

and explains what exact features lead me to believe that I will discover something

important (Chapter 2), then explains the experimental setup (Chapter 3), delves into

the results and what they mean in Chapter 4, and finally concludes (Chapter 5),

providing a 'big picture' of the findings, how they were limited, and future work.



Chapter 2

Models, Representations, and

Uncertainty

In Chapter 1, I touched upon the idea that the goal of much of the use of probabil-

ities and probabilistic model selection is to capture 'uncertainty'. In this chapter, I

explain how the structure of different models handle uncertainty innately (if they do),

and provide some examples demonstrating that what (in terms of model identifica-

tion) probabilities are attempting to capture is not uncertainty, but 'inconsistency'.

Finally, I provide some examples that show that the 'intermediate' or 'intersecting'

form between representations of probability and representations of dependency is in-

adequate to represent either, possibly explaining why a great deal of ambiguity is

introduced into model induction, and why I expect to find something interesting.

2.1 Models

A 'model' is a 'representation of reality' that contains the important features neces-

sary to correctly predict an outcome, or transmit some features and knowledge with

certainty. What can be transmitted therefore is highly dependent upon the model

chosen. Perhaps it may be better understood in terms of 'perception': if a learner

is receiving some symbols transmitted by a model, what can actually be integrated

from the model are only those symbols that are consistent with the model itself (self-



consistent), with the learner's model, or with the real-world. In the latter case, the

errors that (features of) the model makes are objective and are measurable in terms

of probability of error - some of the transmitted symbols are better than others [44].

In the case where the transmitting model and the testing model are subjective (the

objective truth is elsewhere), as it is with learning a grammar, or combining two

ontologies, the method of representing inconsistency and uncertainty is important, as

this representation may later provide the tool and motivation for increasing complex-

ity, and thus predictive cohesion against an objective truth.

2.1.1 Describing Models & Structural Uncertainty

Different models have different methods of managing uncertainty. In graphs, trees,

and ontologies, uncertainty that cannot be resolved produces inconsistency, which

cannot be represented in the structure.

Consider a simple scenario where one tries to use probabilities to handle the

uncertainty that trees naturally handle well. For trees, "uncertainty" is structural.

Predictive uncertainty is handled as branch insertions, extensions, or replacements

(Fig. 2-1). Explanatory uncertainty (in the present) surfaces as the number of paths

through the tree that converge on the present observation/node. Incompleteness of

those paths is handled again as branch additions & extensions. Incomplete observabil-

ity of a branch node does not inhibit prediction or usage of child nodes. But possibly

the biggest case for tree-uncertainty is the partitioning: negative evidence can be used

to destroy an entire branch linkage (or move/transform it intact elsewhere) without

affecting any existing relations at all - the same is true of prediction - prediction down

one branch is fully partitioned from another. In many ways, uncertainty for trees is

not "uncertain" at all. This reduces the kind of uncertainty that trees have to handle

to the lexicon/symbol matching problem, and conflicting dependency direction.



b) 1 d)1
1 1

Figure 2-1: a) An initial tree structure - {6,7}, and {4,5} may inherit the lack
of ordering from regular graphs, but both branches are completely partitioned. b)
Uncertainty in augmenting knowledge is handled simply as branch extension. c)
Uncertainty around adding a 'increased complexity' dependencies of the 1 - 8 -+ 3
is just a branch insertion. d) Uncertainty in adding knowledge that can result in
consistency problems. 4 is a subclass of 1, but it could be a direct subclass or a
derived subclass - a member of 2 or 3. Making 4 a direct child of 1 is the least
inconsistent representation that maintains dependency.

2.2 Problems with Graph Representations

Though we use graph representations, trees or otherwise, all the time to convey con-

nectivity, dependencies, and separations (cliques), neither graph representations of

probabilistic models, or of deterministic models are complete. In this section, I will

describe some of the reasons that graph representations are limited and inconsistent

for each domain/model type, and explain why connecting probabilistic representa-

tions to deterministic representations through the graph representation is unlikely to

produce predictable or consistent results.

2.2.1 Probabilistic Models

The problems that probabilities introduce are not limited to trees, but surface when-

ever one tries to augment the edges of a graph with probabilities. Probabilities are

deeply associative and connectionist representations, relating the frequency of every

event to every other event. But when used as a measure of uncertainty, as on the edges

of a graph, the unordered probabilistic connections strain against the desired graph

connectivity. It can become almost trivial to compose examples where the 1st-order

logical connections of a graph become inconsistent with probabilities. For example,

consider a graph G = {A, B, C}, and that A-C are deemed 'independent', below a



level of significance S = .1. If A-B, and B-C are non-independent, using probabilities

P1, P2, respectively, then P1 x P2 must be less than S = .1 to maintain consistency.

In other words, P2 < -! - - the probability of graph edge B-C is dependent upon both

A-B and the chosen A-C threshold S. By extension, the first order edges assertions

are constrained by second order, third order, and so on, probabilities. Even if nodes

are independent, the probabilities and math certainly aren't.

Secondly, even if the conditional independence graph is consistent, the conver-

sion of a causal process to that graph is not entirely straightforward. Despite the

large amount of literature tying probabilistic models and causal models together

(Pearl/Wright's path coefficients[39, 58], Bayesian networks[45, 28], etc.) and the

mountain of 'rain, sprinkler, and wet-grass' examples to that effect, causal examples

can be composed quite easily who's map to a conditional network yields a conflicting

structure. Neglecting causal loops, which have no conditional network analog, but

can generally be easily understood in terms of consumption of state (like a rock rolling

down a hill), there are spreading tree examples as well.

Consider the case of a forest of trees (T) growing on some hill in one location, and

then sufficiently far away as to be totally (causally) independent, a hill covered with

bunches of rocks (R). Directly in the middle is a volcano (V) which erupts, sending

out shockwaves, pyroclastic flows, sulfur dioxide, and ejecting large chunks of obsid-

ian. It is clear that the tree formations and the rock contents are partially causally

dependent upon volcanic eruption (Fig. 2-2 b). (i.e. the shockwaves disrupts growth

patterns, kill different species, sulfur content changes supportable plants, etc.). If

however, one takes this same graph and interprets it in terms of conditional indepen-

dence, one would say that Trees and Rocks are independent given knowledge of the

existence (possibly influence) of the Volcano (and its values). Are they? Certainly

not. While one could argue that once you know the volcano is erupting or not, the

trees provide no more information about the rock states or expected values and vice

verse, but that is untrue. Because the Volcano is causally involved in the process

that results in the distribution of trees and rocks, by inspection, the silica content

of the rocks tells us something about the volcano, which tells us about the explosive



power, the shockwave size, the sulfur proportion, and by extension, the trees on the

other side. Simultaneously, if we have no knowledge of the volcano's existence, the

graph tells us that our state of information/knowledge without the volcano would

lead us to believe that the trees and rocks are non-independent - something that is

also untrue. We would believe because of separation, and all other variables aside,

that the tree growth is nearly completely independent from the rocks on the other.

The conditional independence graph that the "information" is most logically consis-

tent is not the one aligned to the causal model, but the inverse (Fig. 2-2 c). This is

a demonstration of the confusion between the idea of causal 'effect', and changes in

the state of information.

a) b) C)
::H (:H (Volcano Tree Rocks

Gun Tree Rocks Volcano

Figure 2-2: a) An example of two coins being flipped; A gun (G) is fired when two
separate coins come up heads (H). Evidence of the Gun being fired 'provides evidence'

(makes the values of the two coin flips non-independent). It should be noted that
neither flips of the coins are actually causally involved in the production of the gun fire.
b) A Volcano is causally involved in the Trees and Rock distributions. c) Knowledge of
the Volcano makes the Rocks and Trees non-independent. The preferred conditional
independence model is inverted.

Ultimately this has become a problem largely because of the words that are chosen

to describe the graphs. While the dependency graphs in Figure 2-2 are 'conditionally

independent' given the existence or non-existence of some piece of information[28, 45],

over time (perhaps due to the arrows) they have come to be referred to as 'condi-

tionally dependent', and thus suggest some sort of causal or structural dependency

between the observations. This is incorrect. To account for the inconsistencies be-

tween truly dependent networks and conditional networks (CN), the CN's are best

referred to as 'describing' how the 'information of observations' changes knowing

a particular observational value or having no informaton about an observation at

all. This means that each node in a conditional network is actually making 2 sep-



arate graph statements: about the non/independence of information from adjacent

nodes given the node exists and has values, or when it does not exist at all. In

the graph above (Fig. 2-2 b), the growth pattern of trees on one side of a volcano

is deemed to be conditionally independent of the rock patterns on the other, given

observational information of a volcanic eruption (this is sometimes said to block the

flow of evidence[45, 39]). Besides the obvious intuition that the rocks and trees are

not independent given that information, this is an assertion about the invariance of

the expectations of the two different distributions (rocks and trees) with respect to

observations of the volcano - that the current expectations are the 'natural' or 'in-

dependent' ones. The counter assertion made by the graph is that failing to observe

that the volcano even exists, the rocks' and trees' distributions will vary from their

'natural' (with volcanic information) value, and that variation is non-independence.

In many ways, it does not describe the underlying processes at all, but our 'state of

information' relative to some new parameter.

Finally, Bouckaert demonstrated that not all independence statements can be

represented by the first order edges of a conditional network, and that some in/de-

pendency statements cannot be deduced from the structure [7].

2.2.2 Deterministic Models

This is not to say that a pure graph is a complete representation of a deterministic

"model", either. Transformation functions have input states, output states, "causes"

that select them, and orders of operation. A featureless node is not sufficient to cap-

ture all three - at best it could only represent a "state". But in this particular case, a

tree supports structural dependencies, and order of operations that make it of interest.

When converting to a pure graph representation - even a tree, the edge augmented

feature of state/cause and the node feature of 'transform' is lost. In other words, the

'why' and the 'how' a process occurs is not represented in the graph - only the par-

ticipants (nodes), and a loose approximation of outcome dependency remains. In

the causal example of a shoemaker constructing shoes (Figure 2-3 b), the shoemaker
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maker
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Shoes Shoes

Figure 2-3: a) A possible graph representation for the dependencies between the
shoe, shoemaker, and materials. b) A partial causal representation of the conversion
of materials into a shoe. Before the shoe-maker 'causes' the sum/composition function
to be applied, the input materials are in a static (unmodified) state. The top is the
input state, the left is 'cause' or disrupting input.

'causes' the composition (E function) of raw-elemental materials into the shoe. But

in the simple graph (Fig 2-3 a), the function that the shoemaker actually performs

is unknown - it is only a human interpretation of the semantic meaning of 'shoe-

maker' that provides any insight. If it were not for the knowledge that a 'shoemaker'

'makes shoes', the graph would not provide information as to whether the shoemaker

is replacing, trading, wearing, teleporting, or ... inhibiting the production of shoes.

Would the shoes naturally form themselves if it weren't for the shoemaker? A 'causal'

graph should provide information about the 'final states' or 'final observables' were

it not for a transformation function.

An even more exacerbated example is one of causal loops (Figure 2-4), which we

can represent in a graph, but cannot handle in a belief network [45, 28] (though it can

be handled in a Markov Chain). In a purely directed graph, the cycle, though it may

have multiple entries, implies an infinite loop without a stopping/exit point, whereas

a causal representation (Figure 2-4 b) may consume an input and stop (similar to an

FST).
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Figure 2-4: a) A graph representation of the 'rolling' process, perhaps of a rock down
a hill. This cycle has no completion or exit and does not describe anything about
the process besides that a 'roll' now is dependent upon roll in the past. Augmenting
this graph with potential energy, where would it go? b) A state-augmented graph of
the same causal loop. Roll continues as long as it is in a state where potential energy
(PE) is available for consumption. Interrupting the roll leaves the rock in a state with
the remaining potential energy unconsumed.

2.3 Uncertainty

Rather than delve into the esoteric philosphies about what "uncertainty" entails, and

if "certainty" even really exists, I would like to enumerate a number of concrete ways

in which uncertainty surfaces in discrete observations and analysis.

In model formation and identification, uncertainty can be present in both the

observations themselves, and in the dimensions that the model space can take on.

And while I might feel inclined to separate explicitly observed dependencies into a

different space, dependence between observations can be seen as a kind of observation

itself, which restricts ordering, but inherits the same kinds of uncertainties.

2.3.1 Observations

Uncertainties that affect observations, and by extension, observations of dependence

are listed below:

1. Observation Order



2. Novel Observations (totally unique)

3. Grouping of observations - either state dependence, or number of joined obser-

vations in a branch.

4. Similar to a different observation - i.e. sharing of features, has-part, weighted-

Observations/Co-informing.

5. Variation in measurement around Observation true value - could also end up

as similar to a different observation (4).

6. Inconsistently Observed

O is not always observed; it is either obscured or not present in the source. This

could also be the transmitter's rule or knowledge-base.

7. Number of Observations - the number of O to obtain a 'representative sample',

if clustered by similarity.

2.3.2 Model Correctness

Assuming no uncertainty in the observations themselves, in the production of a pre-

dictive (or even just a descriptive) model, there are still a number of innate unknowns

that surface as uncertainties and affect model identification. Consider a sequence of

observations:

ABCBBABCBBAABABCBAAABC (2.1)

Then a partial enumeration of the dimensions of uncertainties:

* Parameter Size (Window Size on the sequence of observations - the separation

on which observations are irrelevant or how far back in time one need not look)

[A], [AB], [ABC], [ABCB], [ABCBB]...

* Temporal Dependency Space

There is some delay t before a dependent observation surfaces - for instance, B



at time 5 may surface t = 2 later than its triggering state of C at time 3.

A1 B 2 03 B4 B 5 A 6

* Delineation of Observation-Experimental Groupings - which observation sym-

bols represent the control variables, and which are the outcome variables. This

is a very strong assumption, especially in experiments with state.

* Parameter-Parameter Dependencies - these are dependencies between groups

of observations deemed to be 'similar'.

* Observation State Aggregation - the combinations of observation-symbols con-

stitute the relevant state of the experiment. For instance, in the above example,

B 5 could be dependent upon {Ai, B 2, B4}, or any other combination of prior

observations and position one might concoct.

* Weighted Contribution to an Overall Theory (Coherence).

* Transforms on discrete or continuous observational state. For instance, consider

the transform F(X, X + 1) => X + 2. Then (A, B) => C , and (B, C) => D,

and so on. In a sequence of observations, this is a generator function [57].

2.3.3 Completeness of Model Space

If I follow the reasoning that induction is merely the process of enumerating all

possible outcomes and choosing the most probable, then I would want to take all of

the 'uncertainties' listed above and create a model space {M} that contains them all.

It can be shown that full enumeration of all possible dependency directions be-

tween all possible observations contains all variations of temporal delay t before an

observation surfaces, but after removal of cycles for Bayesian networks[45], does not

contain all possible mixtures of models (Markov cycles are not contained). The final

primary restriction is on state aggregation and generator functions, which are not

contained in the graphs as described earlier.



2.3.4 Case for Sequences of Observations

In merging dependencies, ordering, and hierarchies, we are faced with the question:

what do we do with conflctrng information, ordering, and knowledge? In fact, this

is the only question of interest. If our two knowledge representations are consistent,

then there is no problem, and nothing interesting to show (in the same way that a

completely consistent graph can be recovered from two consistent partial orderings

[41]). If they are inconsistent, however, we are faced with the merge problem that

crops up in ontology alignment, and indeed, all forms of learning and science.

The basic problem with probabilities is that they treat observations as ultimately

stateless (i.e. exchangeable). In the stateless combination of dependencies, merging

conflicting dependencies breaks down to a single case: (A -- B) + (B -* A) (Fig.

2-5a). In the case where two knowledge structures make entirely different depen-

dency assertions, the merge order is still not clear - the only consistent information

- which observation is the 'head' remains, but the dependencies become pure, un-

ordered observations as well (Fig. 2-5b). In other words, pure observations are the

lowest common denominator of knowledge.

Secondly, many times in scientific inquiry, observations are all one has - whether

they are DNA sequences (read: 'G A T T A C A'), or classifying and tagging words

with other known observations. For example, 'The dog ran.' becomes 'D N V .' (De-

terminer, Noun, Verb, Period). Similarly, parsing introduces extra symbols (bracket-

ing) into the observation stream to represent dependencies 'S ( D N V )'.

Finally, in an ontology, as the graph's edges are augmented by features that can

describe the 'type' of relation or dependency (i.e. 'is-a', 'has-part', 'regulates' (Gene

Ontology [5])), themselves are augmented by specifications that describe the tran-

sitivity and reasoning of the nodes those features connect. But in the case where

the logical features conflict (i.e. A 'is-a' B, and B 'is-a' A), but the dependency di-

rection and the features are inconsistent and cannot be represented except by the

observations themselves (A 'is equivalent' to B, but no such relation/feature exists).
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B(:A
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(a) Merge of (A - B) + (B -- A).
In the 'most consistent' form, the
conflicting dependency is removed
and {A, B} become just separate, ex-
changeable observations.

(:A

C

(b) Merge of (A -4 B) + (A -- C).
In the 'most consistent' form, A re-
mains as the head, but since no in-
formation exists about the relation
between nodes {C, D}, three possi-
ble dependency orders exist: A --
((B - C) + (C - B) + {B,C}).
B, C reduce to a case of Fig 2-5a,
pure observation.

Figure 2-5: Cases of conflicting dependency reduce to pure (unordered) observation.

2.4 Going Forward

In short, part of the reason that this problem is hard is because the graph, which

is used as a simple diagrammatic representation through which probabilistic descrip-

tions and predictive models are often connected, is an underrepresentation of both,

in orthogonal directions. Unfortunately, this has not stopped others from referring

directly to the "additional features" of causal structures probabilistically [29, 45],

suggesting that the graph contains them.

Going forward, I've made the case that the greatest common information in a



sans-state dependency conflict reduces to pure observations. Additionally, I've argued

that most model combinations and dependencies are completely contained within an

enumeration of all graph models of a given size, though as we remove cycles to posit

valid conditional networks, this is reduced. Finally, I expect to discover something

interesting due to the poor overlap between the deterministic and the probabilistic

graph representation. And in trying to recover the deterministic rule, I will focus on

the only aspect that the graphs seem to have in common - dependency.



Chapter 3

Experiment

In Chapter 2, I made the case that resolution of partial or conflicting knowledge

structures with unknown dependencies can, under best conditions, be seen to be an

ordered sequence of observations. In this experiment, I will take a 1-D sequence of

semi-random-observations which have a known deterministic model which relate some

of the observations, and after applying a 'veil of forgetfulness' (as a colleague called

it) about all generating knowledge, I will try to recover the 2-D dependencies of the

deterministic model, if not the full model, probabilistically.

The question that I want to answer is if the process of selecting a dependency

model probabilistically from some hypothesis space (treating it as a typical machine-

learning problem) is likely to identify necessary aspects of the correct deterministic

model (and discriminate incorrect aspects as Valiant does [56]), and if not, why?

I shall do this by establishing a number of 'gold' generating models, which are fully

deterministic and operate on a sequence of observations, transforming subsets of the

sequence into different sequences. The deterministic transform will repeat all the way

through the sequence, satisfying redundancy, and each transform's appearance will

be independent of observations not transformed and other transforms' appearance.

The transforms' inputs, outputs, and position within the string will not be known

a-priori, meaning that all the probabilistic recovery mechanism will have access to is

the final sequence of observations. Explicit dependency relations will also be invisible.

While this is a substantial limitation, in many domains it is the only information that



we have access to: DNA/protein sequences, Natural Language Processing, or just a

linear sequence of static observations made from the real world "broken glass on floor,

footprints, overturned chair", and thus this is a common approach towards making

dependency assertions between observations.

This section proceeds by listing out the domain definitions, how the observations

are generated from the source model, how the probabilitic models are selected and

tested, goes through a toy example, and finally, some of the limitations of this ap-

proach are discussed and what is not likely to be discovered.

3.1 Experimental Overview

With the goal to obtain insight towards the above questions, the steps of the experi-

ment are:

1. Pick a domain that mimicks observational & uncertainty properties of the "real-

world".

2. Transform portions of the sequence of observations from that domain using a

deterministic rule into a different sequence of observations.

3. Setting aside all prior knowledge and using only the new observation sequence

as the source of evidence, try to recover the dependencies of the rule proba-

bilistically, and test the dependencies of the recovered rule against the original

rule.

4. Accumulate observation frequency counts and compute joint probability distri-

bution for observation-states within a window of fixed size Q - the ordering and

dependency is unknown. (i.e. Q=2 is adjacent observations) : Vary Q up to 5.

5. Create a hypothesis space consisting of all dependency models of size Q. Test

each one's conditional independence map to find which one is most likely to

have generated the observation sequence from the joint probability distribution

(Most Likely Model Mni).

6. Map the most likely model Mm, to the most likely observation Om, values to

determine if the identified model's distributions map to the correct observation



& dependency structure.

7. Continuously increase the length of O (add more observations) and test the

direction of the edges in the most-likely-observation-dependency model Mmi- Omi

to determine if the identified model is the correct (gold) one, how correct it is,

how far from correct it is, how sensitive it is to new evidence, how quickly it is

converged to, and how likely the correct model is to be selected overall.

8. Do 2-7 for a number of models & different Q sizes.

3.2 Domain Definition/Assumptions

Because in this experiment, observation generation (real world domain) and model

selection (limited problem domain) are treated separately, it is important that the do-

main assumptions for probabilistic induction (model selection) be defined as closely to

the real-world "generating" domain as possible, and to understand where specifically

it deviates.

3.2.1 Intermixed Observations & Outcomes

Before breaking down the domain, it is important to describe some of the limitations

of a necessary assumption - that of the sequence of observations. I may have argued

the case for usage of the sequence, but the sequence has some properties that are

both helpful and detrimental to the purpose of my experiment.

Separating input observations and outcome observations allows us to more eas-

ily establish and test a control. Specifically, it will allow us to answer under what

circumstances the transformational rules are visible, partially visible, or completely

inaccessible. If provably inaccessible, then no probabilistic method will ever be able

to recover it. If the rules are accessible to a separated input-output analysis, it will

help provide insight as to what (if any) information is being lost with probabilistic

model selection.

However, mixing observations in a sequence has some advantages as well. I be-

lieve it to more accurately represent the problem of 'incorporating' new observations.



Specifically, as observations are added from different sources, with different charac-

teristics, the learner may not know whether an observation is an input or an output,

or connected via a causal relation - only additional evidence allows them to posit

some theory. Effectively it makes it easier to add new observations as part of the

experiment, and describe 'convergence' as a function of the number of observations.

Secondly, provided that observations are 'chunked' up into a sequence and ordered

consistently, then the sequence contains the case of separated inputs and outcomes,

while providing a consistent set of observations to reuse throughout the experiment.

When the sequence is initially generated by a random set of symbols, it also emulates

(in the limit) the full space/complexity of state possibilities that the world could be

in for a rule to apply. Finally it makes for a clear representation of the complexity of

the problem of 'position dependence' or 'temporal dependence' within the stream -

that an outcome may surface some time later than it's dependent state.

3.2.2 Real-World Domain

In the Real-World

terized.

domain, the scope of the full model selection problem is charac-

GIVEN: A linear stream of observations.

THE PROBLEM: To determine Causal and State dependencies among observations.

THE DOMAIN: States may be aggregated to create new states

CONSTRAINTS:

UNDER-CONSTRAINED:

Different observations are produced by different states (the same

state must be observed identically, unless altered in some way).

Dependent observations may not surface immediately - there may

be some unknown delay t).

Different states need not lead to different observations.

States are not necessarily consistently or completely observed.

State Observations may be made in any order.

State Dependencies may be made in any consistent order.



Novel observations may be of an 'unknown type' and properties.

If the 'real world' is random, the distributions are unknown a-

priori.

VARIABLES: The total number of observations O.

Number of state dependencies D.

Number of states S.

3.2.3 Limited Problem Domain

In the limited domain, I make a number of assumptions that make the problem more

amenable to probabilities, that are intended to serve as a "best case", while still

displaying the aspects of the problem I am seeking to investigate.

GIVEN: A linear stream of observation symbols.

THE PROBLEM: To determine the dependencies between observations.

THE DOMAIN:

CONSTRAINTS:

UNDER-CONSTRAINED:

All states are atomic and elemental states - states may not be

aggregated to create new states.

Different observation symbols may be produced by the same state

(distribution of observations).

A state may account for only 1 observation at a time.

Dependent observations surface immediately (zero delay).

State inputs are position-specific relative to dependent observa-

tion

Different states need not lead to different observations.

States are not necessarily consistently or completely observed.

State Observations may be made in any order.

State Dependencies may be made in any order.

Novel observations may come from any distribution.

Distributions are not necessarily uniform.



VARIABLES: The total number of observations

Number of observation/state dependencies.

Number of states.

In the separation between the real world domain and the domain used for induction,

a logical problem emerges. If we require all individual observations to be elemen-

tal states, and do not combine them into more complex states, then the required

functions (that I will use, such as AB -- C) cannot be produced. Because it is

sometimes assumed that forms of fuzzy logic (including probabilities and belief rep-

resentations) can represent both AND and OR of boolean logic [60], and because a

graph of [A orB] -- C is the closest that a single elemental model could be to cor-

rect, the selection of an independent A or B with the correctly dependent C will be

acceptable. However, connection of A and B will be considered to be unacceptable,

because even though it is obvious that A and B are correlated, a dependency asser-

tion between them could be turned into a logical dependency - that C is dependent

(derives logical evidence) upon both and A and A (via B).

3.3 Generating Models

The generating models are the list of rules that create and transform the observation

sequence into the one for analysis. It consists of two parts: production + alignment

of the initial observations from the random distribution(s), and the transformation of

subsequences of observations with deterministic rules.

Generating Rule I--, I Map to Position -t Sequence

3.3.1 Initial Observation Sources

The input alphabet E is the source from which initial observations to be transformed

are selected. Before tranformation by the rules F, each observation o is selected from

the discrete uniform distribution with p(o) = '



Random

In a randomly produced sequence, the alphabet of input observations E is selected

from a uniform distribution of alphabet, and if the prior observations in the sequence

satisfy the state requirements of the transform rules F, then F's output is inserted

into the sequence.

For instance, consider F = {A, B --+ C}, and E = {A, B}. Then A and B are

selected from a uniform distribution of .5:.5, and whenever the sequence AB is seen,

C is inserted. The position of the rule throughout the sequence is not pre-assigned,

and it could surface in any (non recursive) position.

ABCBABCBBAAABCABCBBBBA (3.1)

Partitioned & Aligned

In an aligned and partitioned sample source, the distributions that each observation

position maps into are asserted a-priori. This is conceptually identical to the formal

separation of input and output observations, and is effectively equivalent to 'naming'

observations, or rather the distributions that they come from in advance.

ABC, BBA, ABC, BAA, ABC, ABC, BBB (3.2)

3.3.2 Transform Models

It is of note that Models 1-3 are generated using a consistent size of Q = 3, so that

an understanding of the errors made in model selection may be built progressively on

those earlier models, without having to control for changes in size.

Model 1: No Dependencies

This test is effectively a control on the model selection - can fully independent model

with no transform rules, and thus no dependencies, be identified?



E: ABC

F:0

Example: B A B A B C C A C B C C A A B

Model 2: Simple Transform

The simple transform is the composition of two observations into the insertion of a

new observation. The task is the correct selection of the known dependencies, and

the child node.

E : AB C

F : AB -+C C

Ordered (ABC) Example B A B CBA ABC ABC AAA AAA

Aligned Example B B A, B B A, A A B, A B C, A B C, B B B

Model 3: Shared Process (Dual Dependency)

This is our Volcano example; two observations are dependent upon the existence of

one. Observations from one distribution are involved in the production of observations

in other distributions. Apart from the production of D and C, A and B are generated

uniformly.

A
E AB

F :A - DC D C

Aligned Example B B A, B B B, AD C, AD C, B A B, A D C

Model 4: Hierarchical Model

The hierarchical model tests the composition of 2 tree models of the 'simple transform'

(Model 2) type to identify if the multiple dependencies can be recovered, and it also



satisfies the 'randomness of branch position' (but within valid branch bracketing

positions).

E ABDE

F DE - B
C

AB -- C

Aligned Example ED B A C,...,D E B A C,...,A E D B C,...,A D E B C

In this hierarchical model, positions of {D,E} may alternate, as may positions of

{A,B}, while the root outcome C stays fixed. B must also stay fixed relative to D and

E, given the 0 delay assumptions in domain constraints. This means that positions

of A may be displaced relatively, as may be positions of D and E relative to the

root C. Note the sequences which are not produced: [ED] ABC, B [DE] AC, AB [DE] C....

Though the observation positions within the branch are equivalent, the dependency

structure of the tree prevents truly random observations from surfacing when lin-

earized.

3.4 Model Identification

Identification of the most likely model Mm from a sequence of observations formally

consists of 3 parts:

1. Reading observations from the sequence into source distributions. Source dis-

tributions are position dependent.

2. Identifying position dependencies finds the model Ml between the distribu-

tions that "best fits" the observation sequence (most likely to have produced

the observations). This also represents the most likely position dependency

model within the sequence.



3. Identify observation dependencies by mapping the best fitting position depen-

dency model to the most likely observations 0,1.

DEFINITIONS:

0 - Let 0 be the entire observation sequence.

S - Let S be the state size, in number of observations. In this experiment, S=1

N - Let N be the number (length) of the entire observation sequence, and subscriptn

an index into it.

E - Let E be the observation at the n'th position (sequence index On).

Q - Let Q be the "complexity" of model - both the window size on the sequence,

and the number of parameters/distributions.

i - Let i be an index into a distribution or parameter.

D, - be the positional distribution from which a single On (or E) is drawn.

{M}Q, M, g - Let {M}Q be the set of all independency models of sizes Q, M be a

single set of models of a fixed size Q, and g an index into an M from which a

single model Mg is selected.

m, n, o - Are the read distributions (D 2, D 1, Do) for convenience and readability.

3.4.1 Reading Observations

Because everying about working with probabilities is about working with distribu-

tions, the process of reading observations from the source sequence is about reading

observations into target distributions - in order to calculate joint probability distribu-

tions for different models. It is common to make a number of assumptions regarding

independence within the observation sequence, but one must be careful. The set of all

graphs already contains the set of all possible independence assertions (independence

maps), which is what I will be testing, so I must avoid duplicating independence

assertions to prevent the "best independence match' from being the one that best

matches my assumptions.

In reading observations, the only assumption that I will make is the Markovian one

- that all observations within the window size Q are independent of those that came



before. While this is a partially fair assumption (that will be broken by unpartitioned

and free reading orders), in a general case it may not be a valid assumption. It is

entirely possible for long distance (and temporal) dependencies to exist within the

sequence, that are outside of capture by the window size. Secondly, 'state dependence'

can be seen as an unknown width of composited observations which may not fit within

the window size Q, regardless of whether we allow grouped observations (i.e. "AB"

) to be read into a single distribution. So this assumption basically excludes long

distance dependencies or larger compositions of state from being captured.

The experiment that will be run here is a calculation of the maximum Kullback-

Leibler (KL) divergence (relative entropy) between the read distributions. While

Kullback-Leibler is not symmetric between two distributions P and P2 , when KL

= 0, P1 = P2. In this case, if a KL divergence converges on 0 this will tell us

that the reading stategy being tested (partitioned, ordered, free) has a diminishing

'distinguishing' information content between all of the reading distributions. (In

general, DKL(P1 P2) tells us the 'information', or additional bits needed to encode an

observation from P when P2 is used) [25].

P(E) (3.3)Pa, Pb {Do...Q_} max DKL(Pa Pab) = max Pa(E)log Pb(E) (3.3)
E

DKL(Pai Pb) = 0 does not mean that there is no information within each distribu-

tion or that the entropy within a distribution P has been maximized, only that two

separate distributions are effectively equivalent.

Partitioned (Aligned)

In testing an aligned method of reading observations into distributions, the observa-

tion stream is chunked into aligned sequences of size Q, and the observation at each

position is read into a distribution at that position.

Consider sequence 3.2, repeated here and sequences of size Q=3 mapped into dis-

tributions (D) m, n, and o (labeled for convenience):



D: mno mno mno mno mno mno mno mno

0: ABC BBA ABC BAA ABC ABC BBB BBA

Then distribution m contains 4 counts of A, 4 of B, and 0 of C. Distribution o

contains 4 C's, 3 A's, and 1 B.

This is similar to what most statistical natural language processing, or simple

Bayesian usage examples are. The distributions have been named and pre-assigned,

separating the observations right at the start.

Ordered

In 'partitioned', I arbitrarily enforced a strict mapping of source distributions to

the observation sequence. But testing unpartitioned reading of the observation se-

quence is the very first form of "uncertainty" to handle - that we do not know what

'state', 'input' or 'distribution' an observation belongs to, or where to start! In many

experiments, this information (the target distribution) is not available; outcome ob-

servations may be intermixed within the observation sequence directly, and novel

observations may not be named and could come from any distribution. In this test,

the mapping of the distributions to the sequence is assumed to be ordered, but not

partitioned. In many ways, I expect it to be like listening to music - if I start the

song in the wrong place, it should take longer to 'get'.

Consider the same observation sequence, size, distributions (m, n, o), and differ-

ent positional mappings pi, p2, P3:

O: ABC BBA ABC BAA ABC ABC BBB BBA

P1: mno mno mno mno mno mno mno mno

P2: mn omn omn omn omn omn omn o...

p3 : m nom nom nom nom nom nom no...

In this case, when the exact delineation of rule observations ABC is not known,

each of the distributions m, n, o derive some evidence from each position offset. The

problem here is that the joint probabilities of m n n, n N o, and o n m will begin



to converge. The contribution of the evidence at each position into distributions m,

n, o will be made uniformly (though any weight choice is possible). Another way of

looking at it is in the size of overlap of the read stream. Each chunk of 3 is read after

incrementing the read index by 1 - meaning that there is an overlap of 2.

Reading strategies may thus be seen in terms of 'overlap' of the number of distri-

butions that each observation goes into. In the completely aligned case, there is an

overlap of 0 and each observation goes into a single distribution. In the Ordered, but

unknown case, there is an overlap of 2, and each observation goes into 3 distributions

(with the exception of the endpoints). Finally, it is possible to choose an overlap of

1, where some observations go into 2 distributions.

Free

In a free assignment of observations, any observation may go into any distribution

(optionally with a weight). Because this can yield inconsistent reading orders (and

thus any dependency model will have no meaning), and because it seems pretty

obvious that as O gets longer, the distributions will converge, I will not use this

method for reading. I believe that the trend suggested between aligned and ordered

(unpartitioned) will be sufficient.

3.4.2 Dependency Models

In the selection of the most likely independency model Min, the parameters being

optimized for are the independency between the positional distributions obtained

from reading the observation sequence. The discrete distributional shape is unknown

a-priori.

Each independency model M. will represent a 'hypothesis', and all possible inde-

pendency models of size Q will be enumerated. For hypothesis selection, there are a

number of other types of models/hypotheses to enumerate - for instance, one could

enumerate all possible deterministic rules. But one of the major goals of this experi-

ment is to 'capture uncertainty', not deterministically succeed or fail (resulting in a



log-Likelihood of -oo).

Bayesian Hypothesis Selection

In Bayesian Hypothesis Selection, I enumerate all possible independency models M

as the 'hypotheses' within the available parameter space of size Q ({M}Q)and select

the model Mni that is most likely to have produced the observation sequence O.

Formally, we leverage Bayes rule and choose an individual model Mg that maximizes

the probability of the observation sequence.

P(Mmi) = max P(MgIO) P(OIMg) P(Mg) (3.4)
E P(O|Mg)P(Mg)

The marginal probability (Eg P(OIMg)P(Mg)) is the total probability that a model

(over all M) of size Q generates the data O. For a fixed Q, the marginal probability

acts as a constant normalizing factor a (this cannot be done if Q is varied & com-

pared), reducing the selection of the most probable model to maximizion the posterior

and prior probabilities:

maxP(Mg|O) = max P(OlMg) - P(Mg) - a(Q) (3.5)

Probability of Observation Sequence Given Model

Generally, the probability of generating a particular sequence given a Model is com-

monly referred to the probability of the Data D given a model Mg, which breaking

it down into non-overlapping independent observation window subsequences of size

Q, is the product of the probabilities of N/Q subsequences in sequence O given the

model.

N/Q

P(DIMg) = 1J P(O[Q -a : Q(a + 1)]IMg) (3.6)
a=O

Given that all dependency orderings are allowed within the window (none outside),

the probability of any subsequence from Oa to Oa+Q is the product of the probability

of each individual observation given the values of all other observations related by



the conditional independency model Mg. Some observations will be independent

according to the model and others will not.

Q

P(O[Q -a : Q(a + 1)] Mg) = 1 P(Di = OQ.a+i Mg, D{o...Qnf}) (3.7)
z=0

Priors

Priors are generally considered the "a-priori knowledge" or "belief" that selects one

model over another more quickly, or if all other evidence is equal. Naively, I may place

an increased prior on a class of models drawn from M (for instance, 'trees'), counting

on the prior to return correct results early in the observation sequence. But because

priors are in direct contention with evidence, they only change the rate at which

additional evidence is needed to select (or overcome a bad prior) individual models,

but they do not actually change the knowledge being gained. Experimentally, they

may actually lessen it - by choosing a prior of unprincipled value, information is lost

about the relative rates of convergence for any particular model over another. Sec-

ondly, this experiment is about the "best case" "lack of knowledge" performance of

probabilistic dependency identification. In a real-world scenario, it is unlikely that

we would know the structure of the model - that it is a tree or otherwise, so placing

an increased prior on one model class is not justifiable. Finally, it is may be the case

that a particular graph structure has an over-representation in the hypothesis space

(class of models) [6], but this does not actually change the selection of the most likely

model - each individual Mg is in competition with every other one.

PRIOR: Uniform.

With a uniform prior over M, P(Mg,) = P(Mg2) and the P(Mg) becomes another

normalization factor P(Q) - a function of Q size, reducing the calculation of the

distribution probabilities for models Mg given O (within a fixed Q) to:

P(M10) = P(OjM) •a(Q)P(Q) (3.8)



P(M10) io P(O|Mg) (3.9)

The loss due to these simplifications is the ability to compare models of differing

sizes - where the total probability that a model of size Q generated the data, or the

prior, despite being uniform, is diminishing with model size Q.

Enumerating Hypotheses: Models {M}Q

Up to this point we've expounded on the selection of the most likely model from M,

but not what those models are, or where they come from.

When the state size S is fixed at 1 (elemental observations), Q is both the window

size on the observation sequence and the number of distributions. The individual

distributions can act as nodes in a graph, between which we can draw arrows that

represent conditional independence assertions. For Bayesion model selection and two

distributions, D 1 and D2 , there are 3 kinds of arrows: D1 {-, <, -, -}D 2 (disregard-

ing the cyclic ti). In otherwords, D 1 is conditionally independent given D2 , D 2 is

conditionally independent given D 1, or D1 and D2 are independent (or conditionally

independent given some third node). In chapter 2, some problems with this repre-

sentation of independence were exposed, but at this point, for consistency with other

works I will retain this notation.

To enumerate models in M, we consider a set of nodes size Q, consisting of N =

{ni, n 2 ,- - - , nQ}

1. Choose all possible 2-combinations from N, call this new set: {N 2} - it will

have size (i). For 4 nodes (Q=4), this is 6.

2. Create trinary table of size 3( ), where each entry represents a graph, and each

value a direction/type of edge. For Q=4, this is 729. This is the model space

{M}Q (Table A.1), and does not include first order cycles ; (the table size

would be 4(N).

For an example graph/model enumeration, see Appendix A.1.



Removing Cycles

The enumeration of all possible graphs creates a number of cycles, which present

problems for Bayesian model selection [28]. I use the following strategy to detect

cycles and prune those graphs from {M}Q.

foreach model Mg in M

while there is a node with no children

delete node and edges pointing to it

if Inodes| greater than 0

cycle = true

remove Mg

Best Fit Observations

Finally the set of 'most probable' models ({Mmp}) (which contains Mi), equiva-

lently captures the most frequently surfacing independency-relationships within the

sequence O. This basically tells 'how to read' the dependencies within O in the 'most

consistent' way. I would like to know what the 'best fit' observation sequence is to

the selected dependencies - what are the relations between actual observations that

are 'best captured'? This can be seen to be a prediction of the model back onto

the world. Does the best fitting independency relationship predict a different set of

outcomes than the deterministic rule?

max P(O, Mg) (3.10)

foreach obs-comb-map (Oxi) in (unique-obs choose Q):

compute P(Oxi Mg)

return list of obs-comb-map satisfying MAX P(Oxi|Mg)

% (A number of top equiprobable mappings are possible)

This will become important to see what kinds of sequences the observation-

dependencies map prefers to generate. For instance, a distribution-dependency map



of (D 1 = A) -- (D 2 = A), if selected as the top deterministic rule (A -- A) will

generate the infinite sequence in 3.11.

AAAAAAAA...oo (3.11)

3.5 Computing Correctness

To determine correctness of the selected models, a number of tools will be used

depending upon the experiment run. I would like to choose an evaluation scheme

which is consistent with the use of probabilities. It is easy to say "yes" or "no" that a

singly returned model is exactly correct, but I'd like to know what the "likelihood" is

of selecting the correct model over is, and "how correct" it is. Finally, I'd like to answer

if the removal of probabilities in the top model selection results in a deterministic

model with degenerate properties, incapable of reproducing the data (infinite loops,

etc.)

3.5.1 Edge Overlap (0)

Computing edge overlap is in many ways, the least informative (and very nearly asi-

nine) of all possible metrics for computing correctness. It does however, mimic what

I believe to be the "lazy-human" evaluation of correctness - that readers gloss their

eyes over and casually glance at a selected model and say "that more or less looks

correct", without actually carefully evaluating dependency structure. It only tests

that an edge exists where it is supposed to, not direction, and only inside the gold

model. Meaning, it only tests the percentage of overlap on the gold model against

the selected model.



Because a number n of equiprobable selected models can be identified, in keeping

with the approach of uninformed identification, the true overlap likelihood is the

expectation of overlap Eo:

Eo = -L On
1...n

expectedoverlap = 0.0

foreach selected model SM:

expected_overlap += overlap [SM]

expectedoverlap /= total number selected models

This metric provides the likelihood of uninformedly selecting the correct model

from the identified models.

3.5.2 Edge Direction

The second test of correctness - test all of the edges within the gold model to iden-

tify what proportion have the correct direction. This will be tested over the entire

observation sequence 0 to determine what proportion of the returned models are

completely directionally correct (as a function of n).

foreach selected model SM:

overlap [SM] = 0

for pair nodes in comb(goldnodes):

nodes connected in both Gold and SM:

overlap [SM]++

nodes not connected in both Gold and SM:

overlap [SM]++

overlap[SM] /= total possible Gold edges



3.5.3 Convergence

I would like to graph the convergence to selection of single model as additional obser-

vations are added. Convergence will provide insight into sensitivity of model selection,

as a function of overlap with the gold model. For instance, does the model selection

converge on the right or the wrong model as observation length goes up to 100,000,

and is it that selection stable?

3.6 Simple Example

Of the listed tests for model building, this test uses Bayesian Networks, and the goal

is to end up with graph that nominally contains (A -* C +- B) I'd like to determine

what the "most probable" model of observation states is, knowing no parameters (0)

or prior structure. This requires me to test parameter counts of N={1, 2, 3, 4},

where N=3 is matched to the number of unique observations, 4 assumes 1 hidden

node/param, and N=1 param offloads all unique observations to a distribution. I'll

use 3 params and unaligned reading for this test case.

Considering 2 models, 3 parameters each 0 n-2 = m, 0n-1 = , 0,n = 0:

M1 . (m n o) (all independent)

M 2. (m-n o) (one edge)

Mapping to the input stream:

foreach selected model SM:

direction [SM] = 0

for edge in comb(goldnodes):

edge-direction , Gold = SM:

direction [SM]++

edge not connected in both Gold and SM:

direction [SM]++

direction [SM] /= total possible Gold edges



mno

ABCABC

m n o (0 moving down the stream)

Each model generates different conditional probability tables (CPT).

For Model 1 (Mi): All independent, the CPTs for all parameters are:

P({m,n,o}={A,B,C}): = 1/3 each value

For Model 2 (M 2):

o is independent, as is m, but according to the graph, n is conditionally dependent

on m, so the produced CPT is:

P(o) = { A,B,C } = 1/3

P(nlm) = { P[nlm=A]

B 1.0

A 0.0

C 0.0

, P[nlm=B]

B 0.0

A 0.0

C 1.0

, P[nIm=C] }

B 0.0

A 1.0

C 0.0

P(m) = { A,B,C } = 1/3

Calculating P(Mg O) for Models 1 & 2:

Model 1 (Mi):

P(OIMI) = probability of this particular sequence (there are 3 of them), when selected

from the random variables.

= (P(m = A) - P(n = B) . P(o = C))3 = (1/3 * 1/3 * 1/3)3

P(MIO0) oc P(OIMI) = (1/27)'

Model 2 (M 2):

P(OIM2) = The probability of the sequence for two independent distributions (m & o) and

one dependent (n).

= (P(m = A) * P(n = BIm = A) * P(o = C))3 = (1/3 * 1.0 * 1/3) a

P(M 2 10) N (1/9)3



This indicates that Model 2 (m--n o) is a more likely fit than Model 1. Mapping the

variables to the model yields M2 = (A -* B C). It can be seen right away that as O increases

in length, and the reading method is unaligned, (A-+B C) becomes equally probable a

prediction for Model 2 as (B-+C A).

3.7 Alternate Methods & Experiment Limitations

There are different ways of approaching this problem, and this experiment is incomplete in

a number of dimensions. Most notably, testing the model selection within a complete space

of an expanding window size, all the way up to Q=length of observation sequence will not

be done.

In terms of the performance measure being maximized (over potential dependencies),

the overall Likelihood is not necessarily the best measure - the hit rate - the ratio of

correct predictions to false positives provides a better method to rank models in terms

of their mappings to actual events/observations within the sequence. In Signal Detection

[24], maximizing the posterior ratio against the false positives is proposed, as a method of

discriminating rule against noise (d-prime), which would provide a measure for whether I

am capturing rule occurrences or noise (non-rule). This is also somewhat similar to Valiant's

method [56], where the identification of the discriminative program or vector (in disjunctive

normal form) can be achieved via the use of an oracle.

While for this experiment, I will not be using Hidden Markov Models (due to time and

space constraints), it is important to make a few statements about them. In this experiment,

there are two obvious places where they could be used. The first is in reading observations

from O - there could be 2 sequences: Noise sequences (N) and Rule (R). Accumulating

the transition probabilities is done to determine which observations are relevant, and which

observations are not. This could achieve 2 purposes - alignment of the observations into

distributions, and boosting the positive observations. Identifying the transition probabil-

ities between observations also seems to be a more 'natural' way to model implied state

transitions observation to observation.



Chapter 4

Results & Analysis

In this section I describe the results obtained from the multiple experiments, and then I seek

to explain what they mean in terms of knowledge representations, dependency recovery, and

overall model building.

4.1 Reading Observations

The results from the attempts to read the observations into distributions are confusing,

but are necessary to comprehend the results of Model Selection. This section presents the

results from different reading strategies using Model 2 (AB --+ C). Model 2 is the simplest

rule being evaluated, so the reading strategy we wish to select is one that maximizes the

information available for the model selection step.

As touched upon in section 3.4.1, the maximum KL Divergence maxp,Q DKL(PIIQ)

between the read distributions provides a measure of 'information content' or 'distinguisha-

bility' [25] contained between the different distributions that observations are read into.

For all strategies of reading that either overlap, or in which the rule's appearances are not

specifically aligned to a known distribution (Fig. 4-2 b, c), the maxp,Q DKL(P I Q) drives

to zero - meaning that all reading distributions are converging and becoming equal - the

differentiating information content is disappearing. Introduction of an additional reading

"uncertain" parameter (size = 4) also drives convergence, as that parameter disrupts align-

ment and knowledge of the distribution into which a new observation should go.

It is of note that even though the 'uncertain' distributions converge in the first order,
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Figure 4-1: a) The maximum Kullback-Leibler Divergence between the distributions

that the observations are read into, up to 100,000 observations (loglo). All distribution

Divergences drive to 0 (converge) for all reading strategies except the completely

aligned case. b) The same graph, scaled loglo - loglo, zoomed to -10 (10-10) - The

relative rates that the maxmum Kullback-Leibler Divergence drives to zero for the

"uncertain" methods of reading.

having the same proportions of A, B, and C, that does not mean that they are independent.

In fact, it is entirely possible that 3 distributions have exactly the same contents, but be

non-independent - i.e. they could have joint probabilities of 1.0. P(m = x n n = x) = 1.0

etc. However, we know from the high variance in the KL divergence for small length

observation sequences (small number of observations) that the distributions do not have a

joint probability of 1.0 a-priori.

Unaligned reading may be the general case for reading and interpreting new observa-

tions, but aligned provides the greatest information content between distributions, and if

there is any uncertainty in the way observations are read, then it drives distribution con-

vergence. The more uncertainty in the process of reading - as in "uncertainty into which

distribution an observation belongs" - the faster the distributions converge and the faster

information content drives to zero (Fig. 4-1 b).

This test does not cover or enumerate all reading strategies, which can be made arbitrar-

ily complex, but I believe it to cover the general case where an observation either overlaps

and could be deposited into any distribution or does not. If it is the case that one deposits
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Figure 4-2: Reading Strategies for observations into distributions m, n, and o. a)

Aligned, Overlap 0 - Every observation is uniquely assigned to one distribution. b)

Aligned, Overlap 1 - Every other observation contributes to 2 distributions, except

end-points. c) Aligned, Overlap 2 - All observations contribute to all distributions,
except the end-points.

an observation into multiple distributions (lets say D 1, D2), then as D 1 and D2 converge,

any desired dependency between a different distribution Dd and D 1 would be duplicated

on D2 . If all distributions converge (as they do in all the above reading strategies), then all

dependencies would be duplicated between all distributions.

This suggests that if a person does not 'know how to read', interpret, or separate

(classify) observations a-priori, then the use of reading distributions and probabilities will

only guarantee a lack of information content. Moreover, in this experiment if the reader

chooses to try all reading strategies simultaneously, choosing the one which maximize DKL,

then it is not until around the 200'th observation that one strategy is appreciably superior

(Fig. 4-1 b). For less than around 50 observations, at least 3 strategies intermingle and the

aligned strategy is not the superior one.

Overall, this shows us that if one ignores the 'phrase structure' of each observation-

subsequence triple, then the information is being degraded. In terms of Natural Language,

it shows us that the periods and commas in a sentence are important, not just as another

observation-token to be read into a distribution, but to align tokens into the correct dis-

tributions. From an ontological perspective, it means that the branches whos nodes serve

as the observations must also have an a-priori known span size to assign them into correct

distributions as well. Finally, from a 'causal'-'real-world' mapping (not to be confused with

probabilistic 'causal' reasoning), it shows us that if one uses probabilities for 'learning' in

the 'real-world', the 'codes' or the 'features' that are communicated from the real world to

the observer have to be agreed upon a-priori. Right away, the total size of the dependencies,

width and depth, have to be known at the start. In other words, if he is using probabilities,

the learner (or the observer) has to already correctly know and recognize those items that

he is meant to learn.



4.2 Model Selection

Given that all distribution contents converge in this experiment for all "uncertain" methods

of reading, Model selection will be conducted with the aligned data source and method of

reading observations, which 'maximize' the 'information' between the distributions. This is

logically equivalent to if all inputs and outcome observations are separated a-priori. This

already adds one dimension in which our 'veil of forgetfulness' has to be violated.

4.2.1 Model 1: Independent (No Rule)

All of the models that follow Model 1 embed a deterministic model within the random ob-

servation sequence. Model 1 however contains no rule whatsoever, and the pseudo-random

observations are generated independently. The test is if model selection can identify the

fully independent reading model (dependencies between the positional-distributions that

the observations are read into), rather than test if it can predict correct output dependen-

cies between the observations themselves.

Identified Models

An example of the identified read model after 100,000 points is contained in Figure 4-3.

Gold Identified

m n m- n m -- n

Figure 4-3: After 100,000 points, all 6 fully connected graphs were identified as equally

likely representations of the dependencies between the read-distributions.

The 'reading' model is first selected, before mapping to physical observations, and given

the aligned observation order, the distributions correspond exactly to positions within the



sequence, and thus the selected model to a positional corellation.

The identified model which has the highest relative likelihood is not the fully independent

model. While most analysis of these results is being held off until the next section, I feel

that it is important to partially explain the correctness of this particular result.

Two random variables X, and Y are considered to be independent if the conditional

probability of one variable given the other is equivalent to the joint probability.

P(XIY) = P(X)P(Y) (4.1)

In 'real' data, it is nearly impossible to achieve a the perfect sample where the indepen-

dent probabilities are exactly equal, and because of that, conditional probabilities 'carry'

higher probability density than independent-joint probabilities - the likelihood produced

by a conditional probability will always be higher (or more preferred) than that produced

by a joint probability, except in the case where the random variables are truly independent,

when the joint and conditional probabilities become equal (thus equivalently likely in the

identified models). Though we can see them converging in figure 4-4; even after 100,000

observations, there is still enough of a difference to prefer a model of conditional indepen-

dence. This result is supported by Jaynes, where model selection that is not augmented by

prior knowledge (a non-uniform prior) will always prefer the surer thing [27].

For future tests, the positional dependency model between the distributions will be

mapped back to observations to produce and test the 'observation dependency' model.

4.2.2 Model 2: Simple Rule (Converging Dependency)

Model 2 is an interesting model, and there are a couple of ways of looking at it: that it

contains multiple strict dependencies, that it has a 'distance' dependency, or that it exhibits

the case of multiple correlations.

The relative rates of Model 2's rule appearance within the data are shown in Table

4.1. The sequences of ABA and ABB are completely replaced by ABC. By 100 points,

ABC is not the most frequent observation - AAA is, but by 100,000 points ABC's rate of

appearance is greater that (approximately double) the rates of the other sequences.

Because what we are working with is relative likelihood, the relative rate of approx-

imately double should be sufficient to 'prefer' a model capturing A, B, and C. However,



Log Likelihood for different indentified models for Model 1

0 1 2 3

Sequence Length (log10 (-> 4,500))

Figure 4-4: Graph comparing and demonstrating the convergence of the log-likelihood

of an identified model (fully connected) to the correct 'independent' model in Model

1. This graph is on a loglo, -loglo(-L) scale. Higher is 'more likely' - the fully

connected model is preferred completely to the independent model.

if one considers all of the non-ABC sequences to be noise, the total probability of those

sequences is 3/4, which is greater than the ABC probability.

Identified Models

After mapping back to observations, and choosing from the full class of model hypotheses,

the most likely identified models can be seen in Figure 4-5. Six models are identified as

equiprobable, and all the observations are connected, implying that there is no independence

of state. Models that represent C as the outcome state or the head state are represented

twice each, as are models where C is an intermediary in the dependency path. However, the

correct representation of the outcome of C is still accompanied by the false positive edge

between A and B.

o Independent Model
o Fully Connected



A A A 6 0.182 4199 0.126 111 _

A A B 5 0.152 4306 0.129 -

A B C 5 0.152 8247 0.247 1=
B A A 5 0.152 4093 0.123 =
B A B 4 0.121 4066 0.122
B B A 5 0.151 4246 0.127 1
B B B 3 0.091 4176 0.125 -222 -

Table 4.1: Relative frequences and rates of rule appearance within the data for Model
2 vs. all other unique sequences, after read into distributions (m, n, and o) using an
aligned strategy. floo is after N=100, and fioo,ooo is after N=100,000. The exact
probability of appearance of the sequences A,B,C in the distributions. C appears in
distribution o IFF both A and B appeared in m and n, otherwise A or B are selected

randomly with probability 1/2.

Given the results from the fully independent model, it is of little surprise that the

fully connected model is preferred over a heirarchical tree model that separates A and

B. What is a surprise is that all six fully connected models from the size=3 model space

capture the observations with equivalent likelihood. This means that when the 'fit' between

the independence model and the data is maximized, all knowledge concerning directional

dependency, independence, and overall structure is lost.

To retrieve model information, lets see what adding a little more certainty can do. If

we bend the veil of forgetfulness a little more and restrict the tested models to the class of

trees (adding knowledge about the class of models that the desired model belongs to), then

the identified model is substantially better (Fig. 4-6).

LOG-LIKELIHOOD: -63596.19 (correctly identified model, tree restriction)

The correct dependency structure is identified right away and does not fluctuate much

relatively (Fig. 4-7). This happens so quickly that it is almost uninteresting in its efficiency.

Personally, I really did not expect this to happen, largely because graph 'dependency'

implied by arrow directions for probabilistic models is not about dependency at all, but

about conditional independency. But in this case (with this constraint), the arrows of the

conditional independence graph do overlap with my declared dependencies.

Partly this is because the restriction that the model is drawn from the class of trees is a

fairly strong restriction - it is an assertion that in the size of 3, at least two of the position

exact Pfloo rateloo floo,ooo rateloo,ooom n o



Gold Identified

C C C

Figure 4-5: Model 2 - Identified most likely models from the full class models af-

ter an observation length 100,000. All 6 fully connected models are identified as

equiprobable. In the two models containing the correct dependency direction, an

extra dependency exists between A-B.

Gold Identified

C C

Figure 4-6: Model 2 - Identified model restricted to the class of trees, after observation

length 100,000. The correct model is identified.

distributions are independent in some way (whether with or without information). Beyond

that, in the acyclic models, there are 6 fully connected graphs which are removed directly.

Secondly, model selection universally prefers more conditional edges to less, which means

that only partially connected graphs (fully disconnected, and single disconnection) of a total

of 7 will be removed as well. This means that the 'tree' restriction reduces model selection

to a class of 12. By the same token though, the model selection without a restriction (from

the full set) is limited by the preference of greater connectivity, to the 6 fully connected

models.

Secondly, the interpretation of the identified conditional probability graph is somewhat

counter-intuitive - it effectively states that "A and B's appearance are independent in the



Log Likelihood for different identified (tree) models for Model 2

o Correct Dependency (M4)
o Unidirectional (MS)
o Unidirectional (M11)
0 Single edge m->n (M10)

C?

oq
_cj

0 1 2 3

Sequence Length (loglO (-> 6,400))

Figure 4-7: Model 2 - Log likelihood of different tree dependency structures. Model

4 (solid line) is correctly identified very quickly, where it surpasses the unidirection

Model 11. Plotted on a loglo, -loglo(-L) scale.

data, but given knowledge of C, it may not be independent". This is actually correct for

the Model 2 experiment, but it is not a statement of dependence of C on A and B - it is a

statement about the effect that the information that C has occurred upon the information

about A & B's relative appearance. Because mapping to A, B, and C takes place after

model selection, what it really says is that 'position-distribution m is independent from n,

but not necessarily independent from each other if a value of o is known'. If o is unknown,

unobserved, or unread from the sequence, then m and n are independent, which given a

perfect sample, would be true. With our real data, it would prefer to connect m and n

due to small variations from the expected values of m and n. It should be noted however,

that the observation of {m, o} or {n, o} are not independent, so when forcing the choice

between different independence maps each containing at least 1 independence, the selection

of {m, o} and {n, o} as being connected is a far better fit than m and n.

If we analyze the relative rates of appearance, considering first o = C, we'll see that



P(m = A, n = Blo = C) = 1.0. And looking at A and B's conditional independence given

o = C, we'll see that the P(m = Aln = B) = 1.0, which is the same as P(m = A) - P(n =

B) = 1.0 (complete enumeration of all observations for m and n given o = C). In other

words, 2 points are evident: in model selection, the independent and the conditionally

independent model should both be identified as equivalant; second, their equivalence means

that m and n are independent given o = C. And, in exact probability, m and n are also

independent. (i.e. P(m = A) = 1 = P(m = AIn = B) = (1/4) In actual rates

however, at fioo,ooo : P(m = A) = .502 and P(m = Aln = B) = .495 are not equal and

not independent. It is also of note that the model selection is benefitting from a uniform

distribution of A and B. With a non-uniform distributions, it may be more difficult to

demonstrate the independence of A and B's appearance within the read-distributions m,n,

and o.

Discriminating

In trying to understand why the dependency model identified for Model 2 appears cor-

rect, we can calculate the probability of rule P(R) (Table 4.2) as captured by the different

conditional assertions of the different graphs. One can see that the because the rule is deter-

ministic, the probability of the sequence ABC (P(R)) is 1/4 for several markedly different

models. This means that it is not the probability of rule, or how well the model replicates

the rule in its overall Likelihood of the data (P(DIM)) that governs model selection, but it is

the proportion of alternate (non-rule) observations that do. In Table 4.3, the displacement

ratio, or rather, the new expected values for the non-rule observations given the outcome

o are different and unequal, which means that Ms (P(mnjo)) is eliminated becauses for

non-rule observations surfacing in o, m and n are not independent.

This is an important observation, because even though the relative rate of rule appear-

ance is higher than any other subsequence, it basically means that in this experiment, noise

drives model selection - in an experiment that is 'open' either to new observations, new

knowledge structures, new phrase structures, the 'noise' may effectively spread to unifor-

mity, leading to loss of the identified dependency structure.

By extension, if the rule is the only observation sequence available,

ABCABCABC...



m n o p(m) p(n) p(olm n n) P(R)

M4  A B C 1/2 1/2 1.0 1/4

m n o p(mlo) p(nlo) p(o)

Ms A B C 1 1 1/4

m n o p(m) p(nlm) p(oln )

M10o A B C 1/2 1/2 1 1/4

Table 4.2: When comparing the various tree dependence models for their probability

of rule it can be seen that the probability P(R) (4) is equivalent across several models.

E(mlo) E(nJo) o {A,B}
A 1/3 2/3
B 2/3 1/3

Table 4.3: The displacement ratio of expected values for Ms and o = A or B (not C,
which is the rule). The original ratios for m and n are both 1/2 A, B each.

and there is no variation, then all 25 models are as identified equiprobable with P(R) = 1.0.

This observation helps to suggest that there may be a 'range' over which the the pro-

portion of rule observations, from 0.0 - 1.0 affects the models that are identified. Also,

given that restriction on the space of models seems to achieve a correct dependency model

for Model 2 suggests that the use of a non-uniform prior would yield desired results while

maximizing prior knowledge. However, the combination of the preference towards fully

connected models along with the non-discriminating probability of rule shows that for this

experiment, no non-uniform prior choice can be justified. It will always be overwhelmed by

the distribution of noise and converge towards a fully connected (non-independent) model.

Sparsity (Widening observation space)

Restricting the class of models being evaluated to trees, and knowing that it isn't the

probability of rule that discriminates one rule from another, lets see what happens when

the space of non-rule is widened and sparse, as integrating novel observations or a

(nearly) unlimited supply of new rules/structures (that we have not yet accounted

for) might accomplish in our model. To accomplish this, the exact same observation

sequence will be used, with the exception that all non-AB -- C sequences will be

randomly replaced with one of 89 characters from the ascii character set (not including



{A,B, or C}). This reduces the availability and variability of the {A,B} sequences

possible, so their use to indicate whether the read models m, and n are independent

will be reduced.

Gold Identified

A B B

C C

Figure 4-8: The dependency model identified for a spread out noise space (non-rule
sequences), restricted to trees. A converging dependency model is selected with B as
the dependent node.

Overall, this is the same as surrounding the rule with a large volume of novel, but

irrelevant evidence. Because the frequency of rule sequence is the same as for the

other model 2 tests, this helps to visualize what happens when more information is

added that is unaccounted for.

4.2.3 Model 2: Random Position - ..ABC...BAC..

In the initial Model 2, the sequence ABC is fixed, which leads one to wonder why a

model A -+ B --+ C (which could either be a surface model, or two rules A -- B, B -*

C) is not preferred to the hierarchical model A -- C, B -- C. To test this, I will

use the sequence with the two parents {A, B} in randomly alternating observation

positions. This might be seen to be the 'most correct' data representation of the

tree, as it does not necessarily enforce any ordering between A and B in the single

branch case, but it is also of note that it means that the 'observation-position' is

random, which it would not be in a real-world model, and in natural language, would

be immediately violated with compositions of trees/branches. Even if individual

branch members can be in random positions, the adjacency (or rather bracketing)

requirements would eliminate various 'fully random' representations of surfacing data

- so this positioning-test would be violated.



Gold

A B

C

Identified

:A B

C

Figure 4-9: Model 2, with a random position data sequence that includes both 'BAC'
and *ABC'. The Identified model restricted to the class of trees, after observation
length 100,000. The correct model is identified.

LOG-LIKELIHOOD: -57757.47

O length DKL(mn In)
99 0.0074
999 0.00065
9999 5.8 10- 5

99999 4.4 10- 5

Table 4.4: The KL divergence between positions m, and n, which contain
B. The 'information content' between the read-positions is driving to 0.
read in chunks of 3, hence '99','999',... instead of in factors of 10).

both A and
(Sequences

Though the correct model is identified (Fig. 4-9, and identified with greater

log-likelihood (has greater probability of producing the data) than with the 'more

consistent' strictly ABC data sequence, the actual information content that would

'separate' observations A and B is going to 0. At this point, we might start believing

that we are looking at a Q=2 (2 parameter) rule instead, where the state that produces

C is can have values A or B.

In this method of reading and model, the veil has been pierced just a little more

- knowledge that A and B could appear in either position, but C could not. This is

effectively a position and bracketing restriction.

4.2.4 Model 3: Dual Dependency

Model 3 is the most interesting case of the size Q=3 models, as it can be seen as

simultaneous multiple distance dependencies, multiple (probabilistic) influences, or



as the conjunction of two separate dependencies that happen to take the same input.

From Chapter 2, we know the conditional representation of diverging evidence to be

the least 'consistent' with a causal representation.

As before, rates of the rule's appearance within the data are:

m n o floo rateloo floo,ooo rateloo,ooo exact P
A D C 18 0.545 16738 0.502 1 1=
B A A 2 0.061 4205 0.126 11

B A B 2 0.061 4082 0.122 =
B B A 6 0.182 4145 0.124 =-
B B B 5 0.152 4163 0.125 i 1

Table 4.5: Relative frequences and rates of rule appearance within the data for Model
3 vs. all other unique sequences, after read into distributions (m, n, and o) using an
aligned strategy. floo is after N=100, and floo,ooo is after N=100,000. The exact
probability of appearance of the sequences involving A,B,C,D in the distributions. C
and D appear in distribution n and o IFF A appeared in m, otherwise A or B are
selected randomly with probability 1/2.

In this sample, the frequency of the rule appearance vastly dominates the appear-

ance of other sequences, and has greater total rate (0.502) (P = 1/2) as well. All

observations vary independently within the same space, with the exception of the

rule, which deposits different observations into the position distribution. For this

experiment, I will deal explicitly with the dependencies between read-distributions

m, n, and o, because only n contains the outcome D of the rule, and only o contains

C. That means that if the dependencies between {m, n, o} are incorrect, so also will

be the dependencies between the events and the rule.

Identified Models

There are 12 graphs models identified from the full class as equally likely after a

sequence length of 100,000. It includes all fully connected graphs and 6 of the 12

double-edge (tree) graphs. When the class of models is restricted to tree, those 6 are

shown in Fig. 4-10.

After 100,000 points, the selection identified 6 models as equally likely (none

matching the gold model), which suggests that the observation sequence does not



possess the necessary evidence to establish the independency of n and o. This is

not a surprise, as in the data, n and o are forced into a high 'correlation' by the

rule. Correlation is the correct description here, and not some form of dependency, as

the model selection identified an equivalent number of models where o is conditioned

upon n (nlo), and vice verse (oln).

Gold Identified

4 0 - 0 f 4- 0

Figure 4-10: After 100,000 points, there are 6 read-position dependency graphs, which
means that when mapped back to observations, which contain unique D and C ob-
servations, there will also be just as many graphs.

Over 38,700 observations, the total number of correctly identified dependency

models is only 6 (Fig 4-11). This test demonstrates that even given variations in

evidence over the entire sequence, the correct model could not be identified. The full

100,000 observations was not reached due to a slower compute time, evaluating the

change in models for every observation sequence read.

The identification of multiple models as equivalent in probability has some ram-

ifications on model identification for other models. It means that if one of the six

models is identified in a general model selection problem, the identified model could

either be correct or one of the 6 multiple models for headed conditional probabil-

ity (Model 3). We might seek a policy whereby if 6 multiple models are identified,

then the generating, original model must be similar to Model 3, but this would not

work in the general case where multiple generating models are conjoined, distributing

probability and changing the identification of substructures.



% of number of edges Correct

Figure 4-11: After 38,700 points, the number of models identified was 227,971, and
returned that were totally correct is 6. The number that had 2 edges correct was 19,

and the number with only 1 edge correct was 76,009 (33%).

Rule Separation/Partial Inhibition

I'd like to test the idea of whether evenly distributing within the outcomes (D, C)

of the A - DC rule helps with the identification of the read-model with edges

in the appropriately from m - n and m - o. That is, does making D and C

conditionally independent within A still allow identification of the correct model?

This experiment partially replicates the idea of 'inhibition', that part of the rule's

dependencies do not always surface (and the reason is inaccessible to us) - the shared

'cause' is probabilistically involved in its children.

A A Before:

BBAADCBBBADCBAA

D C After (ex):

p=.5 p=.5 BBAAACBBBADBBAA

Though it is closer, identification of the correct model (M12) is Still not forthcoming

(Fig. 4-12), so what happens if we add an extra constraint such as linear ordering

to the model class? This is a justifiable constraint as 'temporal' ordering within the

sequence, 'headedness' in NLP, or directional rooting in an ontology. This additional

constraint restricts the total class of acyclic models of size 3 from 25 down to 7: 1



Correct (M12) (M15) (M20)

S 0910.8 -8 0910.8 -80910.8
-80910.8 -80910.8 -80910.8

Figure 4-12: After 100,000 points, the most probable model is not the correct model

M 12 , but is a similar structure for our experiment with Model 2; n and o converging on
m. The log probability of the correct model and its equiprobable structures are also
shown. This is because the M15 and Mi20 are equivalent factorizations of conditional
probability as M12. Note that between M22 and M12, there are several other models.

fully independent, 3 with 1 directional edge, and 3 with 2 edges.

Identified (M4)

logprob -76494.9

Correct (M12)

-80910.8

-80910.8

Figure 4-13: After 100,000 points, restricting the class
tain a temporal ordering of dependency from m to n
second-most probable, behind M4, converging on o.

models to those that
o, the correct model

Once again, though the correct model is not identified, it is extremely close (Fig. 4-

13). Either additional restrictions are necessary or aspects of the rule and experiment

have to be changed. While at this point I do not know of a justifiable restriction that

can be made on the class; any such choice would have to assert the separation and

conditional independence of n and o. This restriction would eliminate 3 additional

models, leaving the 2-edge class containing only the M4 model hypothesis.

Identified (M22)

ogprob -72171.7

logprob -72171.7

main-
is the



4.2.5 Model 4: Hierarchical Model

The hierarchical model is an interesting model because it tests the validity of depen-

dency identification for compositions of Model 2, which was the 'best case' match

between the graph's conditional independency arrows, and the dependency arrows of

the rule. In other words, though model identification worked for the simplest con-

verging case (Model 2 - with 'limited' constraint), does it still work for more complex

compositions. as generating rule size grows?

The short answer is, not necessarily.

a) b)

D E A,D,E D,E D,E,B A,B

A B

C

Figure 4-14: Most likely model restricted to 4 edges - class of trees, plus some 4-
edge forests, 20000 pts. a) The original model b) The identified read-position model

(using aligned read-distributions [klmno]) is a tree of maximal width, and no edges
exist between 1 and m, or m and n to even contain dependencies between the original
observations A,B,C,D, and E. (the observations are mapped onto the distribution-
positions that they can appear in)

Using 'similar constraints' as before, that the dependency structure be restricted

to the class of trees - which I emulated by admitting dependency models with 4 edges

between the 5 nodes - this includes both trees and some compositions of trees (4 edge

forests). With this restriction in place, the most likely model is shown in Figure 4-14 b.

The identified tree is one of maximal width, for a number of reasons. Between Models

2 and 3, I saw that the 'preferred' model is one of converging dependence (conditional

non-independence given outcome) - when restricted to trees, it tries to 'account' for

as much non-independence as possible with a single observation value. Secondly, if

the probabilities are allowed to represent fuzzy logic, accounting for both and and or

[60, 51] of boolean logic, distribution of terms both allows the tree structure to be



flattened: {Z = (V U Y), V = (W U X) }= Z = ((W U X) U Y) = Y U W U X, which

with idempotence is the same as V U Y U W U X. The same applies for A/n.

a) b) c)

k) I (k> I

p

Figure 4-15: a) The composite of the rule dependencies onto positions, 20000 pts,

restricting the class of model to 7 edges a) The rule DE --+ B maps onto k, 1, and

m, and from branch rotation of AB -- C has the positions 1, m, and n also available.

Similarly, AB - C has positions k, n, o and m, n, o available (Fig 4-14 b & c) The

identified models as equiprobable do a lot better, but m, o is changing direction (with

equal prob), but m, n and 1, n are strictly incorrect. Both returned models seek a

higher number of convergent nodes (3 and 4) than the gold model, which has 2,2, and

3.

But in inspection, one may realize that equivalence of rotation of dependencies

within the branch actually allows observations of the rule to surface in a number of

different read positions, creating an overall non-tree dependency structure (Fig 4-15

a). What happens when the models are constrained to 7 edges? In figure 4-15 b/c, the

most likely models (equiprobable) for combined surfacing position and dependency

structure show a great deal in common with the gold model. The mistakes are the

returned models indicate o (containing C) is equally likely to be the final dependency

as is m, containing D,E, and B. This may seem like a trivial mistake, but if it persists

as observations grow, it means that a knowledge/tree structure built upon the final

dependencies cannot be more generally correct, even it is acceptable that a model be

locally incorrect within some smaller subset of observation-distribution space. Second,

the lack of an edge between 1 and n is somewhat interesting. From Model 1 and 2

constraints, I know that conditional dependencies are preferred to independencies,

but in this Model (with the 7 edge constraint), it has preferred the addition of the

conditional dependency of I -- o 'minus' (not strictly) the loss from n's independence



to the conditional dependency of 1 -+ n. In this experiment, it suggests that positions

I and m are more strongly correlated given o's (as is 1, olm ) values than is 1 and n.

This also might be seen as support for having the property of seeking more inbound

edges, as in Figure 4-14 and Models 2 & 3, where the number of inbound edges to

{m, o} is {3,4}, balanced between the two equiprobable models.

Together, the constraints of 4-edges and 7-edges show me something interesting

- that if one is 'overinformed' about the actual dependencies between the events

(the observation values themselves), then the wrong constraints constraints can be

selected. I also had to take into account knowledge of how the dependencies surface

in the observation-positions to achieve the best match between the most likely model

and the true model. The 'veil of forgetfulness' had to be completely pierced to be able

to enumerate all of the ways in which the dependencies can (and cannot) surface in

the sequence and thus come up with the right edge-constraints for the reading-model.

To push it one step further, in Models 2 and 3, there were only 3 possible edges, so

constraining the number of edges alone provided a 'reasonable' 1/3 chance I would

get it right by just guessing on edge counts. But with the size 5 model, there are 10

possible edges and to just 'guess' 7 as the correct number of edges has only a 1/10

chance. As the models become larger and more complex, the likelihood of guessing

the total number of dependency counts correctly continues to decrease, and as is

shown for this experiment, even when the counts are guessed correctly, the correct

dependency model is not always achieved.

Note: Model 4 was only computed for 20,000 observations rather than the full

100,000 due to time and computational tractability (took over 30 hours to process).

4.2.6 Overall

All of these experiments explicitly contain a lack of knowledge, which is evident by

what knowledge and restrictions have to be encoded in. By the end of Model 3, a

number of additional (but no incompatible with prior Models) restrictions had to be

added, in addition to a change in how the rule surfaced (observability & separation) to

come close to the selection of the correct dependency. By the end, any final restriction



that would guarantee selection also eliminates all competing models except for the

fully independent model and 2 single edge (single independent) models. Now in this

experiment, I used a uniform prior and the hard-boundary of selection restrictions

acted as prior. Any prior strong enough to guarantee the correct selection of the

dependencies of the Rule through the evidence and posterior which prefers other

models such as M22 and M4, and disproportionately favors M 12 over its equivalant

factorizations will run into the same problem and be encoding the same information.

In the end, to recover Model 3, I had to know a-priori what the correct model was.

And combining the multiple-equivalent identifications of Model 3 with Model

(Rule) 2, which is quickly identified, any of the identified models could belong to

Rule 3 or Rule 2, and there is no way to tell which it is without already knowing first.

Therefore, for some classes of rules, to select the correct dependency structure

between groups of observations probabilistically, one has to already know what the

structure is. And knowing that, the test of model selection by enumerating hypotheses

(models in this experiment), reduces simply to the pairwise test of independence

between several models. Beyond that, the conditional independence structure graphs

do not entirely map directly onto deterministic, causal, or other ontological graphs,

meaning something a bit different.

Finally, it is of importance to note that from the perspective of the model identifi-

cation from data using conditional probabilities, Model 2 (ABC) and Model 3 (ADC)

are identical. They both contain a set of symbols that appear in their positions only

together. Though ADC may be produced through rule A -- {D, C}, because they

appear simultaneously within a fixed, stateless window size, it would be equivalent if

they had been produced by {D, C} -+ A.

For completeness of size=3 models, it should be observed that the data would be

the same if the rules were fully linear: A --+ D --+ C. Identifying the correct rule

dependencies follows identically as in Model 3 - meaning that there are 3 equivalent

factorization-graphs and the same number of graphs with a higher likelihood as in

Model 3 (Fig. 4-12).

This means that not only are the actual rules' dependencies inaccessible to a fixed



size probabilistic analysis, but in hypothesis enumeration and model selection, the

conditional probability models do not distinguish between positions and symbols (i.e.

it does not matter if they are labeled as 'grass' and 'sprinkler' vs. 'clouds') - they

universally prefer (for 'real' data) fully connected models >- P(XIY. Z) (converging

'dependence' (non-independent given evidence)) >- P(X, ZIY) (independence given

evidence) models.

4.3 Analysis

This analysis is not intended to construe a proof, but rather provide some insight as

to why I think that I observed these results, to help predict what one might expect

as models become larger, and finally to motivate future work.

4.3.1 Observational Uncertainty

In this experiment, when the reading strategy was fully uncertain, it effectively rep-

resented the effect of a uniform spread on the distribution that symbol could go into.

By allowing a symbol to enter stochastically into other distributions (i.e. it need not

be deposited into, or contributed evidence to all at once), the dynamical evolution

of the system of read-distributions is mixing, and the strategy by which one deposits

evidence into a distribution can be composed in terms of a Markov blanket (defining

a group of Markov processes), where addition of evidence either is made in terms of

the evidence alone, or some joint probability with the current state of > 1 read distri-

bution. (Without the addition of evidence, or certainty of only 1 distribution, there

is no process by which the system would evolve). According to Misra et al.[34], the

mixing of n-distributions is shown to converge deterministically to a joint expectation

of the distributions involved in the process. The Lyapounov then is monotonically

decreasing with additional evidence e (or as the observation length increases), instead

of T (time).

In many ways, this explains why a transmitter and a receiver (in this experiment,

the world and the learner) have to agree on codes/symbols being transmitted. In the



presence of uncertainty around the symbols (that is being stochastically updated),

the distributions containing the symbols converge. This does not mean that the

transmitter cannot transmit 'information' about the existence of a new symbol, which

is added to the receiver's alphabet, but uncertainty around the symbols themselves,

if tolerated at all, can only be so to a limited extent.

4.3.2 Novel Observations

One of the majors tests of a model is how well it handles 'novel' or new observations.

In the general case, novel observations (or novel dependencies) are either entirely

new events, or sequences of existing events that we have never seen before. Consider

the case of a single novel observation z. If z is an entirely new event (coming from

some source of novel observations Z), then by definition we do not know what read-

distribution it should belong to. Even if we start with a sharply modal graph (Fig.

4-16 a), as new z's are added, the read distributions' probability mass spreads out,

increasingly overlaps, and the expectations converge (Fig. 4-16 b). A relevant side

note: many times the probabilities attached to the read-distributions are associated

with fuzzy logic, and the differences between the intersections and overlaps are used

to make inferences about boolean logic { and, or} (for instance to identify a 'circuit

diagram' probabilistically in genomics [51, 38]) - but in the case of the distributions,

the total probability of the set members must sum to 1, so fuzzy set logic constructed

of min and max will only yield identity [60]. In this experiment, novel observations

of this type were simulated by Model 2 and widening noise.

Secondly, the introduction of novel evidence in a position suggests that we also

may not know how to read the existing observation sequence - either z replaces an

expected observation (as above), or it displaces the sequence by 1. If it displaces the

sequence, then the model size must be increased (or the evidence ignored). According

to Shannon Entropy, the maximum information per model will be obtained when they

all occupy an equal area in hypothesis space, which diminishes with the number of

models, so the probability of selecting a model from the space, in terms of a model

size Q:
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Figure 4-16: A diagram demonstrating the effect of novel observations upon

positional-read distributions. According to AEP[50] and as I observed in this exper-

iment, novel observations cause the distributions to spread out. a) the distributions

are highly modal, containing completely different observations = high DKL. b) Novel

observations contribute to both distributions due to uncertainty, the two positional-

distribution sets begin to overlap. c) Novel observations consist of the majority of

evidence - differentiating, 'known' observation area is approaching 0. Distributions

almost completely overlap, and expectations converge.

(4.2){Q > 1}: P(Q)=
3() -C(Q)

Where C(Q) is the number of cycles removed from the model space of size Q (For

Q = 4, C(Q) = 250).

Size (Q) 3 4 5 6

Total 3 ) 27 729 59,049 14,348,907
Cycles C(Q) 2 250 38,648 12,346,772

Acyclic M(Q) 25 479 20,401 2,002,135

Table 4.6: P(Q) is 1/M(Q), the number of acyclic

grows > exponential rate with Q.
dependency hypotheses, which

The area occupied by any individual model in the model space will diminish

more quickly than an exponential as model size is increased with novel observations.

Convergence to the correct model with additional observations (containing a novel

source) may be difficult to achieve, as the observations are added linearly, either

spreading the evidence-distribution space, or spreading the model space.

position 1 position 2
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Figure 4-17: The model selection can be seen in terms of the frequency of rule in the

O. When the observation sequence consists only of the rule (f = 1.0), it represents the

'most consistent' set of observations. All hypothesized models MG are equiprobable.

As the frequency of rule approaches 0.0, or as the number of possible rules continues to

rise, the observation sequence enters it's most 'inconsistent' state. If all subsequences

selected from O are equiprobable, then the entropy of O is at a maximum.

4.3.3 Model Identification & Shannon Entropy

In trying to understand why the most likely dependency model when mapped to

actual observations is sometimes wrong, it is helpful to look at the types observations

in terms of Shannon (Information) Entropy.

Basically, in any experiment, there are 3 types of observations: observations that

completely represent our rule (R), observations that partially represent the rule (L),

and those observations that are "noisy"' (N) or do not capture the any aspect of

current rules (in the future I hope to deal with this as a case of 'evidence for a new

model'). Using Model 3 (AB --+ C), examples of R, L, and N are as follows:

Observations

R: ABC (Rule)

L: ABC ABC (Partial)

N: AAA BBA ... ('Noise')

The Bayesian selection for any particular Model is driven by the Model's 'ability'

to replicate the data (or rather, it's probability of replicating the data - P(DIM) ).

Taking a sequence of observations which consists of r occurrences of R type obser-

vations, 1 occurrences of L type observations, and n occurrences of N type observa-

tions. Then the probability of a single Model generating some observation sequence

(or data D; we used '0' in the experiment):



P(D) = P(R)rP(L)zP(N)

Knowing that r + n + m = t, the total number of observations,

P(D)T = P(R) P(L) P(N)-

Well, for the single model case, the ratio of r/t is just P(R), as n/t is P(N):

P(D)- = P(R)P(R)p(L)P(L)p(N)P(N)

If we take the -log2 of both sides, we are left with the equation for Entropy, and

if we select some model M with the minimum entropy from a closed class of {M},

then we are effectively selecting the maximum, or 'most probable' model.

To understand how minimum entropy affects model selection, lets forget about the

partial observation type L for now and assume that there are no partial observations

represented within the data. Then,

P(D) = P(R)'P(N)n

and entropy E given some model M:

E = -P(R) - log2P(RIM) - P(N) log2P(NIM)

If we use a concrete example, with a couple of cases say, with a model where the

rule is captured perfectly, another model where the noise is slightly more captured,

and finally a model where the ratio of the rule-noise R:N is matched perfectly. Lets

also assume a ratio of occurrences r:n of 6:4, total occurrences t=10.

Model P(RjM) P(NIM) P(D)1/t  E

Rule 1.0 0.0 0.0 00

Noise 0.4 0.6 .47 1.08

Ratio 0.6 0.4 .51 .97



In this example, we can see that the probabilistic model that 'perfectly' represents

the Rule that we believe exists has zero ability (likelihood) to capture the data, and

entropy of infinity (log(O) = -oo); it will never be selected, except when there are no

noise observations N (where (P(N) = 0)0 = 1). Otherwise, the model favoring Noise

fares far better, but the Model selected (E=.97) is always the one that best matches

the full ratio of observations.

Because this minimization of entropy penetrates down to the individual events

in the distributions and observations that make up my O sequence, and minimizing

the difference between the actual probability of each observation and our represented

one, any choice of factorization of distributions and evidence will obtain the same

result. This means that no joint probability distribution can be chosen that separates

'certain' dependencies from a random variable - a probabilistic model cannot be

considered to contain (or factorized into) some known rule and a random variable

- all selected joint distributions must contain the random variable at the observed

ratios for entropy to be minimized.

As humans, we often think of the 'most probable model' as being the model

that 'best captures' some deterministic rule within our data, if our assumptions of

redundancy and independence are met, but the most probable model is not the one

with the highest likelihood of reproducing the data, it is the one with the highest

probability of replicating the distribution or relative ratios of the data.

We might like to think that if we have some deterministic model + some rep-

resentation of noise, and that they are optimized and selected separately, but the

distribution must be represented from top to bottom, and the rule no longer explic-

itly exists.



Chapter 5

Conclusion

In this thesis, I tested the use of probabilities to approach a problem that humans

are clearly capable of surmounting. The problem is generally mimicked by statistical

induction of natural language, merging of ontological dependency structures, and

induction of causal dependency from observation - the identification of a correct 2-d

dependency model from a linear sequence. The problem was primarily phrased in

terms of insertion of symbol(s) into an otherwise random observation sequence due

to a deterministic rule and the rule's dependency recovery. This allowed me to test

different levels of 'uncertainty' and different combinations of the rule to determine

what constraints (if any) were necessary for recovery of the dependency structure of

the rule. As a result, I gained some insight into the minimum information required

to probabilistically identify a hierarchical dependency model.

In the larger problem, those of ontologies and causality, the experiment represented

a world consisting of an unknown internal state, but operating with a known ontology.

Transmissions of symbols from the world's state either have access to observations

from the ontology, or do not, and from the symbols, the learner must construct his

own ontology or representation that mimicks the correct (the world's) ontology.

While this problem was mostly limited to identification of ontology/dependency

structures of size 3, it also showed the effect and meaning of a uniform prior on model

selection. The test of what would happen if one did not know a-priori the correct

structure size (i.e. if it was either larger or smaller) was done, and finally a brief



analysis demonstrated that the area maximally available to distinguish the models is

decreasing with window size at greater than an exponential rate, a point exacerbated

by the equivalent factorizations of conditional independence.

As generally as possible, what I found was:

1. If one does not know how to 'read' (identify) their observations a-priori then

the adoption of probabilities guarantees that the observation distributions will

become indistinguishable over time. In otherwords, the information is being

degraded. This result is supported by the idea that a transmitter and receiver

must agree on codes/symbols, and the central limit of the Lyapounov [34].

2. Similarly, I learned that hypothesis formulation and dependency identification

cannot be separated from observation reading. If one does not know how to

read, then the space of all possible single-symbol hypotheses (including 1st

order cycles) grows at a rate of 4( ) of the number of observations N - at a

rate far higher than the rate at which observations are added - which means

that the model/hypothesis space spreads out far more quickly than convergence

might be achieved in terms due to additional observations.

3. The minimum information necessary to recover the correct dependency model

from independence models probabilistically is... knowledge of the correct depen-

dency model. The conversion of identified conditional-independency structure

to a graph structure is not necessarily 1:1 and because the majority of the rules

(A -* C, D) have equivalent factorizations and are not the 'most likely', the

constraints (or the prior) that one has to put on the model space eliminate

most or all competing dependency models (Model 3).

4. Fully enumerating a hypothesis space of greater than 2 does not make sense

probabilistically. The hypothesis space of conditional independency between

random variables does not map to explicit dependencies, the graph/conditional

independencies have multiple equivalent factorizations which overlap with com-

peting hypotheses, truly independent variables are not likely to be identified



automatically in real data, and the discriminating evidence between hypotheses

is diminishing as the size and space of hypotheses grows.

5. Even when the correct graph is identified probabilistically, it is the shape/dis-

placement of the noise rather than the existence of the rule that identifies it. In

the case where there are novel observations, either through productions of un-

captured rules, or from new rules, the noise displacement drives down, and the

distribution approaches uniformity, which is supported by asymptotic equipar-

tition [50].

6. Finally, as suggested by Model 4, it is not just the randomness of observations

and position, or even the inconsistency that helps to identify the tree structure

- it is also the distribution of what we do not see. For instance, what has the

power to give away the data from Model 4 as being generated from a tree is the

fact that though we see observations in a few random positions, we do not see

those same 'random' observations in other positions.

Practically, what these results tell me is that in the concrete case of merging two

biological ontologies, and the case of identifying multiple common factors or modifiers

in two biological pathways cannot be done probabilistically. Where identification of

common elements in rate equations comes down to identifying dependencies in two

different distributions, similar to the rule A --+ C, D, many other structures are

preferred. Similarly, a cause-effect, real-world dependency model faces identification

problems. This suggests (though not proved exhaustively) to me that if we are faced

with the problem of merging/seeking coherence between conflicting models without

knowing the dependencies, we must seek alternate methods than a probabilistic one.

In conclusion, where 'knowledge' is defined as certainty of dependencies or obser-

vation, probabilities are an explicit representation of a lack of knowledge. Not only is

it a representation of the lack of knowledge of dependencies between observations (and

the resulting inability to recover them), it also an explicit abandonment of the larger

proportion of observations, whos only purpose is to be the noise displaced in favor of

conditional independencies between observations of the rule. When we consider the



non-rule observations to actually be random noise, as they are in this experiment,

that may be acceptable. But in the case where the variation of observations actually

is produced by compositions of other rules, and not randomly generated, discarding

the large proportions of evidence is not acceptable.

Conditional probabilities are about information about how a particular obser-

vations changes what is not known about other observations. Though the graphs

for conditional probabilities can 'look' the same as causal or ontological dependency

graphs, they have nothing to with them a-priori. This problem is exacerbated by the

observation that for some generating models and strong restrictions, the graphs can

overlap and appear identical.

Similarly, probabilities, despite being a measure of lack of knowledge, seem to

provide a mathematical tool by which we can 'minimize our ignorance'. But looked

at as a measure of 'inconsistency', it can be seen that when we minimize inconsis-

tency, all possible models become equally likely (Sect. Model 2, discrimination). In

this manner, probabilities are perhaps uninforming - when the observations are fully

inconsistent, any number of models may be justified, when they are consistent, all

models are admissable (in that they admit the data equally well).

In the end, even probabilities require 'certainty' to be mean anything; too many

uncertainties and distributions overlap and run afoul of the central limit theorem in

unintended dimensions. While the law of large numbers guarantees convergence, it

does not guarantee convergence to the generating rule - it guarantees convergence to

the mean of the distributions.

This conforms to logic and intuition, that one cannot recover structure from un-

structured information, and though it may conflict with the results from other works,

it confirms the results by Sewall Wright in Correlation and Causation [58].

5.1 Future Work

Originally, I had intended to fully (exhaustively) capture the space of all possible

identified models, for all parameter choice size Q. This idea turned out to be quite



impractical considering the computational complexity and how quickly the number

possible dependency models grows with Q, combined with testing the changes in all

of the read-distributions with each additional observation. This is still an impor-

tant experiment to perform, considering that it allows us to exhaustively examine

the surface of all size models chosen for overall correctness, saddle points, min/max

behavior, and the overall recoverability as the model size grows. As a result, I am not

completely convinced that this experiment constituted the most general or complete

case.

In part 1 (reading observations) of the experiment, I found that the uncertainty

around reading the observations caused convergence; it would be a good extension to

exactly model the rate of convergence in terms of the 'shape' of the uncertainty - i.e.

non-uniform/etc. and the size of the model space. For instance, can one characterize

'how much' they are not likely to be able to retrieve probabilistically based upon

information that they know about their experiment.

Second, an exhaustive comparison of the divergence for different reading strate-

gies, combined with an exploration of the total variation of evidence points introduced

by different reading strategies. It is clear that as the read size approaches the length

of the full observation sequence, the overall variation goes down, and though memo-

rization of the model has been maximized, all possible models have become equally

possible (Model 3 experiment).

Third, this experiment was limited to just a few dependency models, which while

they demonstrated exceptions to convergence and identification, did not test all pos-

sible rules/dependency structures for recoverability. The entire dependency space

within a single rule size Q should be tested, along with more complex effects of com-

position with other rules (beyond just the one size 5 tree).

Fourth, in analysis, I became aware of the possibility that enumerating strict

independence maps of size > 2 (including conditional independence graphs) may

produce inconsistent independence statements. I spent a great deal of time attempting

to show and prove this (finding that the only consistent cases of independence graphs

are combined fully connected and fully disjoint nodes), but in the end I decided that



the proofs were not rigorous enough at this stage to be included in this thesis. A

clear extension is to finish that analysis and determine if a majority of enumerated

independence hypotheses do completely overlap in area, which would tell us if the

correct hypothesis can be converged on in principle.

Finally, a more complex analysis of the 'state' that the world could be in before

emitting a symbol needs to be done. Much of the original intent of this work was

to demonstrate how state is a necessary participant in the induction of models, and

how reversing (or disregarding) it leads to conflicting model selection. Unfortunately,

I became mired in the the problem of reading observations into distributions, which

is part of the very same problem. For this experiment I had to assume a limited

state-symbol size of 1, though in practice, the state that the world may be in before

transmitting a symbol could be any combination of prior symbols into complex states.

Given an observation sequence of length L, the number of possible (relevant) prior

states is -=1 (L). This also entails a deeper exploration of 'descriminating evidence'

- evidence that either identifies one model over another (differentiating likelihood),

or forces an increase in model complexity and size.

To achieve that comparison, there also needs to be a more exhaustive test of what

different deterministic models produce, and a more rigorous analysis of what entails a

'dependency', though quite possibly this will require a full expansion of the definitions

of causality.

5.2 Closing Remarks

This work is not intended to suggest that the use of probabilities is 'not productive'

or to cast doubt on many of the effective uses of probabilities. After all, it is reported

that Laplace used probabilities (through Bayes' Theorem) quite effectively to select

astronomical problems to work on [27]. While there was no control for Laplace, so we

will never know if it was just his diligent nature that led him to a productive lifetime

and not the existing discrepency between observation and prediction (an example of

conditional probabilities contra-indicating their own use), this experiment shows that



the chozce or decision of dependencies, certainty of observation, etc. is the researcher's

to make, not the probabilities', conditional or otherwise.

From that standpoint, it is my personal assertion that 'machine learning' should

not be maintain the word 'learning' as part of its moniker, as the identification of

dependencies may not be accomplished probabilistically, as 'machine learning' would

seem to imply. This is not to overstep the results of this work, as probabilities can be

used to help identify features that may be of interest, optimize capacities and usage,

in additional to many other uses both current and yet to be discovered. Beyond

that, we may have to be careful about using probabilities by default to do things that

non-probabilistic methods (ranking, for example) can do also [59].

Finally, I am quite certain that readers will find problems with this work; not just

because of its limited scope, but because the process of science is one of strong, certain

statements, which are then refuted, driving increases in complexity of knowledge.

5.3 What was Implemented

A number of algorithms and procedures were (newly) implemented for this work.

First, a Bayesian class (Existing Bayes' modules in Python are somewhat limited, and

development on the leading version (OpenBayes) has been stalled for around 3 years.)

and iterator was constructed in Python that allows independency maps (Bayesian

Networks) to be built and tested on the fly given only the parameter size, along with

inspection of the likelihood of data for each independence graph at each new evidence

point. Some attempts were made to distribute the likelihood computation for each

model across a compute cluster, but it turned out that copying of classes and data

cost more in computation time than local solving. This is not the general case for

this problem, as there are many different ways to factor and distribute the problem.

Second, an efficient graph enumerator that produces all possible graphs for a given

size, along with an identification of acyclic graphs (an example described in [33]).

Finally, applications to compare the produced models against the declared correct

models (and plot them in R), along with a graphic visualizer to ease inspection of



the selected dependency model was built using my own PyGraph libraries, which are

available under MIT License.

To replicate this experiment, the necessary components may be found at:

Graphs - http://alpha-leonis.lids.mit.edu/-beracah/masters/graphs

Data - http://alpha-leonis.lids.mit.edu/-beracah/masters/data

Models - http://alpha-leonis.lids.mit.edu/-beracah/masters/models

Algorithms - http://alpha-leonis.lids.mit.edu/-beracah/masters/code
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Appendix A

Appendix

A.1 Graph Enumeration Table

{M}Q:

g n1, 2 n~,3  l1,4  n 2,3  n2,4  n3,4
O: 9-- *+ 9-> +- *+- *--

2: +74+ +71 +71 4,+ *9-

2: 4

3: *> +- t> * - -

728: - + - - *

Table A.1: An enumeration of all possible graphs of size Q = 4, from g=0 to g=728:
niy is the connection between nodes ni and nj. g=0 represents a fully independent
graph. Key: +,-: ni,3 are fully disconnected. ; nij 4: means that n, -+ ny.


